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Abstract—It is elusive how the skull-enclosed brain enables
spatio–temporal multimodal developmental learning. By multi-
modal, we mean that the system has at least two sensory modalities,
e.g., visual and auditory in our experiments. By spatio–temporal,
we mean that the behavior from the system depends not only
on the spatial pattern in the current sensory inputs, but also
those of the recent past. Traditional machine learning requires
humans to train every module using hand-transcribed data, using
handcrafted symbols among modules, and hand-link modules
internally. Such a system is limited by a static set of symbols and
static module performance. A key characteristic of developmental
learning is that the “brain” is “skull-closed” after birth—not
directly manipulatable by the system designer—so that the
system can continue to learn incrementally without the need for
reprogramming. In this paper, we propose an architecture for
multimodal developmental learning—parallel modality pathways
all situate between a sensory end and the motor end. Motor signals
are not only used as output behaviors, but also as part of input to
all the related pathways. For example, the proposed developmental
learning does not use silence as cut points for speech processing or
motion static points as key frames for visual processing.

Index Terms—Developmental architecture, multimodal develop-
ment, speech recognition, visual recognition.

I. INTRODUCTION

M UCH research has been conducted to understand the un-
derlying mechanism that facilitates the superior human

performance in generalization, variability toleration, and un-
certainty handling. Along this line of research, developmental
learning has been proposed as a major mechanism for learning
such capabilities, since early learned skills assist the learning
of later more sophisticated skills while the system conduct in-
cremental and online learning. We feel that the task-nonspeci-
ficity of developmental learning [1] is a major characteristic of
developmental learning since the developmental program (DP)
must enable the system to learn from simple task contexts to
more complex task contexts, but the tasks including their en-
vironments cannot be fully anticipated. As discussed in [1], a
developmental program is body specific and sensory specific.
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Therefore, some resource parameters of the developmental pro-
gram are specific to certain sensory modality, e.g., vision versus
audition.

The brain is “skull-closed”—without a need for a human
to manually alter internal representation or operation after
the birth. In contrast, traditional machine learning uses an
“skull-open” approach—manual internal development: Using
transcribed video, transcribed audio, separate module-specific
training, and manual intermodule linking, as illustrated in
Fig. 1(a). After the intermodule linking, the resulted system is
only a performer, not able to learn again without further manual
internal manipulation. Such a methodology does not allow
autonomous development for an open number of skills without
opening the “skull” after the “birth” [1].

The motor end of a sensorimotor pathway not only generates
actions, but also input actions when the effector of the pathway
is supervised externally. In the new multimodal developmental
architecture shown in Fig. 1(b), every sensorimotor pathway (vi-
suomotor, auditory motor, and bimodal motor) all have access
to the agent motor end, as illustrated in Fig. 1(b), since each
pathway requires the information from the motor end to learn.

This architecture is consistent with the idea of behavior-based
robots [2], [3], but is different from behavior-based architectures
in that our architecture does not explicitly model the decompo-
sition and coordination of different sensorimotor behaviors. For
tight integration of sensorimotor behaviors, the coordination of
different sensorimotor behaviors within each sensing modality
is an emergent property of the pathway.

Consider a setting of visuoauditory learning. During a
training session, a teacher presents a new toy to the child using
her hand and rotating it continuously so the child can see it
from different viewing angles. The teacher asks the question
“name?” and then guides the child to produce a correct re-
sponse, e.g., pick up a label card marked “doggy.” The teacher
also asks questions about the properties of the toy, e.g., “size?”
and then guides the child to answer it correctly, e.g., pick up
a label card marked “large.” The teacher can test by asking
the same question and observe the child’s response. Several
practices are needed before a child can produce a desired action
reliably.

We call this process spatio–temporal multimodal devel-
opmental learning. The teacher does not directly manipulate
the child’s “brain” while new questions and interactions are
introduced one after another through sensory and motor interac-
tions. The DP regulates the resource needed, including sensors,
effectors, and cortical resources, but it is not a holistically
aware central controller (e.g., it did not specify that task-spe-
cific concepts “name” and “size” are needed). During this
process, most of time except that the effector (hand) is imposed
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Fig. 1. Traditional multimodal machine learning versus the new multimodal
developmental learning. (a) Traditional methodology—“skull-open” approach
where the human designer is the external holistically aware central controller,
since he understands the task and holistically selects task-specific symbols (e.g.,
the class labels between modules). (b) The new architecture for autonomous
development with multiple sensory modalities: Every sensorimotor pathway
(visuomotor, auditory motor, and bimodal motor) needs access to the system
motor end. Because of the “skull-closed” nature of autonomous development,
teaching for every sensorimotor pathway (e.g., visuomotor and auditory-motor)
must have access to the system motor � as part of its input to the pathway.
Untranscribed video and audio streams flow into the “brain.” Humans can teach
the “brain” through sensory and motor interactions. The space and time relation-
ships among multiple sensory inputs and motor signals enable the agent to asso-
ciate and distinguish. “S” and “M” denote the sensory end and the motor end of
a module, respectively. Each connection without an arrow means two one-way
connections in opposite directions, bottom–up and top–down, respectively.

(teacher’s hand guides the child’s hand) with desired actions
(picking up the appropriate label card) during some periods.
Such imposition of actions through guidance is sparse in time,
while all other effectors (e.g., pan-tilt and attention effectors)
are autonomous during the guidance. (Other learning modes,
such as reinforcement multimodal developmental learning, are
future research topics.) This process of developmental learning
has the following characteristics.

1) Task-nonspecific learning: The internal self-organization
is autonomous as the DP is not imbedded with informa-
tion about the nature of the interactions other than the gen-
eral resource needed. Autonomous learning here means au-
tonomous internal self-organization with body-specific in-
formation but without task-specific information. However,
the agent still needs external teachers. The learner is not
constrained to a specific task, such as to distinguish the
identity or the size of the object. The internal represen-
tation, such as the discriminant feature, is epigenetically
generated through the encountered experience.

2) Online learning: The weak performance of the learner
is identified right on the spot and the teacher adaptively
present more training for the weak areas.

3) Multimodal learning: Vision, audition, and multimodal
pathways (modules) are ready to learn simultaneously.
There is evidence showing that if visual, auditory, and
tactile inputs never have the chance to occur together, there
is no opportunity to develop an integrated linkage between
what is seen, heard, and felt [4]. While a well-known sup-
porting experiment was done on cats [5], similar results
on human babies were also reported [6].

4) Open-ended sensory stream: It has a beginning, but not an
end. The stream continuously presents interesting and un-
interesting events and is not precut into semantically tai-
lored segments through a manual process called transcrip-
tion.

5) Sparsely labeled sensory stream: The association of
streams with the desired outputs (labels) is provided
by occasional online action imposition at certain time
instances, which account for only a small percentage of
applicable frames, e.g., 2%.

In this paper, we present a general architecture for multimodal
developmental learning, and the corresponding algorithms. In-
teractive verbal questions provide the nature and the time of the
visual context to be used by the machine to generate desired
responses. Our previous studies have shown the feasibility of
real-time visual learning [7] and real-time speech learning [8].
However, facing the combination of vision and audition, new
challenges emerge as we will discuss in Section II. For example,
the timing of auditory is not precisely synchronized with partic-
ular video frames—a great challenge for multimodal develop-
mental learning.

In the current stage of research, we concentrate on the aspects
of multimodality and the visual orientation invariance. Although
it indicates that a particular type of invariance can be learned
from continuous variation of the same object, some other visual
issues are not addressed directly. In the experiments, we used
a fixed uniform background and each object was rotating at a
fixed distance from the camera. The extension of the current
system to active visual attention can potentially address other
issues such as size and translation invariance and occlusions,
but this is beyond the scope of this work.

For multimodal developmental machines that autonomously
self-organize internal representations, we must address how
their different modules autonomously work together after the
“birth.” The presented work seems the first to raise and address
this multimodal learning mode without requiring each modal to
be developed (or programmed) first and without a handcrafted
narrowly applicable task-specific representation. The approach
and nature of the problem addressed here touch upon the funda-
mental issues of grounded [9]–[11], acquisition of multimodal
(e.g., visual, auditory, and linguistic) capabilities [1], [12], [13],
and internal behaviors [14] (e.g., selective attention).

The following section discusses a few challenging problems
of multimodal development. Section III analyzes the proposed
multimodal architecture. Section IV gives the algorithms. The
experimental results are discussed in Section V. Section VI pro-
vides some concluding remarks.
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Fig. 2. Direct pattern recognition for multimodal sensory streams will fail—a multimodal developmental architecture is necessary. A typical alignment of an
image sequence (the upper sequence) and a spoken utterance (the lower sequence) during (a) learning and (b) performance sessions.

II. PROBLEM DESCRIPTION

Based on the above discussion, suppose that our system’s
“brain” is “skull-closed.” The first implication is that human
teachers cannot implant symbolic concepts directly into the
“brain.” In fact, the human brain never inputs and outputs
abstract symbols in the sense of a computer symbol, which
assumes the one-to-one correspondence between each symbol
and the corresponding meaning—each symbol has only one
meaning and each meaning has only one symbol. For example,
different instances of an utterance “name?” have different
waveforms. Different instances of an action “pick the ‘doggy’
card” have different trajectories and speeds. In other words, our
system only receives and outputs only instances, not abstract
symbols. As long as the human (or machine) communicators
can correctly interpret each instance with a tolerable variability,
the action producer is considered successful.

We discuss a few major problems arising from such a multi-
modal setting.

A. Time Misalignment

In general, we would like a machine agent to learn to con-
duct appropriate behaviors based on certain visual-auditory con-
texts. Particularly, we present a system that learns to answer
verbal questions appropriately, given the visual stimuli of dy-
namically rotating objects. According to the characteristics of
the autonomous learning mode discussed above, the learning
system should develop visual and auditory perception, and as-
sociate audiovisual contexts with behaviors online in real-time.
While all the characteristics of the autonomous learning mode
are challenging to be realized by a machine agent, we highlight
two issues in this section.

In the real world, the visual presence of an object is usually
coupled with the related auditory signals, such as a noise made
by an object or the verbal name given by a teacher. However,
this coupling is not strict because of the following reasons: 1)
the visual appearance of an object changes, e.g., the observer
may view the object from different angles and the object may
rotate as well; 2) for the auditory sensory modality, the signal
spreads over many time frames, e.g., the utterance of an object’s
name covers many auditory frames.

Thus, we have the double-misalignment issue (Fig. 2). a) The
starting locations of auditory signals in learning and perfor-
mance sessions do not align with each other with respect to the
long visual sequence of an object (e.g., front view in the learning
session and back view in the performance session). b) A visual
view of an object does not align with a starting location of a long
speech sequence (e.g., some views have no auditory signals at

all). In other words, if we call a visual-auditory stimulus pair at
a particular time instance an audiovisual context, it is unlikely
that a particular audiovisual context will be exactly repeated in
both learning and performance sessions.

Many existing works on multimodal learning rely on the strict
coupling between vision and audition information, such as the
movement of the lips, the utterance produced, or minimum-mu-
tual-information [15]–[17]. Their success relies on human-de-
signed segmentation scheme of training sequences, a manually
assigned association between segments from different modali-
ties, and an atomic symbolic representation. These approaches
are not suitable for our autonomous learning problem, since pre-
designing representation and features are not necessarily appli-
cable to an unknown task.

The misalignment issue is rooted in the fact that an object
appears to the learner as a sequence of images captured from
different viewpoints. Unless the learner “knows” the sequence
of images corresponding to a single object, it will not establish a
robust correlation between the visual and auditory stimuli. For-
tunately, the physical world has a very important property, i.e.,
the continuity. For example, the spatio–temporally contiguous
views of an object are similar when the capturing speed is high
enough. The proposed system forms clusters along the temporal
trajectory of the audiovisual context and effectively realizes an
“abstraction” procedure to address the misalignment issue. This
abstraction is represented by actions, to be explained in our de-
velopmental architecture bellow. The underlying mechanism of
abstraction is closely related to object permanence studied ex-
tensively in psychology [18], [19].

B. Sparse Labeling

In order to avoid manual intervene and retain as much
sensory information as possible, the proposed system uses
the raw input signals as the sensory representation. For the
visual modality, the raw-signal representation is essentially
the so-called appearance-based representation, which receives
support from recent psychophysical and neurophysiological
studies [20]–[22] and has a potential to accomplish automation
in learning. The problem is that a visual stream is temporally
dense, but the labels, with which the teacher tells about the
correct answer, are sparse. As shown in Fig. 2, the auditory
“name” information only spreads across about 10% of the
image frames while the meaning (the real label) is not conveyed
until the end of the auditory signals and lasts about 2% of the
image frames.

On the other hand, it is incorrect to think that interstimuli
interval is unimportant. For example, the interstimuli interval
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between a tone and an air-puff needs to fall within the range
from 325 to 550 ms for the classical conditioning to be learned
effectively by an animal [23], [24].

The sparse labeling issue is also related to the well-known
invariance problem. A human learner can generalize the label
from a few views of an object to other views when the object
is translated, rotated, or scaled. How can a machine learner do
this? Similar questions can be asked in speech recognition do-
main when different speakers or different ways of saying the
same phrase are involved.

One solution around this difficulty is to choose an object-
based representation, i.e., objects are represented as structural
descriptions of their 3-D parts and the relations between those
parts in a manner that is independent of the objects’ orienta-
tion relative to the observer [25]. While this approach solves
the invariance problem, it transfers the difficulty to the require-
ment of establishing internal 3-D models. There is no evidence
to support that the brain has an internal monolithic representa-
tion (symbolic) about an object in its environments.

Another straightforward solution to this issue is to design a
label and manually assign it to the corresponding images one
by one. However, this manual transcription is tedious and im-
practical for an autonomous learning agent.

When a human baby develops, he must take raw sensory
streams, not those presegmented and labeled by an human en-
gineer. In fact, the brain of a human baby uses the cooccurance
between the sensory frames and his actions (both attention and
external actions) [26]–[28]. Our architecture is based on this
cooccurrance. If this temporal association is statistically stable,
the sensory inputs and motor actions are associated internally on
the fly. A similar idea has been used in the association between
an reinforcer and a sensorimotor experience [29].

III. MULTIMODAL ARCHITECTURE

The major multimodal principle we introduce here is that the
motor area of a developmental agent is not only for output for
generating actions, but also input for internal representations, as
shown in Fig. 1(b). Each pathway has direct access to the related
sensory end and the motor end. This architecture is supported
by the rich top–down connections in the brain from the motor
areas back to almost all sensory areas in existing neuroanatom-
ical studies [30]. The motor area of each pathway serves as part
of autonomously generated internal state that can be taught ex-
ternally, supervised directly or shaped through other learning
modes.

A. Formulation

Each pathway is formulated as a time-varying (learning)
function whose behavior depends on its memory . At
each time , it maps the sensory input
and motor input to generate its motor output and
its updated memory

where a vertical bar indicates the function parameters (i.e.,
memory). The pathway (module) update for is performed as

. For the simplicity of time notation, we
often simply denote time as the index in so that the time
takes integer values .

From Fig. 1(b), we can see that such a system is highly recur-
rent—motor output is fed back to motor input.

In the asynchronous update mode, the action output
and the updated memory are not available for other modules in
the system within the time window . So every module
has their output ready at only the next time instant .

In the synchronous update mode, the motor output
from a unimodal module is immediately available for the next
bimodal module as part of its sensory input. All the motor out-
puts from all the modules are available at the motor end of the
global system . We used this synchronous update mode,
mainly to reduce the total time required from the sensors to the
global system output (i.e., one time step instead of two).

In our experiments, all the actions are meta actions, each ac-
tion being a sequence of consecutive robot joint positions that
is triggered by a single event at the motor. Each meta action is
executed continuously without interruption till the action end.
During the action execution, all additional actions generated
when the motor is busy are flushed (forgotten). Possible inter-
ruption of an action by higher priority, later actions is a future
research topic.

As the number of actions is not very large, for simplicity the
each action uses a canonical representation. Let be the total
number of possible (symbolic) actions. Then the motor vector
is an -dimensional vector, where the th component represents
the th action. Only one action can be executed till the current
action ends. Each programed action sequence involves multiple
robot joints moving concurrently.

In general, all modules at any time may not necessarily pro-
duce actions that are consistent. The motor end for the global
system uses a simple mechanism to resolve possible action con-
flicts. Each component takes the maximum of the “response”
from the corresponding components from the three modules, vi-
sion, audition. and bimodal. The largest value in the entire re-
sulting motor vector represents the output action at this time.
But only if it is higher enough (e.g., higher than 0.5), can this
action be considered generated by the system. This simulates a
winner-take-all mechanism.

B. Active Actions as Part of Internal States

The multimodal architecture provides mechanisms that are
not apparent in the illustration in Fig. 1(b).

First, the teacher can teach actions to represent virtually any
property. For example, in the brain, the ventral stream [31] may
provide the “what” information that drives the verbal pronunci-
ation for the “what.” This is because any human communicable
concept can be said. On the other hand, the dorsal stream [31]
may provide “where or how” properties of an object (e.g., size
and location) that arm to reach the object.

Second, since an action at any time is a part of (top–down)
input, the action can be taught to represent the equivalent tem-
poral context that the system can use to deal with the above mis-
alignment problem. This is effective as the teacher can interac-
tively teach appropriate actions at different contexts. The fol-
lowing is an example. When an object is placed into the field of
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view, the teacher can teach the system to produce an action cor-
responding to the required visual label (e.g., name-size). When a
verbal question is heard, the teacher can then teach the system to
produce the corresponding question label as its action. The input
to the bimodal module is the primed contexts (discussed later)
from both single modality modules. The teacher teaches the bi-
modal module to produce the correct bimodal answer right after
the question is heard. It is important to note that each “label” as
action is not symbolic, but numeric with variability in output.

It is also important to note that with “action” as part of infor-
mation for internal states, we still want the system to be time
sensitive. Instead of being sensitive to brute-force multimodal
sensory inputs sequences, the system is sensitive to the time
where action is produced as “softly abstracted state.”

Third, the action value can represent the certainty of classifi-
cation, so that the certainty increases as more views have been
observed from the sensory stream.

C. Functions of a Sensorimotor Pathway

Existing neuroanatomical studies reviewed by Felleman &
Van Essen [30] indicate that each cortical area has bottom–up
sensory input and top–down action input . The input space

of each sensorimotor pathway is the last context . Each
includes both the sensory part and the action part , so that

. For a general-purpose cortex, sensation or action
alone is not sufficient. Without sensation , there is no basis

to generate action as the class of . Without previous action
, there is no basis to generate the next action depends on the

nature of previous .
The internal representation of each sensori-

motor pathway includes self-organized clusters of the
input space with , represented as

, as a set of fea-
ture clusters. Given any input , conceptually each
pathway finds the best matched cluster

where denotes the distance measure of the incremental
hierarchical discriminant regression (IHDR) tree appeared in
[32] and will be outlined later.

We can consider IHDR as a fast neural network whose long
term memory has a dynamic number of parameters and thus,
never has a problem of over-fitting. For each , IHDR has a
link to the next primed (predicted) context , which
is produced as recalled next sensation and next action as
soon as is found as the best match to . IHDR also updates
its features after each input . In order to be
the best match, both parts and need to match well, to lead
to the corresponding joint state . During intermittent training,
the action input serves as supervised action but while the su-
pervised action is absent, the action input serves as action con-
text during autonomous performance (e.g., I am replying, I have
replied, etc.).

In summary, in this connectionist network, the numeric action
vector serves as a part of the internal state. This part of state is
dynamically learned during interactive development, different
from the statically designed symbolic state in the finite state

Fig. 3. Contextual view of an agent.

machines (FSMs) and its probabilistic versions (hidden Markov
models or the partially observable Markov decision process).
This way, new concepts can be learned incrementally. The more
recent model lobe component analysis (LCA) [33] is dually op-
timal. IHDR can be replaced by LCA and the effects of such a
replacement are subject of future studies.

IV. ALGORITHM

Due to the importance of actions, we define a context as the
sensation and the action of an agent within a volume of time.
With respect to a certain time instance , the context over a time
period up to is called the last context, while the context after

is called the primed context (as predicted sensations and ac-
tions). The job of an autonomous multimodal learning agent is
to internalize and generalize the causal relationship between the
last context and the primed context as shown in Fig. 3 so that the
agent can predict (prime) what to do when similar context is en-
countered the next time. We formulate this causal relationship
as a mapping

(1)

where stands for multimodal learning, is the last multi-
modal context, and is a primed multimodal context.

Because of the uncertainty of the sensation and the action,
and are random variables and (1) can be

modeled as a special Markov model called, observation-driven
Markov model (ODMM) [34], [35], where the transition proba-
bility can be estimated incrementally. In
practice, the space of becomes unbounded as increases.
To keep the problem traceable, we define

where and are the last sensation and the last action,
respectively, at time instance .1 The problem of interest is re-
duced a th order ODMM.

This association is not as straightforward to learn as it looks.
First, because not all of the information in the last and primed
contexts is causally related, the agent has to have certain mech-
anism to select information between and/or within different
sources (vision, audition, touch, or action). Second, since we
used the raw and numerical (instead of symbolic) representation

1Note while the sensation is sensor specific, the system action is not.
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of the sensory inputs, the dimensionality of the context can be
as high as hundreds for audition and thousands for vision. It is
extremely difficult to extract the high-dimensional mapping in
real-time.

We designed a hierarchical architecture to realize the au-
tonomous multimodal learning. At different levels of the
hierarchy, the last-prime context mappings were implemented
with different details. At the lowest level, we used IHDR tree
published in [32] as the association mapping engine. It is a tree
version of a cortex-like learner. Composed of two IHDR trees,
a level building element (LBE) specialized in one of the three
domains, auditory modality, visual modality, and the fusion
of the two modalities. The three LBEs together realized the
mapping described in (1).

A. IHDR

Hierarchical discriminant regression (HDR) is a new hierar-
chical statistical modeling method introduced by Hwang and
Weng [36]. IHDR is an algorithm that constructs an HDR tree
incrementally [32], which fits our needs for a continuously
learning agent. To keep this paper self-contained, we discuss
the basic idea of HDR here. The interested reader is referred to
the original papers for details.

Consider a general regression problem: approximating
a mapping from a set of training samples

. HDR employs the
idea of linear discriminant analysis (LDA) [37] to find such a
mapping. In a typical usage of LDA, one needs to estimate the
between-class and within-class scatter matrices, which require
class information. However, for a regression problem, is
a numerical vector and there are very few samples sharing a
single . In other words, there are very few samples in each
class. Therefore, the within-class scatter matrix will be poorly
estimated, especially for high-dimensional input data, e.g., a
few thousand dimensions in vision problems or a few hundred
dimensions in audition problems. HDR handles this issue in a
coarse-to-fine way.

At the root of an HDR tree, a few y-clusters in the output
space are generated using a k-means-like algorithm. The x-part
of the samples is accordingly clustered and we call these clus-
ters x-clusters. Since is typically a small number, e.g., 5, it is
effective to estimate the between-class and within-class scatter
matrices for these x-clusters. The x-cluster centers span a

-dimensional space, which is called a discriminant space
because it characterizes the discriminant information among
x-clusters. A probability-based metric called the size-dependent
negative log likelihood (SDNLL)

(2)
in the discriminant space is used to determine which x-cluster
a test sample belongs to with represents the center of the th
x-cluster. The size-dependent scatter matrix (SDSM) in (2)
is defined as the weighted sum of three matrices

(3)

Fig. 4. Hierarchical discriminant analysis.

where, is the standard deviation of all samples in the root node,
is the sample covariance of the th cluster, is the average

of the covariance matrices of clusters. The weights of these
three terms start with large when there are a few samples in
the node, and change to large and eventually large as the
number of the samples increases. The weights always follow the
normalization constraint, i.e., . Each cor-
responding pair of x- and y-clusters form a child node of the
root and the above process is continued in the child node. If a
node receives only a few samples, called primitive prototypes,
this node is then a leaf node without children. After all, the tree
structure recursively excludes many far-away cases from con-
sideration (e.g., an input face need not be searched among non-
faces) (Fig. 4), to reach a logarithmic time complexity.

In summary, the HDR technique realizes a regression in
a high-dimensional space. It automatically derives discrimi-
nating feature subspaces in a coarse-to-fine manner from the
input space to generate a tree architecture of self-organization
memory. HDR has little limitation in terms of representation
power and potentially can fit any data. HDR can learn without
any iterations. As a result, HDR realizes one-instance learning
without local minima, i.e., zero error on training data without
iterations. Most importantly, HDR can handle high-dimensional
data in real-time, which is crucial to an autonomous learner.

B. Level-Building Element

An IHDR tree realizes the lowest level last-prime context
mapping

where is the last context, is the primed context, and

where is a primed sensation vector, is a primed action
vector, and is a primed value associated with the primed
action vector. Depending on the type of LBE that an IHDR tree
belongs to, the content of the (last or primed) context is different.
For example, if the IHDR tree is part of an audition LBE, the last
context contains the auditory sensation and the action sensation.
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Fig. 5. Level-building element.

For each query, the IHDR tree returns a list of primed con-
texts, i.e.

(4)

where represents the regression realized by the IHDR tree.
The primed context with the highest primed value is selected as
the ultimate output, i.e.

An LBE is composed of two IHDR trees. Shown in Fig. 5 is
an audition LBE, taking two channels of sensory inputs, the au-
ditory sensation, and the action sensation. The two IHDR trees
in an LBE are identical except that the bottom one is associated
with a prototype updating queue (PUQ). We call the upper one
the reality tree or the R-tree, and the bottom one the priming
tree or the P-tree. The R-tree is necessary here for required fine
temporal resolution of sensory processing. This characteristic
is similar to that of the dorsal pathway [31] that requires higher
temporal resolution during, e.g., hand manipulation. The P-tree
does not have a high temporal resolution, but can predict fur-
ther into immediate future. This characteristic is similar to that
of the temporal lobe along the ventral pathway [31] which iden-
tifies the type of an attended object. Nether tree can take over
the role of the other because of the need for both characteristics
in auditory and visual perception. Similar to the dorsal and ven-
tral pathways that lead to the motor area in the frontal cortex,
the R-tree and P-tree both lead to actions.

C. P-Tree

The goal of PUQ for the P-tree is to enable a looking-ahead
(farther priming) mechanism. The PUQ maintains a list of
pointers to the primed contexts retrieved by the P-tree. At every
time instance, a pointer to a newly retrieved primed context
enters the PUQ while the oldest one moves out. When the
pointers are kept in PUQ, the primed contexts they point to are
updated with a recursive model adapted from Q-learning [38]

(5)
where, is the primed context at time instance , repre-
sents the number of times has been updated, and is a
time-discount rate. is an amnesic parameter used to give more

Fig. 6. Behavior of model (5).

Fig. 7. To an agent, the evolving environment appears to be an ever-extending
context trajectory in a spatio–temporal space.

weight on the newer data points, which is typically positive, e.g.,
.

Reorganizing (5), we have

(6)

which shows that a primed context is updated by av-
eraging its last version and the time-discounted ver-
sion of the current primed context . In this way,
the information embedded in the future context,
in model (5), is recursively backpropagated into earlier primed
contexts.

To view this effect more intuitively, we show the behavior of
the prediction model in a simple example. Suppose the primed
contexts appearing over time are represented by a series of
scalers. A scaler with a value of 1 means the primed context
contains certain information while 0 means no information is
embedded. An example of a series of the primed contexts is
shown with a solid line in Fig. 6, where there is certain informa-
tion over the five consecutive time instances
and nothing elsewhere. Applying the model (5) with ,

, and a PUQ of size 30, we get the dotted line in Fig. 6,
which shows that the information is spread over the time
interval [46, 59] with the peak appearing at .

The P-tree and the PUQ with model (5) together address
the sparse label issue. As illustrated in Fig. 7, to an agent, the
evolving environment appears to be an ever-extending context
trajectory in a spatio–temporal space where the spatial axis
represents the image vector space for the visual modality.
The sparse label problem states that it is impractical to assign
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Fig. 8. Multimodal learning system architecture.

labels, the expected actions, to the agent by the teacher at every
point on the trajectory. However, when a label is given, the
teacher usually refers to a vicinity of the contexts around the
labeled point. In the P-tree, an x-cluster center (clustering along
the spatial axis) approximates the context at time instance
(the last context ) and a y-cluster center approximates the
context at time instance (the primed context ). The
association between the x-cluster center and the y-cluster center
is captured by the IHDR mapping. With model (5) running in
the PUQ, the sparse label (action) information is propagated
backwards along the context trajectory and embedded into

. As a result, when a similar context occurs,
the IHDR tree will be able to retrieve the primed context,

which contains the appropriate expected action.
The LBE module was designed in order to fulfill a general

learning purpose. In multimodal learning, all components in the
module were not used as seen in the algorithm below. For sim-
plicity, we do not discuss the LBE components that were not
used in the multimodal learning architecture, such as attention
control signals, channel selector, and action selector. The inter-
ested reader is referred to [39] for detailed discussions.

D. Multimodal Learning

Fig. 8 shows the architecture we used to do multimodal
learning. It has three LBE modules, a vision LBE (V-LBE), an
audition LBE (A-LBE), and a high-level LBE (H-LBE). Their
roles are indicated by the multimodal architecture in Fig. 1(b).
Functionally, V-LBE corresponds to the visual pathways in the
brain. Their forebrain part is the visual cortex. A-LBE corre-
sponds to the auditory pathways in the brain. Their forebrain

part is the auditory cortex. H-LBE corresponds to the frontal
cortex which bidirectionally communicates with the vision
pathways and the auditory pathways at its sensory end. It also
bidirectionally communicates with the premotor and motor
areas in itself to generate actions and to learn from actions. The
functions of these level-building elements appear necessary for
infant-like developmental learning.

Specializing in different domains, the three LBEs realize the
last-prime context mappings

and

respectively, where stands for vision, stands for sound, and
stands for high-level. The last context of V-LBE is com-

posed of the visual sensation and the action sensation

where the visual sensation is the original image captured by a
CCD camera. We do not manually derive low-level features such
as edge histogram. The last context of A-LBE is composed
of the auditory sensation and the action sensation

where the auditory sensation is captured by a sound blaster
card through a microphone. We perform Cepstrual analysis on
the original sound signals before entering data into the A-LBE.
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Fig. 9. Sample sequence of the visual sensation.

Fig. 10. Sample sequence of the primed visual sensation.

Since sound is a linear signal in the sense that information is
distributed over a period of time, each auditory sensation vector
actually covers 20 speech frames as will be discussed in the
experimental results.

In the first multimodal learning algorithm we propose, the last
context of H-LBE is composed of the primed sensations
from the P-trees of both V-LBE and A-LBE

(7)

Because of the recursive averaging in model (5), the primed con-
text of V-LBE and A-LBE changes slowly along the context
trajectory. Particularly, the primed sensation part of the primed
contexts changes slower compared to that of the corresponding
last sensations. For example, instead of receiving the distin-
guishing images of different views of an object as shown in
Fig. 9, H-LBE deals with a sequence of images with reduced
variance (Fig. 10). If we imagine the auditory context (the last
context of A-LBE) evolves along with the visual context (the
last context of V-LBE) in a spatio–temporal space (Fig. 11), the
inputs to H-LBE are effectively the cluster centers of the
last contexts along the context trajectories. Thus, without wor-
rying about the details of the samples within each of the clusters,
H-LBE treats the temporally neighboring contexts as one item,
which is an abstraction process. As long as the auditory con-
text (the verbal question) overlaps with the visual context (the
image sequence of an object), they form one audiovisual context
from the perspective of H-LBE, which resolves the misalign-
ment issue illustrated in Fig. 2. Note if not learning in real-time,

Fig. 11. Primed contexts are cluster centers of the last contexts along the con-
text trajectories. The alignment of the verbal questions and the image sequences
of the object are not the same between the left and the right examples. By rep-
resenting last auditory and last visual contexts with the cluster centers, this mis-
alignment is resolved as long as the verbal question overlaps with the image
sequence of an object.

the learner can not enjoy the continuity of the consecutive con-
texts and the abstraction process will not be effective because
clustering does not make any sense.

From Fig. 8, we can see that the visual module V-LBE, the
auditory module A-LBEL, and the bimodal module H-LBE all
send actions to the motor area. In our agent architecture, the
motor area has an internal action called action release [14] so
that the agent can learn contexts where a particular action should
be immediately released or not. In this work, we adopt a sim-
pler teaching schedule: V-LBE and A-LBE only learn covert
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Fig. 12. Multimodal learning algorithm 1 and 2, with the difference in step 5.

actions that are not released to the external motor and the bi-
modal H-LBE learns overt actions that are released to external
motor.

E. Representation of Actions

In general, an agent with motors have an action vector
as an -dimensional vector, where each component represents
the speed or power output of the corresponding motor. In this
way, different motors can work together, producing complex se-
quences of coarticulated actions which can be aborted or altered
at any time.

In the experiments reported here, we do not ask the learner
to deal with the temporal aspects of the actions. Each action
sequence is represented as a programmed symbolic procedure.
The motor vector is a vector of -dimensional vector for sym-
bolic actions. To active an action, the corresponding component
in the motor output vector is 1 and other components are 0. Re-
peated activation of the same component has no effect until the
same action has finished. With this simplified motor representa-
tion, the agent cannot abort or modify an ongoing action.

For our experiments, this type of action representation is suf-
ficient. The development of actions that involve the coordina-
tion of multiple joints (multiple motor neurons) is a subject
for future research. Furthermore, how could a developmental
system autonomously develop skills to terminate or alter an on-
going action at any time depending on the environmental con-
text changes? This is also an important subject for future re-
search.

F. Algorithms of the Developmental Agent

A high-level outline of the algorithm (multimodal learning
algorithm 1) in each perception–action step is shown in Fig. 12.
As one may notice, in this algorithm, the training (featured by
words such as “update”) and testing (featured by words such as
“retrieval”) processes are embedded to each other in order to
make online learning possible.

Multimodal learning algorithm 1 can be further improved
with another abstraction process. The utterances of the same
word vary from people to people and, therefore, each word is

Fig. 13. Illustrative comparison of using and not-using the primed action in
decision making.

typically composed of several modes in its auditory represen-
tation. So is the primed sensation for the same word. As a re-
sult, the decision boundary is complicated in the space spanned
by the primed sensations from both V-LBE and A-LBE, as il-
lustrated in the bottom of Fig. 13, which gives H-LBE a hard
time. Actually, for the sake of answering questions, H-LBE only
needs information to discriminate different verbal questions in-
stead of different modes of uttering the same question. With this
in mind, let us take a close look at the behavior of A-LBE. Given
a particular question, the primed action of A-LBE is the same as
long as the same object is presented. In this sense, as a represen-
tation of the question information, the primed action has lower
variance than the primed sensation does. Therefore, using the
primed action information, A-LBE offers an abstraction process
for H-LBE.

Following this thinking, we propose the multimodal learning
algorithm 2 (shown in Fig. 12), in which the last context of
H-LBE is defined as

(8)
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where and are called primed action patterns.
We define the primed action pattern of A-LBE as

(9)

where is the total number of primed contexts retrieved from
the P-trees of A-LBE [see (4)], is the primed value as-

sociated with the th primed context, and is the primed
action of the th primed context. We use the primed action pat-
tern instead of the primed action in order to cover the situations
when the objects are different. Similarly, for V-LBE, we have

(10)

The inclusion of the primed action pattern in the input to H-LBE
well separates the clusters as illustrated in Fig. 13.

The reason that the above additional information helps to im-
prove performance can be explained in terms of information
theory. Let the random variables and represent the primed
sensation and the primed action, respectively; and
are the probability density functions (p.d.f.s.) for “name” and
“size,” respectively; and and are the joint
p.d.f.s. for “name” and “size,” respectively. We prove in the
Appendix that

where is the Kullback-Leibler distance (relative entropy)
between the two p.d.f.s. In other words, by including primed ac-
tion in the input to H-LBE, we increase the discriminant power
of the representation and thus, expect better performance. The
experimental results below show the effectiveness.

V. EXPERIMENTAL RESULTS

We implemented the multimodal learning architecture on the
self-organizing, autonomous, incremental learner (SAIL) robot,
a human-size mobile robot built in-house at Michigan State Uni-
versity (Fig. 14). SAIL has a drive-base, a six-joint robot arm, a
neck, and two pan-tilt units on which two CCD cameras (eyes)
are mounted. A wireless microphone functions as an ear. SAIL
has four pressure sensors on its torso and a total of 28 touch sen-
sors on its eyes, arm, neck, and bumper. Its main computer is an
Xeon 2.2 GHz dual-processor workstation with 1 GB RAM. All
of the sensory information processing, memory recall, and up-
dating, as well as effector controls are done in real-time.

We assume that there is only one action from the agent at
any time. Therefore, the highest output from the agent’s motor
vector is considered the current action. When the agent inte-
grates three action outputs from the three modules, vision, au-
dition, and multimodal, the same principle is used: a maximiza-
tion operation is applied to each component of the three action
vectors. This canonical action representation is for simplicity
but is static and wasteful. In general, each pattern of the action
vector can represent a different action, which is the subject of
future extensions.

Fig. 14. SAIL robot at Michigan State University at (a) a training session and
(b) a testing session.

The experiment was done in the following way. After SAIL
started running, the trainer mounted objects one after another
on the gripper of SAIL and let SAIL rotate the gripper in front
of its eyes at the speed of about six second per round for about
one round. During training, the properties of each object was
taught to SAIL through question-and-answer. First, the trainer
verbally asked questions, namely “name?” and “size?” when
an object was presented. Then the trainer gave the appropriate
answers by pushing the switch sensors of SAIL, where dif-
ferent switch sensor status represented different answers. All
the switches here are simply touch sensors, each is linked with
an innate (programmed-in) behavior. Developmentally learning
behavior decomposition is an important subject, but is beyond
the scope of this work. During testing, the objects were pre-
sented and the questions were asked again, but no answers were
given. SAIL’s responses were recorded for performance evalu-
ation. Note SAIL did not stop running until all the objects and
questions were taught and tested.

Since the objects were rotated and moved in and out of SAIL’s
field of view continuously, the orientation and the positions of
the objects kept changing. There were hardly any chances that
SAIL could see the same images of the objects when the same
question was repeated later. In total, 12 objects were presented
(Fig. 15) to SAIL. All of these real-world objects consisted of
very complex shapes and nonrigid forms, for example, Harry
Potter’s hair. It was extremely difficult, if not impossible, to
model them using 3-D representations.

The video data was captured by a CCD camera and a Ma-
trox Meteor II board as 256-grayscale images at 30 frames/s.
The dimension of the images was 25-by-20 pixels. The theo-
retical number of possible images in this image vector space is

, an astronomical searching space,
which in turn offers a representation that can accommodate rich
discriminant information. The auditory data were digitized at
11.025 kHz by a normal sound blaster card. We did Cepstral
analysis on the speech data and 13-order mel-frequency Cep-
stral coefficients (MFCCs) were computed over 256-point wide
frame windows. There was an overlap of 56 points between two
consecutive frames. Therefore, the MFCCs entered the auditory
channel of SAIL at the rate of about 50 Hz. We concatenated
20 consecutive MFCC vectors together as a single auditory sen-
sation vector because a 18.1 ms (200/11.025) speech frame is
too short to convey any meaningful information. To compen-
sate the slower capture rate of image data, SAIL used the last
captured image to accompany the new vector of MFCC when a
new image was not available.



160 IEEE TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT, VOL. 2, NO. 3, SEPTEMBER 2010

Fig. 15. Objects used in the experiment.

Note although we did not manually design discriminant fea-
tures for either video or sound signals, the signals were first
collected by sensors, which are basically band-pass filters. The
visual sensors, the photoreceptors on CCD cameras, are vis-
ible-light filters that work similarly (but not equivalently) to the
cones and the rods in a human’s retina. The cones and rods con-
nect to the optical nerve [40]. The Mel-frequency Cepstral anal-
ysis does band-pass filtering on sound signals [41], which works
similarly (but not equivalently) to the hair cells on the Basilar
membrane in a human’s cochlea [40]. The hair cells connect to
the auditory nerve. The center of human brain does not receive
time-domain signals (wave signals), but frequency-domain sig-
nals. In this sense, the Mel-frequency Cepstral analysis func-
tions equivalently to the CCD cameras in collecting signals.

A. Simulation Experiments

To examine the behavior of SAIL in detail and evaluate the
performance, we pursued an experiment on prerecorded data
first.

The image data of each object was five image sequences, each
image sequence contained 350 frames as follows:

• frame 1–100: background images;
• frame 101–150: an object moving to the center of SAIL’s

field of view;
• frame 151–300: the object rotating along its center axis;
• frame 301–350: the object moving out of the SAIL’s field

of view.
The auditory data was a subset of the number data set con-
tributed by 63 people with a variety of nationalities (Amer-
ican, Chinese, French, Indian, Malaysian, and Spanish) and ages
(from 18 to 50). Each person made five utterances for each
number from one to ten. In the simulation experiment, ten sub-
jects were randomly selected from the total of 63. We used the
utterances of “one” to represent the “name” question and “two”
to represent the “size” question.

Fig. 16. Results of multimodal learning algorithm 1: the two correct answer
rates of SAIL versus the question positions in each image sequence.

For each subject, each question, and each object, the five
utterances were paired with the five image sequences accord-
ingly. Four of the five (image sequence, utterance) pairs were
used for training and the remaining one was for testing. So,
with ten people, two questions, and twelve objects, SAIL had
960 training (image sequence, utterance) pairs and 240 testing
(image sequence, utterance) pairs. The training data were linked
one after the other, followed by the testing data, which were
also linked one after the other, to form a long and continuous
“super-sequence.” This is to emulate the scenario that the au-
tonomous learner runs continuously once started. In the training
session, the switch sensor inputs (a numerical vector) were given
after the utterances were finished and lasted for seven consecu-
tive image frames, which was the time when SAIL was taught
the answers. In the test session, we recorded SAIL’s responses
for performance evaluation.

To emulate the situation that the trainer would not be able to
ask questions when the objects were presented with exactly the
same orientations and positions in the training and the testing
sessions, we randomly chose the points to align the image
sequence and the utterances. Fig. 2 shows the typical alignment
between an image sequence and an utterance, which is different
during training and testing. Specifically, the end points of the
utterances was aligned with image number 300 during training.
When testing, we aligned the end points of utterances with
image numbers 100, 150, 200, 250, and 300. As a result, each
testing (image sequence, utterance) pair was used five times.
Therefore, in total, SAIL was trained for 960 times and tested

.
The behavior of SAIL was evaluated in two different ways.

First, we counted the total number of times SAIL responded
with certain answers after the question utterances. SAIL actu-
ally generated actions at every time frame based on what it could
recall with respect to the audiovisual context it received. The
actions could be “no response (keeping quiet)” or responding
with one of the answers (object names or sizes). Therefore, it
is possible that there were more than one responds during each
audiovisual sequence. For each response, if it was correct with
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TABLE I
SAIL’S RESPONSES ON QUESTION 1 (“NAME?”) WHEN THE QUESTIONS WERE ALIGNED WITH IMAGE FRAME NUMBER 250

TABLE II
SAIL’S RESPONSES ON QUESTION 2 (“SIZE?”) WHEN THE QUESTIONS WERE ALIGNED WITH IMAGE FRAME NUMBER 250.

THE ITALIC NUMBERS REPRESENT THE CORRECT RATES

respect to the object presented at the time, we counted it as cor-
rect. So, we obtained the first correct answer rate (C.A.R.1)

where is the number of correct responses and is the total
number of responses.

In the second evaluation, we counted each audiovisual se-
quence as one trial. During each trial, if the majority of the re-
sponses were correct, we counted this trial as correct. Otherwise,
we counted it as wrong. Here is the second correct answer rate
(C.A.R.2)

where is the number of audiovisual sequences with the correct
majority responses and is the total number of audiovisual
sequences.

1) Results of Algorithm 1: The first experiment was con-
ducted using multimodal learning algorithm 1. We plot the cor-
rect answer rates with respect to the question positions during
testing in Fig. 16.

Since the objects were mounted on and off the gripper from
one image sequence to another image sequence and the objects

were rotated by the gripper, when the questions were asked, the
audiovisual scenes were never exactly the same during testing as
those during training. This difference was further increased with
the increase of the question-position difference between training
and testing. Overall, SAIL maintained a high correct answer
rate when the question-position difference between training and
testing is within the expected range. The correct answer rate
drops with the question-position difference, but still reasonably
well—average above 90% from frame 210 to frame 300 across a
time span of about three seconds, compared with a range of 0.33
s to 0.55 s in eyeblink animal classical conditioning learning. As
the system needs to respond to any sensory events, two events
are not necessarily related if they do not occur concurrently in
real-time within a small time window. This is important to avoid
temporal hallucination. For example, when the time separation
is large (e.g., when objects were moving in or out of SAIL’s field
of view), SAIL’s association rate should be very low.

Then, one may ask, how can a mature human relate two events
that occur across a span of larger time scales (e.g., in the scale
of days in criminal investigations)? In fact, they still must be
recalled from the brain’s long term memory so that they coac-
tivate in the brain within a short time span in real-time (e.g.,
within a second) for the brain to associate them. For example,
a sentence from the supervisor mentions both events within a
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Fig. 17. After trained using multimodal learning algorithm 1, the node distribution (left) and primitive prototype distribution (right) in the trees: (a) P-tree of
A-LBE; (b) P-tree of V-LBE; (c) R-tree of H-LBE.

TABLE III
THE CORRECT ANSWER RATE 2 (MAJORITY CORRECT RATE) OF SAIL WHEN

THE QUESTIONS WERE ALIGNED WITH IMAGE FRAME NUMBER 250

second (e.g., “Is event A and event B related?”) or the agent can
think so autonomously based on its experience. The work here
models the capability of general multimodal association within
a moderate time span within a second. The association of events
across larger time span requires learning through language, as
the above supervisor example indicated. Such a mode of devel-
opmental learning is called communicative learning [42] and is
beyond the scope of the work here.

Detailed confusion tables (Table I and Table II) show SAIL’s
C.A.R.1 on different objects and different questions when the
questions were aligned with image frame number 250. The av-
erage C.A.R.1 is 87.9%. The “None” category in the tables cor-
responds to the period of time when the verbal questions were
not asked. Since SAIL never responded during those periods,
which is desirable, the percentage is 100. Table III shows SAIL’s
C.A.R.2 with an average rate of 95.8%.

Comparing Table I with Table II, careful readers may ask why
the upper part of Table II does not show the similar confusion
pattern as the upper part of Table I. Note the input to H-LBE
is the concatenation of the primed sensations from V-LBE and
A-LBE, which forms a long vector of )
dimensions, where 25 20 is the image size, 13 is the order of
MFCC, and 20 is the number of MFCC vectors included in one
auditory sensation vector as described in page 13. In Table I,
(image “Baby 2” + verbal “name”) is confused with (image
“Hugme” + verbal “name”) because they share the “name” part.
(Image “Baby 2” + verbal “size”) is recognized mistakenly as
(image “Baby 2” + verbal “name”) because they share the “Baby
2” part. However, the chance that (image “Baby 2” + verbal
“size”) is confused with (image “Hugme” + verbal “name”) is
very low because they do not share anything. Therefore, we see
the “faultless” diagonal in the confusion Table II.

Fig. 18. Comparison of the majority correct answer rates of multimodal
learning algorithm 1 and 2.

The size of the whole “brain” after training was 806 MB. The
shape of the three major trees of the three LBEs are shown in
Fig. 17. Because of the tree structure, the average execution time
at each time step is 3.4 ms, which is much lower than 18.1 ms,
the interval of a single speech frame and the upper-bound of one
execution step.

2) Results of Algorithm 2: The second experiment was con-
ducted using multimodal learning algorithm 2. The majority
correct rates for both algorithm 1 and 2 are plotted in Fig. 18
for comparison, in which the improvement is visible. Particu-
larly, when the questions were aligned with image number 250,
the performance of the robot improved from 95.8% to 100%.
The major difference between algorithm 2 and algorithm 1 is
that, in algorithm 2, the inputs to H-LBE contain the primed ac-
tion pattern. As explained in Section IV-D, the primed action
pattern catches the characteristic information, i.e., the different
questions instead of the different ways of uttering the same ques-
tion. This abstraction process enabled a better performance. In
addition, as shown in Fig. 19, the size of R-tree in H-LBE is sig-
nificantly reduced compared to that of multimodual algorithm 1
shown in Fig. 17 because the decision boundary was simplified
due to the inclusion of the primed action pattern in the input to
H-LBE.
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Fig. 19. After trained using multimodal learning algorithm 2, the node distribution (left) and primitive prototype distribution (right) in the trees: (a) P-tree of
A-LBE; (b) P-tree of V-LBE; (c) R-tree of H-LBE.

Fig. 20. Node distribution (left) and primitive prototype distribution (right) in the trees: (a) P-tree of A-LBE; (b) P-tree of V-LBE; (c) R-tree of H-LBE.

B. Real-Time Experiment

In the real-time experiment, the verbal questions (“name?”
and “size?”) were asked followed by the answers imposed
through the switch sensors of SAIL. For each object, we usu-
ally issued each question five to six times. To make it easier for
the trainer to see the response of SAIL, we manually mapped
SAIL’s action vectors to the names of the objects and used
Microsoft text-to-speech software to speak the names. After
going through three randomly chosen objects (baby 1, dwarf,
and girl), the objects were mounted on the gripper again and the
questions were asked without giving the answers. We repeated
the above process ten times and SAIL responded correctly
approximately 90% of the time for the three trained objects.

The shape of the three major trees of the three LBEs are
shown in Fig. 20. The P-tree of V-LBE is fairly small compared
to the P-tree of A-LBE because SAIL’s eyes focused on a small
field of view covering the object and did not experience dra-
matic changes. In contrast, the microphone of SAIL collected
the conversation of the trainer with his lab mate in addition to
the verbal questions. The size of the whole “brain” containing
three LBEs is about 60 MB after the above training process.

While extending the real-time experiment to more objects, the
system experienced unacceptable delay. We recorded the exe-
cution time to get an idea of the speed performance of SAIL.
Fig. 21(a) shows that the average execution time of each step
over 50 consecutive steps grew at the beginning and flattened
out after about 100 s. The short surging periods around the 100 s,
150 s, and 210 s were during the times we changed the objects.

Since the visual context changed a lot at the time, the trees con-
ducted extensive learning and required more time in each ex-
ecution step. But even in these periods, the execution time of
each step was lower than 18.1 ms, the interval of a single speech
frame and the upper-bound of one execution step.

Failing to discover the reason for delay, we plotted the exe-
cution time in each step without averaging in Fig. 21(b). As we
can see, in a few time steps, SAIL’s step execution time bursts
to as high as 95 ms, which is five times a single speech frame.
The frequency of this kind of burst grows with the size of total
memory consumption as shown in Fig. 21(b). So is the longest
step execution time. For example, after the 806 MB “brain” is
trained on recorded is loaded for testing, the longest step exe-
cution time grows to as high as about 600 ms. We believe that
these bursts of step execution time is related to memory paging.
Frequent long steps accumulate and caused the long delay we
mentioned above. Without accessing the kernel of the operating
system, we were not able to conduct real-time experiments on
more objects.

C. Discussion on Scalability

There are two types of scalability of concern. The first one
is the computational complexity. At the component level of the
system, HDR has the time complexity as low as , where

represents the number of distinguishing training data [36].
The space complexity of HDR is , which is not an issue
since the digital storage is getting very cheap. At the architec-
ture level, when the length of the audiovisual context required
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Fig. 21. Average step execution time of over 50 consecutive time steps (a) and the actual step execution time (b) of the multimodal learning system.

Fig. 22. Sample sequences of the primed sensation of 12 objects.

to answer the questions gets longer, (e.g., a long question sen-
tence), the system potentially needs even higher levels to handle,
which is still an ongoing research topic. But adding more short
questions, such as “color,” will not pose any serious problems.

The second scalability concern is regarding the discriminant
power due to the clustering along the temporal context trajec-
tory. We have discussed that the theoretical number of possible
images in the image vector space is about , which
means a high representation power. It is hardly possible for the
same object to generate two exactly same images. This is the
warranty of the scalability of the appearance-based method. In
this sense, the major issue of the appearance-based method is
to find the invariance of different views of the same object in-
stead of the scalability. One of the popular approaches to this
is the subspace method, such as using PCA to find eigenface.
HDR uses the idea of discriminant analysis and the detailed dis-
cussion of the features extracted by HDR can be found in [43].
However, the appearance-based method requires the alignment
of images.

The proposed method of clustering along the temporal con-
text trajectory reduces the requirement of the exact alignment
as discussed and shown in previous sections. Inevitably, doing
clustering will reduce the resolution of the visual representa-

tion. However, be aware that the cluster centers are generated
by multiple images along the temporal trajectory of each indi-
vidual moving object and, therefore, they contain extra temporal
information unique to individual objects. In addition, the clus-
tering threshold can always be controlled to ensure the resolu-
tion. While not yet addressed in the proposed system, we believe
the threshold should be context-dependent and can be learned by
the system.

To give the reader some intuitive idea of the affect of the clus-
tering, we plot one sample sequence of primed sensation for
each object in Fig. 22. Due to space limit, we can not show the
images with higher resolution. But the difference between the
primed sensation of different object is still visible, and, there-
fore, distinguishable by the system.

It is important to note that the learning results are highly re-
lated to teaching experience. For example, the direction of rota-
tion is also an important aspect of experience. Think of child’s
“count down” skill, which need to be learned separately by the
child.

VI. CONCLUSION

In this paper, we introduce a multimodal autonomous
learning architecture that enables a machine learner to develop
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and integrate vision and audition concurrently in a dynamic,
interactive training setting. With this architecture, after being
taught the answers to verbal questions upon the presence of
objects, the SAIL robot was able to answer the questions
correctly even when the orientation of the objects was changed.
It is worth emphasizing that the system did not have any
prior knowledge about the objects or the verbal questions
before it started running (“birth”). Nor does it require the
sensory sequences to be transcribed, in contrast with almost
all existing speech recognition systems which used an open
“skull” approach. As far as we know, there has been no such
published multimodal developmental learning system, while
earlier preliminary work of this line of work appeared in 2003
[44]. The work presented here seems the first attempt focusing
on computational multimodal developmental learning. The
sensitivity and a desired amount of tolerance to interstimuli
interval have been discussed and demonstrated.

This represents a major departure from traditional modes of
machine learning that uses handcrafted features. For example,
unlike many traditional speech processing methods, it does not
use audio silence as a cut point to isolate words, since contin-
uous speaking sentences often do not have any interword si-
lence. Unlike many traditional visual processing methods, it
does not use a motion static point as a key frame for segmenting
video sequences, since such static points do not always exist or
reliable in real-world events. The capability of learning directly
from raw, untranscribed multimodal sensory streams is neces-
sary for autonomous development.

The multimodal developmental paradigm, the architecture,
the level-building elements for the corresponding functions of
the cortical areas, and the experimental results presented here
indicate that multimodal learning directly from raw sensory and
motor streams are computationally feasible.

APPENDIX

The relative entropy, or Kullback–Leibler distance between
two densities and is defined by

Thus

(11)

where is the differential entropy. The strict inequality holds
except for the degenerated case where the second term in (11)
is equal to zero, which requires that
equals zero almost everywhere.
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