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INTRODUCTION

A number of researchers have employed techniques based on signal detection
theory (Green & Swets, 1966) with the aim of measuring the recognizability of
individual faces in an experiment (e.g. Bartlett, Hurry, & Thorley, 1984; Han-
cock, Burton, & Bruce, 1996; Light, Hollander, & Kayra-Stuart, 1981; Light,
Kayra-Stuart, & Hollander, 1979; O’Toole, Deffenbacher, Valentin, & Abdi,
1994; Valentine & Bruce, 1986; Vokey & Read, 1992). Applied to the analysis
of individual faces rather than individual observers, these techniques have
proven useful for understanding both theoretical and practical issues in human
face processing. For example, the relationship between the rated typicality and
recognizability of faces is the primary evidence for a prototype-based account
of human face processing. Additionally, measurement-based approaches to the
recognizability of individual faces have proven useful for understanding
applied issues in forensic psychology, such as the relationship between confi-
dence and accuracy in face recognition (Deffenbacher, 1980) and the relation-
ship between facial description accuracy and recognition accuracy (Pigott,
Brigham, & Bothwell, 1990).

Despite its widespread use, the implicit assumptions underlying a signal
detection theory model applied to the analysis of individual stimuli are rarely
made explicit. To our knowledge, the issues have been addressed only once, in
the appendix of O’Toole et al. (1998), and there, only briefly. In the present
paper we sketch out a full description. Given the extremely common applica-
tion of signal detection theory to the description of individual observer perfor-
mance in a particular condition of an experiment, this may seem unnecessary.
We would argue, however, that there are a number of crucial differences in how
these signal detection measures tend to be used for stimulus versus observer-
based performance descriptions. For example, whereas individual differences
in observer performance obviously occur in an experimental condition, they are
rarely considered “interesting” in a theoretical sense. In fact, they are mostly
viewed as an experimental annoyance, which is dealt with by the application of
inferential statistics. By contrast, although the majority of face recognition
studies operate at the level of observer analysis, individual differences in face
recognizability have become an important theoretical focus in the face recogni-
tion literature. For example, individual differences in face recognizability form
the backbone evidence for theories of face processing that build on face-space
models (Valentine, 1991). Additionally, the primary evidence for prototype
theory as applied to faces is the finding that the recognizability of individual
faces correlates inversely with ratings of facial typicality (cf. Bruce & Young,
1986; Light et al., 1979). Individual differences in faces have been used also for
assessing the categorical structure of face spaces.

The focus on studying individual stimuli has been extended recently by a
number of researchers to address questions about the kinds of recognition
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errors people tend to make with individual faces. These questions have obvi-
ous practical value in the context of eyewitness identification accuracy. Thus,
researchers have asked questions such as “What kinds of faces elicit many
false alarms?”, “What kinds of faces elicit few hits?”, and “What factors
underlie the relationship between hits and false alarm rates for individual
faces?” Good examples of this kind of questioning can be found in papers by
Hancock et al. (1996) and Lewis and Johnston (1997) who consider the theo-
retical significance of their finding that hit and false alarm rate errors did not
correlate in their recognition experiment. Both suggest that this result indicates
a dissociation of the processes and/or information used in recognizing faces as
“old”, and the processes and/or information used in rejecting faces as “novel”.
Although these questions seem to have a prominent role when signal detection
theory is applied to stimuli, they are ascribed theoretical status only rarely
when the analysis is applied to the description of observer performance.

1
The

important difference in the uses to which signal detection measures have been
put for the individual observer versus individual face case motivates the pres-
ent simulations. Signal detection theory is sufficiently complicated that our
intuitions may be of only limited utility in predicting how the different compu-
tational components of the model interrelate under varying assumptions about
the properties of the distribution of faces serving as stimuli in a particular
experiment.

The aims of this paper are: (1) to give an explicit presentation of the signal
detection model implied in measuring the recognizability of individual stimuli;
(2) to measure the pattern of correlations between the components of hit and
false alarm rate that are expected for face samples that vary in the mean and
standard deviation of their characteristic discriminability index and criterion;
and (3) to explore the source of correlations between a single component of the
discriminability index and criterion, (either hit or false alarm rate), and another
measure such as typicality. For this latter question we look at the extent to
which criterion and discrimination index variations in the face sample relate to
correlations obtained between a non-signal detection measure of faces, such as
a facial-rating, and hit or false alarm rates. Although it is possible to make the
primary points for the second and third goals of this paper by using a more
mathematical or analytical approach to the problem, we have chosen to present
simulations for two reasons. First, the simulation approach can be presented in
a manner that makes it accessible to a broader audience of researchers in the
area of face and object recognition who are not necessarily specialists in mathe-
matical psychology. Second, and equally important, there are a number of open
parameters concerning the form of the distributions. These open parameters
make the simulation approach applicable to real experiments for which the
parameters are known, but do not support the assumptions required for the
application of a mathematical analysis.
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THE SIGNAL DETECTION THEORY MODEL OF
OBSERVERS AND STIMULI

In this section we make explicit the model underlying the application of signal
detection theory to individual stimuli. Readers who are not very familiar with
signal detection theory, or who would like a quick refresher course in the con-
text of analysing observer behaviour in a face recognition task, are referred to
the presentation in the Appendix which provides a complete description of the
observer model in a face recognition experiment. We include this as a complete
self-contained foundation for the analogy we develop for the stimulus model.

It is worth noting that the description we present in the next section can apply
to any kind of stimulus employed in a standard yes/no recognition experiment.
For concreteness and clarity, however, we use the problem of face recognition
as an example.

The signal detection model in experimental psychology is applied occasion-
ally to the task of measuring or describing the “behaviour” of a single stimulus.
Most commonly in the literature, it is the recognizability of a particular face
that is of interest. Thus, just as some people are better at face recognition than
other people, some faces are more recognizable than other faces. As is the case
for other stimulus-based measures, to compute the recognizability of a face,
data are collapsed across different observers. So, just as data are collapsed
across face stimuli to measure the performance of a single observer, data are
collapsed across observers to measure the recognizability of a single face.

Additionally, the signal detection model allows for the meaningful compu-
tational assessment of a face’s criterion. Although the interpretation of this cri-
terion is somewhat less certain for the stimulus model than for the observer
model, we consider cases in the discussion section for which stimulus-based
criterion fluctuation occurs and can be theoretically interesting. For present
purposes, we sketch the basics of the full stimulus model in this section, and
leave these other interpretation issues aside until the discussion section.

In the observer model, to be able to recognize faces at a level above chance, a
particular observer should experience higher levels of “familiarity”

2
when

viewing faces he/she has seen before than when viewing novel faces. In this
case, each individual point in the probability density function represents the
degree of familiarity elicited by a single face when it is viewed by the observer.
In other words, the noise distribution on the left of Figure 1 is comprised of
faces the observer has never seen before and the signal + noise distribution is
comprised of faces the observer has seen before. By contrast, the signal detec-
tion theory model applied to stimuli is based on the assumption that the degree
of familiarity experienced by observers when viewing a particular face for the
first time is discriminable from the degree of familiarity experienced by
observers when viewing this face for a second time. Thus, for a face to be recog-
nizable at a level above chance, on average, observers should experience lower
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levels of familiarity viewing the face for the first time, than when viewing it for
a second time. The familiarity experienced by observers viewing the face for
the first time is represented in the distribution on the left of Figure 1, whereas
the distribution on the right represents the familiarity experienced by observers
viewing the face for the second time. Each data point in each probability den-
sity function represents the degree of familiarity experienced by a single
observer viewing the face. In other words, the noise distribution on the left is
comprised of observers who have never seen the face before and the signal +
noise distribution is comprised of observers who have seen the face before.

The computation of the d ’ and C for the stimulus model proceeds analo-
gously to the computation for the observer model. In the observer model, each
hit that contributes to the hit rate, and each false alarm that contributes to the
false alarm rate comes from a different face. In the stimulus model, each hit that
contributes to the hit rate, and each false alarm that contributes to the false
alarm rate comes from a different observer.

Applied to the observer model, d ’ refers to how accurately the observer rec-
ognizes faces in the particular experimental condition, whereas C gauges the
bias of the observer to respond “old” versus “new”. Applied to a face stimulus,
this model is intuitive and interpretable as follows. The discrimination index or
d ’ gauges the recognizability of the face (i.e. how good people tend to be at rec-
ognizing particular face). Generally, d ’ is thought to reflect the characteristics
of the individual face, such as, whether or not it has distinctive features (e.g. a
mole, buck teeth, etc.). The criterion gauges the tendency of the face to evoke

SIGNAL DETECTION THEORY 441

FIG. 1. A classic signal detection model, with d’ = 2 and C = 0.



“old” versus “new” responses from observers in a particular experimental con-
dition. The criterion reflects the characteristics of the individual faces and the
characteristics of the experimental context. Both factors might work together as
follows. A male face with long hair evoke many “old” responses in a task in
which long-haired males comprise 80% of the learned faces used (e.g. recogni-
tion of rock stars), but may evoke fewer “old” responses when long-haired
males represent only a small minority of the (e.g. Wall Street brokers).

SIMULATIONS

To carry out the simulations that follow, we generated a data base of “face
models” that varied systematically in their characteristic d ’ and C. A face model
is simply a signal detection theory representation of a single face in an experi-
mental condition, and is specified by a d ’ and C. We then sampled from this data
base in different ways and analysed the samples to address our questions.

The construction of the data base proceeded as follows. We generated a
“matrix” of signal detection models that varied systematically in d ’ and C. This
is depicted schematically in Figure 2, which shows a sampling of signal detec-
tion models with d ’ increasing across rows, and criterion increasing across col-
umns. While d ’ can vary computationally from negative infinity to positive
infinity, in practical terms, successful psychological experiments are those that
set up the task requirements to avoid ceiling and floor effects. The simulations
we report here are indeed sensitive to the d ’ and criterion range chosen. To
make these simulations as meaningful as possible, we have chosen parameter
values that are commonly encountered in these kinds of experiments. For d ’ , we
chose only positive values, varying from .50 to 2.5, in increments of 0.1. The
criterion varied in this matrix from – 1 to + 1, also with an increment parameter
of 0. 1. This yielded a 21 × 21 matrix similar in form to that displayed in Figure
2.

In summary, each “element” of this matrix can be thought of as an hypotheti-
cal face stimulus model that could correspond to a particular face in some
experimental condition of a yes/no recognition experiment. Highly recogniz-
able faces were represented towards the bottom part of the matrix, and less rec-
ognizable faces towards the top. Faces recognized with loose criteria are on the
left side of the matrix and faces recognized with stricter criteria are on the right
side of the matrix.

From the signal detection models specified, we next computed a matrix of
the hit rates these models yielded, and a second matrix of the false alarm rates
these models yielded.

The first set of simulations results in variations of the kind of information
captured in families of Receiver Operating Characteristic (ROC) curves. Spe-
cifically, we present the results that occur: (1) when one limits oneself to a
range of commonly found d ’ and C scores, and, more importantly, (2) when
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different sampling distributions of face models are included. We wished, first,
to extract from this representation the correlations between hit and false alarm
rates that one would obtain when these different distributions underlie the face
models included in a standard face recognition study.

Exhaustive distribution simulations

Baseline statistics

In this first analysis, we did the simplest thing possible. We correlated the hit
and false alarm rates for all of the face models in the matrix. This is an exhaus-
tive sample of the faces. This sample yields a correlation of .589 between hit
and false alarm rate. The pattern of covariance is illustrated in Figure 3 and is
simply a representation of a complete set of ROC curves for the d’ and C ranges
considered.

One dimensional variation of face sampling
distribution

In this exercise, we simply divided up Figure 3 into the parts caused by varia-
tion in d ’ and and the parts caused by variation in C.

SIGNAL DETECTION THEORY 443

FIG. 2. Schematic representation of the signal detection models created, with d’ increasing by row,
and criterion becoming stricter by column.



Stable criterion. The case that is perhaps most commonly assumed or
hoped for in face recognition experiments, is a case in which the criterion
remains more or less constant and only d ’, or face recognizability, varies mean-
ingfully. It is obvious that if this is the case, regardless of the value of d ’, the cor-
relation between hit and false alarm rate is high and negative, with r peaking at
– 1.0 when the criterion is stable at 0. This is easy to see intuitively if we look
back at Figure 1. With the criterion stable at 0, imagine pulling apart the signal
and noise distributions symmetrically about this zero point. One obtains a
perfect negative correlation between hits and false alarms. Figure 4a illustrates
iso-criterion functions for the range of criteria between – 1 and 1. For the range
we included, the correlations between hit and false alarm varied from – .9696 to
– 1.0.

Stable d’. The complementary possibility is a stable d ’ with meaningful
variation in only the criterion. Although theoretically possible, the extreme ver-
sion of this is an unlikely situation given the commonly reported finding that
face-ratings and d ’ correlate. This indicates that d ’ must vary, at least some-
what. Nonetheless, for completeness, we present the iso-discrimination lines in
Figure 4b. These iso-discrimination lines clearly produce correlations in the
opposite direction to those obtained with a stable criterion. For the d ’ and C
range tested, the correlations for this stable d ’ case ranged from .847 to .99.
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Random normal distribution simulations

In this series of simulations, we generated random normal distributions that
varied in the standard deviation of the d ’ and C about some mean value. We
have already seen in the previous simulations that a completely stable criterion
produces high negative correlations between hit and false alarm rates, and that a
completely stable d ’ produces high positive correlations between hit and false
alarm rates. In this simulation we investigate the middle ground of moderate
variations of d ’ and C. Additionally, rather than using an exhaustive sampling
distribution, in which all d ’ and C values in the matrix were equally probable,
we sampled these values from normal distributions. This seems more realistic
as a sampling assumption.

We began by generating random normal sampling distributions n = 100
from the face models created previously. These distributions were centred on a
mean d ’ = 1.0 and C = 0.0. We varied only the standard deviation of the sam-
pling distributions. These standard deviations varied from 0, i.e. completely
stable and equivalent to the above “extreme” situations, to .5, in .1 z-score
increments. The standard deviation for the d ’ and C components of the distribu-
tion varied in all possible combinations, yielding 36 different face sampling
distributions (e.g. s d ’ = 0 and s C = 0;

3 s d ’ = 0 and s C = .1; s d ’ = 0 and s C = .2 ...
s d ’ = .5 and s C = .5).

We present the results of these simulations in two figures. First, by way of
summary, Figure 5 illustrates the correlations between hit and false alarm rates
for the face samples as a function of the standard deviation of d ’ and C. The fig-
ure does not include the line for a stable criterion at 0, because we have already
illustrated that this condition yields a perfect correlation of – 1.0.

4
As can be

seen from Figure 5, the correlation between hit and false alarm rate varies
widely as a function of the stability of d ’ and C in the sampling distribution of
faces in the experiment. Further, it can be seen clearly that the correlations are
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found.



generally lower (i.e. less strongly positive, more strongly negative) for rela-
tively smaller variability of C, and generally larger for relatively smaller vari-
ability of d ’ .

The same data are illustrated more graphically in Figure 6, which shows
scatter plots for hit and false alarm rates as a function of the standard deviations
of d ’ and C in the sample. Each individual scatter plot represents a face-sam-
pling distribution, with hit rate on the x-axis and false alarm rate on the y-axis.
As can he seen, the manipulation of face distribution parameters has a strong
effect on the covariance relationship between hit and false alarm rate.

The simple conclusion from these data is that the mechanics of signal detec-
tion theory, in conjunction with the mean and variability of the face sample
parameters, can yield widely different correlations between hit and false alarm
rate. The range of expected correlations found across the samples we examined
here spans from a perfect inverse correlation to a perfect positive correlation.
Also, although we consider this issue more thoroughly in the discussion, with
the exception of the extreme cases of zero variability, we consider all of the
points on the graph in Figure 5 to be quite plausible face-sampling distributions
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for a standard face recognition experiment. Thus, in the absence of other evi-
dence, these factors should be considered to provide the most parsimonious
account of any particular obtained correlation between hit and false alarm rate.

Non-model measure simulations

It is common practice in the face memory literature to correlate particular kinds
of errors, such as false alarms or hits with other, non-signal detection-based
measures of the stimuli (e.g. rated typicality, rated attractiveness). We have
argued elsewhere (O’Toole et al., 1994) that the interpretation of such correla-
tions can be problematic. Primarily, the problem stems from the fact that a false
alarm or hit rate by itself is uninterpretable without knowing the d ’ and C of the
face model. So, for example, if a false alarm rate is greater for face A than for
face B, three interpretations are possible: (1) face A is less recognizable than
face B; (2) observers tend to use less conservative criteria with face A than with
face B; and finally, (3) some unknown combination of (1) and (2). Although
often the researcher may not care theoretically which of these interpretations is
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the sample. The plots show all 36 combinations of the d ’ and C standard deviations, with the top left
corner showing the meaningless case of zero variability for both d ’ and C and the lower right corner
showing the hit and false alarm rate relationship for standard deviations of 0.5 for both d ’ and C.



correct in a particular condition of an experiment, very serious interpretation
problems can occur when the correlations are made and compared among two
or more conditions of an experiment that differ in either their mean d ’ or C, or in
the standard deviations of these. Often such systematic differences in the
recognizability of the faces in the different conditions of an experiment are both
predicted and obtained.

We carried out two kinds of simulations here. In the first, we work from syn-
thesized correlations between an “other measure” and hit (false alarm) rate,
with the aim of examining how these synthesized correlations constrain the
expectations for: (1) correlations between this other measure and d ’, and (2) for
correlations between this other measure and C. For convenience, we will refer
to this other measure, generically, as “facial-rating”. In the second kind of sim-
ulation, we work from synthesized correlations between a facial-rating mea-
sure and d ’ with the aim of examining how these synthesized correlations
constrain the expectations for correlations between the rating measure and hit
rate and between the rating measure and false alarm rate.

Correlations between facial-ratings and hit or false alarm rate. In this
simulation, we used random normal samples of faces, and synthesized a facial-
rating measure that correlated with either the hit or false alarm rate of the sam-
pled data.

The simulation proceeded as follows. For each correlation level,
5

we sam-
pled 100 faces from a random normal distribution with a mean d ’ = 1.0 and a
mean C = 0.0, (see previously). Based on the hit and false alarm correlation
data presented in Figure 5, we set the standard deviation for the d ’ sampling dis-
tribution to .3 and the standard deviation for the C sampling distribution to .1,
values which yielded approximately zero correlation between the hit and false
alarm rates.

6

Next, we generated a facial-rating measure for the 100 faces. Facial-rating
vectors were created to correlate to varying degrees with false alarm rate by: (1)
sampling 100 numbers from a normal distribution with a menu of zero and a
standard deviation of s , where s varied probabilistically from 0 to .495 in 0.005
steps;

7
and (2) adding one of these 100 sampled values to each one of 100 false

alarm rates for the faces sample. For each standard deviation condition, this
yielded 100 pairs of false alarm rates and facial-rating values. Across standard
deviation conditions, the correlation between false alarm rate and facial rating
varied probabilistically as a function of s , with larger s ’s yielding lessor corre-
lations and smaller s ’s yielding stronger correlations. We then computed the
associated correlations between d ’ and facial-rating and between C and facial-
rating.

The results of this false alarm analysis appear in Figure 7a. These results are
somewhat difficult to unpack intuitively. As a guide, however, it is easiest to
start at the extremes. For example, beginning at the right-hand side of Figure

448 O’TOOLE, BARTLETT, ABDI



7a, the far right points in this figure indicate the case where there is a nearly per-
fect positive correlation between the facial-rating and false alarm rate. In this
case, because the facial-rating value equals the false alarm rate, the asterisks at
the right extreme of the x-axis reduce to the correlation between false alarm rate
and d ’, which is strong and negative. Specifically, high false alarm rates gener-
ally indicate low d ’s, though again we must recall that we are operating above
ceiling and below floor in the performance ranges considered. Likewise, the
open circles on the right extreme of the graph represent the correlation between
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only in the standard deviation of the C value used: (a) s C = .1; (b) s C = .02.



false alarm rate and C, which is also strong and negative. Specifically, high
false alarm rates generally indicate low or loose C.

To aid in interpreting the less extreme data points, it is convenient to pretend
that our facial-rating is face typicality. Many studies have found a moderately
positive correlation of approximately .50 between typicality and false alarms.
To obtain such a correlation with the present face sample (i.e. operating within
the specified ranges of d ’ and C), the data displayed in Figure 7a indicate that
the source of the correlation is very likely to comprise both a negative
covariance relationship between typicality and d ’ and a negative covariance
relationship between typicality and C. In short, at the .50 correlation label on
the x-axis both the correlation between d ’ and facial-rating and the correlation
between C and facial-rating are non-zero. In other words, it is very unlikely
with this face sample that a false alarm rate–typicality correlation of this magni-
tude could be due only to variations in the recognizability of the faces—crite-
rion variation must also play a role. Concomitantly, it is very unlikely with this
face sample that a false alarm rate–typicality correlation of this magnitude,
could be due only to variations in face criterion—recognizability variation
must also play a role.

The important point made by this illustration is that the constraint comes
from the nature of the face model sample. It is highly unlikely to obtain a corre-
lation of .50 between false alarm rate and “typicality” that has, as its sole
source, recognizability. This is because C varies in the face model sample too
much relative to the variation of d ’ in the sample. A very different result can be
obtained by changing the sampling parameters to tighten the standard deviation
of C relative to d ’ . To illustrate, we re-ran this simulation changing s C from 0.1
to 0.02. The results of this simulation appear in Figure 7b. Here we see that it is
quite likely to get recognizability as the sole source for the correlation between
false alarm rate and facial rating. Again, although this scenario of a stable C is
the case that researchers may hope for and perhaps implicitly assume in face
recognition experiments, it is perhaps not a realistic assumption.

For the complementary part of this simulation, we repeated the earlier meth-
ods but synthesized the facial-rating correlation from the hit rate, rather than
from the false alarm rate. The results appear in Figure 8. Not surprisingly, the
pattern of results is rather different. Again, however, the main point is that mod-
erate correlations between hit rate and a facial-rating cannot generally be due to
variations in only the recognizability or criteria of faces—the variation of both
factors is likely to be involved. We leave more detailed interpretations of these
data to the reader, and proceed to the more basic conclusions.

First, correlations between our synthesized facial-rating measure and hit
(false alarm) rate constrain, in a probabilistic fashion, the magnitude and direc-
tion of correlations between the facial-rating measure and both d ’ and C. This is
not surprising in that all of these measures are codependent. The particular form
of these constraining functions is not as important as the point that the
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mechanics of the signal detection model mandate that such functions exist.
Indeed the form of these functions will vary with the parameters of the face
sample.

8
Second, the shape of the constraining functions differs markedly for

correlations between facial-rating and hit rate and for correlations between
facial-rating and false alarm rate. Finally, viewed in terms of the source of the
correlations (i.e. d ’ and/or C), correlations measured on hit (false alarm) rate
can be less ambiguously interpreted in the context of the signal detection
model.

Correlations between facial-ratings and d’. In this final simulation, we
used the procedures described previously, with only the following change. We
created the synthetic correlation between d’ and facial-rating. Additionally,
before proceeding, we made a small change to the s C and s d ’, distribution
parameters to enable us to make a more direct comparison to some questions
raised by the Hancock et al. (1996) paper. They found correlations between a
facial-rating and both hit and false alarms, in the absence of a correlation
between hits and false alarms. As noted, the parameters previously chosen from
Figure 5 actually produce slightly negative correlations (see Figure 5). We
adjusted these parameters to values not discretely on the Figure 5 graph, to
obtain correlations between hit and false alarm rate as close to zero as possible.
One set of suitable parameters turned out to be s C = .09 and s d ’ = .18.

The results of these analyses appear in Figure 9. We mention only a few
basic points. First, we think these graphs offer a way out of the apparent para-
dox that Hancock et al. (1996) considered. They found that rated facial distinc-
tiveness correlated both with hit and false alarm rate, but that hit and false alarm
rate did not correlate with each other. Such a situation is clearly theoretically
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FIG. 8. The figure shows the correlations between face-rating and d’, and face-rating and C that are
obtained with correlations of varying strengths between hit rate and facial-rating.



possible with correlation, but confounds intuition a bit. This situation arises
throughout Figure 9. Specifically, at virtually all points along the x-axis, there
is a non-zero correlation between false alarm rate and the facial-rating and
between hit rate and facial-rating, and yet, as noted, no correlation between the
hit and false alarm rate (as specified via the simulation standard deviation
parameters).

Although the results of this simulation are difficult to unpack intuitively, we
again looked to a more extreme case to make the point. On the right side of the
x-axis are simulations with very high synthesized correlations between d ’ and
facial-rating. As such, the individual asterisks and open circles on this side of
the graph reduce the correlations between hit rate and d ’ and false alarm rate
and d ’ , respectively. To get a closer look, we isolated one of these simulations,
which yielded a relatively high correlation between false alarm rate and facial-
rating, and hit rate and facial-rating, but no correlation between hit and false
alarm rate. We then looked at a three dimensional scatter plot of the hit rate,
false alarm rate, and facial-rating values for to the sampled faces. These data are
illustrated in Figure 10. The different graphs in the figure display the same
cloud of points from different views. Beginning in the first row, we are viewing
this cloud from directly overhead so that we can see the hit verus false alarm
data. It is evident from this viewpoint that the three-dimensional points “pro-
jected” onto these two dimensions form a circular structure that yields a zero
correlation between hit and false alarm. This is due, again, to the face-sampling
distribution parameters chosen (i.e. the relative variability of d ’ and C). The
centre graph in the second row displays these data viewed from a lower eleva-
tion. Moving rightwards, the viewer can get a better look at the positive correla-
tion between hit rate and facial-rating, with the best view in the right-most
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FIG. 9. The figure shows the correlations between face-rating and hit rate, and face-rating and false-
alarm that are obtained with correlations of varying strengths between face-rating and d ’.
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graph, which hides the false alarm rate dimension. Moving leftwards, the
viewer can see the negative correlation between false alarm rate and facial-rat-
ing, with the best view in the left-most graph, which hides the hit rate
dimension.

These data, thus, illustrate a relatively simple scenario for resolving the
apparent paradox reported in Hancock et al. (1996). When the face-sampling
distribution is such that the variations of C and d ’ are somewhat balanced, even
substantial correlations between hit rate and distinctiveness, and false alarm
rate and distinctiveness, are possible in the absence of a correlation between hit
and false alarm rate. Interestingly, the intuitions of Hancock et al. are indeed
correct when the variability of d ’ far outweighs the variability of C. As noted
previously, this seems to be the case most commonly hoped for, and sometimes
implicitly assumed in face recognition studies. To illustrate the important dif-
ference this assumption makes, we repeated this last focused simulation with
parameters from Figure 5 that yield a high negative correlation between hit and
false alarm rate (i.e. cases where the variability of d ’ substantially outweighs
the variability of C). Specifically, we took values s C = .1 and s d ’ = .35, which
yielded a correlation of – .42 between hit and false alarm rate. We next synthe-
sized a “distinctiveness” rating that correlated with d ’ to a degree of .61. In sum-
mary, in this relatively stable criterion scenario, we obtained : (1) a positive
correlation between hit rate and distinctiveness, r = 0.51; (2) a negative corre-
lation between false alarm rate and distinctiveness, r = – 0.51; (3) a positive
correlation between d ’ and distinctiveness, r = 0.61; and (4) a negative correla-
tion between hit and false alarm rate, r = – 0.42. In summary, when the vari-
ability of d ’ outweighs the variability of C, it is highly likely that negative
correlation between hit and false alarm rate will result, and concomitantly, that
these quantities will correlate in opposing directions with a stable entity such as
a facial-rating.

DISCUSSION

The stimulus model that most researchers in face recognition use is based on
signal detection theory, for which hit and false alarm rates are assessed to
define the recognizability and response bias associated with individual faces in
an experimental condition. Considered across all of the stimuli in a particular
experimental condition, the non-linear mechanics of signal detection theory
limit the utility of intuition for determining the expected covariations of hits
and false alarms with each other, and also, the expected covariation of hits and
false alarms with other stimulus-based measures. Notwithstanding, the
mechanics of signal detection theory in combination with stimulus sampling
parameters constrain these expected covariations in a more or less knowable
way. The present results indicate that the interpretation of these covariation
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data is critically dependent in a number of ways on the sampling distribution
parameter constraints.

The present simulations remind us that with a signal detection model applied
to describing the behaviour of individual stimuli in an experiment, both d ’ and
C comprise the sampling parameters of the face distributions. Although the
variation in the recognizability of faces is generally the focus of stimulus-based
research hypotheses (e.g. prototype and face-space models), the variation of C
has equally potent consequences for the interpretation of a number of kinds of
commonly reported data in face recognition studies. In this discussion, we con-
sider, in turn, the implications of variation of the stimulus sampling parameters
at two levels of analysis in psychological experiments: (1) simple sampling
variability of d ’ and C for the faces selected to serve within a particular condi-
tion of an experiment, and (2) systematic variations of d ’ and C between the
conditions of an experiment.

There are at least two concrete implications of the present data for the within
condition variation of d ’ and C. First, no specific correlation between hit and
false alarm rate should be expected in any given experimental condition with-
out reference to the sampling distributions of d ’ and C associated with the con-
dition. It follows, therefore, that any particular obtained correlation between hit
and false alarm rate cannot be considered sufficient evidence for a theoretical
claim. Thus, although there is intuitive theoretical appeal in believing that face
errors of different kinds should be related (e.g. faces that evoke high levels of
hits should also evoke low levels of false alarms), the stimulus model used in
the vast majority of face recognition experiments does not support such intu-
itions. In fact, the statement that “faces that evoke high levels of hits should also
evoke low levels of false alarms” is synonymous with the statement that “the
criterion for all faces in an experimental condition is the same”. As noted previ-
ously, we believe that this assumption is implicit in the reasoning of many
researchers computing the recognizability of individual stimuli in the context
of a signal detection model.

Applied to past work, these findings indicate that the lack of correlation
between hits and false alarms reported by Hancock et al. (1996) and Lewis and
Johnston (1997) may not need an explanation. One would need to look at the
distribution of both the d ’ and C values to know what to expect for these correla-
tions and then to verify the extent to which the correlations deviate from expec-
tations. This, however, does not indicate that we cannot find out more about
how individual faces “act” in the context of an experiment when they are
known (potentially a hit or miss) versus novel (potentially a false alarm or
correct rejection). Interestingly, the data of Lewis and Johnston are informative
in that they demonstrate quite clearly that there are additional important
experimental-context factors that may contribute to these covariances. Lewis
and Johnston show that the consistency of false alarms depends not only on
the faces used as distractors but on those used as targets as well. The single
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stimulus model of signal detection theory is only a measurement tool, and thus
cannot by itself be used to explain these context effects.

The second concrete implication of the within condition variation of d ’ and
C is that, although it is a very common practice in the face literature to correlate
false alarm and hit rate with “other” face measures, such as typicality, attrac-
tiveness, and memorability, the interpretation of such correlations is not
straightforward. For example, Lewis and Johnston (1997) found a significant
correlation between distinctiveness and hits but no correlation between distinc-
tiveness and false alarms. At the same time, the authors found that a measure of
personal familiarity of faces, if analysed on an individual subject basis, corre-
lated reliably with false alarms but not hits. Understandably, given this appar-
ent “double dissociation”, the authors considered the possible information-
processing mechanisms selectively underlying the hits and false alarms,
respectively. This was done by assessing other aspects of the hits and false
alarms that might give insight into these processes. Though this may be a rea-
sonable strategy in some cases, we argue below that there may be a more parsi-
monious explanation of these kinds of findings.

It is beyond the scope of this paper to delve into the details of the particular
processing mechanisms advanced in the Lewis and Johnston (1997) paper.
Rather, we present only two interpretive/methodo logical caveats concerning
the treatment of correlations involving hits and false alarms. First, before theo-
rizing about apparent process dissociations involving the hit and false alarm
measures, one should examine the pattern of correlations using the discrimina-
tion and bias measures directly. We expect that in many instances, correlations
involving d ’s and Cs will support more coherent theoretical accounts than the
hit/false alarm-based correlations. Correlations done at this level, however,
may not be significant if the simultaneous variation of both d ’ and C contrib-
uted to the originally significant correlation between the “other” measure and
either the hit or false alarm rate. This is not necessarily problematic if one views
the signal detection measures as an analytical tool for identifying the sources of
interesting and applicable results concerning, for example, false recognition
(Schacter, Norman, & Koutstaal, 1998). As such, the covariance of a facial-rat-
ing and either hit or false alarm rate may be relevant in the eyewitness identifi-
cation literature, where the effects are important regardless of their source. We
would argue, however, that in many cases, including applied studies, it is still
important to understand the extent to which these effects are due to discrimina-
tion versus criterion changes.

Second, the simulations in this paper lead us to worry that the apparent disso-
ciations involving hit and false alarm rate measures may prove unstable across
experiments due to irrelevant variations in the stimulus sets used. It follows
then that the correlations between the false alarm or hit rate and other measures
may be similarly unstable. For example, contrary to the majority of other work
in the field (Bartlett et al., 1984; Hancock et al., 1996; Light et al., 1979), Lewis
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and Johnston (1997) find that distinctiveness was correlated more strongly with
hits than with false alarms. This might be due to random differences in the
items, as the procedure used by Lewis and Johnston was similar to the proce-
dures used in the previous studies. In any case, the simulations presented here
lead us to expect differences of this sort when the recognizability and bias prop-
erties of the stimulus set are changed.

The major implication of variation of d ’ and C between experimental condi-
tions concerns comparisons of correlations obtained in the different conditions,
e.g. correlations between false alarm rate and typicality in two conditions of an
experiment. Specifically, there are serious interpretation difficulties for corre-
lations between an “other” measure and either hit or false alarm rate when they
are compared across conditions in an experiment. Any sort of systematic effect
of condition on d ’ or C strongly compromises the validity of these kinds of false
alarm or hit rate comparisons. This includes manipulations that affect either the
mean or variability of either d ’ or C. Thus, it may be possible to obtain no main
effects of the independent variable and still be at risk in interpreting across con-
dition correlations (e.g. when the variability of d ’ or C are not comparable in the
conditions compared).

Condition-based effects on d ’ are frequently the basis of experimental pre-
dictions. And, although not often predicted a priori, condition-based effects
on C have been found also (O’Toole, Edelman, & Bülthoff, 1998; Valentin,
1996) and have been interpretable in the context of the experiment. In the
experiments of O’Toole et al. and Valentin, when the observer’s task was to
recognize faces across a large change of viewpoint (90°), both studies found
that observers used very strict criteria (much stricter than they used with
smaller changes in viewpoint). This yields stricter criteria for the face models
in this large viewpoint change condition relative to those in the smaller view-
point change conditions.

9
One interpretation of the strict criteria used in this

“difficult” condition is of a meta-memorial nature. Observers, perhaps, did
not feel very confident in their own abilities, which may have made them
more generally conservative on this task. (See also Hintzman, 1994 for a dis-
cussion of the potential complexity of the effects of meta-memorial influences
on recognition data.) The main point is that systematic variations of both d ’
and C across the conditions of an experiment are possible, and may occur for a
number of theoretical reasons. In the presence of these between condition
variations, comparisons of false alarm or hit rates (or any correlation measure
that includes these measures), confound the role of d ’ and C in the
comparisons.

We suggest that a number of the confusions in face recognition studies that
consider individual stimulus measures can be traced to some tempting, but
unsupported, “mixed metaphors” of the observer and stimulus models. As
noted, the model construct of signal detection theory can be applied equally
validly to the analysis of either stimuli or observers in a particular condition.
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However, there is no valid, formal way to relate the results of these two analy-
ses to each other. Some common ways of thinking about this, nonetheless, are
evident in a number of papers in the face literature. We argue here that these
implicit arguments contain various mixed metaphors of the observer and stimu-
lus models. Some of these mixed metaphors contain a grain of truth, and others
lead to circularities in reasoning that cannot he supported with empirical data.
We try here to sketch out common advantages and pitfalls in trying to conceptu-
alize the stimulus and observer analyses together.

10

First, correlation has occasionally slipped into the literature as an attempt to
relate the stimulus and observer models implicitly, as follows. When one finds
a correlation between face recognizability (i.e. d ’ ) and perceived typicality, it is
tempting to imagine that the certain kinds of faces (e.g. highly typical faces)
tend to “hang out together” in the old and/or new distributions (i.e. perhaps on
the right side of both distributions, or on the right side of one distribution and on
the left side of the other distribution). This might explain why certain kinds of
faces attract more false alarms than hits. Specifically, one might imagine that
certain kinds of faces are sitting at some particular place in the distribution, and
hence have differential probabilities of being hits or false alarms. The flaw in
this reasoning is that a signal detection model comprised of individual faces is
necessarily a single observer model, and yet the correlation we are trying to
understand (between d ’s and typicality) is based on many stimulus models.
More to the point, using the whole set of observers in the experimental condi-
tion, each face in the observer’s old and new distribution can be said to have its
own d ’ and C, as well as its own hit and false alarm rate. But, there is no formal
relationship between the position of the faces in the observer distribution and
the face’s d ’ as computed across the observers. Indeed, different data contribute
to these computations. So, even if it is tempting to imagine that the correlation
one obtains between d ’ and typicality on face models is based on the face’s clus-
tering in the observer distributions, it is tenuous at best and can lead to empiri-
cally unsupportable conclusions.

It is worth noting explicitly that it is never possible to figure out exactly
where a particular face “sits” in a signal detection-based observer model; nor is
it possible to figure out exactly where a particular observer “sits” in a signal
detection-based face model. A face in an observer’s model has exactly one of
four possible states: it is either a hit, false alarm, correct rejection, or miss. This
allows one to locate it into one of these four regions of the model, but no more
precisely than that.

11
This is completely counter-intuitive for many of us who

are used to dealing with both stimulus and observer-based data from face recog-
nition experiments for the following mixed metaphorical reason. A face can be
said to have a hit and a false alarm rate, but it is impossible to find the face in the
signal or signal + noise distributions because again we are (mentally) in the
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wrong model. The face’s hit and false alarm rate define its stimulus-based sig-
nal detection model, not its position in the observer model.

Second, an alternative method to correlating facial rating measures and d ’ is
often implicit in the reasoning advanced in some ways of discussing facial-rat-
ing data and face recognizability. For example, the standard interpretation of a
correlation between d ’ and typicality is that “distinctive faces are recognized
more accurately than typical faces”. This correlation is based on the computa-
tion of a d ’ for each face (across a large number of observers) and the assess-
ment of each face’s typicality (again across a large number of observers). It is
equally easy to imagine face typicality (e.g. as pre-assessed by observers) as an
independent variable in an experiment with two discrete levels: “typical” and
“unusual”. In this case, the signal detection model for observers, but not for
faces, changes entirely from the model we have been considering, Specifically,
whereas individual face models are the same as those we have described previ-
ously, for the observer model, depending upon one’s theoretical assumptions,
two models are possible. The simplest would consist of a single noise distribu-
tion comprised of novel faces, and two signal + noise distributions: one com-
prised of typical faces and the other comprised of unusual faces.

A second possible observer model emerges by implementing some interest-
ing assumptions about the way a single prior exposure differentially affects
subjective familiarity for typical versus unusual faces (cf. Bartlett et al., 1984;
Mandler, 1980). The assumptions, as stated in Bartlett et al., are as follows: (1)
all novel faces elicit non-zero levels of familiarity, but this familiarity is greater
for typical as opposed to unusual faces; and (2) the increment in familiarity that
results from a single prior exposure is greater for unusual than for typical faces.
Combined, these assumptions indicate that it is theoretically invalid for the typ-
ical and unusual faces to share a noise distribution. It is further worth noting that
under this model, the analysis of the observer data are analogous to those that
have been well-studied in reference to the mirror effect (Glanzer & Adams,
1990), though, to our knowledge, no one has ever published a mirror effect for
face recognition.

The two cases just described are completely valid observer models, but dis-
sociate the stimulus and observer models in an important way. This dissocia-
tion has to do with the assumption of a discrete categorical structure for typical
versus unusual faces. We would argue, however, that these models may be
somewhat less appropriate than the single continuous model, due to the likeli-
hood that faces are distributed in a continuous rather than in a discretely
bimodal fashion with respect to the dimension of face typicality. In any case,
when stimulus and observer models dissociate in this fashion it becomes even
more difficult to reason back and forth between the stimulus and observer
model perspectives.
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Finally, although there is no formal way to put together data from the stimu-
lus and observer models, at least one mixed model metaphor is not only valid,
but worth keeping in mind. In all experiments, we all know that observers actu-
ally do the responding. So, even if one analyses a particular stimulus, one is
actually only measuring something about observers’ response patterns to this
stimulus. In embedding this stimulus into the context of an experimental condi-
tion comprised of like stimuli (e.g. upside-down faces), we have the possibility,
and indeed hope, that all or most observers who participate in this condition
will behave in a similar fashion. For example, in a “difficult” experimental con-
dition, observers may lack confidence in their ability to perform well and may
respond in a conservative or cautious fashion for all stimuli. This will yield
strict criteria for both the individual observer measures and for the individual
face measures in this condition. This is a good thing for the inferential analysis
of the experimental data, which, contrary to the advice of Clark (1973), nearly
always proceeds only on observer measures. On the other hand, as we will
argue later, variations in the “performance” of individual faces, in the context
of representational issues, may be worthy of study in their own right.

We suggested in the introduction that a major difference between observer-
and stimulus-based measures in the face recognition literature concerns the use
to which the measures are put. This leaves us with a somewhat different per-
spective on the issue of stimulus based measures than that evidenced in the
Clark (1973) paper. Specifically, in recent years, the study of the stimulus has
taken on a great deal of importance as a way of trying to understand the percep-
tual constraints imposed on human information processing by the richness of
the environment. What is the information that is available in the human face for
specifying its gender, race, age, and identity? How is this information repre-
sented in the brain? Are faces represented by their two-dimensional image-
based features or by object-centred three-dimensional features?

Different models of the information in faces and of the human representation
of this information make different predictions about which individual faces
should be easy to recognize, easy to classify by gender, etc. Studying the
recognizability and classifiability of individual faces by human observers, in
conjunction with a computational model of the representation of faces, pro-
vides a very much under-explored reserve of constraints on theories of face pro-
cessing. These analyses have been undertaken in recent years and have
provided a number of useful insights into the complexity of the information in
human faces and the ways in which observers make use of this information
under various task demand situations (Hancock et al., 1996, O’Toole et al.,
1994, 1998). Such analyses hold out the possibility of sorting through questions
about the nature of representations of faces and objects that cannot be similarly
tackled by relying only on observer measures. Thus, in spite of the methodolog-
ical pitfalls involved in reporting and interpreting data on individual faces, we
believe that these analyses are well worth the trouble.
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APPENDIX: OBSERVER-BASED SIGNAL
DETECTION MODEL IN A FACE RECOGNITION

EXPERIMENT
The signal detection model in experimental psychology is, by far, applied most commonly to the task of
measuring or describing the behaviour of a single observer. Applied to the description of a human
observer’s performance on a face recognition task, the model is based on the assumption that the
observer can discriminate learned and novel faces based on some abstract subjective dimension. In the
case of face recognition, this dimension is often thought to represent the degree of recollection or
familiarity

12
an observer experiences when viewing each face in the recognition test. This dimension is

symbolized by the x-axis on the sample signal detection model that appears in Figure 1.
For an observer to perform a face recognition task at a level above chance, known faces must, on

average, elicit higher levels of familiarity than novel faces. Thus, novel versus known faces are
represented by the left and right distributions, respectively, in Figure 1. The noise distribution represents
the familiarity values elicited when the observer views a population of faces for the first time (see
distribution on the left of Figure 1). The signal + noise distribution represents the familiarity values
elicited when the observer views a population of faces known to him/her (see distribution on the right of
Figure 1). Thus, each data point in each probability density function represents the degree of familiarity
experienced when the observer views single face.

Under this model, the “performance” of each observer in a face recognition task can be described
completely in terms of a discrimination index, termed d ’, and response bias or criterion, termed C. Both
of these measures are computed directly from the hit and false alarm rate of the observer in the face
recognition task. The hit rate is defined as the proportion of old or learned faces to which the observer
correctly responds “old”. The false alarm rate is defined as the proportion of novel faces to which the
observer incorrectly responds “old”. More formally, the discrimination index is defined as:

¢ = -d z P z PH FA( ) ( ) (1)

where z(PFA) denotes the z-score for the false alarm rate and z(PH) denotes the z-score for the hit rate.
This discrimination index measures the degree of overlap between the two distributions. More precisely,
d’ is simply the distance, in z-score units, between means of the noise and signal + noise distributions
(see Figure 1).

The response bias measure is defined as a different function of the z(PFA) and z(PH)

C z P z PFA H= - +1

2
[ ( ) ( )] (2)

In practical terms, observers respond “old” to faces that elicit familiarity levels higher than the
criterion (i.e. to the right of the criterion, see Figure 1). Negative values of C indicate loose or liberal
criteria, or a bias to respond “old”, whereas positive values of C indicate strict or conservative criteria, or
a bias to respond “new”.

Applied to face recognition by a human observer, this model is intuitive and readily interpretable as
follows. The discrimination index refers to the observer’s ability to discriminate known from
unknown faces and is considered to be a response-bias-free measure of face recognition accuracy. This
discrimination index is thought to reflect the characteristics of the individual observer such as his/her
visual and perceptual abilities, memory capacity, motivation, and experience with the task. The
criterion measure is thought to reflect both the characteristics of the individual observer, and the
characteristics of the experimental situation. The former include inherent aspects of the observer’s
personality (e.g. liberalness/conservativeness of their guessing strategy), and the latter include task
demands. Task demands might include factors such as different reward contingencies for hits versus
false alarms, whereas experimental context might include the proportion of faces that are actually old
versus new in the recognition test.
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NOTES
1
Readers who have followed the very active literature on the mirror effect (Glanzer & Adams, 1990)

and its surrounding controversy (Hintzman, 1994; Hintzman, Caulton, & Curran, 1994), will note a
number of complex and subtle connections with the issues we raise here. The difference in the approach
we have taken here to understanding the issues is dictated in large part by an historical difference
between the face recognition literature and the more general recognition literature. In the former
literature, stimulus properties (e.g. typicality) have been analysed generally as continuous variables that
are measured with stimulus-based analyses, in the broader context of an experiment. Among these
stimulus-based measures, correlations of all sorts have been reported. Our efforts in this paper are
directed at understanding these kinds of covariance measures applied a posteriori to samples of faces,
each described by a signal detection model. In the latter literature, stimulus properties have been treated
most commonly as dichotomous independent variable manipulations (e.g. high versus low-frequency
words). We return to the implications of this issue in the discussion.

2
Care must be taken in interpreting familiarity in this context. No connection is claimed between this

rather abstract and unspecified dimension and more precise definitions offered other papers, e.g. Bartlett
et al. (1994) and Vokey and Read (1992).

3
As noted in Figure 5, this first variation is meaningless because it defines only one face model.

4
We do not display the line for C = 0.5, but it continues the pattern.

5
Note that these levels vary probabilistically, not in precise intervals.

6
In fact, the correlation was a bit more negative as indicated in Figure 5. We chose the approximately

zero correlation as a correlation that has been reported previously in a face recognition study (Hancock
et al., 1996).

7
By probabilistically, we mean that distributions with mean zero and each of the tested , s values were

created and that these distributions were sampled randomly.
8
We carried out this set of simulations also with a standard deviation for the d ’ sampling distribution

set to 0.3 and the standard deviation for the C sampling distribution to .3, and got similarly shaped
functions with somewhat different slopes.

9
We will discuss this observer–face link in the next section as part of mixed metaphors problem.

10
It is perhaps worth a brief reference to the classic paper of Clark (1973) on “language as a fixed-

effect” fallacy, which is relevant by analogy to the present issues. Clark argues convincingly that not
only the observers, but also the stimuli in experiment, vary meaningfully. Clark’s (1973) concern
however, differs from ours in that he was interested in the implications of the nature of stimulus variation
for the validity of the inferential statistics applied to the data. Our concern is in relating descriptive
measures on a single side of the analysis—the stimulus side.

11
It is well worth noting that our limited ability to locate a face in an observer’s signal detection

distribution (i.e. as only a hit, false alarm, miss, or correct rejection) has no implications whatsoever for
locating a face in an observer’s face space. The methods required to compute an observer’s face space
are based on similarity judgements (cf. Johnston, Milne, Williams, & Hosie, 1997) among pairs of faces
and not on recognition data. Thus, the methodological points made in this paper are not by themselves
relevant for evaluating face-space models.

12
Care must be taken in interpreting familiarity in this context. No connection is claimed between this

rather abstract and unspecified dimension and more precise definitions offered other papers, e.g. Bartlett
et al., (1984), Vokey and Read (1992).
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