
December 7, 2003 15:58 WSPC/Trim Size: 9in x 6in for Proceedings ncpw03

SOLVING THE VISUAL EXPERTISE MYSTERY

C. A. JOYCE AND G. W. COTTRELL

University of California, San Diego
Computer Science and Engineering

9500 Gilman Dr.,
La Jolla, CA 92093-0114, USA

E-mail: {gary,cjoyce}@cs.ucsd.edu

Through brain imaging studies and studies of brain-lesioned patients with face or
object recognition deficits, the fusiform face area (FFA) has been identified as a
face-specific processing area. Recent work, however, illustrates that the FFA is
also responsive to a wide variety of non-face objects if levels of discrimination and
expertise are controlled. The mystery is why an expertise area, whose initial do-
main of expertise is presumably faces, would be recruited for these other domains.
Here we show that features tuned for fine-level discrimination within one visually
homogeneous class have high-variance responses across that class. This variability
generalizes to other homogenous classes, providing a foothold for learning.

1. Introduction

There has been a great deal of progress in understanding how complex
objects, in particular, human faces, are processed by the cortex. However,
there is also controversy about the roles of various cortical areas, especially
the Fusiform Face Area (FFA).1,2,3 Is the FFA a “module,” specific to
the domain of faces, or is it instead specific to the process of fine level
discrimination? Damage to the FFA leads to prosopagnosia4 (the inability
to recognize faces), but it is unclear how face-specific this processing deficit
is. Further, some researchers have shown, using fMRI, that when the level
of expertise is controlled, the FFA is activated in car, bird, and Greeble (a
class of fictional objects, see Figure 1, right column) experts when they view
their respective categories of expertise.5,6,7 This suggests that the FFA is
a fine level discrimination area. The issue we address in this paper is why
an area that presumably starts life as a face processing area (this being the
first domain of expertise) is recruited for these other types of stimuli?

In addressing this question, the definition of “expertise” is critical. We
adopt Gauthier and Tarr’s operational definition of the term: someone is
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an expert if they are as fast to identify members of a category as individuals
(subordinate level) as they are to verify their category membership (basic
level). For example, a bird expert would be as fast/accurate at identifying
a picture of a bird as an “Indigo Bunting” as at identifying it as a “bird.”
When training a subject in a novel category, the convergence in reaction
times in these two tasks is called the “entry level shift.”

This study replicates and expands on previous work8 in which we have
shown that neurocomputational models trained to make fine level discrim-
inations learn individuation of Greebles faster than models that have not
been trained to become experts in any domain. This suggests that, if there
is a competition between cortical areas to solve tasks, as has been suggested
previously,9,10 the FFA would be primed to win the competition for a novel
expertise task. Here, we show why this happens.

2. Experimental Methods

To investigate this issue, neural networks were trained on Greeble identifi-
cation following various pretraining regimens.

The stimulus set consisted of 300 64x64 8-bit grayscale images of human
faces, books, cans, cups, and Greebles (60 images per class, 5 images of
12 individuals, see Figure 1). The five images of each indivudual within
each category were created by randomly moving the item 1 pixel in the
vertical/horizontal plane, and rotating up to +/-3 degrees in the image
plane.

Images were preprocessed by applying Gabor wavelet filters as a simple
model of complex cell responses in visual cortex, extracting the magni-
tudes (which makes them nonlinear and somewhat translation invariant),
normalizing via z-scoring, and reducing dimensionality to 40 via principal
component analysis (PCA)11. Greeble images were not used to generate
the principal components in order to model subjects’ lack of experience
with this category.

A standard feed-forward neural network architecture (40 input units, 60
standard logistic-sigmoid hidden units, variable numbers of linear output
units) was used. Networks were trained using a learning rate of 0.01 and
momentum of .5.

During pretraining, all networks (basic and expert) learned to perform
basic level categorization on all 4 non-Greeble categories. Expert networks
were additionally taught to perform subordinate level categorization of one
of the four categories. Basic level networks had 4 output nodes correspond-
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Figure 1. Example stimuli
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Figure 2. The expertise model. The feature level is where task-specific features are
developed and variance is measured in Figure 7.

ing to book, can, cup, and face. Expert networks had 14 outputs: 4 for the
basic categories, and 1 for each of the 10 individuals (e.g. can1, can2, ...
can10, for a can expert). In phase two, the pretrained networks learned sub-
ordinate level Greeble categorization along with their original task. Eleven
output nodes were added: 1 for the basic level Greeble categorization, and
1 for each Greeble individual. The network then performed a 15-way (ba-
sic network) or 25-way (expert network) classification task. All networks
were trained on 30 images (3 images of 10 individuals) per class during pre-
training and 30 more images of Greebles in phase 2. Thus any differences
in representation are due to the task, not experience with exemplars. To
test for generalization, 29 images were used (one new image of each of the
expert category individuals (10 + 10), plus 3 images of novel basic level
exemplars per category).

Ten networks, each with different random initial weights, were trained
on each of the 5 pretraining tasks (basic, or face/can/cup/book expert) for
5120 epochs. Image sets were randomized. Intermediate weights of each
network were stored every 5 ∗ 2n epochs, for n=1:10. Phase 2 training was
performed at each of these points (“copying” the network at that point) to
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Figure 3. Number of epochs to learn the new task based on number of pretraining
epochs. Error bars denote +/-1 standard deviation.

observe the time course of expertise effects. Training concluded when the
RMSE of the Greebles fell below .05. Thus, there were a total of 550 phase
2 networks.

3. Results

All networks reached an RMSE of less than .0012 by the completion of
5120 pretraining epochs, with basic networks learning faster than expert
networks.

Figure 3 shows the average number of epochs required for networks of
each type to learn the subordinate Greeble task at three levels of pretraining
epochs. The basic level networks took by far the longest to learn the Greeble
task, obtaining no benefit from more pretraining cycles. All of the expert
networks learned the Greeble task significantly faster if they were given
more pretraining on their initial expert task, with faces benefitting the
most from additional pretraining (data not shown).

3.1. Entry Level Shift

Training paradigms with human subjects use the reaction time entry level
shift to determine a subject’s expert status. Example data from a human
Greeble expert is shown in Figure 4a. In networks, reaction time is modelled
as the amount of uncertainty in the output of the network. This uncertainty
is measured by taking 1 minus the logistic of the output activation on
the node corresponding to the correct category or individual classification
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for each output pattern. Figure 4b shows the Greeble entry level shift
for a network pretrained as a book expert. Note that response time to
subordinate level classification of books is as fast as basic level classification
prior to Greeble training.

 1  2  3  4  5  6  7  8  9 10
0

1000

2000

3000

4000

5000

6000

7000

8000

Training Session

R
T

Subordinate
Basic

10       80 160 320    710
0

0.2

0.4

0.6

0.8

1

RT

Epochs

greeble basic
greeble subordinate

(a) (b)

Figure 4. Entry level shift for the Greeble task. (a) Human data from one of our
experts. (b) Network data.

3.2. Network Plasticity

In previous work8, we hypothesized that the hidden units in the expert
networks would tend to stay in the linear range, in order to better perform
the fine level discrimination task. We suggested that this would lead to
faster learning of the new task, since the higher slope of the hidden units
would result in faster weight changes. The slope of the hidden units has
been called a measure of plasticity in previous work.12

Plasticity to a stimulus category is measured as the average value of the
slope of the activation function (here the logistic sigmoid) across all hidden
units for all input patterns from that category. Unexpectedly, results indi-
cated that lower plasticity networks learned the new task faster. Figure 5
shows the plasticity of the pretrained networks in response to the stimuli
used during pretraining (left), and to the new set of untrained Greeble pat-
terns (right). For all patterns (pretrained and novel), non-expert networks
retained their plasticity better across pretraining epochs than experts. Fur-
thermore, plasticity to the (untrained) Greebles decreased over training on
the expert task. This paradox may be resolved in part if the plasticity mea-
sure is viewed as a measure of mismatch between the stimuli and the weight
vectors – the closer the weight vectors line up with the stimuli (either in
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Figure 5. Average plasticity of the hidden units over training to learned categories
(left), and novel Greebles (right).

the same or opposite direction), the more the hidden units will be activated
or inactivated. Thus, here the weight vectors are simply becoming more
aligned with the stimuli, and, perhaps surprisingly, also more aligned with
the Greeble images. This is not the whole story, however, as we will see in
the next section.

3.3. Hidden Unit Activation

Since expert network representations become less plastic with training, how
does the network actually discriminate one individual from another within
and across categories?

The activation of the hidden units in response to each category of stim-
ulus provides some explanation. Figure 6 shows the activation levels of 3
representative hidden units from a basic level (a,b) and a face expert (c,d)
network in response to individual training patterns both prior to (column
1) and after (column 2) Greeble training.

Prior to Greeble training (column 1), the hidden units in subordinate
level networks (Figure 6c) show more variability of response across input
patterns than do basic level networks (Figure 6a). After Greeble training,
both basic and expert level networks show more variability in hidden unit
activation across input patterns (Figure 6b,d).

These results suggest that correct discrimination requires a represen-
tation that is distributed across multiple hidden units which modulate in
different ways in response to different input patterns from the same class.
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Figure 6. Single unit recordings from networks for face, book, can, cup, and gree-
ble patterns, respectively. a) basic network, pre-Greeble training; b) basic network,
post-Greeble training; c) face expert, pre-Greeble training; d) face expert, post-Greeble
training.
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Figure 7. A regression of Greeble pre-training variance versus training time.

3.4. Relationship of Variability to Learning

There appears to be a provocative relationship between learning and hidden
unit variability: networks that have learned a subordinate level task and
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exhibit hidden unit variability, also learn a secondary subordinate level task
faster than basic level networks which exhibit little hidden unit variability.
This suggests two things: 1) variability should increase with experience,
particularly when making a subordinate level discrimination, and 2) the
amount of variance a network exhibits in response to a category prior to
training on that category should be predictive of the speed with which that
category is learned. The first hypothesis is addressed by examining how
variability changed over the course of pretraining: 1) variability increases
for all categories in all networks as the number of training epochs increases;
2) increases in variability are much larger for expert networks than basic
networks, and are largest for the category being learned at the subordinate
level; 3) expert networks show more variability to all categories than basic
networks, even to categories being learned at the basic level; 4) even vari-
ability to Greebles, which the network has never been trained on in any
manner, increases with pretraining epochs, although not as much as the
categories being trained (at both subordinate and basic levels). These re-
sults support the conclusion that pretraining causes networks, particularly
those making a subordinate level discrimination, to learn features which
generalize well to new categories.

Figure 7 illustrates the second hypothesis: that amount of variability
to Greebles, prior to training on them (x-axis), should be predictive of how
fast the network can learn the Greeble task (y-axis). There is a strong
negative linear correlation between these two variables for expert networks
such that those exhibiting the lowest variance also take the longest to learn
the Greeble task (r2 = −.53, p < .001). For basic networks, there is no
significant correlation between variance and learning time (r2 = −.21, p =
.557). Those expert networks exhibiting the highest variance and lowest
Greeble learning time, are the networks that initially learned faces, the
task that was the most difficult to learn in pretraining. This suggests a
relationship between the difficulty of the pretraining task, and the ease
with which subsequent subordinate discriminations can be learned.

4. Conclusions

The results of these simulations are indicative of a system in which expertise
results from the flexible use of fine-tuned feature representations. Further,
the types of features learned through subordinate level discrimination of
visually different categories seem to generalize well to new categories. Fi-
nally, learning difficult perceptual discriminations enables faster learning
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of new discriminations. These results suggest that the FFA fine–tunes its
sensitivity to small differences in homogeneous stimuli when given a novel,
fine–level discrimination task.

It might be considered counter-intuitive that an expert network with low
plasticity at the hidden layer should yield more variable responses across
hidden units. The measures themselves explain how this can occur. Maxi-
mum plasticity occurs when there is a large mismatch between inputs and
weights (i.e., they are orthogonal). As the network becomes more expert,
the inputs and weights become more similar/matched (i.e., it loses plastic-
ity). Basically, the weights become more tuned to the specific input vectors
and, for expert networks, more responsive to the small differences between
them. Thus, the resulting hidden unit activations become more variable
because they correspond more closely to the fine-level differences between
the input patterns (for the expert networks).

A critical question, then, is what exactly are the features the FFA uses?
More research is required to address this question, but clearly these features
must be broad enough to encompass vastly visually different stimuli. In
further work we will investigate the possibility that these features result
from combinations of lower level visual sensitivities of the cells that feed
into FFA - for example, cells which are sensitive to low spatial frequencies.
Thus the features coded in this area could be reflections of early, lower-level
visual processing biases.

Acknowledgments

This work was supported by the McDonnell Foundation (Perceptual Ex-
pertise Network, 15573-S6) and NIMH MH57075 grant to GWC.

References

1. N. Kanwisher, J. McDermott, and M. M. Chun. The fusiform face area:
A module in human extrastriate cortex specialized for face perception.
J Neurosci, 17:4302–4311, 1997.

2. N. Kanwisher. Domain specificity in face perception. Nat Neurosci, 3
(8):759–763, August 2000.

3. M. J. Tarr and I. Gauthier. Ffa: A flexible fusiform area for
subordinate-level visual processing automatized by expertise. Nat Neu-
rosci, 3(8):764–769, August 2000.

4. E. De Renzi, D. Perani, G.A. Carlesimo, M.C. Silveri, and F. Fazio.
Prosopagnosia can be associated with damage confined to the right



December 7, 2003 15:58 WSPC/Trim Size: 9in x 6in for Proceedings ncpw03

10

hemisphere — An MRI and PET study and a review of the literature.
Psychologia, 32(8):893–902, 1994.

5. I. Gauthier and M.J. Tarr. Becoming a “greeble” expert: Exploring
mechanisms for face recognition. Vision Res, 37(12):1673–1682, 1997.

6. I. Gauthier, M. J. Tarr, A. W. Anderson, P. Skudlarski, and J. C. Gore.
Activation of the middle fusiform “face area” increases with expertise
in recognizing novel objects. Nat Neurosci, 2(6):568–573, June 1999.

7. I. Gauthier, P. Skudlarski, J. C. Gore, and A. W. Anderson. Expertise
for cars and birds recruits brain areas involved in face recognition. Nat
Neurosci, 3(2):191–197, 2000.

8. Maki Sugimoto and Garrison W. Cottrell. Visual expertise is a general
skill. In Proceedings of the 23rd Annual Conference of the Cognitive
Science Society, Mahwah, New Jersey, 2001. Lawrence Erlbaum Asso-
ciates.

9. G.M. Edelman. Neural Darwinism: The theory of neuronal group se-
lection. Basic Books, Inc., New York, NY, 1987.

10. Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan, and Geoffrey E.
Hinton. Adaptive mixtures of local experts. Neural Comput, 3:79–87,
1991.

11. M. N. Dailey and G. W. Cottrell. Organization of face and object
recognition in modular neural network models. Neural Netw, 12(7–8):
1053–1074, 1999.

12. A.W. Ellis and M.A. Lambon Ralph. Age of acquisition effects in adult
lexical processing reflect loss of plasticity in maturing systems: Insights
from connectionist networks. J Exp Psychol Learn Mem Cogn, 26(5):
1103–1123, 2000.


