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ABSTRACT—Examining the receptive fields of brain signals

can elucidate how information impinging on the former

modulates the latter. We applied this time-honored ap-

proach in early vision to the higher-level brain processes

underlying face categorizations. Electroencephalograms

in response to face-information samples were recorded

while observers resolved two different categorizations

(gender, expressive or not). Using a method with low bias

and low variance, we compared, in a common space of

information states, the information determining behavior

(accuracy and reaction time) with the information that

modulates emergent brain signals associated with early

face encoding and later category decision. Our results

provide a time line for face processing in which selective

attention to diagnostic information for categorizing stim-

uli (the eyes and their second-order relationships in

gender categorization; the mouth in expressive-or-not

categorization) correlates with late electrophysiological

(P300) activity, whereas early face-sensitive occipito-

temporal (N170) activity is mainly driven by the contra-

lateral eye, irrespective of the categorization task.

One of the most pressing issues in relating brain function to

perception and cognition concerns the functional interpretation

of brain responses to complex visual stimuli. Although it is

obvious that visual stimuli elicit brain signals, it is a challenge

to narrow down the relevant visual features that modulate the

signal, and to relate these to the behavior of the observer. For

example, single-cell studies concerned with the mechanisms of

visual categorization have established that infero-temporal

neurons respond specifically to the sight of complex objects

such as faces and hands (Desimone, Albright, Gross, & Bruce,

1984; Gross, Rocha-Miranda, & Bender, 1972; Perrett, Rolls, &

Cann, 1982). However, further investigations have revealed that

the effective stimulus is represented in an abstract-feature

space (Desimone et al., 1984; K. Tanaka, Saito, Fukada, &

Moriya, 1991) or parameter space (Op de Beeck, Wagemans,

& Vogels, 2001; Sigala & Logothetis, 2002; see also Pasupathy

& Connor, 2002, for V4 neurons) of much lower dimensionality.

In a related vein, electroencephalogram (EEG), magnetoen-

cephalogram (MEG), and neuroimaging studies have estab-

lished sensitivity of brain signals to faces (e.g., the N170 in

EEG—Bentin, Allison, Puce, Perez, & McCarthy, 1996; Carmel

& Bentin, 2002), and neuroimaging has shown that faces elicit

activity in the middle fusiform gyrus (Gauthier, Tarr, et al.,

2000; Kanwisher, McDermott, & Chun, 1997), but further

studies have revealed that similar brain responses are elicited

when people categorize objects in other areas of expertise

(Gauthier, Skudlarski, Gore, & Anderson, 2000) and when they

categorize novel objects (Gauthier, Tarr, Anderson, Skudlarski,

& Gore, 1999), leaving unresolved the question of the specific

features that determine the identified brain activity.

The functional interpretation of a brain signal represents the

solution of a multidimensional credit-assignment problem

(Barlow, 1959): What stimulus features determine the ampli-

tude of the brain signal? To resolve this question, a suitable

method must allow for the flexible testing of many sorts of

features (have low bias) while minimizing spurious features

(keep low variance), in a reasonable amount of trials (Geman,

Bienenstock, & Doursat, 1992; Stone, 1982). Because of this

dilemma between bias and variance (Geman et al., 1992), it is

questionable whether a faithful mapping between stimulus

features and brain signals can be computed in the limited

number of trials that is typical of categorization experiments

(Edelman & Intrator, 1997).

In the study we report here, we established this mapping

between scalp EEG activity and stimulus features in the context

of the categorization of realistic faces (gender, expressive or

not). Faces are a natural stimulus category with several ad-

vantages over others: They have a privileged biological signif-

icance to the normal functioning of the human species (Farah,

1996; Nachson, 1995), levels of expertise in processing

faces are similar across observers (Gauthier, Skudlarski, et al.,
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2000), and they afford multiple categorizations and are fairly

homogeneous as a class. We searched the EEG for signals

modulated by facial information, using a 4-ms recording

window from stimulus onset and focusing on electrode sites

that were known from prior studies to be sensitive to the

encoding of facial information relatively early (low occipito-

temporal P9 and P10; Bentin et al., 1996; Carmel & Bentin,

2002; Rossion & Gauthier, 2002) and to decision making later

on (centro-parietal Pz; Donchin & Coles, 1998; Verleger, 1997,

1998), and that displayed the largest amplitude of the compo-

nents of interest.

EXPERIMENT

In this experiment, 2 observers performed 4,000 trials of each of

two categorization tasks (gender, expressiveness). On each trial,

observers saw information sampled from a randomly chosen

face picture using the Bubbles technique (Gosselin & Schyns,

2001; Schyns, Bonnar, & Gosselin, 2002). Specifically, 14

randomly located two-dimensional Gaussian apertures revealed

facial information—the rest was hidden from view. EEG activity

of the observers while they performed these tasks was simul-

taneously recorded with a 32-electrode cap. The data are those

gathered for a study reported elsewhere (Schyns, Jentzsch,

Johnson, Schweinberger, & Gosselin, 2003); the analysis

methods and results are all new.

This application of Bubbles keeps bias low because facial

information is sampled with 14 (randomly distributed) circu-

larly symmetric Gaussian apertures, approximating a uniform

sampling of all face regions. We also kept variance low because

we correlated the set of 4,000 information samples with their

corresponding EEG amplitudes independently for each time of

measurement. Hence, whenever facial information modulated

EEG amplitude, an association between a brain signal and its

determinant features emerged (see Fig. 1). Consequently, our

approach is a low-bias and low-variance method for determining

what constitutes a relevant brain signal in the context of our

categorization tasks: a modulation of brain activity that is de-

termined by facial information.

METHOD

Participants

Participants were 2 paid naive observers (B.B. and M.L.) from

Glasgow University, United Kingdom.

Stimuli

Face stimuli were computed from 256 gray-scale pictures of 10

actors (5 males, 5 females), each displaying two expressions

(neutral, happy). All photographs were taken under standard-

ized conditions of illumination. Hairstyle was normalized across

faces to eliminate information from this feature. Stimuli were

presented on a light gray background at the center of a computer

monitor. A fixed chin rest maintained a constant 1-m viewing

distance (visual angle of 4.61 � 4.61).

Procedure

The experiment was programmed with the Psychophysics

Toolbox for Matlab (Brainard, 1997; Pelli, 1997). Each trial

started with one 500-ms fixation cross (0.41 of visual angle),

immediately followed by a randomly selected face picture

whose information was revealed through 14 two-dimensional

Gaussian apertures (s5 0.221 of visual angle) randomly allo-

cated with the constraint that each aperture remained within the

area of the face. Previous experiments (Gosselin & Schyns,

2001) revealed that 14 apertures are required to reach a min-

imum of 75% correct in gender and expressive-or-not catego-

rizations.1 The sparse face remained on the screen for 1,500 ms,

and observers were instructed to respond as quickly as possible

without making mistakes. Short breaks were allowed every 100

trials.

In one session of 4,000 trials (gender task), the observers

indicated the gender of each sparse face by pressing the ap-

propriate key of a two-key response box. In another 4,000-trial

session (expressiveness task), they indicated whether each

stimulus was smiling or not. Order of task was counterbalanced

across observers (B.B. vs. M.L.). After rejection of trials with

artifacts, the following numbers of trials remained: for B.B.,

3,624 expressiveness trials and 3,577 gender trials; for M.L.,

3,913 expressiveness trials and 3,798 gender trials.

EEG activity was continuously recorded with sintered

Ag/AgCl electrodes mounted in an electrode cap (Easy-Capt)

at the scalp positions Fz, Cz, Pz, Iz, FP1, FP2, F3, F4, C3, C4,

P3, P4, O1, O2, F7, F8, T7, T8, P7, P8, F9, F10, FT9, FT10, P9,

P10, PO9, PO10, F90, F100, and TP9 (Pivik et al., 1993). The

right mastoid (TP10) served as initial common reference, and

the AFz electrode as ground. The F90 and F100 electrodes were

positioned 2 cm anterior to F9 and F10 at the outer canthi of the

left and right eyes. Vertical electro-oculogram (vEOG) was bi-

polarly registered above and below the right eye. EEG and EOG

recordings were sampled at 250 Hz. Electrode impedance was

kept below 10 kO. All signals were recorded with a band-pass

filter (0.05–40 Hz, �6-dB attenuation, 12 dB/octave). Analysis

epochs were generated off-line, starting 200 ms prior to stim-

ulus onset and lasting for a total duration of 800 ms. Epochs

were aligned to a 200-ms prestimulus baseline. To sort trials, we

ran artifact-detection software and visually inspected each trial

for ocular and nonocular artifacts. Artifact-free event-related

1Our method has low bias because it approximates a uniform sampling of the
face using several circularly symmetric (i.e., not orientation biased) Gaussian
apertures that reveal information at full contrast energy (as opposed to low-
contrast additive Gaussian noise). The method does not prejudge where the
information is in the face, nor whether or not the responsive neuron assemblies
are linear in their response. However, the relationship between the sigma of the
bubble, the number of bubbles, and the scale of the features must be carefully
considered. In this study, the bubble number and sigma size of Gosselin and
Schyns (2001) ensured sufficient sampling density to reveal the relevant facial
information.
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Fig. 1. Illustration of the method used in this study. Results are shown for electrode Pz between 310 and 394 ms
following stimulus onset and for electrodes P10 and P9 between 154 and 238 ms following stimulus onset. (We analyzed
recordings from 0 through 400 ms following stimulus onset, but present here a partial analysis covering the most
relevant portion of this time window.) Every 12 ms, the recorded distribution of brain signals was split into bins of
amplitude intervals (of 0.5 s each, with the interval from �0.25 s to 0.25 s at the center of the distribution). The
samples of face information were assigned to these bins according to the amplitude they elicited. In each central bin is
the Z-scored discrimination image that represents the subtraction of the information bins above and below the mean;
significant (p < .05, two-tailed) differences are indicated in green (positive) and red (negative). Results for the gender
(GENDER) task are in the left half of the figure, and results for the expressiveness (EXNEX) task are in the right half of
the figure. The upper panels reveal the emergence of the P300 brain signal, together with the features associated with
it. For comparison, the blue areas in the illustrations labeled ‘‘behavior’’ show the features that determined cate-
gorization accuracy and reaction time (gender task on the left, expressiveness task on the right). The lower panels
reveal the emergence of the N170 brain signal, together with the features associated with it.
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potentials were low-pass filtered at 10 Hz (zero phase shift) and

rereferenced to average reference, excluding the vEOG channel.

RESULTS AND DISCUSSION

Response Analysis

To determine the information responsible for categorization

behavior, we used Bubbles. First, we analyzed the facial in-

formation associated with accuracy (gender task: 88% correct

for M.L. and 81% correct for B.B.; expressiveness task: 87%

correct for M.L. and 80% correct for B.B.). On each trial, the 14

randomly located Gaussian apertures made up a two-dimen-

sional mask that revealed a sparse face. Observers would tend to

be correct if the sampled information revealed the features that

were diagnostic for the categorization task to be performed.

Across trials, we computed the probability that each aperture

led to a correct response, by subtracting the frequency of in-

correct responses when that aperture appeared from the fre-

quency of correct responses when that aperture appeared. We

transformed the probabilities into Z scores. These analyses of

accuracy revealed that both observers used the eyes diagnos-

tically in the gender task but used the mouth diagnostically in

the expressiveness task. The accuracy results in the top panel of

Figure 1 show the diagnostic areas (p < .025, one-tailed) for

B.B.; M.L.’s results were qualitatively similar and are therefore

not illustrated.

Reaction Time Analysis

To determine the features discriminating between fast and slow

reaction times, we fitted a Gaussian curve to the distribution of

reaction times for each task. We segmented this distribution into

13 amplitude bins (organized symmetrically around the mean in

increments of 0.5 s) and for each of the 4,000 trials positioned

the bubble mask in the appropriate reaction time bin. We de-

rived a discrimination image by summing the masks leading to

reaction times greater than the mean, summing the masks

leading to reaction times lower than the mean (with the masks of

each bin weighted by its sigma; bins more than 2.75 SD from the

mean were treated as outliers and removed from the analysis),

and computing the difference. The resulting probabilities

were transformed into Z scores. The statistically significant

(p < .025, one-tailed) regions (for B.B.) are marked in blue in

the top panel of Figure 1. Reaction time analyses of trials with

correct responses confirmed that the eyes and the mouth dis-

criminated between fast and slow responses in the gender task

(overall performance—M.L.: m5 790 ms, s5 210 ms; B.B.:

m5 846 ms, s5 168 ms) and the expressiveness task (overall

performance—M.L.: m5 730 ms, s5 185 ms; B.B.: m5 760

ms, s5 152 ms), respectively.

From the behavioral analyses (accuracy and reaction time),

we conclude that selective attention to the eyes and to the mouth

modulates the accuracy and speed of categorization decisions in

the gender and expressiveness tasks, respectively.

EEG Analysis

To determine the information driving the EEG signals, we ex-

tended Bubbles to single-trial raw electrode amplitudes. On

each trial, we measured independently for each electrode how

the brain responded to the 14 randomly located samples of fa-

cial information (the bubble mask), sampling the EEG signal

from 200 ms before stimulus onset until 600 ms after stimulus

onset, using an averaged 12-ms time window. In each window,

we modeled how the 4,000 trials of sampled face information

modulated the recorded EEG amplitudes. To this end, for cor-

rect trials, we first fitted a Gaussian curve to the recorded dis-

tribution of amplitudes, segmented the modeled distribution

into 13 amplitude bins (organized symmetrically by increments

of 0.5 s around a center bin ranging from �0.25 to 0.25 s), and

assigned the bubble mask for each of the 4,000 trials to its

appropriate amplitude bin. This model depicts the mapping

between samples of facial information and EEG amplitude re-

sponses, at a given time of measurement (see Fig. 1).

A simple computation isolated the face regions that drove low

versus high EEG amplitudes: We subtracted the sum of the

information in the bins below the central one from the sum of the

information in the bins above the central one. The resulting

discrimination image was Z-transformed. Figure 1 shows regions

with significant (p < .05, two-tailed) negative (red) and posi-

tive (green) amplitude differences. The operations of modeling

the amplitude distribution, assigning the bubble masks to am-

plitude bins, and determining the facial information eliciting

negative and positive amplitudes were repeated for each

measurement time and each electrode, resulting in a dynamic

mapping of the use of facial information in the brain (see Fig. 1).

P300

Analyses of EEG activity over the Pz electrode, known to be

sensitive to category decisions, revealed the emergence of a

brain signal referred to as the P300 (Donchin & Coles, 1998;

Verleger, 1997, 1998). Figure 1 represents this response with an

increase in mean EEG amplitude over the 310- to 394-ms time

window. The emergence of the signal is associated with the

features modulating its amplitude (Fig. 1 represents these fea-

tures in green). Significant positive differences between the

EEG amplitudes above and below the mean were associated

with eye information in the gender task and mouth information

in the expressiveness task. Even casual inspection of Figure 1

reveals that for B.B., the features associated with the P300 were

strongly correlated (Pearson) with the features diagnostic for

categorization accuracy and reaction time (.57 and .52 in the

gender task, .64 and .58 in the expressiveness task). Similar

results were obtained for the Cz and Fz electrodes, and for M.L.

756 Volume 15—Number 11

Receptive Fields for Flexible Face Categorizations



Functional interpretation of the P300 remains controversial

(Donchin & Coles, 1998; Verleger, 1998), but it has been pro-

posed that the superior regions determining P300 activity are

involved in ‘‘what’’ categorization decisions (Goodale & Milner,

1992; Verleger, 1998). The current study shows that selective

attention to diagnostic features (Schyns, 1998) does indeed

modulate this brain signal. These modulations reflect a process

that is active, top-down, strategic, and task-dependent, because

the stimuli were identical in the two tasks, normalizing bottom-

up, stimulus-driven effects.

N170

Analyses of EEG activity over the right-hemisphere occipito-

temporal site (P10) known to be sensitive to stimulus encoding

revealed the emergence of a signal referred to as the N170

(Bentin et al., 1996). Figure 1 represents this response with an

increase in mean EEG amplitude (negative polarity) over the

154- to 202-ms time interval following stimulus onset. The

facial features modulating this signal are marked in red in the

discrimination images. Significant negative differences be-

tween the EEG amplitudes above and below the mean were

associated with eye information in both the gender task and the

expressiveness task. The fact that the left eye modulated the

N170 at this electrode is clearly visible in Figure 1: From 154

ms onward, the amplitude bins lower than the mean EEG reveal

the presence of the eye, and the corresponding amplitude bins

above the mean reveal the absence of the eye. A symmetric

response to the right eye was observed at the left-hemisphere P9

electrode (see Fig. 1). Note that the facial features associated

with the N170 were clearly correlated with the features asso-

ciated with categorization accuracy (.6), speed (.45), and the

P300 (.44) in the gender task only. The correlations with the

features identified in the expressiveness task were, respectively,

�.06, �.04, and �.05. These results were replicated over the

P7, P8, PO9, and PO10 electrodes, and the inverse polarity was

seen at Cz.

Extrastriate occipito-temporal cortex regions in inferior

occipito-temporal gyrus, the adjacent temporal sulcus, or both

probably generate the N170 (Bentin et al., 1996; Schweinber-

ger, Pickering, Jentzsch, Burton, & Kaufmann, 2002). The

functional interpretations of this brain signal have included

face detection (Bentin et al., 1996), emotion categorization (De

Hann, Nelson, Gunnar, & Tout, 1998; Eimer & Holmes, 2002),

eye detection (Bentin et al., 1996; but see Cauquil, Edmonds, &

Taylor, 2000, and Eimer, 1998, for opposite results), encoding of

facial structure (De Hann et al., 1998; Rossion et al., 1999;

Sagiv & Bentin, 2001), and more generally the diagnostic en-

coding of features associated with expertise for faces (Rossion,

Gauthier, Goffaux, Tarr, & Crommelinck, 2002; Rossion et al.,

2000) and other categories (J.W. Tanaka & Curran, 2001). Here

we have shown that the contralateral eye, not the information

diagnostic in the task, modulated the N170 in both the gender

and the expressiveness tasks. In contrast to the P300, the N170

does not appear to reflect a strategic task-dependent selective

attention process; rather, it is an automatic, task-independent

response to the eyes of a face (see also Schyns et al., 2003).

The response to the contralateral eye also suggests that the

neurons contributing to the N170 might not yet have contra-

lateral input. Future experiments that manipulate information

across the visual hemifields will further probe the implications

of this result for theories of recognition.

Models of EEG Modulations Associated With Single Features

and Configurations of Features (Second-Order Relationships)

The forward analysis we have discussed thus far modeled the

response of each electrode to facial features. To derive a more

precise account of EEG, we reversed the analysis and used the

features as an orthogonal basis for decomposing the global ac-

tivity into its feature-specific EEG components. Small (but

significant) amplitude modulations (e.g., those corresponding to

the facial information associated with the most extreme am-

plitude bins) could have been lost in the averaging of the for-

ward analysis. The reverse analysis, by isolating the

modulations associated with specific features, might be more

sensitive to the finer EEG modulations. The forward, low-bias

and the reverse, feature-specific analyses are complementary

passes on the EEG data to extract informational determinants

of the brain signals.

We were particularly interested in using the reverse analyses

to ascertain the relative contributions of features in isolation

(e.g., left eye, right eye, mouth) and features in conjunction (left

eye with right eye, etc.). That is, we wanted to determine the

relative contributions of first-order (i.e., single feature) and

second-order (i.e., configurations of features) effects on the

emergent brain signals.

Our feature masks for decomposing the EEG signal were the

left eye, the right eye, and the mouth. The remainder of the face

area was covered with an additional seven masks. On each of

the 4,000 trials of sampled face information for each task, we

computed the proportion of the area of each mask sampled by

the bubbles. A proportion greater than .15 indicated that the

mask region under consideration was sampled on that trial, and

we added the corresponding EEG signal into the bin associated

with that mask. After completing this analysis for all 4,000

trials, we averaged the content of each feature-specific bin to

derive the average EEG signal (see Fig. 2). An average EEG

signal for the remainder of the face area was computed from the

average signals of the remaining masks (see Fig. 2).

To test for possible effects of configurations of features, we

used the masks to single out trials in which information was

simultaneously presented over a conjunction of features (e.g., a

bubble in the left eye and another bubble in the right eye) and

derived the average EEG signature for this conjunction. We

tested the conjunctions of left eye and right eye, left eye and

mouth, right eye and mouth, left eye and nose, and right eye and

nose, whose masks corresponded to approximately equal face
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areas. It is important to emphasize that the conjunctive analysis

explicitly excluded the trials on which only one of the features

was presented (e.g., a bubble on the left eye, but none in the

right eye). Hence, there was no overlap in the EEG trials making

up the response curves for individual features and conjunctions

of features.

In the gender task, parietal P300 activity revealed a marked

amplitude advantage for eye information, and in particular, the

Fig. 2. Decomposition of the global electroencephalographic (EEG) activity into feature-specific EEG
components. The feature masks (left eye, right eye, and mouth) generated from the classification images of
the initial analysis were used as a basis for this reverse analysis. For each feature mask, we computed the
proportion of its area that was sampled on each of the 4,000 trials for each task; we then averaged the signals
for trials on whichmore than .15 of the area was sampled. Average EEG amplitude over time for the sampling
of features independently, for configurations of features, and for the remaining areas (‘‘other’’) is indicated
for the P10 and Pz electrodes in the gender (GENDER) task (top panel) and the expressiveness (EXNEX)
task (bottom panel). Feature masks corresponding to the eyes (red) and the mouth (green) are displayed
close to the relevant curves.
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conjunction of both eyes, over the mouth and other features. In

the expressiveness task, this trend was reversed, with the mouth

leading to higher activation than the eyes (see Fig. 2). If tem-

poral P300 amplitudes can be used as an index of mental

chronometry (Verleger, 1997), one would expect that higher

amplitudes in response to the eyes than to the mouth in the

gender task would elicit faster categorization responses to the

mouth than to the eyes (and similarly, that higher amplitudes in

response to the mouth than to the eyes in the expressiveness

task would elicit faster categorization responses to the eyes than

to the mouth). We found faster behavioral reaction times to the

eyes than to the mouth in the gender task and faster reaction

times to the mouth than to the eyes in the expressiveness task—

t(2919) 5 2.91, p < .005, d 5 0.12, vs. t(2742) 5 4.55, p <

.001, d 5 0.18—confirming the correlation between higher tem-

poral amplitudes to diagnostic features and categorization speed.

Turning to the occipito-temporal N170 activation, we found

that the conjunction of the two eyes elicited a signal as strong as

the one elicited by the left eye in isolation (on the P10 right-

hemisphere electrode; on the P9 left-hemisphere electrode, the

conjunction of the two eyes elicited a signal as strong as the one

elicited by the right eye in isolation), and both signals were

much stronger than that associated with any other facial feature.

However, the average N170 amplitude responses arising from

other conjunctions of features including either eye were similar

in magnitude to responses to both eyes and the eye in isolation.

Hence, this detailed analysis revealed a sensitivity of the N170

to the contralateral isolated eye, but no evidence that configu-

rations of facial features modulate N170 amplitude.

Time Course of Face Processing

Our analysis of face processing provides a time line of the in-

formation that modulates behavior (accuracy and reaction time)

in comparison with the information that modulates brain events

(the N170 and the P300), offering a fine time scale to analyze

face recognition processes. Specifically, the first EEG event

sensitive to facial information, the N170, present after about

200 ms of processing, was not sensitive to task in this experi-

ment, but was unilaterally sensitive to the eyes. Its timing was

close to that of the first saccade, which in a face lands on the

eyes (Pearson, Henderson, Schyns, & Gosselin, 2003). The

P300, present after about 300 ms of processing, was sensitive to

task-relevant information (the eyes in the gender task, the

mouth in the expressiveness task).

The comparison of brain and behavioral information states

suggests task-dependent dynamics for the unfolding of attention

in face processing. In the gender task, selective attention to the

eyes persists from stimulus onset until behavioral response, a

temporal dynamic supported at the finer time scale of brain

events. In the expressiveness task, attention appears to be ini-

tially hemisphere-specific, rapidly shifting from the contralat-

eral eye to the mouth. In this context, it is interesting to note that

the P300 onset occurred about 30 ms earlier in the gender task

(around 286 ms) than in the expressiveness task (around 322

ms, using the appearance of the relevant feature in the classi-

fication image as a reference). In addition, note the negative

difference (in red) over the eyes for the expressiveness task in

Figure 1; this negative difference (which contrasts with the

positive difference in the gender task) corresponds to the lowest

P300 amplitudes and suggests that for this observer attention

had to disengage from the eyes, which were irrelevant for cor-

rect expressiveness categorization judgments. Responses oc-

curred about 800 ms following stimulus onset, but the earlier

analysis of the time course of brain events has already added a

supplementary dimension of analysis, at a finer time scale.

CONCLUDING REMARKS

To conclude, we applied a low-bias, low-variance approach to

reveal the low-dimension information subspaces that structure

the receptive fields of emergent brain signals and correlated

these with the information observers use to categorize multi-

dimensional face stimuli. We found high correlations between

the low-dimensional features that modulate speed and accuracy

of categorization behavior and the features, including second-

order relationships between them, that modulate the amplitude

of the P300 brain signal associated with ventral ‘‘what’’ decision

mechanisms. These active and task-dependent processes con-

trast with the N170, which responds automatically to the

contralateral eye, without apparent second-order relationships

between features, irrespective of the information requirements

of the categorization task at hand. The fine time resolution of

brain events, together with the coarse scale of behavioral

events, enabled us to track the selective attention to facial

features across tasks.

Even though there is little doubt that the N170 indicates a

response to the eyes in faces, it is worth pointing out that the

categorization context in this study was restricted—observers

knew that a face would appear on each trial. Hence, the re-

sponse to the eyes appears to be automatic, but this conclusion

is valid specifically for the context of face stimuli. Broader

contexts (e.g., in which faces appear together with other kinds of

objects) could help to further determine the functionality of the

N170: Does the apparently automatic response to the eyes re-

flect a diagnostic process of face detection? a response to bi-

laterally symmetric objects? a response to features with high

spatial frequency? or something else?

We are aware that the low-bias, low-variance approach de-

veloped here could easily generalize to studies of other brain

signals, including the firing rates of single cells or cell assem-

blies, functional magnetic resonance imaging (fMRI) amplitude

responses, and other measurable physiological responses. Such

studies could offer considerable insights into the response

properties of brain signals as a function of stimulus features,

attention, and the demands of categorization tasks.
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