
Incremental Natural Actor-Critic Algorithms

Abstract

We present four new reinforcement learning algorithms based on actor-critic and
natural-gradient ideas, and provide their convergence proofs. Actor-critic rein-
forcement learning methods are online approximations to policy iteration in which
the value-function parameters are estimated using temporal difference learning
and the policy parameters are updated by stochastic gradient descent. Methods
based on policy gradient in this way are of special interest because of their com-
patibility with function approximation methods, which are needed to handle large
or infinite state spaces, and the use of temporal difference learning in this way
is of interest because in many applications it dramatically reduces the variance
of the policy gradient estimates. The use of the natural gradient is of interest
because it can produce better conditioned parameterizations and has been shown
to further reduce variance in some cases. Our results extend prior two-timescale
convergence results for actor-critic methods by Konda et al. by using temporal
difference learning in the actor and by incorporating natural gradients, and extend
prior empirical studies of natural-gradient actor-critic methods by Peters et al. by
providing the first convergence proofs and the first fully incremental algorithms.

1 Introduction

Actor-critic (AC) algorithms are based on the simultaneous online estimation of the parameters of
two structures, called the actor and the critic. The actor corresponds to a conventional action-
selection policy, mapping states to actions in a probabilistic manner. The critic corresponds to a
conventional value function, mapping states to expected cumulative future reward. Thus, the critic
addresses a problem of prediction, whereas the actor is concerned with control. These problems are
separable, but are solved simultaneously to find an optimal policy, as in policy iteration. A variety of
methods can be used to solve the prediction problem, but the ones that have proved most effective in
large applications are those based on some form of temporal difference (TD) learning (Sutton, 1988)
in which estimates are updated on the basis of other estimates as they are in dynamic programming.
Such bootstrapping methods can be viewed as a way of accelerating learning by trading bias for
variance.
AC methods were among the earliest to be investigated in reinforcement learning (Barto et al., 1983;
Sutton, 1984; Williams, 1992). They were largely supplanted in the 1990’s by methods which esti-
mated state-action value functions and used them directly to select actions without an explicit policy
structure. This approach was appealing because of its simplicity, but when combined with function
approximation was found to have many theoretical difficulties including in some cases a failure to
converge. These problems led to renewed interest in methods with an explicit representation of the
policy, which came to be known as policy gradient methods (Marbach, 1998; Sutton et al., 2000;
Konda & Tsitsiklis, 2000; Baxter & Bartlett, 2001). Policy gradient methods without bootstrapping
can be easily proved convergent, but suffer from slow convergence caused by high variance of gradi-
ent estimation. Combining them with bootstrapping is a promising avenue toward a more effective
method.
Another approach to speeding up policy gradient algorithms was proposed by Kakade (2002) and
then refined and extended by Bagnell and Schneider (2003) and by Peters et al. (2005). Their idea
was to replace the policy gradient estimate with an estimate of the so-called natural policy gradient.
This is motivated by the requirement that a change in the way the policy is parametrized should not
influence the result of the policy update. In terms of the policy update rule, the move to the natural
gradient amounts to linearly transforming the gradient using the inverse Fisher information matrix
of the policy.

1

In this paper, we introduce four new AC algorithms, three of which incorporate natural gradients.
All the algorithms are for the average reward setting and use function approximation in the value
function. For all four methods we prove convergence of the parameters of the policy and state value
function to a local maximum of a performance function that corresponds to the average reward plus a
measure of the TD-error inherent in the function approximation. Due to space limitations, we do not
present the convergence analysis of our algorithms here; it can be found in a supporting document
submitted along with this paper. Some empirical results using our algorithms can also be found in
the supporting document. Our main observations here are that all our algorithms perform better than
the algorithm of Konda and Tsitsiklis (2000) with our Algorithm 3 showing the best results overall.
Our results extend prior AC methods, especially those of Konda and Tsitsiklis (2000) and of Peters
et al. (2005). We discuss these relationships in detail in Section 6. Our analysis does not cover the
use of eligibility traces but we believe the extension to this case would be straightforward.

2 The Policy Gradient Framework

We consider the standard reinforcement learning framework (e.g., see Sutton & Barto, 1998), in
which a learning agent interacts with a stochastic environment and this interaction is modeled as a
discrete-time Markov decision process. The state, action, and reward at each time t ∈ {0, 1, 2, . . .}
are denoted st ∈ S, at ∈ A, and rt ∈ R respectively. We assume the reward is random,
real-valued, and uniformly bounded. The environment’s dynamics are characterized by state
transition probabilities p(s′|s, a) = Pr(st+1 = s′|st = s, at = a), and single-stage expected
rewards r(s, a) = E[rt+1|st = s, at = a], ∀s, s′ ∈ S, ∀a ∈ A. The agent selects an action at each
time t using a randomized stationary policy π(a|s) = Pr(at = a|st = s). Given a fixed policy, the
sequence of state-action pairs is generated by the Markov chain induced by that policy. We assume

(B1) The Markov chain induced by any policy is irreducible and aperiodic.

The long-term average reward per step under policy π is defined as

J(π) = lim
T→∞

1

T
E

[

T−1
∑

t=0

rt+1|π

]

=
∑

s∈S

dπ(s)
∑

a∈A

π(a|s)r(s, a),

where dπ(s) is the stationary distribution of state s under policy π. The limit here is well-
defined under (B1). Our aim is to find a policy π∗ that maximizes the average reward, i.e.,
π∗ = arg maxπ J(π). In the average reward formulation, a policy π is assessed according to
the expected differential reward associated with states s or state-action pairs (s, a). For all states
s ∈ S and actions a ∈ A, the differential state-action value function and the differential state value
function under policy π are defined as1

Qπ(s, a) =
∞
∑

t=0

E[rt+1 − J(π)|s0 = s, a0 = a, π] , V π(s) =
∑

a∈A

π(a|s)Qπ(s, a). (1)

In policy gradient methods, we define a class of parameterized stochastic policies
{π(·|s;θ), s ∈ S,θ ∈ Θ}, estimate the gradient of the average reward with respect to the
policy parameters θ from the observed states, actions, and rewards, and then improve the policy
by adjusting its parameters in the direction of the gradient. Since in this setting a policy π is
represented by its parameters θ, policy dependent functions such as J(π), dπ(·), V π(·), and Qπ(·, ·)
can be written as J(θ), d(·;θ), V (·;θ), and Q(·, ·;θ), respectively. We assume

(B2) For any state-action pair (s, a), policy π(a|s;θ) is continuously differentiable in the
parameters θ.

Previous works (Marbach, 1998; Sutton et al., 2000; Baxter & Bartlett, 2001) have shown that the
gradient of the average reward for parameterized policies that satisfy (B1) and (B2) is given by2

∇J(π) =
∑

s∈S

dπ(s)
∑

a∈A

∇π(a|s)Qπ(s, a). (2)

1From now on in the paper, we use the terms state value function and state-action value function instead of
differential state value function and differential state-action value function.

2Throughout the paper, we use notation ∇ to denote ∇θ – the gradient w.r.t. the policy parameters.

2

Observe that if b(s) is any given function of s (also called a baseline), then
∑

s∈S

dπ(s)
∑

a∈A

∇π(a|s)b(s) =
∑

s∈S

dπ(s)b(s)∇(
∑

a∈A

π(a|s)) =
∑

s∈S

dπ(s)b(s)∇(1) = 0,

and thus for any b(s), the gradient of the average reward can be written as

∇J(π) =
∑

s∈S

dπ(s)
∑

a∈A

∇π(a|s)(Qπ(s, a) ± b(s)). (3)

The baseline can be chosen in a way that the variance of the gradient estimates is minimized (Green-
smith et al., 2004).
The natural gradient, denoted ∇̃J(π), can be calculated by linearly transforming the regular gra-
dient, ∇J(π), using the inverse Fisher information matrix of the policy ∇̃J(π) = G−1(θ)∇J(π).
The Fisher information matrixG(θ) is positive definite and symmetric, and is given by

G(θ) = Es∼dπ,a∼π[∇ log π(a|s)∇ log π(a|s)>] (4)

3 Policy Gradient with Approximation

Now consider the case in which the state-action value function for a fixed policy π, Qπ , is approxi-
mated by a learned function approximator. If the approximation is sufficiently good, we might hope
to use it in place of Qπ in Eq. 2 and 3, and still point roughly in the direction of the true gradient.
Sutton et al. (2000) showed that if the approximation Q̂π

w with parameters w is compatible, i.e.,
∇wQ̂π

w(s, a) = ∇ log π(a|s), and minimizes the mean squared error

Eπ(w) =
∑

s∈S

dπ(s)
∑

a∈A

π(a|s)[Qπ(s, a) − Q̂π
w(s, a)]2 (5)

for parameter value w∗, then we can replace Qπ with Q̂π
w∗ in Eq. 2 and 3. Thus, we work with

linear approximation Q̂π
w(s, a) = w>ψ(s, a) in which theψ(s, a)’s are compatible features defined

according to ψ(s, a) = ∇ log π(a|s). Note that compatible features are well defined under (B2).
The Fisher information matrix of Eq. 4 can be written using the compatible features as

G(θ) = Es∼dπ,a∼π[ψ(s, a)ψ(s, a)>]. (6)
Suppose Eπ(w) denotes the mean squared error

Eπ(w) =
∑

s∈S

dπ(s)
∑

a∈A

π(a|s)[Qπ(s, a) −w>ψ(s, a) − b(s)]2 (7)

of our compatible linear parameterized approximation w>ψ(s, a) and an arbitrary baseline b(s).
Let w∗ = arg minw Eπ(w) denote the optimal parameter. We first show in Lemma 1 that the value
of w∗ does not depend on the given baseline b(s) and as a result the mean squared error problems
of Eq. 5 and 7 have the same solutions. Next, in Lemma 2, we show that if the parameter is set to
be equal to w∗, the resulting mean squared error Eπ(w∗) (now treated as a function of the baseline
b(s)) is further minimized when b(s) = V π(s). In other words, the variance in the state-action
value function estimator is minimized if the baseline is chosen to be the value function itself.

Lemma 1 The optimum weight parameter w? for any given θ (policy π) satisfies3

w? = G(θ)−1
Es∼dπ,a∼π[Qπ(s, a)ψ(s, a)].

Proof Note that
∇wEπ(w) = −2

∑

s∈S

dπ(s)
∑

a∈A

π(a|s)[Qπ(s, a) − w>ψ(s, a) − b(s)]ψ(s, a). (8)

Equating the above to zero, one obtains
X

s∈S

d
π(s)

X

a∈A

π(a|s)ψ(s, a)ψ(s, a)>w∗ =
X

s∈S

d
π(s)

X

a∈A

π(a|s)Qπ(s, a)ψ(s, a)−
X

s∈S

d
π(s)

X

a∈A

π(a|s)b(s)ψ(s, a).

3This lemma is similar to Kakade’s (2002) Theorem 1.

3

The last term on the right hand side equals zero since
∑

a∈A
π(a|s)ψ(s, a) =

∑

a∈A
∇π(a|s) = 0

for any state s. Now from Eq. 8, the Hessian ∇2
wEπ(w) evaluated at w∗ can be seen to be 2G(θ).

The claim follows sinceG(θ) is positive definite for any θ. �

Next, given the optimum weight parameter w∗, we obtain the minimum variance baseline in
the state-action value function estimator corresponding to policy π. Thus we consider now Eπ(w∗)
and obtain b∗(s) = arg minb=(b(s) , s∈S) E

π(w∗).

Lemma 2 For any given policy π, the minimum variance baseline b∗(s) in the state-action
value function estimator corresponds to the value function V π(s).

Proof For any s ∈ S, let Eπ,s(w∗) =
∑

a∈A
π(a|s)[Qπ(s, a) − w∗>ψ(s, a) − b(s)]2.

Then Eπ(w∗) =
∑

s∈S
dπ(s)Eπ,s(w∗). Note that by (B1), the Markov chain corresponding to any

policy π is positive recurrent since the number of states is finite. Hence, dπ(s) > 0 for all s ∈ S.
Thus, one needs to find the optimal b(s) in Eπ,s(w∗) for each s ∈ S.

∂Eπ,s(w∗)

∂b(s)
= −2

∑

a∈A

π(a|s)[Qπ(s, a) −w∗>ψ(s, a) − b(s)].

Equating the above to zero, we obtain

b∗(s) =
∑

a∈A

π(a|s)Qπ(s, a) −
∑

a∈A

π(a|s)w∗>ψ(s, a).

The rightmost term equals zero since
∑

a∈A
π(a|s)ψ(s, a) = 0. Hence b∗(s) =

∑

a∈A
π(a|s)

Qπ(s, a) = V π(s). The second derivative of Eπ,s(w∗) w.r.t. b(s) equals 2. The claim follows. �

From Lemmas 1 and 2, w∗>ψ(s, a) is a least-squared optimal parametric representation for
the advantage function Aπ(s, a) = Qπ(s, a) − V π(s) as well as for the state-action value function
Qπ(s, a). However, since Ea∼π[w>ψ(s, a)] =

∑

a∈A
π(a|s)w>ψ(s, a) = 0, ∀s ∈ S, it is better

to think of w>ψ(s, a) as an approximation of the advantage function Aπ(s, a) rather than of the
state-action value function Qπ(s, a).

The TD-error δt is a random quantity that is defined according to δt = rt+1 − Ĵt+1 + V̂ (st+1) −

V̂ (st), where V̂ and Ĵ are consistent estimates of state value function and average reward,
respectively. Thus, these estimates satisfy E[V̂ (st)|st, π] = V π(st) and E[Ĵt+1|st, π] = J(π), for
any t ≥ 0. The next lemma shows that δt is a consistent estimate of the advantage function Aπ .

Lemma 3 Under given policy π, we have E[δt|st, at, π] = Aπ(st, at).

Proof Note that
E[δt|st, at, π] = E[rt+1−Ĵt+1+V̂ (st+1)−V̂ (st)|st, at, π] = r(st, at)−J(π)+E[V̂ (st+1)|st, at, π]−V

π(st).

Now
E[V̂ (st+1)|st, at, π] = E[E[V̂ (st+1)|st+1, π]|st, at, π] = E[V π(st+1)|st, at] =

X

st+1∈S

p(st+1|st, at)V
π(st+1).

Also r(st, at) − J(π) +
∑

st+1∈S
p(st+1|st, at)V

π(st+1) = Qπ(st, at). The claim follows. �

By setting the baseline b(s) equal to the value function V π(s), Eq. 3 can be written as
∇J(π) =

∑

s∈S
dπ(s)

∑

a∈A
π(a|s)ψ(s, a)Aπ(s, a). From Lemma 3, δt is a consistent estimate

of the advantage function Aπ(s, a), thus, ∇̂J(π) = δtψ(st, at) is a consistent estimate of ∇J(π).
However, calculating δt requires having estimates of average reward Ĵ and value function V̂ . While
an average reward estimate is simple enough to obtain given the single stage reward function, the
same is not necessarily true for the value function. We use function approximation for the value
function as well. Suppose f(s) is a feature vector for state s. One may then approximate V π(s)
with v>f(s), where v is a parameter vector that can be tuned (for a fixed policy π) using a TD
algorithm. In our algorithms, we use δt = rt+1 − Ĵt+1 + v>t f(st+1) − v

>
t f(st) as an estimate for

the TD-error, where vt corresponds to the tth update of the value function parameter.

4

Let V̄ π(s) =
∑

a∈A π(a|s)[r(s, a) − J(π) +
∑

s′∈S
p(s′|s, a)vπ>f(s′)], where vπ>f(s′) is an

estimate of the value function V π(s′) that is obtained upon convergence viz., limt→∞ vt = vπ

with probability one. Let also δπ
t = rt+1 − Ĵt+1 +vπ>f(st+1)−v

π>f(st), where δπ
t corresponds

to a stationary estimate of the TD-error with function approximation under policy π. We have the
following analog of Sutton et al.’s (2000) Theorem 1. Note that θ is the policy parameter vector
corresponding to policy π.

Lemma 4 E[δπ
t ψ(st, at)|θ] = ∇J(π) +

∑

s∈S
dπ(s)[∇V̄ π(s) −∇vπ>f(s)].

Proof of this lemma can be found in the supporting document submitted with the paper. Note that
according to Theorem 1 of (Sutton et al., 2000), E[δtψ(st, at)|θ] = ∇J(π), provided δt is defined
as δt = rt+1− Ĵt+1 + V̂ (st+1)− V̂ (st) (as was considered in Lemma 3). For the case with function
approximation that we study, from Lemma 4, the quantity

∑

s∈S
dπ(s)[∇V̄ π(s)−∇vπ>f(s)] may

be viewed as the error or bias in the estimate of the gradient of average reward that results from the
use of function approximation.

4 Actor-Critic Algorithms
We present four new AC algorithms in this section. These algorithms are in the general form shown
in Table 1. They update the policy parameters along the direction of the average reward gradient.
While estimates of the regular gradient are used for this purpose in Algorithm 1, natural gradient
estimates are used in Algorithms 2-4. While critic updates in our algorithms can be easily extended
to the case of TD(λ), λ > 0, we restrict our attention to the case when λ = 0. In addition to
assumptions (B1) and (B2), we make the following assumption:

(B3) The step-size schedules for the critic {αt} and the actor {βt} satisfy
∑

t

αt =
∑

t

βt = ∞ ,
∑

t

α2
t ,

∑

t

β2
t < ∞ , βt = o(αt). (9)

As a consequence of Eq. 9, βt → 0 faster than αt. Hence actor is a faster recursion than critic as
beyond some t0. In other words, the critic has uniformly higher increments than the actor for t ≥ t0,
and thus it converges faster than the actor.

Table 1: A Template for Incremental AC Algorithms.
1: Input:

• Randomized parameterized policy π(·|·;θ),
• Value function feature vector f(s).

2: Initialization:
• Policy parameters θ = θ0,
• Value function weight vector v = v0,
• Step sizes α = α0, β = β0, ξ = cα0.

3: for t = 0, 1, 2, . . . do
4: Execution:

• Draw action at ∼ π(at|st;θt),
• Observe next state st+1 ∼ p(st+1|st, at),
• Observe reward rt+1.

5: Average Reward Update: Ĵt+1 = (1 − ξt)Ĵt + ξtrt+1

6: TD-error: δt = rt+1 − Ĵt+1 + v>t fst+1
− v>t fst

7: Critic Update: algorithm specific (see the text)
8: Actor Update: algorithm specific (see the text)
9 : endfor
10: return Policy and value function parameters θ,v

We now present the critic and the actor updates of our four AC algorithms.

Algorithm 1 (Regular-Gradient AC):

Critic Update: vt+1 = vt + αtδtf(st),

Actor Update: θt+1 = θt + βtδtψ(st, at).

5

This is the only AC algorithm presented in the paper that is based on the regular gradient estimate.
This algorithm stores two parameter vectors θ and v, and its per time-step computational cost is
linear in the number of policy and value function parameters.

The next algorithm is based on the natural gradient estimate ∇̃J(θt) = G−1(θt)δtψ(st, at) in place
of the regular gradient estimate in Algorithm 1. We derive a procedure for recursively estimating
G−1(θ), and show in Lemma 5 that our estimate G−1

t converges to G−1(θ) as t → ∞ with
probability one. This is required for proving convergence of this algorithm. The Fisher information
matrix can be estimated in an online manner as Gt+1 = 1

t+1

∑t

i=0ψ(si, ai)ψ
>(si, ai). One may

obtain recursively Gt+1 = (1 − 1
t+1)Gt + 1

t+1ψ(st, at)ψ
>(st, at), or more generally

Gt+1 = (1 − ζt)Gt + ζtψ(st, at)ψ
>(st, at). (10)

Using Sherman-Morrison matrix inversion lemma, one obtains

G−1
t+1 =

1

1 − ζt

[

G−1
t − ζt

G−1
t ψ(st, at)(G

−1
t ψ(st, at))

>

1 − ζt + ζtψ
>(st, at)G

−1
t ψ(st, at)

]

(11)

For our Alg. 2 and 4, we require the following additional assumption for the convergence analysis.

(B4) The iteratesGt andG−1
t satisfy supt,θ,s,a ‖ Gt ‖ and supt,θ,s,a ‖ G−1

t ‖< ∞.

Lemma 5 For any given parameter θ, G−1
t in Eq. 11 satisfy G−1

t → G(θ)−1 as t → ∞
with probability one.

Proof It is easy to see from Eq. 10 that Gt → G(θ) as t → ∞ with probability one, for
any given θ held fixed. Now for a fixed θ, we have

‖ G−1
t −G−1(θ) ‖=‖ G−1(θ)(G(θ)G−1

t − I) ‖=‖ G−1(θ)(G(θ) −Gt)G
−1
t ‖≤

sup
θ

‖ G−1(θ) ‖ sup
t,s,a

‖ G−1
t ‖ · ‖ G(θ) −Gt ‖→ 0 as t → ∞,

by assumption (B4). The claim follows. �

We thus have the following AC with Fisher information matrix algorithm. This algorithm
stores a matrix G−1 and two parameter vectors θ and v, and its per time-step computational cost is
linear in the number of value function parameters and quadratic in the number of policy parameters.

Algorithm 2 (Natural-Gradient AC with Fisher Information Matrix):

Critic Update: vt+1 = vt + αtδtf(st),

Actor Update: θt+1 = θt + βtG
−1
t+1δtψ(st, at),

with the estimate of the inverse Fisher information matrix updated according to Eq. 11. We let
G−1

0 = kI , where k is a positive constant. Thus G−1
0 and G0 are positive definite and symmetric

matrices. From Eq. 10, Gt, t > 0 can be seen to be positive definite and symmetric as these are
convex combinations of positive definite and symmetric matrices. Hence, G−1

t , t > 0 are positive
definite and symmetric as well.
As we mentioned in Section 3, it is better to think of the compatible approximation w>ψ(s, a)
as an approximation of the advantage function rather than of the state-action value function.
In our next algorithm, we tune the parameters w in a way as to minimize an estimate of the
least-squared error Eπ(w) = Es∼dπ,a∼π[(w>ψ(s, a) − Aπ(s, a))2]. The gradient of Eπ(w)
is thus ∇wEπ(w) = 2Es∼dπ,a∼π[(w>ψ(s, a) − Aπ(s, a))ψ(s, a)] that can be estimated as
∇̂wEπ(w) = 2[ψ(st, at)ψ(st, at)

>w − δtψ(st, at)]. Hence, we update advantage parameters w
along with value function parameters v in the critic update of this algorithm. As with Peters et al.
(2005), we use the natural gradient estimate ∇̃J(θt) = wt+1 in the actor update of Alg. 3. This
algorithm stores three parameter vectors v, w, and θ, and its per time-step computational cost is
linear in the number of value function parameters and quadratic in the number of policy parameters.

6

Algorithm 3 (Natural-Gradient AC with Advantage Parameters):

Critic Update: vt+1 = vt + αtδtf(st),

wt+1 = [I − αtψ(st, at)ψ
>(st, at)]wt + αtδtψ(st, at).

Actor Update: θt+1 = θt + βtwt+1.

Although the estimates of G−1(θ) are not explicitly computed and used in Algorithm 3, the
convergence analysis of this algorithm shows that the overall scheme still moves in the direction
of the natural gradient of average reward. In Algorithm 4, however, we explicitly estimate
G−1(θ) (as in Algorithm 2), and use it in the critic update for w. The overall scheme is
again seen to follow the direction of the natural gradient of average reward. Here, we let
∇̃wEπ(w) = 2G−1

t [ψ(st, at)ψ(st, at)
>w− δtψ(st, at)] be the estimate of the natural gradient of

the least-squared error Eπ(w). This also simplifies the critic update for w. Algorithm 4 stores a
matrix G−1 and three parameter vectors v, w, and θ, and its per time-step computational cost is
linear in the number of value function parameters and quadratic in the number of policy parameters.

Algorithm 4 (Natural-Gradient AC with Advantage Parameters and Fisher Information Matrix):

Critic Update: vt+1 = vt + αtδtf(st),

wt+1 = (1 − αt)wt + αtG
−1
t+1δtψ(st, at).

Actor Update: θt+1 = θt + βtwt+1,

where the estimate of the inverse Fisher information matrix is updated according to Eq. 11.

5 Convergence of Actor-Critic Algorithms
Since our algorithms are gradient-based, one cannot expect to prove convergence to a globally
optimal policy. The best that one could hope for is the convergence to a local maximum of
J(θ). However, since the critic will generally converge to an approximation of the desired projec-
tion of the value function (defined by the value function features f) in the proposed algorithms,
the corresponding convergence results are necessarily weaker as indicated by the following theorem.

Theorem 1 For the parameter iterations in Algorithms 1-4,4 we have (Ĵt,vt,θt) →
{(J(θ?),vθ

?

,θ?)|θ? ∈ Z} as t → ∞ with probability one, where the set Z corresponds to
the set of local maxima of a performance function whose gradient is E[δπ

t ψ(st, at)|θ] (cf. Lemma 4).

For the proof of this theorem, please refer to Section 6 (Convergence Analysis) in the sup-
porting document. This theorem indicates that the policy and state value function parameters
converge to a local maximum of a performance function that corresponds to the average reward plus
a measure of the TD-error inherent in the function approximation.

6 Relation to Previous Algorithms
Actor-Critic Algorithm of Konda and Tsitsiklis (2000): Unlike our Alg. 2-4, their algorithm does
not use estimates of the natural gradient in its actor’s update. Their algorithm is similar to our Alg. 1,
but with some key differences. 1) Konda’s algorithm uses the Markov process of state-action pairs,
and thus its critic update is based on an state-action value function. Alg. 1 uses the state process,
and therefore its critic update is based on a state value function. 2) Whereas Alg. 1 uses TD-error
in both critic and actor recursions, Konda’s algorithm uses TD-error only in its critic update. The
actor recursion in Konda’s algorithm uses an action-value estimate instead. Because the TD-error is a
consistent estimate of the advantage function (Lemma 3), the actor recursion in Alg. 1 uses estimates
of advantages instead of action-values, which may result in lower variances. 3) The convergence
analysis of Konda’s algorithm is based on the martingale approach and aims at bounding error terms
and directly showing convergence. Convergence to a local optimum is shown when a TD(1) critic is
used. For the case where λ < 1, they show that given an ε > 0, there exists λ close enough to one
such that when a TD(λ) critic is used, one gets lim inf t |∇J(θt)| < ε with probability one. Unlike

4The proof of this theorem requires another assumption viz., (A3) in the supporting document, in addition
to (B1)-(B3) (resp. (B1)-(B4)) for Algorithm 1 and 3 (resp. for Algorithm 2 and 4). This was not included in
the paper due to space limitations.

7

Konda and Tsitsiklis, we primarily use the ordinary differential equation (ODE) based approach for
our convergence analysis. Even though we also use martingale arguments in our analysis, these are
restricted to showing that the noise terms asymptotically diminish and the resulting scheme can be
viewed as a Euler-discretization of the associated ODE.
Natural Actor-Critic Algorithm of Peters et al. (2005): Our Algorithms 2-4 extend their algorithm
by being fully incremental and providing convergence proofs. Peters’s algorithm uses a least-squares
TD method in its critic’s update, whereas all our algorithms are fully incremental. It is not clear how
to satisfactorily incorporate least-squares TD methods in a context in which the policy is changing.
Our proof techniques do not immediately extend to this case. As in Peters’s algorithm, we use
estimates of the advantage function in Algorithms 3 and 4.

7 Conclusions and Future Work
We have introduced and analyzed four AC algorithms utilizing both linear function approximation
and bootstrapping, a combination which seems essential to large-scale applications of reinforcement
learning. All of the algorithms are based on existing ideas such as TD-learning, natural policy gradi-
ents, and two-timescale stochastic approximation, but combined in new ways. The main contribution
of this paper is proving convergence of the four algorithms to a local maximum in the space of policy
and value function parameters. Our Alg. 2-4 are explorations of the use of natural gradients within
an AC architecture. The way we use natural gradients is distinctive in that it is totally incremental:
the policy is changed on every time step yet the gradient computation is never reset as it is in the
algorithm of Peters et al. (2005). Alg. 3 is perhaps the most interesting of the three natural gradient
algorithms. It never explicitly stores an estimate of the inverse Fisher information matrix and, as a
result, it requires less computation. In empirical experiments (not reported here) we found it easier
to find good parameter settings for Alg. 3 than for the other natural gradient algorithms, and perhaps
because of this, it converged more rapidly than them and than Konda’s algorithm. We in fact found
all our algorithms to perform better than Konda’s algorithm.
There are a number of ways in which our results are limited and suggest future work. 1) It is
important to characterize the quality of the converged solutions, either by bounding the performance
loss due to bootstrapping and approximation error, or through a thorough empirical study. 2) The
algorithms can be extended to incorporate eligibility traces and least-squares methods. As discussed
earlier, the former seems straightforward whereas the latter requires more fundamental extensions.
3) Application of the algorithms to real-world problems is needed to assess their ultimate utility.

References
Bagnell, J., & Schneider, J. (2003). Covariant policy search. Proceedings of the Eighteenth International Joint

Conference on Artificial Intelligence.
Barto, A., Sutton, R., & Anderson, C. (1983). Neuron-like elements that can solve difficult learning control

problems. IEEE Transaction on Systems, Man and Cybernetics, 13, 835–846.
Baxter, J., & Bartlett, P. (2001). Infinite-horizon policy-gradient estimation. Journal of Artificial Intelligence

Research, 15, 319–350.
Greensmith, E., Bartlett, P., & Baxter, J. (2004). Variance reduction techniques for gradient estimates in rein-

forcement learning. Journal of Machine Learning Research, 5, 1471–1530.
Kakade, S. (2002). A natural policy gradient. Proceedings of NIPS 14.
Konda, V., & Tsitsiklis, J. (2000). Actor-Critic algorithms. Proceedings of NIPS 12 (pp. 1008–1014).
Marbach, P. (1998). Simulated-based methods for Markov decision processes. Doctoral dissertation, MIT.
Peters, J., Vijayakumar, S., & Schaal, S. (2005). Natural actor-critic. Proceedings of the Sixteenth European

Conference on Machine Learning (pp. 280–291).
Sutton, R. (1984). Temporal credit assignment in reinforcement learning. Doctoral dissertation, University of

Massachusetts Amherst.
Sutton, R. (1988). Learning to predict by the methods of temporal differences. Machine Learning, 3, 9–44.
Sutton, R., & Barto, A. (1998). An introduction to reinforcement learning. MIT Press.
Sutton, R., McAllester, D., Singh, S., & Mansour, Y. (2000). Policy gradient methods for reinforcement learning

with function approximation. Proceedings of Advances in Neural Information Processing Systems 12.
Williams, R. (1992). Simple statistical gradient-following algorithms for connectionist reinforcement learning.

Machine Learning, 8, 229–256.

8

