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The ability to evaluate outcomes of previous decisions is critical to adaptive
decision-making. The feedback-related negativity (FRN) is an event-
related potential (ERP)modulation that distinguishes losses fromwins, but
little is known about the effects of outcome probability on these ERP
responses. Further, little is known about the frequency characteristics of
feedback processing, for example, event-related oscillations and phase
synchronizations. Here, we report an EEG experiment designed to address
these issues. Subjects engaged in a probabilistic reinforcement learning task
in which we manipulated, across blocks, the probability of winning and
losing to each of two possible decision options. Behaviorally, all subjects
quickly adapted their decision-making tomaximize rewards. ERP analyses
revealed that the probability of rewardmodulatedneural responses towins,
butnot to losses.Thiswas seenbothacrossblocks aswell aswithinblocks, as
learning progressed. Frequency decomposition via complex wavelets
revealed that EEG responses to losses, compared to wins, were associated
with enhanced power and phase coherence in the theta frequency band. As
in the ERP analyses, power and phase coherence values following wins but
not losses were modulated by reward probability. Some findings between
ERP and frequency analyses diverged, suggesting that these analytic
approaches provide complementary insights into neural processing. These
findings suggest that the neural mechanisms of feedback processing may
differ between wins and losses.
© 2006 Elsevier Inc. All rights reserved.
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Introduction

To optimize behavior, organisms must evaluate outcomes of their
actions, and use these evaluations to guide decision-making. The neural
mechanismsof feedback evaluation are receiving increasing attention in
cognitive neuroscience. In particular, researchers using event-related
potentials (ERPs) have identified a component of the feedback-locked
ERP that is sensitive to the valence of the feedback. This feedback-
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related negativity (FRN) is a relatively negative deflection in the ERP
following losses or error feedback compared to wins or positive
feedback. The FRN peaks at around 300 ms and is maximal at fronto-
central scalp electrode sites (Hajcak et al., 2005; Holroyd et al., 2003;
Yasuda et al., 2004). Convergent findings from source modeling,
fMRI, and single-unit recording studies suggest that the FRN is
generated in the medial frontal cortex, and probably in the anterior
cingulate cortex (Amiez et al., 2005; Brown andBraver, 2005;Mars et
al., 2005; Miltner et al., 2003; Niki andWatanabe, 1979; Paulus et al.,
2004; Ridderinkhof et al., 2004; Shidara and Richmond, 2002;
Tsujimoto et al., 2006; van Schie et al., 2004; Williams et al., 2004).
Topographically and functionally similar feedback-locked ERP
modulations have been called the medial frontal negativity and
feedback error-related negativity (Gehring and Willoughby, 2002;
Holroyd et al., 2003). These effects also share many similarities with
the error-related negativity (ERN), a negative-going mid-frontally
distributed potential elicited by erroneous responses on speeded
response tasks. These potentials are thought to reflect activation of a
reinforcement learning system that rapidly evaluates outcomes of
decisions to guide reward-seeking behavior (Holroyd and Coles,
2002; Nieuwenhuis et al., 2004). This system is capable of rapidly
determining whether feedback is better or worse than expected, and
encodes this difference between expectations and actual outcomes as a
reward prediction error. The anterior cingulate cortex might use these
prediction errors to improve performance due to its role in cognitive
control and action monitoring (Barber and Carter, 2005; Bokura et al.,
2001; Botvinick et al., 2004; Kerns et al., 2004).

Given that a reward prediction error is the difference between
an expected and received reward, differences in expectations of
rewards should modulate the size of prediction error signals.
Single-unit recording studies in nonhuman primates suggest that
this is indeed the case, with more unexpected outcomes yielding
larger neural responses in midbrain dopamine neurons (Fiorillo
et al., 2003). It is unclear whether the magnitude of the FRN is also
modulated by reward expectation, because previous studies have
yielded inconsistent findings. In two studies (Holroyd et al., 2003;
Yasuda et al., 2004), the magnitude of the FRN was larger when
outcomes were unexpected. In another study, no statistically
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significant modulation was observed (Hajcak et al., 2005),
although from visual inspection, it appears that the FRN was
larger for unexpected than expected outcomes. Of the two studies
that found a significant modulation, Yasuda and colleagues (2004)
found that ERPs following both losses and wins were enhanced. In
the Holroyd et al. (2003) study, however, it appears from visual
inspection that only the win-related ERPs were modulated,
although a statistical test of this asymmetry was not reported. We
designed an experiment to investigate this issue further by
examining not only how reward probability might modulate
outcome-locked ERPs, but also how changes in reward expectation
that occur during learning might further modulate ERPs.

Because the FRN (and ERPs in general) is measured by
averaging single-trial EEG traces, this potential will not reflect
oscillatory activity that varies in phase from trial-to-trial (particu-
larly in high frequencies, such as gamma). Such event-related
oscillations can be assessed using time–frequency decomposition
analyses such as complex wavelet convolutions, from which one
can obtain estimates of instantaneous power (i.e., energy at
different frequencies) and inter-trial phase coherence (i.e.,
consistency of oscillation onset across trials). Recent findings
using this approach have revealed novel insights into task-related
cognitive processes beyond what is evident in averaged ERPs (Fell
et al., 2004; Makeig et al., 2002; Salinas and Sejnowski, 2001).
Although the frequency characteristics of feedback processing are
largely unknown, research into the frequency characteristics of the
response-related ERN (Bernat et al., 2005; Luu and Tucker, 2001;
Luu et al., 2004; Trujillo and Allen, in press) suggests it reflects
enhanced theta (i.e., 4–8 Hz) activity following incorrect compared
to correct responses. Based on the idea that the ERN and FRN
reflect similar mechanisms of monitoring and controlling behavior
(Holroyd and Coles, 2002), we hypothesized that feedback
processing would therefore induce increased EEG theta activity
for losses compared to wins.

In the present study, we sought to investigate the effects of
reward probability on ERP and oscillatory correlates of neural
feedback processing. Subjects chose one of two targets on each trial,
and received positive or negative feedback (±10 cents) following
each choice. In blocks of 80–150 trials, we manipulated the
probability of winning and losing such that subjects had to learn
which of the two targets rewarded more often in order to maximize
their winnings. This design allowed us to examine neural responses
to winning and losing as a function of the probability of wins and
losses, using both conventional ERP and time–frequency analyses.

Materials and methods

Subjects

Seventeen (6 males) subjects aged 20–30 from the University of
Bonn community participated in this experiment. Subjects were paid
the amount they earned in the experiment or 10 Euros per hour
(whichever was higher), and typically earned around 25 Euros.
Informed consent documents were signed prior to the start of the
experiment, which was approved by the local ethics committee.

Experiment

On each of 1200 trials during the experiment, subjects saw two
small targets on the left and right side of the screen, and had to
choose one on each trial, after which they eitherwon or lost 0.10 Euros
(see Fig 1a). Visual feedback indicating the subjects’ response (a green
box behind the target) was shown for 600 ms, followed by a reward
(10 cents) or punishment (−10 cents) that was shown for 1000 ms. A
variable, 1500- to 2500-ms inter-trial-interval separated each trial. If
subjects did not select a target after 2000 ms, they lost on that trial.
Self-paced rest breaks were given every 30 trials, during which time
subjects saw how much money they had earned so far. Within each
block of trials, the probability of wins and losses associated with each
target was surreptitiously manipulated. For example, on some blocks,
one target would reward with 75% probability and the other target
would reward with 25% probability. We refer to the “25 target” as
trials when subjects chose the target that rewarded 25% of the time,
and the “75 target” as trials when subjects chose the target that
rewarded 75% of the time. In a third condition, both targets rewarded
with 50% probability, and we refer to all trials in these blocks as the
“50 target”. Probabilities were fixed across trials within blocks, which
lasted 80–150 trials (block length was randomly chosen by the
computer at the start of each block; see Fig. 1b for examples). Block
order and length was randomized and interchanged across subjects.
Subjects were instructed to choose one of the two targets on each trial,
and to try to win as much money as possible. The entire experiment,
including time to set up, was approximately 2.5 h.

EEG recording and analyses

EEGdatawere recorded at 1000Hz (with an anti-aliasing low-pass
filter set at 300 Hz) from 21 scalp electrodes spread out across the
scalp, and 4 ocular (two HEOG and two VEOG) electrodes. All EEG
channels were referenced to the left mastoid, and were re-referenced
online to the average of the left and right mastoids by the acquisition
software. Scalp channels were Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1,
O2, F7, F8, T7, T8, P7, P8, Cz, Fz, Pz, F9, and F10. Data were
resampled to 250Hz and bandpass filtered from .1 to 40Hzoff-line for
ERP analyses, and were left unfiltered for frequency analyses. Trials
containing blink or other artifacts were removed prior to averaging
(mean: 11%; standard error: 4%). Data were analyzed with the
EEGLAB toolbox (Delorme and Makeig, 2004) (available at http://
sccn.ucsd.edu/eeglab/) in Matlab. In the present study, we separately
analyzed ERPs to wins and losses, rather than the difference between
losses and wins, because we were interested in testing whether reward
probability might have asymmetric effects depending on the feedback
valence. Statistical analyses were performed by entering average ERP
values from windows of 300- to 400-ms (when loss−win difference
was maximal) and 400- to 600-ms (when the probability effects were
maximal) post-feedback window into repeated-measures ANOVAs
using SPSS 11 software. Greenhouse–Geisser corrections were used,
and adjusted degrees of freedom are reported. ERPs were averaged
across a time window to minimize potential noise fluctuations in ERP
waveforms. To confirm that our findings reflected modulations of the
FRN instead of the P300, we conducted additional ANOVAs on the
difference between the most positive and most negative peak (i.e., the
“peak-to-peak” amplitude) in a 200- to 600-ms time window (e.g.,
Yeung and Sanfey, 2004).We included midline electrodes Fz, Cz, and
Pz in the ANOVAs.

Frequency analyses

Induced spectral EEG activity was assessed by creating event-
related spectral perturbations using a complex sinusoidal wavelet
transform procedure as implemented in EEGLAB (Delorme and
Makeig, 2004). Briefly, the procedure involves convolving the time
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domain signal with a complex sinusoidal wavelet with increasing
cycles as frequencies increase (Delorme and Makeig, 2004). The
resulting complex signal provides an estimate of instantaneous
power and phase for each time point at frequencies of 4–48 Hz. This
procedure is done on each trial, and then power values are averaged
across trials. Power values were normalized with respect to a −200-
to 0-ms prestimulus baseline and transformed into decibel scale
(10*log10 of the signal). Phase coherence is calculated across trials
using circular variance, and phase-coherence values vary from 0 to
1, with 0 indicating completely randomized phases across trials and
1 indicating completely locked phases across trials. We used an EEG
epoch window of −500 to +1000 ms from each event to ensure that
edge effects would not contaminate our windows of interest, and
visual inspection confirmed that edge effects did not extend into our
time windows of analyses. Statistical analyses were conducted by
entering average power and phase coherence values from 300 to 400
and from 400 to 600 ms post-feedback in 4- to 8-Hz (theta band) and
21- to 29-Hz (lower gamma band) windows for each condition into 2
(frequency band)×2 (feedback: win or lose)×3 (probability: 25, 50,
75) repeated measures ANOVAs. For these analyses, we focused on
data from electrode Fz because topographic distributions of power
and phase exhibited a fronto-central peak that was maximal around
Fz in both time windows (see Figs. 5 and 6 for examples in the 300–
400 ms time window). The Greenhouse–Geisser correction was used
to adjust the degrees of freedom. We selected theta and gamma band
activity based on previous EEG research, which suggests strong
task-related activity in the theta range (Kirk and Mackay, 2003;
Klimesch, 1999; Luu et al., 2004) and lower gamma range (Keil et
al., 2001), and based on visual inspection of time–frequency plots,
which show predominant energy in these ranges (e.g., Fig. 5c). We
note that 21–29 Hz is sometimes referred to as fast or upper beta
Fig. 1. Overview of experiment and behavioral results. (a) Visual display and timin
each event in ms. All analyses were time-locked to the onset of the feedback stimu
subject (black dots) proportion of right-hand target selections as a function of pro
represents trials during the experiment and the y-axis represents the probability tha
selected by the subject. Thick black lines represent the reward probability and thi
smoothed with a 20-trial kernel running average filter).
(Steriade, 2006) and sometimes as lower gamma (Keil et al., 2001;
Shibata et al., 1999); we use the latter term without intention of
distinguishing lower gamma from upper beta.

Results

Behavior

Although subjects were not told about changes in probabilities of
rewards, they quickly adapted their behavior to find the optimal
strategy: During blocks when the right-hand target rewarded 25%,
50%, and 75% of the time, subjects selected the right-hand target on
36.1%, 53.4%, and 71.4% of trials (SEM: 2.1%, 1.4%, 1.7%),
respectively (Fig. 1b). A 3-way ANOVA revealed a main effect of
probability (F2,32=97.70, p<0.0001), and planned comparisons of
the simple effects confirmed that each condition was significantly
different from each other (75>50: t16=9.22; 75>25: t16=10.50;
50>25: t16=8.63; all p values<0.001). Response times, however, did
not differ according to condition (496, 489, 474 ms for 75, 50, and 25
conditions, respectively; F2,32=2.00, p=0.15). In Fig. 1c we display
the trial-by-trial choices and reward probability blocks for two
subjects to demonstrate how they adapted their behavior to changes in
reward contingency.

ERP (time domain) responses to feedback

Valence effects
We observed a prominent FRN (e.g., loss–win ERPs) in each

reward probability condition (see Fig. 2). This effect had a similar
fronto-central topographical distribution in each condition (left panel
of Fig. 3), and peaked at around 320 ms. A 3 (target: 25, 50, 75)×2
g of one trial. Time flows from left to right, numbers indicate the duration of
lus (bolded box). iti= inter-trial-interval. (b) Average (gray bars) and single-
bability manipulation. (c) Behavioral results from two subjects. The x-axis
t the right-hand target rewards and the local fraction of right-hand responses
nner gray lines represent the local fraction of right-hand responses (choices



Fig. 2. Grand-averaged ERP responses to feedback. Left column depicts all ERPs following losses (black lines) and wins (gray lines) as a function of probability
for electrodes Fz (a), Cz (d) and Pz (g). Middle column displays FRN (i.e., the difference wave for losses compared to wins) for each probability condition for
electrodes Fz, Cz, and Pz. Right column displays the probability effect (75 target−25 target) separately for losses and wins. Light gray bars indicate the windows
used for statistical analyses. Note that b, c, e, f, h, and i have the same y-axis scaling, and a, d, and g have a different y-axis scaling.
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(feedback: win, loss) repeated-measures ANOVA on ERP responses
from a 300- to 400-ms post-feedback window revealed a highly
significant effect of feedback (F1,16=17.18, p<0.001), which was
larger at Fz than at Cz or Pz (F1.8,14=15.9, p<0.001). These effects
were also statistically significant when we analyzed the peak-to-peak
amplitude differences (see Materials and methods). In a later time
window of 400–600 ms, there was a significant feedback valence
effect (F1,16=9.23, p=0.003), although itwas in the opposite direction
(i.e., loss-related ERPs were more positive than were win-related
ERPs; see Figs. 2 and 3). There was also a valence effect×electrode
site interaction (F1.5,24.3=8.88, p=0.003). Follow-up analyses
revealed that, in this time window, the valence effect was largest at
Pz, and was not significant at Fz (F1,16=3.66, p=0.075).
Reward probability effects
From 300 to 400 ms, there was a significant main effect of

probability (F1.6,26.8=7.68, p=0.004), although it is qualified by a
feedback valence × probability interaction (F1.9,31.5 = 12.11,
p=0.001). Specifically, ERPs following losses were not modulated
by probability (F1.7,27.9=0.29, p=0.716), whereas ERPs following
wins were significantly affected by probability with a 25>50>75
profile (F1.8,29.2=22.28, p<0.001). As seen in Fig. 2a, d, and g,
this interaction was driven by the response to 75 target wins. All of
these effects were also statistically significant when we analyzed
the peak-to-peak amplitude differences. Additional ANOVAs
confirmed that the probability× feedback valence interaction
extended later in time (400–600 ms window: F1.9,12.1=6.31,
p=0.005). There were no interactions involving electrode site and
probability in either time window (all p values>0.15).

ERP changes during learning
The previous set of analyses focused on changes in ERPs across

blocks. In our next set of analyses, we examined how feedback
potentials might change within blocks, as learning progressed. To do
this, we quantified differences in the ERPs between the first third and
the last third of trials in each block, when subjects were learning and
had learned, respectively, the changes in optimal response patterns. As
seen in Fig. 4a–b, ERP responses to rewards, but not to losses,



Fig. 3. Topographical distribution maps taken from a 300- to 400-ms post-feedback window. (a) Maps of the feedback valence effect (loss–win) as a function of
reward probability during the 300–400 ms window (left column) and 400–600 ms window (right column). (b) The probability effect (75% vs. 25% probability of
reward) as following losses (top), wins (middle), and losses and wins averaged together (bottom). Topographic differences for 75%–25% are displayed, but all
probability differences (e.g., 75%–50%) for wins have nearly identical topographic distributions.

Fig. 4. Changes in ERP responses to feedback during learning. ERPs were separated according to the probability condition and epoch (first vs. last third of trials)
within blocks for wins (top panel) and losses (bottom panel). On the right are all ERPs, and on the left are bar graphs showing averaged ERP responses from 300
to 400 ms (light gray bar in ERP plots). The interaction (“learning effect”) is highlighted with boxes. In the 25 target condition, as subjects learn that rewards are
infrequent, ERP responses to rewards become more positive (black box). Conversely, in the 75 target condition, as subjects learn that rewards are likely, ERP
responses to rewards become less positive (gray box). This pattern of effects was not seen for losses (bottom panel).
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changed with learning. Specifically, ERP amplitudes became less
positive as subjects learned that rewards become more likely for
the 75 target. Conversely, ERP responses became more positive as
subjects learned that rewards become less likely for the 25 target.
To quantify this effect, we conducted a 3 [target: 25, 50, 75]×2
[time: first vs. last third of block]×3 [electrode: Fz, Cz, Pz]
ANOVA on win responses, which revealed a significant
target×time interaction (F1.5,23.8=3.84, p=0.04). The interaction
(see top panel of Fig. 4a) is especially striking when comparing
ERPs elicited by the 25 target at the last third of the block (i.e.,
when wins are the most unexpected) and those elicited by the 75
target at the last third of the block (i.e., when wins are the most
expected). A direct contrast between these conditions revealed that
ERPs were significantly more positive in the 25 target condition as
compared with the 75 target condition (14.46 and 10.42 μV,
respectively, at Fz; post-hoc t-test: t16=4.74, p<0.01). The learning
effect was specific for wins: As shown in Fig. 4b, responses to
losses did not differ as a function of learning (F1.8,30.1=0.841,
p=0.435). Even when comparing losses that presumably were the
least and most expected (75 target at last third and 25 target at last
third, respectively), ERPs were of nearly identical magnitude (9.38
and 9.14 μV at Fz, t16=0.31). Thus, learning about reward
probabilities within each block was associated with changes in
ERPs following wins, whereas learning did not modulate ERPs
following losses.

Because the overall probability effect peaked later in time (see
Fig. 2), we additionally conducted ANOVAs on ERPs from a 400-
to 600-ms time window. The learning effects continued to be
significant following wins (F1.5,24.7=8.45, p=0.003), but not
following losses (F1.8,29.3=0.20, p=0.79). This effect was not
significant when using peak-to-peak amplitude. There were no
significant interactions involving electrode site in either time
window (all p values>0.11).
Fig. 5. Effects of feedback valence and probability on frequency power. (a) Differe
subtraction of power values of losses from wins over time (x-axis; 0 is onset of fee
losses and blue colors indicate more power for wins. Topographical map and bar gra
reward probability on power values. Time–frequency and topographical distributio
ms, 21- to 29-Hz window. (c) Time–frequency plots separately for all combination
taken from electrode Fz, where the effects were maximal.
Frequency decomposition of EEG

Effects of feedback valence
Figs. 5a and 6a display the loss–win spectrograms, topographical

maps, and bar graphs for power and phase, respectively. As shown in
these figures, feedback valence modulated power and phase values
differently in the two frequency bands. Specifically, for power
values, there was a significant frequency band×valence cross-over
interaction from 300 to 400 ms in Fz (F1,16=37.94, p<0.001), such
that in the theta band, there was more power following losses than
wins (F1,16=28.65, p<0.001), whereas in the gamma band, there
was more power following wins than losses (F1,16=4.91, p=0.042)
(see bar graphs in Fig. 5a–b). ANOVAs from a time window of 400–
600 ms revealed that the loss>win effect remained significant
(F1,16=36.66, p<0.001). For phase coherence values, we found a
significant frequency band×valence interaction (F1,16 =8.47,
p=0.010), such that in the theta band there was greater phase
coherence following losses compared to wins (F1,16 = 8.84,
p=0.009), but in the gamma band there was no effect of feedback
valence (F1,16=0.44, p=0.516). ANOVAs from a time window of
400–600 ms revealed no effects of feedback valence (all p
values>0.3). We additionally plotted the time course of power and
phase coherence separately for each condition in Fig. 7. For
illustrative purposes, we calculated a t-test of the difference between
theta power following losses versus that following wins at each time
point, and time points with a t-value of p<0.01 have a bolded x-axis.

Effects of reward probability
In our next set of analyses, we tested whether feedback probability

affected power and phase values. These effects largely paralleled those
of the time domain, such that reward probability modulated EEG
power followingwins but not following losses. Specifically, for power
values, there was a significant valence×probability interaction
nce in power between losses and wins. The time–frequency map shows the
dback stimulus) and frequency (y-axis). Red colors indicate more power for
phs show data taken from a 300- to 400-ms, 4- to 8-Hz window. (b) Effect of
ns are separately plotted for losses (left) and wins (right) from a 300- to 400-
s of feedback valence (columns) and reward probability (rows). All data are



Fig. 6. Effects of feedback valence and probability on inter-trial phase coherence. (a) Difference in phase coherence values between losses and wins. The time–
frequency map shows the subtraction of coherence values of losses from those of wins over time (x-axis; 0 is onset of feedback stimulus) and frequency (y-axis).
Red colors indicate enhanced coherence for losses and blue colors indicate enhanced coherence for wins. Topographical map and bar graphs show data taken
from a 300- to 400-ms, 4- to 8-Hz window. (b) Time–frequency plots separately for all combinations of feedback valence (rows) and reward probability
(columns). All data are taken from electrode Fz.
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(F1.2,20.3=4.03, p=0.050), such that power values following wins
increased with decreasing reward probability (F1.5,24.5=6.99,
p=0.007), but they were not significantly altered following
losses (F1.5,25.3=0.468, p=0.587). There were no interactions
involving probability and frequency band (p values>0.3),
suggesting that reward probability did not differentially affect
power in the two frequency bands. ANOVAs from a time window
of 400–600 ms revealed the same pattern of results (see Table 1
for statistical values).
Fig. 7. Time course of power (top panel) and phase coherence (bottom) in theta (lef
feedback valence and probability. A paired-sample t-test between values for losses
and values that were significant at p<0.01 have bolded x-axes. Full ANOVAs of
For phase coherence values, we found a significant valence×
probability interaction (F1.7,27.1=14.67, p=0.020), such that phase
coherence following wins increased with decreasing reward
probability (F1.4,23.0=22.89, p>0.001), whereas phase coherence
following losses was unaffected by reward probability (F1.8,29.8=
1.36, p=0.270). As with power, there were no interactions involving
probability and frequency band interaction (p values >0.5),
suggesting that the impact of probability was not different in the
two frequency bands. ANOVAs from a time window of 400–
t) and gamma (right) frequency bands, plotted separately for combinations of
and wins (averaging over probability condition) at each time point was run,
these differences are reported in the text. Data are taken from electrode Fz.



Table 1
Summary of effects

Effect Dependent
variable

Time
window
(ms)

F-value p-value Direction

Feedback
valence

ERP 300–400 17.18 a <0.001 a Win>Loss
ERP 400–600 3.66 0.075 Win>Loss

Feedback
valence:
theta

Power 300–400 28.65 a <0.001 a Loss>Win
Power 400–600 36.66 a <0.001 a Loss>Win
Phase 300–400 8.84 a 0.009 a Loss>Win
Phase 400–600 6.51 a 0.021 a Loss>Win

Feedback
valence:
gamma

Power 300–400 4.91 a 0.042 a Win>Loss
Power 400–600
Phase 300–400
Phase 400–600

Reward
probability:
wins

ERP 300–400 22.28 a <0.001 a 25>50>75
ERP 400–600 21.77 a <0.001 a 25>50>75
Power 300–400 6.99 a 0.007 a 25>50>75
Power 400–600 6.52 a 0.006 a 25>50>75
Phase 300–400 22.89 a <0.001 a 25>50>75
Phase 400–600 24.86 a <0.001 a 25>50>75

Reward
probability:
losses

ERP 300–400
ERP 400–600
Power 300–400
Power 400–600 3.53 a 0.043 a 50>75>25
Phase 300–400
Phase 400–600

Learning:
wins

ERP 300–400 3.84 a 0.040a, b 253>251;
751>733

ERP 400–600 8.45 a 0.003 a 253>251;
751>733

Power
(theta)

300–400

Power
(theta)

400–600

Phase
(theta)

300–400

Phase
(theta)

400–600

Learning:
losses

ERP 300–400
ERP 400–600
Power
(theta)

300–400

Power
(theta)

400–600

Phase
(theta)

300–400 2.06 0.152

Phase
(theta)

400–600 2.02 0.155

Subscripts indicate position within block (first third or last third). See text for
degrees of freedom.
a Statistically significant effects.
b Results from all ERP analyses in the 300–400 ms window were also

significant when using peak-to-peak measurements except this one. Only
statistics from Fz are reported. Entries with an F-value less than 2 are
omitted.

Table 2
Correlation coefficients among average ERP amplitude- and frequency-
domain effects from 300 to 400 ms in Fz

Loss Win

75% 50% 25% 75% 50% 25%

Theta power −0.06 −0.21 −0.11 0.27 0.28 −0.01
Theta phase −0.11 −0.04 0.07 0.35 0.34 0.27
Gamma power 0.65** 0.50* 0.72** 0.62** 0.55* 0.72**
Gamma phase 0.32 −0.03 0.09 −0.29 −0.15 −0.04

Correlation coefficient is statistically significant at *p<.05, **p<0.01.

Table 3
Correlation coefficients among ERP peak-to-peak differences from 200 to
600 ms and theta and gamma band activity from 300 to 400 ms average in
electrode Fz

Loss Win

75 50 25 75 50 25
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600 ms revealed the same pattern of findings (statistical values in
Table 1).
Theta power 0.72** 0.61** 0.70** 0.09 0.14 0.19
Theta phase 0.76** 0.82** 0.84** 0.61** 0.68** 0.36
Gamma power 0.15 0.32 0.45 0.13 0.23 0.55*
Gamma phase 0.12 0.23 0.27 −0.24 −0.29 −0.32

Correlation coefficient is statistically significant at *p<.05, **p<0.01.
Learning effects
Finally, we examined whether there were changes in power

or phase as a function of learning. There were no main effects or
interactions involving position within block for wins or losses
for power or phase values in theta or gamma bands (all F
values<2).

Comparison between time- and frequency-domain effects

To more formally compare information from ERPs and
frequency decomposition, we conducted two analyses to correlate
the magnitude of the ERPs with the average power and phase
coherence values from theta and gamma bands. First, we correlated
the average ERP magnitudes from 300 to 400 ms from Fz with
theta and gamma power and phase coherence values from the same
time window. As seen in Table 2, there were significant
correlations between ERPs and power in the gamma band in all
conditions, but no significant correlations between ERPs and theta
band activity. However, increased power could simultaneously
decrease the magnitude of ERPs in the trough of the wave and
increase the magnitude of the peak of the wave, thus causing no
change in the average amplitude in a time window. Thus, in a
second analysis, we correlated power and phase coherence values
with the peak-to-peak amplitude measure (see Materials and
methods). In this analysis, a reverse pattern of findings was
observed: ERPs were strongly correlated with theta power and
phase coherence, but not with gamma activity (Table 3).
Interestingly, peak-to-peak measures of ERPs in nearly all
conditions were significantly correlated with theta phase coher-
ence, but were strongly correlated with theta power only following
losses. Finally, there were no significant correlations among theta
and gamma power and phase values in any condition.

Discussion

In the present study, we examined whether and how expecta-
tions of rewards and losses affected ERP and oscillatory correlates
of feedback processing. We found that ERPs, theta, and gamma
activity following wins, but not losses, were modulated by the
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feedback probability manipulation. This was seen both across and
within (i.e., learning effects) blocks of trials. Additionally, we
found enhanced power and cross-trial phase coherence in the theta
frequency band (4–8 Hz) for losses compared to wins, but opposite
effects in the lower gamma frequency band (21–29 Hz). Together,
these findings provide strong evidence for a valence-related
asymmetry in EEG correlates of feedback processing.

Win-related, but not loss-related, ERPs were modulated by
feedback probability

We observed modulations in the magnitude of the loss–win
ERP difference wave according to the probability of reward vs.
loss feedback. Closer inspection revealed that this effect was driven
by win-related ERPs. Indeed, loss-related ERPs were unaffected by
the probability manipulation. This interaction was present regard-
less of analysis approach (average amplitude values or peak-to-
peak amplitude differences) or time window. Within the win
conditions, ERPs following 50 and 25 target wins differed only
slightly, whereas ERPs following the 75 target wins showed a
larger and more sustained effect. This may have been due to
subjects overestimating the 25 target condition as being closer to
the 50 target condition. This interpretation is also consistent with
the asymmetry in behavioral responses: When the right-hand target
rewarded 25% of the time, subjects chose that target on 36% of
trials (compare with 53% and 71% when the right-hand target
rewarded 50% and 75% of the time).

To our knowledge, no previous study has reported asymmetric
effects of reward probability on feedback ERPs. However, close
examination suggests that a similar effect might have been present
in previous studies. For example, from visual inspection, it appears
that Holroyd et al. (2003) (Fig. 1) found modulations of win-
related, but not loss-related, ERPs, although this asymmetry was
not tested. Such an asymmetry can also be seen in two recent
studies by Hajcak and colleagues. In the first (Hajcak et al., 2005),
it appears that the FRN was larger following unexpected compared
to expected outcomes (Figs. 2 and 4), although these effects were
reported to be nonsignificant. In the second study (Hajcak et al.,
2006), in which they manipulated the size (rather than probability)
of rewards and losses, differently sized losses (5 vs. 25 cents)
yielded indistinguishable ERPs, but larger wins elicited larger
ERPs than smaller wins. Here as well the effects were visually
observable but not statistically significant. It is possible that there
were not enough trials to statistically identify these modulations.
Finally, in a study by Yasuda et al. (2004), ERPs following both
wins and losses appear to be modulated by the level of expectation.

A more sensitive measure of expectation-related modulations in
the ERPs comes from inspection of changes in ERPs that occur as
learning progresses (i.e., differences between ERPs during the first
and last third of trials in each block). We found that changes in
win-related ERPs were consistent with predictions of reinforce-
ment learning theory. Specifically, in reinforcement learning
theory, reward prediction errors should increase or decrease as
rewards become less or more expected, respectively. Consistent
with this prediction, we found that in the 25 target condition, as
subjects learned that rewards are relatively infrequent, ERP
magnitudes became more positive, whereas in the 75 target
condition, as subjects learned that rewards are likely, ERP
magnitudes became less positive. This pattern of changes in the
magnitude of neural feedback responses is similar to results
showing that the magnitude of the FRN decreased over the course
of probabilistic learning experiments (Mars et al., 2005; Nieu-
wenhuis et al., 2002). In the Nieuwenhuis et al. (2002) study, for
example, subjects learned to select particular stimuli that were
associated with either 20%, 50%, 80%, or 100% probability of
reward. Consistent with our findings, they found that FRN
magnitudes decreased as a function of reward probability across
the experiment. Similar results were obtained by Holroyd and
Coles (2002). Given that this modulation was specific to wins in
our study, it is possible that the changes in FRN magnitude in the
studies of Nieuwenhuis et al. (2002) and Holroyd and Coles (2002)
were driven solely by responses to wins.

One might wonder whether our ERP effects are more related to
the P300, a complex of ERP modulations that has been related to
stimulus probability, subjective confidence, and target detection
(Donchin and Coles, 1988; Johnson, 1993; Kugler et al., 1993;
Polich and Kok, 1995; Squires et al., 1976). Although the later
temporal peak of the probability effect is consistent with this
speculation, several considerations suggest that the probability-
related ERP modulations are more closely related to the FRN than
to the P300. Specifically, if the effects were P300 modulations, one
would make at least two predictions: First, the P300 should be
larger following all low-probability events, independent of the
valence of the outcome (Yeung and Sanfey, 2004). This might
reflect stimulus probability estimations and/or a context-updating
process (Donchin and Coles, 1988; Johnson, 1986; Johnson and
Donchin, 1980). Second, the effects should have a posterior spatial
distribution with a peak around Pz. In contrast to these predictions,
the probability manipulation affected only win-related ERPs, and
there were no probability effects on responses to losses (see Fig. 2),
regardless of the time window, measurement approach (average
ERP amplitude or peak-to-peak difference), or data domain (time
vs. frequency). Further, the probability effects we observed had
an anterior topography (see Fig. 3). Indeed, the probability effects
were numerically smaller at Pz than at electrodes Fz and Cz.
Even from 400 to 600 ms, when the probability effects were
largest in time, the effects were smaller at Pz than at Cz (see Fig.
3). These observations, combined with previous dissociations of
the FRN and P300 (Sato et al., 2005; Yeung and Sanfey, 2004),
suggest that our findings are more related to the FRN than the
P300.

Oscillations in feedback-locked potentials

Medial frontal regions including the anterior cingulate exhibit
large theta oscillations that are present at rest, during sleep, and
during cognitive tasks, and are modulated by task demands such
as working memory, attention, and action selection (Basar-Eroglu
et al., 1992; Basar-Eroglu and Demiralp, 2001; Ishii et al., 1999;
Kubota et al., 2001; Onton et al., 2005; Tsujimoto et al., 2006;
Wang et al., 2005). Little is known about frequency characteristics
of feedback processing, but researchers have investigated the
frequency characteristics of response error processing. In these
cases, response errors, compared with correct responses, is
associated with enhanced theta power (Gevins et al., 1997; Luu
et al., 2004; Trujillo and Allen, in press; Yordanova et al., 2004).
To the extent that similar mechanisms underlie processing of error
responses and error feedback (Holroyd and Coles, 2002), these
findings are consistent with our finding of enhanced theta power
and phase-locking following losses compared to wins. More
directly relevant to our findings, Luu and Tucker (2001) observed
an FRN in response to error feedback after band-pass filtering
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their data in the theta range, suggesting that much of the energy in
the FRN comes from theta frequencies.

We also found that power and phase coherence were modulated
by the probability of rewards. Consistent with what we observed in
the ERPs, following wins, theta power and phase coherence values
tracked the probability of rewards, such that the less likely the
reward, the larger the power and phase coherence values.
Following losses, however, no such modulation was observed.
Previous studies have reported that decreased stimulus probability
increases theta power at around 300 ms (Spencer and Polich, 1999;
Yordanova et al., 2000). However, these previous experiments used
tones that did contain any valence or motivational value, and, to
our knowledge, an asymmetry between responses to losses and to
wins has not been previously reported.

Correspondence between time domain and frequency analyses

Many analyses revealed similar patterns of results across the
time and frequency domains. For example, the probability
manipulation affected neural responses to wins, but not to losses,
in ERPs, theta power, and phase coherence. We also observed
some important differences between the time and frequency
domain results. Most notably, we observed a cross-over interaction
between feedback valence in theta and gamma bands, such that
there was more theta power following losses compared to wins, but
more gamma power following wins compared to losses. Lower
gamma has been associated with thalamocortical and cortico-
cortical coupling (Steriade, 2006), suggesting enhanced connec-
tivity during wins compared to losses. On the other hand, the
changes in ERPs as a function of learning were not observed in the
frequency domain. Thus, time- and frequency-domain analyses
provided some overlapping, but some independent, insights into
task-induced EEG activity.

When directly correlating ERPs and frequency information, we
found differences in how the ERPs related to gamma and theta
according to our ERP measurement approach. Specifically, average
ERP amplitudes were correlated with gamma power but not with
theta activity, whereas peak-to-peak amplitudes were correlated
with theta activity but not with gamma. This finding, the lack of
correlations between theta and gamma activity, and the cross-over
interaction between the loss–win effect in theta and gamma bands
together suggest that independent neural processes drive theta and
gamma activity in this task.

The present findings raise the question of whether the FRN
(and ERPs in general), arise from bursts of increased neural
activity or from phase-locking of ongoing oscillations. The
oscillatory nature of loss-related ERPs is apparent from visual
inspection of the time domain ERPs, both in our study and in
other FRN and response-locked error negativity papers. Con-
ceptualizing the loss-related ERP as a theta oscillation also
provides a parsimonious interpretation for the fact that there are
three to four peaks of the loss-related ERP (around 200, 300,
420, and possibly 550 ms in Fig. 2): If the neural response to
losses is conceptualized as a phase-locked theta oscillation, these
peaks may reflect the same neural process. Finally, the
correlations between frequency information and ERP measures
suggest that whereas all feedback-related ERPs comprise phase-
locking in the theta band and enhanced gamma power, only
responses to losses are additionally driven by power in the theta
band. One caution, however, is that any signal, even if there are
no oscillations present, can be perfectly represented in frequency
space, given fine enough sampling between frequencies. Yeung et al.
(2004) provide an example of this applied to EEG data. They created
an artificial EEG dataset that contained only activity bursts and no
oscillations. When the data were transformed into frequency space
using complex sinusoidal wavelets, enhanced power in the theta
range was observed following “error” compared to “correct” trials.
Thus, although we feel that loss-related ERPs may be more easily
conceptualized as a theta wave than as a series of phasic neural
bursts, our findings do not provide irrefutable evidence either way
(see also Mazaheri and Jensen, 2006).

In conclusion, we have provided strong evidence for an
asymmetry between EEG responses to losses and wins. These
findings additionally suggest that future research might benefit
from considering win and loss responses separately, rather than
considering their differences as a single measure.
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