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Abstract

Reinforcement Learning is a class of problems frequently encountered by both biological and
artificial agents. An important algorithmic component of many Reinforcement Learning so-
lution methods is the estimation of state or state-action values of a fixed policy controlling
a Markov decision process (MDP), a task known as policy evaluation. We present a novel
Bayesian approach to policy evaluation in general state and action spaces, which employs
statistical generative models for value functions via Gaussian processes (GPs). The poste-
rior distribution based on a GP-based statistical model provides us with a value-function
estimate, as well as a measure of the variance of that estimate, opening the way to a range
of possibilities not available up to now. We derive exact expressions for the posterior mo-
ments of the value GP, which admit both batch and recursive computations. An efficient
sequential kernel sparsification method allows us to derive efficient online algorithms for
learning good approximations of the posterior moments. By allowing our algorithms to
evaluate state-action values we derive model-free algorithms based on Policy Iteration for
improving policies, thus tackling the complete RL problem. A companion paper describes
experiments conducted with the algorithms presented here.

Keywords: Reinforcement Learning, Bayesian Inference, Gaussian Processes, Temporal
Differences, Online Learning

1. Introduction

Reinforcement Learning (RL) is a class of learning problems concerned with achieving long-
term goals in unfamiliar, uncertain and dynamic environments. Such tasks are convention-
ally formulated as Markov decision process (MDPs) or more generally as partially observ-
able MDPs (POMDPs). Many of the algorithms developed for solving RL problems may
be traced back to the Dynamic Programming (DP) Policy Iteration and Value Iteration al-
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gorithms (Bellman, 1957; Bertsekas, 1995; Bertsekas and Tsitsiklis, 1996). However, there
are two major features distinguishing RL from the traditional planning framework. First,
while in planning it is assumed that the environment is fully known, in RL no such assump-
tion is made. Second, in RL the learning process is usually assumed to take place online,
namely, concurrently with the accumulation of data acquired by the learning agent as it
interacts with its environment. These two features make RL a significantly more difficult
challenge, and place constraints on potential RL algorithms. Due to these constraints, the
RL practitioner has at her disposal a rather limited arsenal of provably convergent algo-
rithms that can tackle real-world RL problems, namely, problems characterized by large
or infinite state and/or action spaces. In such problems it is necessary to use some form
of function approximation (FA) to represent the value function (and possibly the policy),
since a tabular representation is infeasible. The difficulty arises because many otherwise
popular function approximation schemes (e.g. multilayer Perceptrons) interfere with the
contraction properties of the DP operators, when they are used to represent the value func-
tion (Bertsekas and Tsitsiklis, 1996; Gordon, 1996). In reality, practitioners either ignore
this problem and make do without any convergence guarantees, with mixed success (e.g.,
Tesauro, 1995; Schraudolph et al., 1994; Crites and Barto, 1996), or resort to using special
forms of FA that are well behaved (Singh et al., 1995; Boyan and Moore, 1995; Tsitsiklis
and Van Roy, 1996; Gordon, 1996; Munos, 2000).

One particular form of FA, in which the approximation is linear in its parameters has
emerged as particularly useful. There is a significant body of work providing convergence
guarantees for the Temporal Difference (TD) family of algorithms (Sutton, 1988) and several
related algorithms, when used in conjunction with such linear approximation architectures
(Tsitsiklis and Van Roy, 1996; Konda and Tsitsiklis, 2000; Nedic and Bertsekas, 2003;
Munos, 2003). However, linear parametric FA architectures are inherently limited in their
expressive powers, since one must choose a priori a finite set of basis functions, the span
of which constitutes the hypothesis space of which the value approximation must be a
member. If the true value function does not belong to this hypothesis space, the solutions
to which these algorithms converge may be quite poor, depending on a measure of the
distance between the hypothesis space and the true value function, as well as on the values
of the TD parameter λ and the discount factor γ (see e.g., Bertsekas and Tsitsiklis, 1996,
Example 6.5). Nonetheless, for the RL practitioner seeking a provably convergent, online,
model-free algorithm for value estimation, the choice is limited to TD(λ) and some of its
variants, such as SARSA(λ) (Sutton and Barto, 1998) and LSTD(λ), used in conjunction
with a linear function approximation architecture (Bradtke and Barto, 1996; Boyan, 1999;
Lagoudakis et al., 2002).

The main contributions made in this paper are threefold. We present a non-parametric
approach to value function approximation that is not generally limited, a priori, to the
span of any finite number of basis functions. This approach may be viewed as a straight-
forward application of the “kernel trick” (as it is known in the kernel-machines community,
see Schölkopf and Smola (2002)) to the problem of value estimation. The use of a non-
parametric kernel-based architecture allows us to conduct the search directly in a generally
infinite dimensional Hilbert space of functions, limiting the hypothesis space only by our
choice of kernel function. This naturally alleviates the difficulty discussed above with regard
to linear architectures, but entails some computational issues. Our second contribution is

2



Bayes Meets Bellman

due to our particular choice of kernel machine, namely Gaussian Processes (GPs). The
use of a GP model for the value function allows us to apply Bayesian reasoning to the
value estimation problem, resulting in a complete posterior distribution over value func-
tions, rather than the point estimates provided by other kernel-based methods. This means
that, in addition to the value function estimate provided by the mean of the GP, we are also
provided with a measure of the uncertainty in this estimate, given by the GP’s covariance.
This opens the way to a wide range of applications that make use of these uncertainty mea-
sures. Finally, by considering parametric GPs, we derive parametric counterparts of our
nonparametric algorithms. Beyond their practical utility, these algorithms help elucidate
the relation between our GP approach and some of the most popular RL algorithms to date,
such as TD(λ) and LSTD(λ).

In the next section we briefly overview Gaussian processes and Markov decision pro-
cesses. We then describe our Gaussian process temporal difference (GPTD) model and find
the posterior moments of the value GP. We then derive exact and approximate algorithms
for computing the posterior value distribution. We then devote a section to discuss parallels
between variants of our algorithms and some of the best known algorithms for policy evalu-
ation. In the next section we propose extensions of our algorithms that allow us to improve
policies, without having to learn a transition model of the MDP, thus making it possible to
tackle the complete RL problem, in which the goal is to find optimal or, failing that, good
suboptimal policies. We close with a discussion and suggestions for future work.

2. Preliminaries

Gaussian Processes (GPs) have been used extensively in recent years in supervised learn-
ing tasks such as classification and regression (e.g., O’Hagan, 1978; Gibbs and MacKay,
1997; Williams, 1999; Seeger, 2004; Rasmussen and Williams, 2006). Based on probabilis-
tic generative models, GP methods are theoretically attractive since they allow a Bayesian
treatment of these problems, yielding full posterior distributions based both on one’s prior
beliefs and on the data observed, rather than the point-estimates usually provided by other
methods. Since GPs may be defined directly in function space, they are not as restrictive as
parametric models in terms of the hypothesis space in which learning takes place. Moreover,
when both the prior distribution and the likelihood are Gaussian, the posterior distribu-
tion, conditioned on the observations, is also Gaussian and Bayes’ rule yields closed-form
expressions for the posterior moments.

2.1 Bayesian Inference with Gaussian Processes

A random process (or random field) F is a set of random variables, each of which is assigned
an index. Here we will focus on random processes indexed by the state variable x ∈ X of
a MDP.1 F may be thought of as a random vector if X is finite, as a random series if X is
countably infinite, and as a random function if X is uncountably infinite. In the latter case,
each instantiation of F is a function f : X → R. On the other hand, for a given x, F (x) is
a random variable (RV), jointly distributed with the other components of F according to
F ’s probability law.

1. Later we will extend our discussion to random processes indexed by state-action pairs (x,u) ∈ X × U .
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A random process F is said to be a Gaussian process if the variables corresponding to
any finite subset of X are jointly Gaussian. In order to perform Bayesian inference using
GPs we need to define a statistical generative model. Such models typically consist of the
following ingredients:

1. A model-equation relating the observed and unobserved components of our model, in
which the latter is usually transformed and corrupted by some additive measurement
noise to produce the former. The unobserved, or latent process is the subject of our
Bayesian inference effort.

2. A distribution of the measurement noise terms. By noise, we refer to any additive
random process in the model equation, the statistics of which is known (at least up to
a few undetermined hyperparameters), and which is not the subject of our inference
problem.

3. A prior distribution of the unobserved process. This is a necessary ingredient required
for employing Bayes’ rule, and is used to express whatever prior information we may
have concerning F .

Given that F is a priori Gaussian, its prior distribution is fully specified by its mean and
covariance,

E [F (x)]
def

= f0(x),

Cov
[

F (x), F (x′)
]

= E
[

F (x)F (x′)
]

− f0(x)f0(x
′)

def

= k(x,x′), (2.1)

respectively, where E denotes the expectation operator with respect to the GP distribution.
In order for k(·, ·) to be a legitimate covariance it is required to be symmetric and positive-
definite. Interestingly, these are exactly the requirements made of Mercer kernels, used
extensively in the field of kernel machines. In kernel methods, k(·, ·) is usually referred to
as the kernel function, and is viewed as an inner product in some high dimensional feature
space. As it turns out, these two views are in fact equivalent, which is the reason the
same notation is used for both functions (see Schölkopf and Smola, 2002; Shawe-Taylor and
Cristianini, 2004, for details).

As an illustrative example let us review the use of GPs for regression with white Gaussian
noise. In this setup, we are provided with a sample of t training examples {(xi, yi)}t

i=1. The
model-equation for some x ∈ X is

Y (x) = F (x) + N(x), (2.2)

where F is the GP corresponding to the unknown function from which the data are gener-
ated, N is a white noise GP independent of F , and Y is the observable process, modeled
here as a noisy version of F . F is assumed to be, a priori, a GP with mean f0(·) and
covariance given by a kernel function k(·, ·) as in Eq. 2.1. Eq. 2.2, evaluated at {xi}t

i=1,
may be written concisely as

Yt = Ft + Nt, (2.3)

where Yt = (Y (x1), . . . , Y (xt))
>, Ft = (F (x1), . . . , F (xt))

> and Nt = (N(x1), . . . , N(xt))
>.

In our example, we assume that the noise terms corrupting each sample are independently
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and identically distributed (IID), we therefore have Nt ∼ N
(

0, σ2I
)

, where σ2 is the vari-
ance of each noise term. F (x) for any x ∈ X and Yt are jointly normally distributed:

(

F (x)
Yt

)

∼ N
{(

f0(x)
f0

)

,

[

k(x,x) kt(x)
kt(x)> Kt + σ2I

]}

,

where we denoted (f0)i = f0(xi), [Kt]i,j = k(xi,xj) and (kt(x))i = k(xi,x), for i =
1, 2, . . . , t. We may now invoke Bayes’ rule to find the posterior moments of F , conditioned
on the observed data (see Appendix B.1):

(F (·)|Yt) ∼ N
{

F̂t(·), Pt(·, ·)
}

, where

F̂t(x) = f0(x) + kt(x)>
(

Kt + σ2I
)−1

(Yt − f0) ,

Pt(x,x′) = k(x,x′) − kt(x)>
(

Kt + σ2I
)−1

kt(x
′). (2.4)

2.2 Markov Decision Processes

As mentioned above, Markov Decision Processes (MDPs), or a generalization thereof, known
as partially observable MDPs (POMDPs, Kaelbling et al. (1998)), provide the formal basis
underlying RL methodology. Let us denote by P(S) the set of probability distributions over
(Borel) subsets of a set S. A discrete time MDP is a tuple (X ,U , p0, p, q, γ), where X and
U are the state and action spaces, respectively; p0(·) ∈ P(X ) is a probability density from
which the initial state is drawn; p(·|x,u) ∈ P(X ) is a probability density over successor
states, conditioned on the current state x and action u; q(·|x) ∈ P(R) is a probability
density over immediate single-step rewards, conditioned on the current state.2 We denote
by R(x) the random variable distributed according to q(·|x). Finally, γ ∈ [0, 1] is a discount
factor. We assume that both p and q are stationary, that is, that they do not depend
explicitly on time.

In the context of control it is useful to make several additional definitions. A stationary
policy µ(·|x) ∈ P(U) is a time-independent mapping from states to action selection proba-
bilities. A given policy induces a policy-dependent state-transition probability distribution,
defined as3

pµ(x′|x) =

∫

U
duµ(u|x)p(x′|u,x). (2.5)

Hence, for a fixed policy µ and a fixed initial state x0, the probability (density) of observing
a sequence of states ξt = x0,x1, . . . ,xt is P(ξt) = p0(x0)

∏t
i=1 pµ(xi|xi−1).

Another useful quantity is the discounted return. The discounted return is a random
process, defined as

Dµ(x) =
∞
∑

i=0

γiR(xi)| (x0 = x) , where xi+1 ∼ pµ(·|xi) for all i ≥ 0, (2.6)

2. In the general case rewards may also depend on the action and the next state; to simplify the exposition we
assume that the reward associated with a transition from state x to state x

′ depends only on x. However,
the subsequent analysis can be easily generalized to accommodate less restrictive reward models.

3. Here and in the sequel, whenever integration is performed over a finite or discrete space, the integral
should be understood as a summation.
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and γ ∈ [0, 1] is the discount factor4. The randomness in Dµ(x0), for any given state x0,
is due both to the nondeterminacy of the sequence of states that follow x0, and to the
randomness, or noise, in the rewards R(x0), R(x1), . . . etc., both of which jointly constitute
the intrinsic randomness of the MDP.

Eq. 2.6 together with the stationarity of the MDP yield the recursive formula

Dµ(x) = R(x) + γDµ(x′), where x′ ∼ pµ(·|x). (2.7)

Let us define the expectation operator Eξ as the expectation over all possible trajectories
and all possible rewards collected therein. This allows us to define the value function V µ(x)
as the result of applying this expectation operator to the discounted return Dµ(x), i.e.,

V µ(x) = EξD
µ(x) (2.8)

Thus, applying Eξ to both sides of Eq. 2.7, and using the conditional expectation formula
(Scharf, 1991, Chapter 8), we get

V µ(x)
def

= EξD
µ(x) = Eξ

[

R(x) + γDµ(x′)
]

= R̄(x) + γEx′|xEµ

[

Dµ(x′)|x′]

= R̄(x) + γEx′|xV µ(x′),

where

Ex′|xV µ(x′) =

∫

X
dx′pµ(x′|x)V µ(x′), and

R̄(x) =

∫

R

drq(r|x)r is the expected reward at the state x.

The equality we have just established, namely that

V µ(x) = R̄(x) + γEx′|xV µ(x′) ∀x ∈ X , (2.9)

is the fixed-policy (i.e., single action) version of the Bellman equation (Bellman, 1957)5. A
policy that maximizes the expected discounted return from each state is called an optimal
policy, and is denoted by µ∗. In the case of stationary MDPs, there exists a determin-
istic optimal policy6. With some abuse of notation, we denote the action selected by a
deterministic policy µ, at a state x, by µ(x).

The value function corresponding to an optimal policy is called the optimal value, and
is denoted by V ∗ = V µ∗

. While there may exist more than one optimal policy, the optimal
value function is unique (Bertsekas, 1995), and may be computed by solving Bellman’s
optimality equation

V ∗(x) = R̄(x) + γ max
u

∫

X
dx′p(x′|u,x)V ∗(x′) ∀x ∈ X . (2.10)

4. When γ = 1 the policy must be proper, see Bertsekas and Tsitsiklis (1996)
5. A similar equation, satisfied by the variance of the discounted return, may be derived in an analogous

manner, this time using the conditional variance formula, see Sobel (1982) for details.
6. This is no longer the case for POMDPs and Markov Games, see Kaelbling et al. (1998); Littman (1994).
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Even if X is finite, and assuming for now, that both p and R̄ are known, solving the set
of equations (2.10) remains a non-trivial endeavor if |X | is large; since we are faced with a
set of |X | nonlinear equations. Ignoring this obstacle for the moment, let us assume that
we have already solved Eq. 2.10 for V ∗. Can we now compute an optimal policy µ∗ from
V ∗? The answer is affirmative and is a consequence of Bellman’s principle of optimality:
For any x ∈ X , an optimal deterministic decision rule is given by (Bellman, 1957)

µ∗(x) = argmax
u

∫

X
dx′p(x′|u,x)V ∗(x′). (2.11)

3. A Bayesian Approach to Value Estimation

In the preceding section we showed that the value V is the result of taking the expectation
of the discounted return D with respect to the randomness in the trajectories and in the
rewards collected therein7. In the classic, or frequentist approach V (·) is no longer random,
since it is the true, albeit unknown value function induced by the policy µ. Adopting
the Bayesian approach, we may still view the value V (·) as a random entity by assigning
it additional randomness that is due to our subjective uncertainty regarding the MDP’s
transition model (p, q). We do not know what the true distributions p and q are, which
means that we are also uncertain about the true value function. Previous attempts to
apply Bayesian reasoning to RL modeled this uncertainty by placing priors over the MDP’s
transition and reward model (p, q) and applying Bayes’ rule to update a posterior based
on observed transitions. This line of work may be traced back to the pioneering works by
Bellman (1956) and Howard (1960), followed by more recent contributions by Dearden et al.
(1998, 1999); Strens (2000); Duff (2002); Mannor et al. (2004); Wang et al. (2005); Poupart
et al. (2006). A major shortcoming of this approach is that the resulting algorithms are
limited to solving MDPs with finite (and typically rather small) state and action spaces,
due to the need to maintain a probability distribution over the MDP’s transition model.
In this work we pursue a different path – we choose to model our uncertainty about the
MDP by placing a prior (and updating a posterior) directly on V . We achieve this by
modeling V as a random process, or more specifically, as a Gaussian Process. This mirrors
the traditional classification of classical RL algorithms to either model-based or model-
free (direct) methods, (see Sutton and Barto, 1998, Chapter 9). Figure 1 illustrates these
different approaches.

To give a hint as to how we intend to proceed, let us consider a decomposition of the
discounted return into its mean (the value) and a zero-mean residual ∆V :

D(x) = EξD(x) + (D(x) −EξD(x))
def

= V (x) + ∆V (x) (3.1)

This decomposition is useful, since it separates the two sources of uncertainty inherent in
the discounted return process D: For a known MDP model, V is a (deterministic) function
and the randomness in D is fully attributed to the intrinsic randomness in the trajectories
generated by the MDP and policy pair, modeled by ∆V . On the other hand, in a MDP
in which both transitions and rewards are deterministic but otherwise unknown, ∆V is

7. Here and in the sequel we simplify notation by omitting the superscript µ from Dµ and V µ.
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Figure 1: An illustration of the frequentist as well as the two different Bayesian approaches
to value-function based reinforcement learning. In the traditional Bayesian RL
approach a prior is placed on the MDP’s model, whereas in our GPTD approach
the prior is placed directly on the value function. x, u and r denote state, action
and reward, respectively. The data required to learn value estimators typically
consists of a temporal stream of state-action-reward triplets. Another stream
of data is used to update the policy based on the current estimate of the value
function. A MDP and a stationary policy controlling it, jointly constitute a
Markov reward process (MRP). z−1 denotes the 1-step time-lag operator.

deterministic (identically zero), and the randomness in D is due solely to the extrinsic
Bayesian uncertainty, modeled by the random process V .

In this section we use this insight to derive a Gaussian process model relating values
and rewards.
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3.1 A Gaussian Process Model for Value Functions

In Section 2.2 we noted that the value V is the result of taking the expectation of the
discounted return D with respect to the randomness in the trajectories and in the rewards
collected therein (Eq. 2.8). Substituting Eq. 3.1 into Eq. 2.7 and rearranging we get

R(x) = V (x) − γV (x′) + N(x,x′),

where x′ ∼ pµ(·|x), and N(x,x′)
def

= ∆V (x) − γ∆V (x′). (3.2)

Assume we are provided with a sample trajectory x0,x1, . . . ,xt, then we may write the
model equations (3.2) for these samples, resulting in the following set of t equations

R(xi) = V (xi) − γV (xi+1) + N(xi,xi+1) for i = 0, . . . , t − 1. (3.3)

Let us denote

Rt = (R(x0), . . . , R(xt))
> , Vt = (V (x0), . . . , V (xt))

> , Nt = (N(x0,x1), . . . , N(xt−1,xt))
> .

(3.4)
Using these definitions we may write our set of model equations (3.3) concisely as

Rt−1 = HtVt + Nt, (3.5)

where

Ht =











1 −γ 0 . . . 0
0 1 −γ . . . 0
...

...
0 0 . . . 1 −γ











. (3.6)

In order to fully define a complete probabilistic generative model, we also need to specify
the distribution of the noise process Nt. We do this by modeling the residuals ∆V t =
(∆V (x0), . . . ,∆V (xt))

> as random Gaussian noise8. In particular, this means that the
distribution of the vector ∆V t is completely specified by its mean and covariance. Another
assumption we make is that each of the residuals ∆V (xi) is independently distributed. We
will discuss the implications of this assumption in Section 3.3. Denoting σ2

i = Var
[

D(xi)
]

,
the distribution of ∆V t is given by:

∆V t ∼ N
(

0,diag(σt)
)

,

where σt =
(

σ2
0 , σ2

1, . . . , σ2
t

)>
, and diag(·) denotes a diagonal matrix whose diagonal

elements are the components of the argument vector. Since Nt = Ht∆V t, we have Nt ∼

8. This may not be a correct assumption in general; however, in the absence of any prior information
concerning the distribution of the residuals, it is the simplest assumption we can make, since the Gaussian
distribution possesses the highest entropy among all distributions with the same covariance. It is also
possible to relax the Gaussianity requirement on both the prior and the noise. The resulting estimator
may then be shown to be the linear minimum mean-squared error estimator for the value.
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N (0,Σt) with,

Σt = Ht diag(σt)H
>
t (3.7)

=























σ2
0 + γ2σ2

1 −γσ2
1 0 . . . 0 0

−γσ2
1 σ2

1 + γ2σ2
2 −γσ2

2 0 . . . 0

0 −γσ2
2 σ2

2 + γ2σ2
3

. . .
...

... 0
. . .

. . .
. . . 0

0
...

. . .
. . . −γσ2

t−1

0 0 . . . 0 −γσ2
t−1 σ2

t−1 + γ2σ2
t























.

Fig. 2 illustrates the conditional independence relations between the latent value variables
V (xi), the noise variables ∆V (xi), and the observable rewards R(xi). Unlike GP regression,
there are vertices connecting variables from different time steps, making the ordering of
samples important. Also note that, for the last state in each episode (xt, in the figure),
R(xt) depends only on V (xt) and ∆V (xt) (as in Eq. 3.11).

V(x )∆ V(x )∆V(x )∆ V(x )∆V(x   )∆

R(x )

V(x ) V(x )

1

1

R(x )

V(x )

1

R(x )

V(x )
0

0

0

2

2

t

t

t

R(x   )

V(x   )
t−1

t−1

t−1

.   .   .   .  

Figure 2: A graph illustrating the conditional independencies between the latent V (xi)
value variables (bottom row), the noise variables ∆V (xi) (top row), and the
observable R(xi) reward variables (middle row), in the GPTD model. As in the
case of GP regression, all of the V (xi) variables should be connected by arrows,
due to the dependencies introduced by the prior. To avoid cluttering the diagram,
this was marked by the dashed frame surrounding them.

Eq. 3.5, along with a Gaussian prior distribution on V , and a Gaussian measurement
noise distribution, define a linear statistical model (Scharf, 1991) connecting the value and
reward random processes. Bayes’ rule may then be used to compute the posterior distribu-
tion of V conditioned on the observed sequence of rewards, as was done in Section 2.1 for
GP regression.

Let us now compute the posterior moments, conditioned on the state-reward trajectory
up to time t. Application of Bayes’ rule yields the marginal posterior distribution9 of

9. We refer to the distribution of V (x) as a marginal, since, to obtain this distribution, we effectively
integrate out all other variables in V , namely V (x′) for all x

′ ∈ X\{x}.
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the value at a query point x, conditioned on the observed sequence of rewards rt−1 =
(r0, . . . , rt−1)

> (see Section B.2 in the appendix):

(V (x)|Rt−1 = rt−1) ∼ N
{

V̂t(x), Pt(x,x)
}

, (3.8)

where

V̂t(x) = kt(x)>H>
t Qtrt−1, Pt(x,x′) = k(x,x′) − kt(x)>H>

t QtHtkt(x
′), (3.9)

Qt = (HtKtH
>
t + Σt)

−1, Σt = Cov[Nt].

The expressions above can be cast in a somewhat more concise form, by separating the
input dependent terms from the learned terms:

V̂t(x) = α>
t kt(x), Pt(x,x′) = k(x,x′) − kt(x)>Ctkt(x

′), (3.10)

where αt = H>
t Qtrt−1 and Ct = H>

t QtHt are independent of x and x′.
Due to the special structure of the noise covariance matrix Σt, it is possible to derive

recursive updates for αt and Ct. The complete derivation may be found in Appendix A.2.
The updates are:

αt =

(

αt−1

0

)

+
ct

st
dt, Ct =

[

Ct−1 0
0> 0

]

+
1

st
ctc

>
t

with

ct =
γσ2

t−1

st−1

(

ct−1

0

)

+ ht −
(

Ct−1∆kt

0

)

, dt =
γσ2

t−1

st−1
dt−1 + rt−1 −∆k>

t αt−1,

st = σ2
t−1 + γ2σ2

t − γ2σ4
t−1

st−1
+ ∆ktt −∆k>

t Ct−1∆kt +
2γσ2

t−1

st−1
c>t−1∆kt.

Above we made use of the following definitions:

ht = (0, . . . , 1,−γ)> , ∆kt = kt−1(xt−1) − γkt−1(xt),

∆ktt = k(xt−1,xt−1) − 2γk(xt−1,xt) + γ2k(xt,xt).

It may be readily verified that these recursions should be initialized as follows:

α0 = 0, C0 = 0, c0 = 0, d0 = 0, 1/s0 = 0.

The pseudocode for this algorithm is given in Algorithm 1. Note that the term driving the
update of dt, namely rt−1 − ∆k>

t αt−1, is the temporal difference at time t, since rt−1 −
∆k>

t αt−1 = rt−1 + γV̂t−1(xt) − V̂t−1(xt−1).

3.2 Episodic Tasks

Let us consider how the GPTD model described above needs to be modified to handle
episodic learning tasks. Whereas in continual tasks, in which the RL agent is placed in
some starting state, and is then allowed to wander-off indefinitely, in episodic tasks the

11
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Algorithm 1 A recursive Monte-Carlo GPTD algorithm

Initialize α0 = 0, C0 = 0, D0 = {x0}, c0 = 0, d0 = 0, 1/s0 = 0
for t = 1, 2, . . .

observe xt−1, rt−1, xt

ht = (0, . . . , 1,−γ)>

∆kt = kt−1(xt−1) − γkt−1(xt)
∆ktt = k(xt−1,xt−1) − 2γk(xt−1,xt) + γ2k(xt,xt)

ct =
γσ2

t−1

st−1

(

ct−1

0

)

+ ht −
(

Ct−1∆kt

0

)

dt =
γσ2

t−1

st−1
dt−1 + rt−1 −∆k>

t αt−1

st = σ2
t−1 + γ2σ2

t − γ2σ4
t−1

st−1
+ ∆ktt −∆k>

t Ct−1∆kt +
2γσ2

t−1

st−1
c>t−1∆kt

αt =

(

αt−1

0

)

+ ct

st
dt

Ct =

[

Ct−1 0
0> 0

]

+ 1
st

ctc
>
t

Dt = Dt−1 ∪ {xt}
end for
return αt, Ct, Dt

state space is assumed to contain an absorbing, terminal state into which the agent is
assured to transition after a finite, but possibly random, number of time-steps. A terminal
state may be thought of as a state from which there are only zero-reward self-transitions,
for all actions. In episodic RL tasks, when such a state is reached, the episode terminates
and the agent is placed in a new, usually random state (drawn from p0) to begin a new
episode.

As far as value estimation is concerned, the key property of terminal states is that, once
a terminal state is reached, all subsequent rewards vanish. Therefore, both the discounted
return and the value of a terminal state vanish, implying that the discounted return and
the value of the state immediately preceding the terminal state are equal to that state’s
reward and expected reward, respectively. Specifically, if the last time-step in an episode is
t (i.e., xt+1 is a terminal state), the last equation in the system of equations (3.5) reads

R(xt) = V (xt) + N(xt). (3.11)

Hence, for the first episode, Ht+1 becomes the following (t + 1) × (t + 1) square invertible
matrix (its determinant equals 1),

Ht+1 =















1 −γ 0 . . . 0
0 1 −γ . . . 0
...

...
0 0 . . . 1 −γ
0 0 . . . 0 1















. (3.12)

12
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The noise covariance matrix for the first episode becomes (compare this to Eq. 3.7)

Σt+1 = Ht+1 diag(σt)H
>
t+1 (3.13)

=























σ2
0 + γ2σ2

1 −γσ2
1 0 . . . 0 0

−γσ2
1 σ2

1 + γ2σ2
2 −γσ2

2 0 . . . 0

0 −γσ2
2 σ2

2 + γ2σ2
3

. . .
...

... 0
. . .

. . .
. . . 0

0
...

. . .
. . . −γσ2

t

0 0 . . . 0 −γσ2
t σ2

t























.

Finally, our set of model equations is now (compare to Eq. 3.5)

Rt = Ht+1Vt + Nt+1. (3.14)

After a sequence of such learning episodes, each ending in a terminal state, Ht+1 is a square
block-diagonal matrix with each block being of the form of the r.h.s. of (3.12). The noise
covariance matrix maintains a corresponding block-diagonal structure, in which each block
of Σt is a tridiagonal matrix of the form (3.13).

In order to derive the updates corresponding to the last transition in an episode, it is
useful to make the observation that Eq. 3.11, 3.12 and 3.14 could be obtained simply by
temporarily setting the discount factor γ to zero, only for the transition from xt to the
terminal state. However, since the update equations contain discount factors from two
consecutive time steps, some care must be exercised. By tagging each γ with its respective
time-step, we obtain the following set of equations for the update corresponding to the last
transition in an episode (we denote e = (0, . . . , 0, 1)>):

αt+1 = αt +
ct+1

st+1
dt+1 , Ct+1 = Ct +

1

st+1
ct+1c

>
t+1, (3.15)

where

ct+1 =
γσ2

t

st
ct + e−Ctkt(xt), dt+1 =

γσ2
t

st
dt + rt − kt(xt)

>αt,

st+1 = σ2
t + kt(xt)

>
(

ct+1 +
γσ2

t

st
ct

)

− γ2σ4
t

st
. (3.16)

Note that we avoid performing the matrix-vector multiplication Ctkt(xt) in computing st+1,
by using ct+1 computed in the c-update. Further simplification results from the fact that
ktt − kt(xt)

>e = 0. This simple trick is applicable in all updates, not just the final one.

3.3 Relation to Monte-Carlo Estimation

The assumption on the independence of the residuals made in Section 3.1 can be related to
a well known Monte-Carlo method for value estimation, see Bertsekas and Tsitsiklis (1996,
Chapters 5, 6) and Sutton and Barto (1998). Monte-Carlo policy evaluation reduces the
problem of estimating the value function into a supervised regression problem, in which the
target values in the regression are samples of the discounted return. In the episodic setting
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discussed above, we may obtain such samples by waiting until the end of the episode, while
noting for each state encountered in the sample path, the sum of the discounted rewards
from that point until the episode’s last time-step. In the non-episodic setting, if discounted
rewards are summed over a period of time τ � 1

1−γ (the horizon time) then the error
introduced by truncating the sum after τ time-steps will be small. However, in the interest
of clarity, let us limit our discussion in this section to the episodic setting. Suppose that
the last non-terminal state in the current episode is xt, then the Monte-Carlo training set
is (xi, yi)

t
i=0 with

yi =

t
∑

j=i

γj−irj, (3.17)

where rj is the reward observed at the j’th time step.
It is interesting to note that, in the episodic setting, we can establish a connection

between our GPTD models and GP regression models. This is done by performing a
whitening transformation on Eq. 3.14. Since the noise covariance matrix Σt+1 is posi-

tive definite, there exists a square matrix Σ
−1/2
t+1 satisfying Σ

−1/2
t+1

>
Σ

−1/2
t+1 = Σ−1

t+1. Mul-

tiplying Eq. (3.14) by Σ
−1/2
t+1 we then get Σ

−1/2
t+1 Rt = Σ

−1/2
t+1 Ht+1Vt + Σ

−1/2
t+1 Nt+1. The

transformed noise term Σ
−1/2
t+1 Nt+1 has a covariance matrix given by Σ

−1/2
t+1 Σt+1Σ

−1/2
t+1

>
=

Σ
−1/2
t+1 (Σ

−1/2
t+1

>
Σ

−1/2
t+1 )−1Σ

−1/2
t+1

>
= I. Thus, the transformation Σ

−1/2
t+1 whitens the noise. In

our case, a whitening matrix is given by

H−1
t+1 =











1 γ γ2 . . . γt

0 1 γ . . . γt−1

...
...

0 0 0 . . . 1











(3.18)

(showing that H−1
t+1 is indeed given by the matrix above is an easy exercise). The trans-

formed model is H−1
t+1Rt = Vt + N ′

t with white Gaussian noise, since N ′
t = H−1

t+1Nt+1 ∼
N{0,diag(σt)}. Let us look at the i’th equation (i.e., row) of this transformed model:

R(xi) + γR(xi+1) + . . . + γt−iR(xt) = V (xi) + N ′(xi), (3.19)

where N ′(xi) ∼ N{0, σ2
i }. The l.h.s. of Eq. 3.19 is the discounted return of the path

(xi, . . . ,xt). Let us denote by Yt the random vector, whose i-th component is (Yt)i =
R(xi)+γR(xi+1)+ . . .+γt−iR(xt), and by (yt)i =

∑t
j=i γ

j−irj a sampled instance of (Yt)i.
Eq. 3.19 becomes Yt = Vt +N ′

t , which is readily recognized as a (white noise) GP regression
model (see Eq. 2.2), in which the targets are Monte-Carlo samples of the discounted return.
Finally, the parameters αt+1 and Ct+1 defining the posterior moments are given by (see
Eq. 2.4)

αt+1 =
(

Kt + σ2I
)−1

yt, and Ct+1 =
(

Kt + σ2I
)−1

.

This equivalence between the MC-GPTD model and a GP regression model uncovers
the implicit assumption underlying MC value estimation; namely, that the samples of the
discounted return used for regression are statistically independent. In a typical online RL
scenario, this assumption is clearly incorrect, as the samples of the discounted return are

14
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based on trajectories that partially overlap (for instance, for two consecutive states, xi and
xi+1, the respective trajectories only differ by a single state – xi). This may help explain
the frequently observed advantage of TD methods using λ < 1 over the corresponding
Monte-Carlo (i.e., λ = 1) methods. The major benefit in using the GPTD formulation is
that, in episodic RL tasks, it allows us to derive exact updates of the parameters of the
posterior value mean and covariance that may be computed online, rather than having to
wait until the end of the episode. This also justifies referring to the GP model described in
this section, as well as to Algorithm 1, as the Monte-Carlo GPTD (MC-GPTD) algorithm.
Note that in non-episodic tasks we do not have such an equivalence result, except in the
limit of infinitely long trajectories.

3.4 Sparse Online Algorithms

Algorithm 1 described above, though recursive, is not amenable to the online setting10.
This is due to the fact that the cost of computing the update at time-step t is O(t2) in
both time and memory. In the online, or real-time setting we require the computational
costs at time-step t to be independent of t, at least asymptotically. There are two general
approaches for adapting the algorithms described above to this setting. One amounts to
deriving and using parametric counterparts of these GPTD models and algorithms. We
defer discussion of this approach to Section 3.5. In the current section we describe another
approach, which is based on an efficient sequential kernel sparsification method, resulting
in semi-parametric expressions for the posterior moments.

In Engel et al. (2002) an online sparsification method for kernel algorithms was pro-
posed in the context of Support Vector Regression. This method is based on the following
observation: Due to Mercer’s Theorem the covariance kernel function k(·, ·) may be viewed
as an inner product in a generally infinite-dimensional Hilbert space H (see Schölkopf and
Smola (2002); Shawe-Taylor and Cristianini (2004) for details). This means that there
exists a generally non-linear mapping φ : X → H for which

〈

φ(x),φ(x′)
〉

H = k(x,x′).
Although the dimension of H may be exceedingly high, the dimensionality of the manifold
spanned by the set of vectors {φ(xi)}t

i=0 is at most t, and may be lower if linear dependen-
cies between the different φ(xi) vectors occur. Consequently, any expression describable
as a linear combination of these vectors may be expressed in terms of an arbitrary set of
linearly independent feature vectors which span this manifold (i.e., a basis). When such a
basis consists of a subset of {φ(xi)}t

i=0 we refer to it, as well as to the corresponding set of
input points as a dictionary; which of the two we refer to should be clear from the context.
Furthermore, rather than insisting on dictionaries that exactly span the manifold, we will
content ourselves with dictionaries that approximately span it. Specifically, we are inter-
ested in dictionaries for which the distance (as measured by the norm in H) between any of
the feature vectors in {φ(xi)}t

i=0 and the manifold spanned by the dictionary is bounded
by a small positive constant.11

10. In learning theory the term “online” has a different meaning from the one we use here. By “online” we
qualify merely the computational aspect of the algorithm – see below.

11. Based on similar ideas, several other sparsification algorithms have been previously proposed, e.g. Burges
(1996); Smola and Bartlett (2001); Williams and Seeger (2001); Csató and Opper (2002), to mention a
few. However, all but the latter are inapplicable to the online setting.
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Taking advantage of this insight our sparsification method starts with an empty dic-
tionary D0 = {}. It observes the sequence of states x0,x1, . . . one state at a time. xt

is admitted into the dictionary only if its feature space image φ(xt) cannot be approx-
imated sufficiently well by combining the images of states already in the dictionary –
Dt−1 = {x̃1, . . . , x̃mt−1

}. Given the set of mt−1 linearly independent dictionary feature
vectors at time t − 1, {φ(x̃j)}mt−1

j=1 , we seek the least squares approximation of φ(xt) in
terms of this set. It can be easily verified that this approximation is given by the solution
to the following quadratic minimization problem (Engel, 2005, Section 2.2):

min
a

{

a>K̃t−1a − 2a>k̃t−1(xt) + ktt

}

, (3.20)

where K̃t−1 is the kernel matrix of the dictionary states a time t−1 (i.e., [K̃t−1]i,j = k(x̃i, x̃j)
with i, j = 1, . . . ,mt−1), k̃t−1(x) = (k(x̃1,x), . . . , k(x̃mt−1

,x))> and ktt = k(xt,xt). The

solution to (3.20) is at = K̃−1
t−1k̃t−1(xt), and substituting it back into (3.20) we obtain the

squared error (or distance in H) incurred by the approximation,

δt = ktt − k̃t−1(xt)
>at = ktt − k̃t−1(xt)

>K̃−1
t−1k̃t−1(xt). (3.21)

If δt > ν, where ν is an accuracy threshold parameter, we add xt to the dictionary, set
at = (0, . . . , 1)> and δt = 0, since φ(xt) is exactly represented by a term in the dictionary,
namely itself. If δt ≤ ν the dictionary remains unchanged. Either way we are assured that
all the feature vectors corresponding to the states seen until time t can be approximated by
the dictionary at time t with a maximum squared error ν, namely

φ(xi) =

mi
∑

j=1

ai,jφ(x̃j) + φres
i where ‖φres

i ‖2 ≤ ν. (3.22)

It is easy to show that δt may also be interpreted as the variance of the value V (xt) of
the current state xt, given the values of the current dictionary points V (x̃1), . . . , V (x̃|Dt−1|).
This provides a complementary probabilistic viewpoint on our choice of sparsification cri-
terion. Put explicitly, xt will be added to the dictionary if, assuming that the values of the
current dictionary points were exactly known, the remaining uncertainty in the value at xt

(quantified by the conditional variance) is still larger than ν. Again, if xt is added to the
dictionary this conditional variance vanishes, and so does δt.

In order to be able to efficiently compute at at each time step, we need to update K̃−1
t

whenever the dictionary is appended with a new state. This is done via the partitioned
matrix inversion formula (see Appendix B.4):

K̃t =

[

K̃t−1 k̃t−1(xt)

k̃t−1(xt)
> ktt

]

⇒ K̃−1
t =

1

δt

[

δtK̃
−1
t−1 + âtâ

>
t −ât

−â>
t 1

]

, (3.23)

where ât = K̃−1
t−1k̃t−1(xt). Note that ât is identical to the vector at computed in solving

(3.20) (i.e., before it was reset to (0, . . . , 0, 1)>), so there is no need to recompute it.
Defining the matrices12 [At]i,j = ai,j , Φt = [φ(x1), . . . ,φ(xt)], and Φres

t = [φres
1 , . . . ,φres

t ]
we may write Eq. (3.22) for all time-steps up to t, concisely as

Φt = Φ̃tA
>
t + Φres

t . (3.24)

12. Due to the sequential nature of the algorithm, for j > mi, [At]i,j = 0.
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By premultiplying (3.24) with its transpose we obtain a decomposition of the full t×t kernel
matrix Kt = Φ>

t Φt into two matrices:

Kt = AtK̃tA
>
t + Kres

t (3.25)

where K̃t = Φ̃
>
t Φ̃t. The matrix AtK̃tA

>
t is a rank mt approximation of Kt. It can be

shown that the norm of the residual matrix Kres
t is bounded from above by a factor linear

in
√

ν. Consequently we make the following approximations (The notation

√
ν≈ means that

the norm of the difference between the terms on either side of this sign is bounded by a
constant linear in

√
ν):

Kt

√
ν≈ AtK̃tA

>
t , kt(x)

√
ν≈ Atk̃t(x). (3.26)

We note that the computational cost per time step of this sparsification algorithm is O(m2
t )

which, assuming mt does not depend asymptotically on t, is independent of time13. Our
online semi-parametric version of the GPTD algorithm draws its computational leverage
from the low rank approximation provided by this sparsification algorithm. For further
details on properties of this algorithm, as well as on its connection with kernel principal
components analysis (kernel PCA), see Engel (2005).

We are now ready to incorporate this sparsification method into the recursive updates of
the GPTD posterior moments derived in the preceding sections (As long as Σt is unspecified,
the discussion here pertains to both the deterministic and MC-GPTD models). Substituting
the approximations (3.26) into the exact GP solution (3.10) we obtain

V̂t(x)

√
ν≈ α>

t Atk̃t(x) = α̃>
t k̃t(x), (3.27)

Pt(x,x′)
√

ν≈ k(x,x′) − kt(x)>A>
t CtAtkt(x

′) = k(x,x′) − k̃t(x)>C̃tk̃t(x
′),

where we used the definitions

H̃t = HtAt, Q̃t =
(

H̃tK̃tH̃
>
t + Σt

)−1
,

α̃t = H̃>
t Q̃trt−1, C̃t = H̃>

t Q̃tH̃t. (3.28)

Note that the parameters we are required to store and update in order to evaluate the
posterior mean and covariance are now α̃t and C̃t, the dimensions of which are mt × 1 and
mt ×mt, respectively. Here we quote the updates for the MC-GPTD model. The complete
derivation may be found in Appendix A.3.

At each time step, the current sampled state xt may either be left out of the dictionary
(Dt = Dt−1), or added to it (Dt = Dt−1 ∪ {xt}). In the latter case the dimensions of α̃ and
C̃ increase by 1. The updates in each case are a little different. In either one of the two
cases we use the definition

∆k̃t = k̃t−1(xt−1) − γk̃t−1(xt).

13. We can bound mt under mild assumptions on the kernel and the space X , see Engel (2005) for details.
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Algorithm 2 A recursive sparse Monte-Carlo GPTD algorithm

Parameters: ν
Initialize D0 = {x0}, K̃−1

0 = 1/k(x0,x0), a0 = (1), α̃0 = 0, C̃0 = 0, c̃0 = 0, d0 = 0,
1/s0 = 0
for t = 1, 2, . . .

observe xt−1, rt−1, xt

at = K̃−1
t−1k̃t−1(xt)

δt = k(xt,xt) − k̃t−1(xt)
>at

∆̃kt = k̃t−1(xt−1) − γk̃t−1(xt)

dt =
γσ2

t−1

st−1
dt−1 + rt−1 − ∆̃k>

t α̃t−1

if δt > ν
compute K̃−1

t (3.23)
at = (0, . . . , 1)>

h̃t = (at−1,−γ)>

∆ktt = a>
t−1

(

k̃t−1(xt−1) − 2γk̃t−1(xt)
)

+ γ2ktt

c̃t =
γσ2

t−1

st−1

(

c̃t−1

0

)

+ h̃t −
(

C̃t−1∆k̃t

0

)

st = σ2
t−1 + γ2σ2

t + ∆ktt − ∆̃k>
t C̃t−1∆k̃t +

2γσ2
t−1

st−1
c̃>t−1∆k̃t − γ2σ4

t−1

st−1

α̃t−1 =

(

α̃t−1

0

)

C̃t−1 =

[

C̃t−1 0
0> 0

]

else
h̃t = at−1 − γat

∆ktt = h̃>
t ∆k̃t

c̃t =
γσ2

t−1

st−1
c̃t + h̃t − C̃t−1∆k̃t

st = σ2
t−1 + γ2σ2

t + ∆k̃>
t

(

c̃t + γσ2

st−1
c̃t−1

)

− γ2σ4

t−1

st−1

end if
α̃t = α̃t−1 + c̃t

st
dt

C̃t = C̃t−1 + 1
st

c̃tc̃
>
t

end for
return Dt, α̃t, C̃t
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Case 1. Dictionary remains unchanged: Dt = Dt−1:

α̃t = α̃t−1 +
c̃t

st
dt , C̃t = C̃t−1 +

1

st
c̃tc̃

>
t , (3.29)

where

c̃t =
γσ2

t−1

st−1
c̃t−1 + h̃t − C̃t−1∆̃kt

dt =
γσ2

t−1

st−1
dt−1 + rt−1 − ∆̃k>

t α̃t−1

st = σ2
t−1 + γ2σ2

t + ∆̃k>
t

(

c̃t +
γσ2

st−1
c̃t−1

)

− γ2σ4
t−1

st−1
, (3.30)

with the definitions h̃t = at−1 − γat and ∆ktt = h̃>
t ∆̃kt.

Case 2. Dictionary is appended with xt: Dt = Dt−1 ∪ {xt}:

α̃t =

(

α̃t−1

0

)

+
c̃t

st
dt , C̃t =

[

C̃t−1 ,0
0> , 0

]

+
1

st
c̃tc̃

>
t , (3.31)

where

c̃t =
γσ2

t−1

st−1

(

c̃t−1

0

)

+ h̃t −
(

C̃t−1∆̃kt

0

)

,

dt =
γσ2

t−1

st−1
dt−1 + rt−1 −∆k̃>

t α̃t−1,

st = σ2
t−1 + γ2σ2

t + ∆ktt − ∆̃k>
t C̃t−1∆̃kt +

2γσ2
t−1

st−1
c̃>t−1∆̃kt −

γ2σ4
t−1

st−1
, (3.32)

with the definitions

h̃t =

(

at−1

0

)

− γat =

(

at−1

−γ

)

, ∆ktt = a>
t−1

(

k̃t−1(xt−1) − 2γk̃t−1(xt)
)

+ γ2ktt.

The pseudocode for this algorithm is provided in Algorithm 2.

3.5 Parametric GPTD Models

Another approach that allows us to bound the computational cost per time-step is to pa-
rameterize the value function by a finite set of random variables W = (w1, . . . , wn)> in
such a way as to preserve the linearity of the generative model. This leads to the following
parameterization

V (x) =

n
∑

j=1

φj(x)wj = φ(x)>W, (3.33)

where φ(x) = (φ1(x), . . . , φn(x))> is a vector of n fixed basis functions. In this parametric
model, the randomness in the value function is due to W . In order to use Bayesian reasoning,
a prior must be placed on W , which, with no loss of generality14, we take to be distributed

14. For any other prior covariance matrix, the corresponding set of basis functions may be linearly trans-
formed into a new set of basis functions for which the parameter covariance matrix is I, and the value
covariance is unchanged.
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as N (0, I), where 0 is a null vector (of zeros), and I is the identity matrix. This induces
a Gaussian prior distribution over the value random process, which makes it a GP, with
easily computed moments:

E[V (x)] = φ(x)>E(W ) = 0

Cov[V (x), V (x′)] = φ(x)>E[WW>]φ(x′) = φ(x)>φ(x′).

The parametric approach is most suitable in cases where domain knowledge may be used to
construct a set of basis functions the span of which is known to include good approximations
of the true value function. However, if in the parametric approach the set of basis functions
employed satisfies φ(x)>φ(x′) = k(x,x′) for almost all x,x′ ∈ X , then the two approaches
– parametric and nonparametric (kernel based) – become equivalent.

The values of the states seen until time-step t satisfy

Vt = Φ>
t W, where Φt = [φ(x0), . . . ,φ(xt)] . (3.34)

The posterior moments, conditioned on an observed sequence of rewards rt−1 = (r0, . . . , rt−1)
>,

are now easily derived:

ŵt
def

= E [W |Rt−1 = rt−1] = ΦtH
>
t Qtrt−1, (3.35)

Pt
def

= Cov [W |Rt−1 = rt−1] = I−ΦtH
>
t QtHtΦ

>
t , (3.36)

where Qt =
(

HtΦ
>
t ΦtH

>
t + Σt

)−1
.

For convenience, let us define the d × 1 vector ∆φt and the d × t matrix ∆Φt, as

∆φt
def

= φ(xt−1) − γφ(xt), and ∆Φt
def

= ΦtH
>
t =

[

∆φ1, . . . ,∆φt

]

, (3.37)

respectively15. Using the Transparency Lemma (Appendix B.5), it is easy to verify that
alternative, more computationally efficient expressions for the posterior moments may be
obtained (assuming t > n, where n is number of basis functions):

Pt =
(

ΦtH
>
t Σ−1

t HtΦ
>
t + I

)−1
=
(

∆ΦtΣ
−1
t ∆Φ>

t + I
)−1

, (3.38)

ŵt = PtΦtH
>
t Σ−1

t rt−1 = Pt∆ΦtΣ
−1
t rt−1. (3.39)

Whereas the expressions in Eq. 3.35, 3.36 involve inverting a t× t matrix, here the inversion
is of an n × n matrix.

It is instructive to note that the same kind of analysis also applies to the nonparametric
case. Here again, it is easy to derive alternative expressions for αt and Ct:

αt =
(

H>
t Σ−1

t HtKt + I
)−1

H>
t Σ−1

t rt−1, (3.40)

Ct =
(

H>
t Σ−1

t HtKt + I
)−1

H>
t Σ−1

t Ht. (3.41)

15. If xt is the last state of an episode, then ∆φt = φ(xt).
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In contrast to the parametric case, these alternative expressions do not confer any compu-
tational advantage over the original ones. However, this alternative representation of the
Bayesian solution serves as a link to the nonparametric MAP and ML solutions, as we shall
see below.

Our next goal is to obtain the parametric updates for the MC-GPTD model. For
brevity, we forgo the derivation of a batch algorithm, which may be found in Engel (2005),
and proceed with the derivation of a recursive algorithm.

Rather than starting from the alternative expressions (3.38, 3.39), we base the derivation
of the updates on the original expressions of (3.35, 3.36). The derivation is given in full in
Appendix A.1. The resulting recursive updates are:16

ŵt = ŵt−1 +
1

st
ptdt, Pt = Pt−1 −

1

st
ptp

>
t , (3.42)

where

pt =
γσ2

t−1

st−1
pt−1 + Pt−1 (φ(xt−1) − γφ(xt))

dt =
γσ2

t−1

st−1
dt−1 + rt−1 − (φ(xt−1) − γφ(xt))

> ŵt−1

st = σ2
t−1 + γ2σ2

t − γ2σ4
t−1

st−1
+

(

pt +
γσ2

t−1

st−1
pt−1

)>
(φ(xt−1) − γφ(xt)) (3.43)

It can be easily verified that these recursions should be initialized as follows:

ŵ0 = 0, P0 = I, p0 = 0, d0 = 0, 1/s0 = 0.

Algorithm 3 provides the pseudocode for this algorithm.
The analysis carried out in Section 3.3 involving a noise whitening transformation applies

equally well here, with the conclusion being that at the end of an episode the solution
arrived at by MC-GPTD is the same as the solution attained by performing GP regression
(parametric, this time) on MC samples of the discounted return. Therefore, at the end of
an episode, the parametric solution for the MC-GPTD model, assuming a constant noise
variance σ2, is given by

ŵt+1 = E (W |Yt = yt) =
(

ΦtΦ
>
t + σ2I

)−1
Φtyt,

Pt+1 = Cov (W |Yt = yt) = σ2
(

ΦtΦ
>
t + σ2I

)−1
. (3.44)

4. Connections with Other TD Methods

In Engel et al. (2003) we derived a generative model, similar to the one derived here,
which is applicable only to MDPs with deterministic transitions. Surprisingly, the only

16. Since our model is essentially the Kalman Filter (KF) model, less the state dynamics, we could have used
the measurement updates of the KF (Scharf, 1991, Chapters 7, 8) to derive the GPTD updates. This,
however, is complicated by our correlated noise model, which would require us to introduce auxiliary
state variables. Instead, we take the possibly longer, but more instructive route, and derive the updates
directly.
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Algorithm 3 A recursive parametric Monte-Carlo GPTD algorithm

Initialize ŵ0 = 0, P0 = I, p0 = 0, d0 = 0, 1/s0 = 0
for t = 1, 2, . . .

observe xt−1, rt−1, xt

∆φt = φ(xt−1) − γφ(xt)

pt =
γσ2

t−1

st−1
pt−1 + Pt−1∆φt

dt =
γσ2

t−1

st−1
dt−1 + rt−1 −∆φ>

t ŵt−1

st = σ2
t−1 + γ2σ2

t − γ2σ4
t−1

st−1
+
(

pt +
γσ2

t−1

st−1
pt−1

)>
∆φt

ŵt = ŵt−1 + 1
st

ptdt

Pt = Pt−1 − 1
st

ptp
>
t

end for
return ŵt, Pt

difference between these two models is in the measurement noise statistics. Specifically, in
the model presented in Engel et al. (2003) the noise covariance matrix is diagonal, whereas
in the MC-GPTD model presented here, it is tridiagonal. We are therefore inclined to
adopt a broader view of GPTD as a general GP-based framework for Bayesian modeling of
value functions. This, more general view, encompasses linear statistical models of the form
Rt−1 = HtVt + Nt, with Ht given by (3.6) (or (3.12) at the end of an episode), a Gaussian
prior placed on V , and an arbitrary zero-mean Gaussian noise process N . No doubt, most
such models will be meaningless from a value estimation point of view, while others may not
admit efficient recursive algorithms for computing the posterior value moments. However,
if the noise covariance Σt is suitably chosen, and if it is additionally simple in some way,
then we may be able to derive such a recursive algorithm to compute complete posterior
value distributions, online. In this section we show that by employing alternative forms of
noise covariance, we are able to obtain GP-based variants of LSTD(λ) (Bradtke and Barto,
1996; Boyan, 1999). In order to demonstrate this, we need to consider first the Maximum
Likelihood (ML) solution for our MC-GPTD model.

4.1 A Maximum Likelihood Variant of MC-GPTD

In certain cases, one may prefer to forgo specifying a prior over the weight vector W . In such
cases, one can no longer perform Bayesian analysis, but it is nevertheless still possible to
perform classical ML inference to find ŵML – the value of W for which the observed data is
most likely, according to the statistical model of Eq. 3.5. Due to the normality assumption,
ignoring terms independent of W , the log-likelihood of W , based on the sequence of observed
rewards is

log P(Rt−1 = rt−1|W ) ∝ −
(

rt−1 −∆Φ>
t W

)>
Σ−1

t

(

rt−1 −∆Φ>
t W

)

. (4.1)

The maximum-likelihood (ML) problem therefore reduces to the minimization of a simple
quadratic form:

min
w

{

(

rt−1 −∆Φ>
t w
)>

Σ−1
t

(

rt−1 −∆Φ>
t w
)

}

, (4.2)
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the solution of which is given by (recall that ∆Φt = ΦtH
>
t )

ŵML
t =

(

ΦtH
>
t Σ−1

t HtΦ
>
t

)−1
ΦtH

>
t Σ−1

t rt−1. (4.3)

As we saw in Section 3.3, at the end of an episode Ht is invertible and is given by
Eq. 3.18. The inverse noise covariance, assuming for simplicity a constant residual vari-
ance Var [∆V ] = σ2I, is given by

Σ−1
t−1 =

1

σ2
H>

t+1
−1

Ht+1
−1.

Therefore, Eq. 4.3 becomes

ŵML
t+1 =

(

ΦtΦ
>
t

)−1
ΦtH

−1
t+1rt (4.4)

From the formula for H−1
t+1 we infer that H−1

t+1rt = yt, where the i’th component of yt is

yi =
∑t

j=i γ
j−irj (see Eq. 3.17). We therefore conclude that our parametric ML solution is

precisely the LSTD(1) solution. It is equally straightforward to show that TD(1) may be
derived as a gradient ascent method for maximizing the log-likelihood (4.1), with a fixed
residual variance σ2. The derivation may be found in Engel (2005).

As with any other ML estimator, it should be cautioned that the ML variant will tend
to overfit the data, until the number of samples considerably exceeds the dimensionality of
the feature space φ(X ) (i.e., the number of independent adjustable parameters). GPTD
solutions avoid overfitting by virtue of the regularizing influence of the prior. For this reason,
for all practical purposes, we consider MC-GPTD, in its original form, to be preferable to
its ML variant, namely, LSTD(1).

A natural question to ask at this point is whether LSTD(λ) for λ < 1 may also be
derived as a ML solution arising from some other GPTD generative model. We address this
issue next.

4.2 LSTD(λ) as a Maximum Likelihood Algorithm

LSTD(λ) with linear function approximation solves the following set of linear equations
(Bradtke and Barto, 1996; Boyan, 1999):

Btŵt = bt, where Bt =

t−1
∑

i=0

zi (φ(xi) − γφ(xi+1))
> and bt =

t−1
∑

i=0

ziri. (4.5)

In both TD(λ) and LSTD(λ) a vector zt of eligibilities is maintained, using the recursion

zt = γλzt−1 + φ(xt), with z0 = φ(x0).

These eligibility vectors may be arranged in an n × t eligibility matrix Z
(λ)
t , defined by

Z
(λ)
t =

[

z0, . . . , zt−1

]

.

Using Z
(λ)
t and the definition of ∆Φt (3.37), we may write Bt and bt from Eq. 4.5, as

Bt = Z
(λ)
t ∆Φ>

t , and bt = Z
(λ)
t rt−1.
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Bt is an n × n square matrix, and for t ≥ n, assuming no state is visited twice, it is of full
rank (i.e., its null-space is {0} and B−1

t exists). We may therefore premultiply Eq. 4.5 by
B>

t Gt, where Gt is an arbitrary d × d symmetric positive-definite matrix, with no change
in the solution whatsoever. This results in

∆ΦtZ
(λ)
t

>
GtZ

(λ)
t ∆Φ>

t ŵt = ∆ΦtZ
(λ)
t

>
GtZ

(λ)
t rt−1. (4.6)

Eq. 4.6 is the set of normal equations resulting from the least squares problem

min
w

{

(

rt−1 −∆Φ>
t w
)>

Z
(λ)
t

>
GtZ

(λ)
t

(

rt−1 −∆Φ>
t w
)

}

, (4.7)

which, in turn, may be interpreted as arising from a maximum likelihood problem over
jointly Gaussian random variables:

max
w

{log P(rt−1|w)} , where

P(rt−1|w) ∝ exp

(

−1

2

(

rt−1 −∆Φ>
t w
)>

Z
(λ)
t

>
GtZ

(λ)
t

(

rt−1 −∆Φ>
t w
)

)

.

Note that, regardless of the choice of Gt, the minimum in (4.7) is zero, since Z
(λ)
t

(

rt−1 −∆Φ>
t w
)

=

0 is a set of n equations in n variables, and therefore Z
(λ)
t

(

rt−1 −∆Φ>
t w
)

can be made to
vanish.

Comparing Eq. 4.7 with Eq. 4.2, we conclude that LSTD(λ) implicitly assumes that
rewards and values are connected by a Gaussian process model of the by now familiar
(parametric) GPTD form, namely:

Rt−1 = HtVt + Nt = HtΦ
>
t W + Nt,

in which the inverse covariance matrix of the the noise process Nt satisfies

Σ−1
t ∝ Z

(λ)
t

>
GtZ

(λ)
t .

The noise covariance matrix Σt itself does not generally exist, since, for t > n, Z
(λ)
t

>
GtZ

(λ)
t

is rank deficient (with rank n). This means that there are t − n orthogonal directions in

R
t (defined by an orthogonal basis for the null space of Z

(λ)
t

>
GtZ

(λ)
t ) in which the variance

is infinite, which means that deviations in these directions have no effect on the likelihood.
The nonexistence of Σt is less of a problem than it might seem, since the ML, MAP and
Bayesian solutions may all be written entirely in terms of Σ−1

t (see Eq. 4.2, 3.38, 3.39), and
it is therefore only important that Σ−1

t exists. In any event, the inverse of Σ−1
t + εI for any

ε > 0 exists and may be used as a substitute for Σt.
It now becomes a simple exercise to derive a new set of GPTD algorithms, which are

based on the LSTD(λ) noise model, i.e., using Σ−1
t = 1

σ2 Z
(λ)
t

>
GtZ

(λ)
t . For the parametric

GPTD(λ) model, the posterior moments, given by (Eq. 3.38, 3.39), are

P
(λ)
t = σ2

(

∆ΦtZ
(λ)
t

>
GtZ

(λ)
t ∆Φ>

t + σ2I

)−1

, (4.8)

ŵ
(λ)
t =

1

σ2
P

(λ)
t ∆ΦtZ

(λ)
t

>
GtZ

(λ)
t rt−1.
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Whereas for the nonparametric GPTD(λ), we have (see Eq. 3.40, 3.41)

α
(λ)
t =

(

H>
t Z

(λ)
t

>
GtZ

(λ)
t HtKt + σ2I

)−1

H>
t Z

(λ)
t

>
GtZ

(λ)
t rt−1, (4.9)

C
(λ)
t =

(

H>
t Z

(λ)
t

>
GtZ

(λ)
t HtKt + σ2I

)−1

H>
t Z

(λ)
t

>
GtZ

(λ)
t Ht.

In the parametric case, for an arbitrary Gt, taking the limit σ → 0 brings us back to the
familiar LSTD(λ). Moreover, for any σ > 0, and for λ = 1 there exists a particular choice
of Gt for which we are returned to the MC-GPTD model of Sections 3.1 and 3.5, as we
show next for the parametric model.

4.3 GPTD(λ)

In this section we consider a possible choice for the matrix Gt in Eq. 4.7. First, however,
let us recall that the eligibility vectors satisfy zt =

∑t
i=0(γλ)t−iφ(xi). We may therefore

write Z
(λ)
t+1 as

Z
(λ)
t+1 = Φt











1 γλ (γλ)2 . . . (γλ)t

0 1 γλ . . . (γλ)t−1

...
...

0 0 0 . . . 1











. (4.10)

Suppose that xt is the final state in an episode. Recalling H−1
t+1 from Eq. 3.18, for λ = 1 we

may write

Z
(1)
t+1 = ΦtH

−1
t+1

P
(1)
t+1 of Eq. 4.8 then becomes

P
(1)
t+1 = σ2

(

ΦtΦ
>
t GtΦtΦ

>
t + σ2I

)−1
,

while ŵ
(1)
t+1 becomes

ŵ
(1)
t+1 =

(

ΦtΦ
>
t GtΦtΦ

>
t + σ2I

)−1
ΦtΦ

>
t GtΦtH

−1
t+1rt.

These expressions for the posterior moments suggest that a reasonable choice for Gt should

satisfy lim
λ→1

Gt(λ) =
(

ΦtΦ
>
t

)−1
, since then, for λ = 1, we are returned to the MC-GPTD

solution,

P
(1)
t+1 = σ2

(

ΦtΦ
>
t + σ2I

)−1
and ŵ

(1)
t+1 =

(

ΦtΦ
>
t + σ2I

)−1
ΦtH

−1
t+1rt.

These solutions are recognized as the parametric MC-GPTD posterior moments (see Eq. 3.44).
If additionally we require that Gt be independent of λ, we are left with the unique choice:

Gt =
(

ΦtΦ
>
t

)−1
.

Our argument in favor of this particular choice of the inverse noise covariance (through
the choice of Gt) is based on the limiting behavior of the resulting solutions when λ ap-
proaches 1 (in which case it coincides with the MC-GPTD solution), and when σ approaches
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0 (in which case it coincides with LSTD(λ)). Apart from these continuity arguments, the
question of how a noise model such as the one suggested above may be theoretically justi-
fied, remains unanswered. In particular, this means that, even with complete knowledge of
the underlying MDP, the optimal choice of the parameter λ is currently an issue that has to
be resolved empirically. However, the same could be said about LSTD(λ). As far as we are
aware, the only way LSTD(λ) with linear function approximation may be justified, or indeed
derived (apart from the post hoc asymptotic bounds of Tsitsiklis and Van Roy (1996)), is
either by analogy with the lookup-table based LSTD(λ), or by a continuity argument based
on the fact that as λ approaches 1, the resulting algorithm approaches LSTD(1), which is
known to perform least-squares regression on Monte-Carlo samples of the discounted return
(Bertsekas and Tsitsiklis, 1996; Sutton and Barto, 1998; Boyan, 1999).

5. Policy Improvement

So far, we have restricted our attention to the problem of policy evaluation. In this section
we build upon our earlier algorithms to construct algorithms that improve policies rather
than evaluate them. This would allow us to solve the complete RL problem, namely,
that of finding a near-optimal policy for the MDP in question. Here we will propose two
types of algorithms, one based on the policy-iteration algorithm (Bertsekas and Tsitsiklis,
1996), and the other on the SARSA algorithm Sutton and Barto (1998). In either case,
a GPTD policy evaluation algorithms will be used as a sub-component of the complete
algorithm. However, in order to avoid having to learn and use the MDP’s transition-model
p in the policy improvement steps, we will need to make a simple modification in our GPTD
algorithms that would allow them to learn state-action values.

The algorithms presented so far were based on viewing a MDP controlled by a fixed
stationary policy µ as a Markov reward process (MRP) (Puterman, 1994), with the actions
ignored, except through their effect on the state transition probabilities. The state space
of this MRP is X (the same as the MDP’s state space) and the state transition probabil-
ity density is pµ(x′|x) =

∫

U duµ(u|x)p(x′|u,x). However, it is possible to define another
MRP M′, for which the state space is X ′ = X ×U (i.e., the MDP’s state space augmented
by its action space), a transition probability density p′(x′,u′|x,u) = p(x′|x,u)µ(u′|x′), an
initial state probability density p′0(x,u) = p0(x)µ(u|x), and a reward probability density
q′(r|x,u) = q(r|x). When a policy evaluation algorithm is applied to the MRP M ′, the
result is an algorithm that estimates state-action values. The main benefit in estimating
state-action values Q(x,u) is that instead of having to evaluate maxu Ex′|u,xV̂ (x′) all we

need to do in order to improve the policy at x is to evaluate maxu Q̂(x,u), which does not
involve an expectation (and hence does not require a model). In the parametric GPTD
models, all that is required is that the user define a set of state-action basis functions
{φi : X × U → R}n

i=1, and proceed as usual. Here we will treat the more interesting non-
parametric case. In the nonparametric kernel-based models, one needs to define a covariance
kernel function over state-action pairs, i.e., k : (X × U) × (X × U) → R. Since states and
actions are quite different entities it makes sense to decompose k into a state-kernel kx and
an action-kernel ku. It is well known that the set of positive-definite kernels is closed under
several unary and binary operations, such as scaling by a positive constant, addition and
multiplication, to name a few (Schölkopf and Smola, 2002; Shawe-Taylor and Cristianini,
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2004). As an illustration let us set17

k(x,u,x′,u′) = kx(x,x′)ku(u,u′). (5.1)

Just as the state-kernel codes our prior beliefs concerning correlations between the values
of different states, so should the action-kernel code our prior beliefs on value correlations
between different actions.

The first algorithm we propose is a simple adaptation of approximate policy iteration
(Bertsekas and Tsitsiklis, 1996). The algorithm works by maintaining two GPTD policy
evaluators, G0 and G1. The state-action value function maintained by G0 is used to de-
termine a policy according to which actions are selected, while G1 is used to evaluate this
policy. Once G1 has acquired a sufficiently precise estimate of the state-action value func-
tion, the roles are switched, and now G0 is used to evaluate the policy determined by the
state-action values of G1. The policies used in these iterations should approach greedy poli-
cies with respect to the value estimates maintained by their respective policy evaluators.
It is therefore useful if the state-action kernel function is chosen in such a way as to allow
an easy computation of maxu Q̂(x,u). If the set of actions U is finite this can be done in
time linear in the size of U . Later we will see an example where U is continuous and the
maximization may be performed analytically. Pseudocode of a GPTD-based approximate
policy iteration (GPTD-API) algorithm is shown in Algorithm 4.

Algorithm 4 A GPTD-based approximate policy iteration algorithm (GPTD-API)

Input: MDP M , convergence threshold η
Initialize: GPTD policy evaluators G0, G1, greed parameter ε, iter = 0
done = false
while not done

iter = iter + 1, i = mod (iter, 2), j = 1 − i
µ(Gj , ε) = semi-greedy policy w.r.t. to Gj

Gi = GPTD(M, µ(Gj , ε))
done = ‖Gi − Gj‖ ≤ η

end while
return Gi

Provided that the error in the approximate value-function returned by GPTD is small
and improper policies are avoided (for γ = 1), it is possible to show that API produces a
sequence of policies that eventually perform almost as well as the optimal policy; Bertsekas
and Tsitsiklis (see 1996, Chapter 6).

Another approach to policy improvement is based on the SARSA algorithm (Rummery
and Niranjan, 1994; Sutton and Barto, 1998); see also Bertsekas and Tsitsiklis (1996),
where such algorithms are referred to as optimistic policy iteration. SARSA is a fairly
straightforward extension of the TD algorithm in which state-action values are estimated,
while at the same time actions are selected semi-greedily based on the current estimate of
the state-action values. The reason this is referred to as optimistic policy iteration is the fact

17. A simpler choice would be a sum of the two types of kernel functions. However, this would result in a
greedy policy that ignores the state in its choice of action.
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that the policy is being updated constantly, without waiting for an adequate approximation
of its state-action value function to be learned. Some degree of optimism is therefore in
order. SARSA was originally formulated with TD updates, however the same idea may
be applied to other online policy evaluation algorithms. Here we propose to use GPTD
as our online policy evaluator, resulting in the GPSARSA algorithm. Algorithm 5 is the
pseudocode for a GPSARSA algorithm that is based on the non-parametric MC-GPTD
algorithm (Algorithm 1). Sparsified and parametric versions are easily derived by using
Algorithm 2 and 3, respectively, as one’s starting point18.

Algorithm 5 Nonparametric GPSARSA

Initialize α0 = 0, C0 = 0, D0 = {x0,u0}, c0 = 0, d0 = 0, 1/s0 = 0
for t = 1, 2, . . .

observe xt−1, ut−1, rt−1, xt

ut = SemiGreedyAction(xt,Dt−1,αt−1,Ct−1)
ht = (0, . . . , 1,−γ)>

∆kt = kt−1(xt−1,ut−1) − γkt−1(xt,ut)
∆ktt = k((xt−1,ut−1), (xt−1,ut−1)) − 2γk((xt−1,ut−1), (xt,ut) + γ2k((xt,ut), (xt,ut))

dt =
γσ2

t−1

st−1
dt−1 + rt−1 −∆k>

t αt−1

ct =
γσ2

t−1

st−1

(

ct−1

0

)

+ ht −
(

Ct−1∆kt

0

)

st = σ2
t−1 + γ2σ2

t − γ2σ4
t−1

st−1
+ ∆ktt −∆k>

t Ct−1∆kt +
2γσ2

t−1

st−1
c>t−1∆kt

αt =

(

αt−1

0

)

+ ct

st
dt

Ct =

[

Ct−1 0
0> 0

]

+ 1
st

ctc
>
t

Dt = Dt−1 ∪ {(xt,ut)}
end for
return αt, Ct, Dt

In Algorithm 5 the function SemiGreedyAction is used as an unspecified black box.
In several common semi-greedy rules one is required to solve argmaxu Q̂(xt,u). It was
mentioned above that, even when U is continuous, by appropriate choices of the way actions
are represented and of the kernel function, it may be possible to solve this maximization
problem in closed form. To demonstrate this, let us consider a common class of RL problems
that involve a robot that is faced with a spatial navigation task. For simplicity let us assume
that the state-space X is a bounded, connected subset of n-dimensional Euclidean space (n
is usually 2 or 3), and that the actions are steps of length 1 in any direction. The action
space U is therefore either the n-dimensional unit sphere. The actual state transitions
are noisy and possibly scaled versions of the actions, subject to constraints imposed by
the environment, such as walls, obstacles, etc. We choose to represent an action by its

18. The deterministic-MDP algorithms presented earlier are not suitable to serve as substrates to GPSARSA
algorithms, since semi-greedy action selection procedures typically include some stochasticity. Moreover,
since the policy being followed is constantly changing, the transitions in the induced MRP M′ are not
deterministic, even without any explicit stochasticity in the action selection rule.
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corresponding unit vector u. Let us use the factored state-action kernel from Eq. 5.1. We
leave the space kernel kx unspecified and focus on the action kernel. We define ku as follows,

ku(u,u′) =
1 − b

2
u>u′ +

1 + b

2
,

where b is a constant in [0, 1]. Since u>u′ is the cosine of the angle between u and u′,
ku(u,u′) attains its maximal value of 1 when the two actions are the same, and its minimal
value of b when the actions point in opposite directions. Setting b to a positive value is
reasonable, since even opposite actions from the same state are expected, a priori, to have
positively correlated values. However, the most valuable feature of this kernel is its linearity,
which makes it possible to maximize the value estimate over the actions analytically.

Assume that the agent is running a nonparametric sparse GPSARSA, so that it main-
tains a dictionary of state-action pairs Dt = {(x̃i, ũi)}m

i=1. The agent’s value estimate for
its current state x and an arbitrary action u is

V̂ (x,u) =

m
∑

i=1

α̃ikx(x̃i,x)ku(ũi,u)

=
m
∑

i=1

α̃ikx(x̃i,x)

(

1 − b

2
ũ>

i u +
1 + b

2

)

.

Maximizing this expression with respect to u amounts to maximizing
∑m

i=1 βi(x)ũ>
i u sub-

ject to the constraint ‖u‖ = 1, where βi(x)
def

= α̃ikx(x̃i,x). Solving this problem using the
suitable Lagrangian results in the greedy action u∗ = 1

λ

∑m
i=1 βi(x)ũi where λ is a normal-

izing constant. It is also possible to maximize the variance estimate. This may be used to
select non-greedy exploratory moves, by choosing the action whose value the agent is least
certain about. Performing this maximization amounts to solving a 2×2 or 3×3 Eigenvalue
problem.

6. Summary and Discussion

In this paper we presented a Bayesian formulation of the fundamental RL problem of policy
evaluation. This was done by casting the probabilistic relation between the value function
and the observed rewards as a linear statistical generative model over normally distributed
random processes (Eq. 3.5). The Bayesian solution for the policy evaluation problem is
embodied in the posterior value distribution conditioned on the observed state-reward or
state-action-reward trajectory. This posterior is computed by employing Bayes’ rule to
“invert” the set of equations provided by the generative model. Apart from the value
estimates given by the posterior mean, the Bayesian solution also provides the variance of
values around this mean, supplying the practitioner with a measure of the reliability of
value estimates.

In Rasmussen and Kuss (2004) an alternative approach to employing GPs in RL is
proposed. In that paper a model based approach is proposed, in which one GP is used to
learn the MDP’s transition model, while another is used to estimate the value. This leads
to an inherently off-line algorithm, which is not capable of interacting with the controlled
system directly and updating its estimates as additional data arrive. Moreover, the state
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dynamics is assumed to be factored, in the sense that each state coordinate is assumed to
evolve in time independently of all others. Lastly, for analytical tractability, the selection
of covariance kernels is restricted to either polynomial or Gaussian kernels (or a mixture of
the two), due to the need to integrate over products of GPs.

Bayesian methods, such as ours, typically require the user to impart more domain specific
knowledge to the learning system, than do classical methods. Such domain knowledge
may be encoded in the prior and in the measurement model (e.g., in the measurement
noise covariance). In many cases such domain knowledge is available, at least in a rough
form. For instance, in the RL context, the user will usually know whether the MDP under
investigation follows deterministic or stochastic dynamics. She will usually also have a
good idea on the range of values of the rewards, and what makes states and actions similar
or different from each other. All of this information may be incorporated into a GPTD
generative model, and capitalized upon in the subsequent Bayesian posterior analysis. We
made use of these inherent qualities of the Bayesian approach by defining different generative
models, one which is suitable only for MDPs with deterministic transitions (in Engel et al.
(2003)), and another suitable for general MDPs (in Engel et al. (2005) and the present
paper). In the nonparametric case, the kernel function k is used to encode notions of
similarity and dissimilarity between states, or more correctly, how the values of different
states are correlated19. Having said that, there are well known methods in the Bayesian
and GP literature for learning the hyperparameters of a Bayesian model (a.k.a. model
selection). These include maximizing the likelihood of the observations with respect to
these hyperparameters, or alternatively, treating them as random variables (parameterized
by hyper-hyperparameters) and performing Bayesian inference on them as well (this is
known as a hierarchical Bayesian model). As these techniques are adequately covered
elsewhere (e.g., Mackay, 1997; Gibbs and MacKay, 1997; Williams, 1999; Seeger, 2003) we
chose not to elaborate on this subject here.

We showed in Sections 4.2 and 4.3 that the familiar family of LSTD(λ) algorithms may
in fact be viewed as classical parametric maximum-likelihood algorithms based on statistical
generative models having the same structure as our GPTD model, and employing a specific
form of λ-dependent noise covariance. As such, LSTD(λ) solutions are limit points of
GPTD solutions. In this sense, our GPTD framework subsumes all other TD methods
employing linear function approximation architectures. This, we hope, should alleviate
concerns regarding the applicability of the assumptions underlying the GPTD model, as
the same assumptions are also implicitly made by LSTD(λ) and TD(λ).

By employing a nonparametric, kernel-based extension of the conventional parametric
linear statistical model we were able to derive kernel-based variants of our algorithms. These
kernel algorithms offer a degree of representational flexibility that is impossible to attain
using standard linear FA architectures, in which a set of basis functions must be specified
in advance. By using a kernel sparsification method we were able to obtain, for the first
time to the best of our knowledge, practical nonparametric online algorithms for solving
the policy evaluation problem. The constructive process through which these algorithms
sparsify the full nonparametric solution may be thought of as a process of basis construction,

19. For instance, using the Gaussian kernel c exp
`

−‖x′ − x‖2/(2σ2)
´

, apart from encoding the belief that
nearby states are more similar than states that are far apart, also states that, a priori, we believe that
the variance of the values at any point in X equals c.
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in which new basis functions are added if and when they are needed to maintain a sufficiently
accurate approximation of the complete non-sparse solution (the basis functions are the

kernel functions evaluated at the dictionary states, namely {k(x̃j , ·)}|D|
j=1). As such they

enjoy both the representational flexibility of the complete nonparametric solution while
also taking advantage of redundancies in the Hilbert space induced by the kernel. When
the dictionary constructed by these algorithms ceases to grow (and we know that this
will eventually happen, see Engel (2005)), then from that point on the algorithm may be
regarded as a (linear) parametric algorithm.

Taking the frequentist perspective, the posterior mean provided by the Bayesian analysis
may be viewed as the solution of a Tikhonov-regularized least-squares problem. Although
in the frequentist view, such solutions are considered biased, they are known to be consis-
tent (i.e., asymptotically unbiased), and usually enjoy lower variance than their frequentist
counterparts. Specifically, this implies that in the parametric case, in the limit of an infinite
trajectory, both GPTD(λ) (including MC-GPTD = GPTD(1)) and LSTD(λ) converge to
the same solution (provided the same λ is used). This should remove any concerns regard-
ing the convergence of GPTD(λ), as the asymptotic convergence properties of LSTD(λ) are
well understood (Tsitsiklis and Van Roy, 1996). When a sparse nonparametric represen-
tation is used, we already know that after a finite number of transitions are observed, our
sparse algorithms are effectively computing parametric solutions, using a basis consisting of
the kernel functions evaluated at the dictionary states. Therefore, the same conclusions re-
garding the convergence of our parametric methods also apply to our sparse nonparametric
methods. More intricate convergence properties of GPs, such as generalization bounds and
learning curves (but only in the context of supervised learning), are presently the subject
of research in the GP community (e.g., Opper and Vivarelli, 1999; Malzahn and Opper,
2001; Seeger, 2003; Sollich and Williams, 2005). However, the GPTD model is generally
more complex than the conventional GP models used in the supervised setting. Deriving
results analogous to those mentioned above, in the RL setting, is left as an open direction
for future research.

Another contribution is the extension of GPTD to the estimation of state-action values,
or Q-values, leading to the policy-improving algorithms of Section 5. We show that learning
Q-values makes the task of policy improvement in the absence of a transition model tenable,
even when the action space is continuous and multi-dimensional. As mentioned above, we
describe the experimental evaluation of these algorithms in a separate companion paper.

The availability of confidence intervals for Q-values significantly expands the repertoire
of possible exploration strategies. In finite MDPs, strategies employing such confidence
intervals have been experimentally shown to perform more efficiently than conventional
ε-greedy or Boltzmann sampling strategies (e.g., Kaelbling, 1993; Dearden et al., 1998;
Even-Dar et al., 2003; Strehl and Littman, 2004, 2005). Our approach allows such methods
to be applied to infinite MDPs, and it remains to be seen whether significant improvements
can be so achieved for realistic problems with continuous space and action spaces.
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Appendix A. Monte-Carlo GPTD

A.1 Parametric Monte-Carlo GPTD Updates

Recall the expressions for the parametric posterior moments:

ŵt = ∆ΦtQtrt−1, Pt = I−∆ΦtQt∆Φ>
t , where Qt =

(

∆Φ>
t ∆Φt + Σt

)−1
,

where we used the definition ∆Φt = ΦtH
>
t . In the sequel we will also use the following

definitions:

ht = (0, . . . , 1,−γ)>, and ∆φt = Φtht = φ(xt−1) − γφ(xt).

The matrices ∆Φt, Σt and Q−1
t may be written recursively as follows:

∆Φt =
[

∆Φt−1, ∆φt

]

, (A.1)

Σt =

[

Σt−1 ,−γσ2
t−1e

−γσ2
t−1e

> , σ2
t−1 + γ2σ2

t

]

, and

Q−1
t =

[

Q−1
t−1 ,∆Φ>

t−1∆φt − γσ2
t−1e

(∆Φ>
t−1∆φt − γσ2

t−1e)> ,∆φ>
t ∆φt + σ2

t−1 + γ2σ2
t

]

, (A.2)

where e = (0, . . . , 0, 1)>. Using the partitioned matrix inversion formula (Scharf, 1991) we
may invert Q−1

t to obtain

Qt =
1

st

[

stQt−1 + gtg
>
t −gt

−g>
t 1

]

,

where

gt = Qt−1

(

∆Φ>
t−1∆φt − γσ2

t−1e
)

st = σ2
t−1 + γ2σ2

t + ∆φ>
t ∆φt −

(

∆Φ>
t−1∆φt − γσ2

t−1e
)>

gt.

Let us write the expression for ŵt:

ŵt = ∆ΦtQtrt−1

=
1

st

[

∆Φt−1,∆φt

]

[

stQt−1 + gtg
>
t −gt

−g>
t 1

](

rt−2

rt−1

)

= ∆Φt−1Qt−1rt−2 +
1

st

[

∆Φt−1, ∆φt

]

(

gt

−1

)

(

g>
t , −1

)

(

rt−2

rt−1

)

= ŵt−1 +
1

st
(∆Φt−1gt −∆φt)

(

g>
t rt−2 − rt−1

)

= ŵt−1 +
pt

st
dt,
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where we have defined dt = rt−1 − g>
t rt−2 and pt = ∆φt −∆Φt−1gt.

We treat Pt similarly:

Pt = I−∆ΦtQt∆Φ>
t

= I− 1

st

[

∆Φt−1,∆φt

]

[

stQt−1 + gtg
>
t −gt

−g>
t 1

] [

∆Φ>
t−1

∆φ>
t

]

= I−∆Φt−1Qt−1∆Φ>
t−1 −

1

st

[

∆Φt−1, ∆φt

]

(

gt

−1

)

(

g>
t , −1

)

[

∆Φ>
t−1

∆φ>
t

]

= Pt−1 −
1

st
(∆Φt−1gt −∆φt) (∆Φt−1gt −∆φt)

>

= Pt−1 −
1

st
ptp

>
t .

We are not done quite yet, since dt, pt and st are expressed in terms of several t (or t − 1)
dimensional vectors and matrices, making their computation inefficient. Next, we derive
efficient recursive update rules for dt, pt and st, that involve, at most, n-dimensional entities.
Let us begin with dt:

dt = rt−1 − g>
t rt−2

= rt−1 −
(

∆Φ>
t−1∆φt − γσ2

t−1e
)>

Qt−1rt−2

= rt−1 −∆φ>
t ŵt−1 +

γσ2
t−1

st−1

[

−g>
t−1, 1

]

(

rt−3

rt−2

)

=
γσ2

t−1

st−1
dt−1 + rt−1 − (φ(xt−1) − γφ(xt))

> ŵt−1.

Next, we treat pt:

pt = ∆φt −∆Φt−1gt

= ∆φt −∆Φt−1Qt−1

(

∆Φ>
t−1∆φt − γσ2

t−1e
)

= Pt−1∆φt +
γσ2

t−1

st−1

[

∆Φt−2, ∆φt−1

]

[

−gt−1

1

]

=
γσ2

t−1

st−1
pt−1 + Pt−1 (φ(xt−1) − γφ(xt)) .

Finally, st:

st = σ2
t−1 + γ2σ2

t + ∆φ>
t ∆φt −

(

∆Φ>
t−1∆φt − γσ2

t−1e
)>

gt.
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The last term on the r.h.s. is
(

∆Φ>
t−1∆φt − γσ2

t−1e
)>

gt =

(

∆Φ>
t−1∆φt − γσ2

t−1e
)>

Qt−1

(

∆Φ>
t−1∆φt − γσ2

t−1e
)

=

∆φ>
t (I−Pt−1)∆φt − 2γσ2

t−1e
>Qt−1∆Φ>

t−1∆φt + γ2σ4
t−1e

>Qt−1e =

∆φ>
t (I−Pt−1)∆φt −

2γσ2
t−1

st−1

[

−g>
t−1, 1

]

∆Φ>
t−1∆φt + γ2σ4

t−1e
>Qt−1e =

∆φ>
t (I−Pt−1)∆φt −

2γσ2
t−1

st−1

(

∆φt−1 −∆Φt−2gt−1

)>
∆φt + γ2σ4

t−1e
>Qt−1e =

∆φ>
t (I−Pt−1)∆φt −

2γσ2
t−1

st−1
p>

t−1∆φt +
γ2σ4

t−1

st−1

Assuming that we already computed pt, we may substitute

Pt−1∆φt = pt −
γσ2

t−1

st−1
p>

t−1,

resulting in our final expression for st:

st = σ2
t−1 + γ2σ2

t + ∆φ>
t Pt−1∆φt +

2γσ2
t−1

st−1
p>

t−1∆φt −
γ2σ4

t−1

st−1

= σ2
t−1 + γ2σ2

t +

(

pt +
γσ2

t−1

st−1
pt−1

)>
(φ(xt−1) − γφ(xt)) −

γ2σ4
t−1

st−1
.

Throughout the derivations above we repeatedly made use of I−Pt−1 = Φt−1H
>
t−1Qt−1Ht−1Φ

>
t−1,

Qt−1e = [−g>
t−1, 1]

>, and the recursive expressions for Ht−1, Qt−1, Φt−1 and rt−1.

A.2 Nonparametric Monte-Carlo GPTD

Recall the expressions for the nonparametric posterior mean and variance (Eq. 3.10):

V̂t(x) = kt(x)>αt, and Pt(x,x′) = k(x,x′) − kt(x)>Ctkt(x
′),

respectively, with αt = H>
t Qtrt−1, Ct = H>

t QtHt and Qt =
(

HtKtH
>
t + Σt

)−1
. Let

us write recursive expressions for Ht, Σt and Q−1
t . Define e = (0, . . . , 0, 1)> and ht =

(e>,−γ)> = (0, . . . , 1,−γ)>, then,

Ht =

[

Ht−1, 0

h>
t

]

, Kt =

[

Kt−1 kt−1(xt)
kt−1(xt)

> k(xt,xt)

]

,

Σt =

[

Σt−1 −γσ2
t−1e

−γσ2
t−1e

> σ2
t−1 + γ2σ2

t

]

.

Substituting these into the expression for Q−1
t we get,

Q−1
t = HtKtH

>
t + Σt =

[

Q−1
t−1 Ht−1∆kt − γσ2

t−1e
(Ht−1∆kt − γσ2

t−1e)> ∆ktt + σ2
t−1 + γ2σ2

t

]

,
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where we made use of the definitions

∆kt
def

= kt−1(xt−1) − γkt−1(xt),

∆ktt
def

= k(xt−1,xt−1) − 2γk(xt−1,xt) + γ2k(xt,xt).

Qt may now be obtained using the partitioned matrix inversion formula (Scharf, 1991):

Qt =
1

st

[

stQt−1 + gtg
>
t −gt

−g>
t 1

]

,

where gt = Qt−1

(

Ht−1∆kt − γσ2
t−1e

)

, and st = σ2
t−1+γ2σ2

t +∆ktt−g>
t

(

Ht−1∆kt − γσ2
t−1e

)

.
Let us define

ct = ht −
(

H>
t−1gt

0

)

, and dt = rt−1 − g>
t rt−2.

We are now ready to derive the recursions for Ct and αt:

Ct = H>
t QtHt

=
1

st

[

H>
t−1 ht

0>

] [

stQt−1 + gtg
>
t −gt

−g>
t 1

] [

Ht−1 0

h>
t

]

=

[

Ht−1Qt−1H
>
t−1 0

0> 0

]

+
1

st

((

H>
t−1gt

0

)

− ht

)((

H>
t−1gt

0

)

− ht

)>

=

[

Ct−1 0
0> 0

]

+
1

st
ctc

>
t .

αt = H>
t Qtrt−1

=
1

st

[

H>
t−1 ht

0>

] [

stQt−1 + gtg
>
t −gt

−g>
t 1

] [

rt−2

rt−1

]

=

(

αt−1

0

)

+
1

st

((

H>
t−1gt

0

)

− ht

)

(

g>
t rt−2 − rt−1

)

=

(

αt−1

0

)

+
ct

st
dt.

We are not done quite yet, since dt, ct and st are not explicitly given in terms of current-
time-step quantities, as in the case of deterministic transitions. We show next that, similarly
to the parametric updates derived above, dt, ct and st may be recursively updated without
requiring any additional bookkeeping, apart of maintaining the sequence of states seen so
far. Let us begin with dt:

dt = rt−1 − g>
t rt−2

= rt−1 −
(

Ht−1∆kt − γσ2
t−1e

)>
Qt−1rt−2

= rt−1 −∆k>
t αt−1 −

γσ2
t−1

st−1

(

g>
t−1rt−3 − rt−2

)

=
γσ2

t−1

st−1
dt−1 + rt−1 −∆k>

t αt−1.
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Turning to ct, first notice that

H>
t Qte =

1

st

[

H>
t−1 ht

0>

] [

stQt−1 + gtg
>
t −gt

−g>
t 1

]

e

=
1

st

[

H>
t−1 ht

0>

](

−gt

1

)

=
1

st

(

ht −
(

H>
t−1gt

0

))

=
ct

st
.

Therefore,

ct = ht −
(

H>
t−1gt

0

)

= ht −
(

H>
t−1Qt−1

(

Ht−1∆kt − γσ2
t−1e

)

0

)

= ht −
(

Ct−1∆kt − γσ2
t−1H

>
t−1Qt−1e

0

)

= ht −
(

Ct−1∆kt − γσ2
t−1

st−1
ct−1

0

)

=
γσ2

t−1

st−1

(

ct−1

0

)

+ ht −
(

Ct−1∆kt

0

)

.

Finally, st:

st = σ2
t−1 + γ2σ2

t + ∆ktt − g>
t

(

Ht−1∆kt − γσ2
t−1e

)

= σ2
t−1 + γ2σ2

t + ∆ktt −
(

Ht−1∆kt − γσ2
t−1e

)>
Qt−1

(

Ht−1∆kt − γσ2
t−1e

)

= σ2
t−1 + γ2σ2

t + ∆ktt −∆k>
t Ct−1∆kt + 2γσ2

t−1e
>Qt−1Ht−1∆kt −

γ2σ4
t−1

st−1

= σ2
t−1 + γ2σ2

t + ∆ktt −∆k>
t Ct−1∆kt +

2γσ2
t−1

st−1
c>t−1∆kt −

γ2σ4
t−1

st−1
.

A.3 Sparse Nonparametric Monte-Carlo GPTD

At each time step the current sampled state xt may either be left out of the dictionary, in
which case Dt = Dt−1, or added to it, in which case Dt = Dt−1 ∪ {xt}, as determined by
the sparsification criterion. Let us begin with the updates for the first case.

Case 1: Dt = Dt−1

Since the dictionary remains unchanged, K̃t = K̃t−1. Defining h̃t = at−1 − γat and e =
[0, . . . , 0, 1]>, we have

At =

[

At−1

a>
t

]

, H̃t =

[

H̃t−1

h̃>
t

]

, Σt =

[

Σt−1 −γσ2
t−1e

−γσ2
t−1e

> σ2
t−1 + γ2σ2

t

]

.
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Consequently, we may obtain a recursive formula for Q̃−1
t (see Eq. 3.28):

Q̃−1
t =

[

H̃t−1

h̃>
t

]

K̃t−1

[

H̃t−1, h̃t

]

+

[

Σt−1 −γσ2
t−1e

−γσ2
t−1e

> σ2
t−1 + γ2σ2

t

]

=

[

Q̃−1
t−1 H̃t−1∆̃kt − γσ2

t−1e

(H̃t−1∆k̃t − γσ2
t−1e)> ,∆ktt + σ2

t−1 + γ2σ2
t

]

,

where in the last equality we used the definition ∆k̃t
def

= K̃t−1h̃t = k̃t−1(xt−1) − γk̃t−1(xt),
and ∆ktt = h̃>

t ∆k̃t. We may now invert Q̃−1
t using the partitioned matrix inversion formula:

Q̃t =
1

st

[

stQ̃t−1 + g̃tg̃
>
t −g̃t

−g̃>
t 1

]

,

where g̃t = Q̃t−1

(

H̃t−1∆̃kt − γσ2e
)

, and st = (1 + γ2)σ2 + ∆ktt − g̃>
t

(

H̃t−1∆̃kt − γσ2e
)

.

Let us define c̃t =
(

h̃t − H̃t−1g̃t

)

. The update of the covariance parameter matrix C̃t is:

C̃t = H̃>
t Q̃H̃t

=
1

st

[

H̃>
t−1, h̃t

]

[

stQ̃t−1 + g̃tg̃
>
t −g̃t

−g̃>
t 1

] [

H̃t−1

h̃>
t

]

= H̃>
t−1Q̃t−1H̃t−1 +

1

st

[

H̃>
t−1 h̃t

]

(

g̃t

−1

)

(

g̃>
t −1

)

[

H̃t−1

h̃>
t

]

= C̃t−1 +
1

st

(

H̃t−1g̃t − h̃t

)(

H̃t−1g̃t − h̃t

)>

= C̃t−1 +
1

st
c̃tc̃

>
t .

Next, we compute α̃t:

α̃t = H̃>
t Q̃trt−1

=
1

st

[

H̃>
t−1, h̃t

]

[

stQ̃t−1 + g̃tg̃
>
t ,−g̃t

−g̃>
t , 1

](

rt−2

rt−1

)

= α̃t−1 +
1

st
(H̃>

t−1g̃t − h̃t)(g̃
>
t rt−2 − rt−1)

= α̃t−1 +
c̃t

st
dt,

where we have defined

dt = rt−1 − g̃>
t rt−2.

Note that g̃t is a (t−1)×1 vector; we would therefore like to eliminate it from our updates,
since we aim at keeping the memory and time requirements of each update independent of
t. Due to the special form of the matrix Σt we can derive simple recursive formulas for c̃t,
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dt and st, thus eliminating g̃t from the updates. Let us begin with c̃t:

c̃t = h̃t − H̃>
t−1g̃t

= h̃t − H̃>
t−1Q̃t−1

(

H̃t−1∆̃kt − γσ2
t−1e

)

= h̃t − C̃t−1∆k̃t + γσ2
t−1H̃t−1Q̃t−1e

= h̃t − C̃t−1∆k̃t +
γσ2

t−1

st−1

(

h̃t−1 − H̃t−2g̃t−1

)

=
γσ2

t−1

st−1
c̃t−1 + h̃t − C̃t−1∆̃kt.

Turning to dt:

dt = rt−1 − g̃>
t rt−2

= rt−1 −
(

H̃t−1∆k̃t − γσ2
t−1e

)>
Q̃t−1rt−2

= rt−1 −∆k̃>
t α̃t−1 −

γσ2
t−1

st−1

(

g̃>
t−1rt−3 − rt−2

)

=
γσ2

t−1

st−1
dt−1 + rt−1 −∆k̃>

t α̃t−1

Finally, st:

st = σ2
t−1 + γ2σ2

t + ∆ktt − g̃>
t

(

H̃t−1∆̃kt − γσ2
t−1e

)

= σ2
t−1 + γ2σ2

t + ∆ktt −
(

H̃t−1∆̃kt − γσ2
t−1e

)>
Q̃t−1

(

H̃t−1∆k̃t − γσ2
t−1e

)

= σ2
t−1 + γ2σ2

t + ∆ktt − ∆̃k>
t C̃t−1∆k̃t + 2γσ2

t−1e
>Q̃t−1H̃t−1∆k̃t −

γ2σ4
t−1

st−1

= σ2
t−1 + γ2σ2

t + h̃>
t ∆̃kt −∆k̃>

t C̃t−1∆̃kt +
2γσ2

t−1

st−1
c̃>t−1∆k̃t −

γ2σ4
t−1

st−1

Recall that C̃t−1∆k̃t was computed for the c̃t. Given c̃t we may substitute C̃t−1∆k̃t =
γσ2

st−1
c̃t−1 − c̃t + h̃t. This removes the only matrix-vector product from the update, resulting

in

st = σ2
t−1 + γ2σ2

t + h̃>
t ∆̃kt

−∆k̃>
t

(

γσ2

st−1
c̃t−1 − c̃t + h̃t

)

+
2γσ2

st−1
c̃>t−1∆̃kt −

γ2σ4
t−1

st−1

= σ2
t−1 + γ2σ2

t + ∆̃k>
t

(

c̃t +
γσ2

st−1
c̃t−1

)

− γ2σ4
t−1

st−1
.

Case 2: Dt = Dt−1 ∪ {xt}

Here, K̃t is given by Eq. 3.23, which we repeat here for clarity:

K̃t =

[

K̃t−1 k̃t−1(xt)

k̃t−1(xt)
> k(xt,xt)

]
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Furthermore, at = (0, . . . , 1)> since the last member added to the dictionary is xt itself
(and φ(xt) is exactly representable by itself). Therefore

At =

[

At−1 0
0> 1

]

, H̃t =

[

H̃t−1 0
a>

t−1 −γ

]

=

[

H̃t−1 0

h̃>
t

]

,

where we defined

h̃t =

(

at−1

0

)

− γat =

(

at−1

−γ

)

.

The recursion for Q̃−1
t is given by:

Q̃−1
t =

[

H̃t−1 0

h̃>
t

] [

K̃t−1 k̃t−1(xt)

k̃t−1(xt)
> k(xt,xt)

] [

H̃>
t−1 h̃t

0>

]

+

[

Σt−1 −γσ2
t−1e

−γσ2
t−1e

> σ2
t−1 + γ2σ2

t

]

=

[

Q̃−1
t−1 H̃t−1∆̃kt

(H̃t−1∆̃kt)
> ∆ktt + σ2

t−1 + γ2σ2
t

]

,

where we defined

∆k̃t
def

= K̃t−1at−1 − γk̃t−1(xt) = k̃t−1(xt−1) − γk̃t−1(xt),

∆ktt
def

= a>
t−1K̃t−1at−1 − 2γa>

t−1k̃t−1(xt) + γk(xt,xt)

= a>
t−1

(

k̃t−1(xt−1) − 2γk̃t−1(xt)
)

+ γ2k(xt,xt).

Defining, as before, gt = Q̃t−1

(

H̃t−1∆k̃t − γσ2e
)

and st = σ2
t−1+γ2σ2

t +∆ktt−g>
t

(

H̃t−1∆̃kt − γσ2e
)

,

and using again the partitioned matrix inversion formula we get

Q̃t =
1

st

[

stQ̃t−1 + g̃tg̃
>
t −g̃t

−g̃>
t 1

]

.

Let us define

c̃t = h̃t −
(

H̃>
t−1g̃t

0

)

, and dt = rt−1 − g>
t rt−2.

We are now ready to compute C̃t and α̃t:

C̃t = H̃>
t Q̃tH̃t

=
1

st

[

H̃>
t−1 h̃t

0>

] [

stQ̃t−1 + g̃tg̃
>
t −g̃t

−g̃>
t 1

] [

H̃t−1 0

h̃>
t

]

=

[

H̃t−1Q̃t−1H̃
>
t−1 0

0> 0

]

+
1

st

((

H̃>
t−1g̃t

0

)

− h̃t

)((

H̃>
t−1g̃t

0

)

− h̃t

)>

=

[

C̃t−1 0
0> 0

]

+
1

st
c̃tc̃

>
t .
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α̃t = H̃>
t Q̃trt−1

=
1

st

[

H̃>
t−1 h̃t

0>

] [

stQ̃t−1 + g̃tg̃
>
t −g̃t

−g̃>
t 1

] [

rt−2

rt−1

]

=

(

α̃t−1

0

)

+
1

st

((

H̃>
t−1g̃t

0

)

− h̃t

)

(

g>
t rt−2 − rt−1

)

=

(

α̃t−1

0

)

+
c̃t

st
dt.

As above, we still need to derive recursions for dt, c̃t and st. Let us begin with dt:

dt = rt−1 − g>
t rt−2

= rt−1 −
(

H̃t−1∆k̃t − γσ2
t−1e

)>
Qt−1rt−2

= rt−1 −∆k̃>
t α̃t−1 −

γσ2
t−1

st−1

(

g>
t−1rt−3 − rt−2

)

=
γσ2

t−1

st−1
dt−1 + rt−1 −∆k̃>

t α̃t−1.

Turning to c̃t, first notice that

H̃>
t Qte =

1

st

[

H̃>
t−1 h̃t

0>

] [

stQt−1 + gtg
>
t −gt

−g>
t 1

]

e

=
1

st

[

H̃>
t−1 h̃t

0>

](

−gt

1

)

=
1

st

(

h̃t −
(

H̃>
t−1gt

0

))

=
c̃t

st
.

Therefore,

c̃t = h̃t −
(

H̃>
t−1gt

0

)

= h̃t −
(

H̃>
t−1Qt−1

(

H̃t−1∆̃kt − γσ2
t−1e

)

0

)

= h̃t −
(

C̃t−1∆̃kt − γσ2
t−1H̃

>
t−1Qt−1e

0

)

= h̃t −
(

C̃t−1∆̃kt − γσ2
t−1

st−1
c̃t−1

0

)

=
γσ2

t−1

st−1

(

c̃t−1

0

)

+ h̃t −
(

C̃t−1∆̃kt

0

)

.
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Finally, st:

st = σ2
t−1 + γ2σ2

t + ∆ktt − g>
t

(

H̃t−1∆̃kt − γσ2
t−1e

)

= σ2
t−1 + γ2σ2

t + ∆ktt −
(

H̃t−1∆̃kt − γσ2
t−1e

)>
Qt−1

(

H̃t−1∆k̃t − γσ2
t−1e

)

= σ2
t−1 + γ2σ2

t + ∆ktt − ∆̃k>
t C̃t−1∆k̃t + 2γσ2

t−1e
>Qt−1H̃t−1∆k̃t −

γ2σ4
t−1

st−1

= σ2
t−1 + γ2σ2

t + ∆ktt − ∆̃k>
t C̃t−1∆k̃t +

2γσ2
t−1

st−1
c̃>t−1∆̃kt −

γ2σ4
t−1

st−1
.

Appendix B. Mathematical Formulae

The formulae noted in this appendix may be found in Scharf (1991), as well as most intro-
ductory textbooks on probability and statistics. The only exceptions are the conditional
covariance formula, and what we call the “Transparency Lemma”. The first is well known
and may be easily derived from the definition of the covariance of a random vector, using the
conditional expectation formula. A proof of the latter we were not able to locate elsewhere,
and we therefore state and prove it in Section B.5. In the sequel read P as the probability
density function of its argument, unless that argument is countable, in which case P denotes
probability and

∫

denotes a sum.

B.1 Bayes’ Rule

Let X and Y be random variables or vectors, then

P(X|Y ) =
P(Y |X)P(X)

P(Y )
=

P(Y |X)P(X)
∫

dX ′P(Y |X ′)P(X ′)
.

B.2 The Multivariate Normal Distribution

Let X be an n dimensional random vector. It is said that X is normally distributed
(or alternatively, that its components are jointly normally distributed) as N{m,Σ} if its
probability density function satisfies

P(X) = (2π)−n/2|Σ|−1/2 exp

(

−1

2
(X −m)>Σ−1(X −m)

)

.

Conditioning (Gauss-Markov Theorem)

Let X and Y be random vectors that are distributed according to the multivariate normal
distribution

(

X
Y

)

∼ N
{(

mx

my

)

,

[

Kxx Kxy

Kyx Kyy

]}

Then X|Y ∼ N
{

X̂,P
}

, where

X̂ = mx + KxyK
−1
yy (Y −my)

P = Kxx −KxyK
−1
yy Kyx.
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P is also known as the Schur complement of Kxx in the partitioned matrix

[

Kxx Kxy

Kyx Kyy

]

.

B.3 Conditional Expectation and Covariance Formulae

Let X, Y , Z be random variables or vectors, then

E[X] = EY [E[X|Y ]] ,

Cov[X,Z] = EY [Cov[X,Z|Y ]] + CovY [E[X|Y ],E[Z|Y ]] .

Specializing the last equation to X=Z scalars, we get the conditional variance formula:

Var[X] = EY [Var[X|Y ]] + VarY [E[X|Y ]] .

B.4 Matrix Inversion Formulae

Matrix Inversion Lemma (Sherman-Morrison-Woodbury)

Let U be a square invertible matrix, then

(U + βXY)−1 = U−1 −U−1X
(

βI + YU−1X
)−1

YU−1.

Partitioned Covariance Matrix Inverse Formula

Let Kt be a t × t (symmetric and positive-definite) covariance matrix, partitioned as

Kt =

[

Kt−1 kt

k>
t ktt

]

.

Then

K−1
t =

[

K−1
t−1 0

0> 0

]

+
1

st

[

K−1
t−1kt

−1

]

[

k>
t K−1

t−1 −1
]

,

where st = ktt − k>
t K−1

t−1kt. st is called the Schur complement of ktt in Kt. If X =
(X1, . . . , Xt)

> is a jointly Gaussian random vector, the self-covariance of which satisfies
Cov[X] = Kt, then by the Gauss-Markov theorem (see Sec. B.2), st satisfies

st = Var[Xt|X1, . . . , Xt−1].

B.5 Transparency Lemma

Let A and B be matrices of dimensions n ×m and m × n, respectively, and let BA + I be
nonsingular, then AB + I is also nonsingular, and

A (BA + I)−1 = (AB + I)−1A.

Note that I on the l.h.s. is the m × m identity matrix, while on the r.h.s. it is the n × n
identity matrix20.

20. The name “Transparency” notes the fact that this formula behaves as if the inverse sign were absent.
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Proof Assume to the contrary that AB + I is singular, then there exists a vector y 6= 0
such that

(AB + I)y = 0. (B.1)

Premultiply this by B to obtain

B(AB + I)y = (BA + I)By = 0.

Now, By 6= 0, for otherwise we would have from Eq. B.1 that y = 0. Therefore, for
x

def

= By 6= 0 we have

(BA + I)x = 0,

which means that (BA + I) is singular, resulting in a contradiction, thus proving the first
part of the Lemma.

The second part is proved as follows:

A (BA + I)−1 = (AB + I)−1(AB + I)A (BA + I)−1

= (AB + I)−1A(BA + I)(BA + I)−1

= (AB + I)−1A.
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