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I. INTRODUCTION 11. DATA ACQUISITION 

Recently, there has been a rapid growth in the use of 3D 
multi-modal correlative imaging for studies of the human 
brain. Such techniques have found applications in the ar- 
eas of (i) disease diagnmis, (ii) longitudinal monitoring 
of disease progress or remission, (iii) pre-operative evalua- 
tion and surgery planning, (iv) functional neuroanatomy of 
sensorimotor and cognitive proceases and (v) morphomet- 
ric analysis of neuroanatomical variability among normal 
brains. Many of these domains are methodological com- 
ponents of the developing field of brain mapping which 
seeks to identify functional systems subserving cognitive 

At the Montreal Neurological Institute a database of MRI 
volumes has been obtained from 305 young, normal right- 
handed subjects (239 males ; 66 females ; age 23.4 f 
4.1); All MRI studies were performed on a Philips Gy- 
ro8can 1.5 Tesla superconducting magnet system. Using 
3D spin-echo acquisition, 64 non-overlapped TI-weighted 
(T~=400msec, T~=30msec) image planes are collected at 
2 mm intervals over the whole brain. Measurements of the 
dimensions of an MRI calibration phantom indicate neg- 
ligible geometric distortion through the central portion of 
the MRI imaging field. 

and sensorimotor processes in the human brain. In most 
brain-mapping studies, cerebral blood flow (CBF) is mea- 
sured by PET or functional MRI scanning in a baseline 

sensorimotor stimulus or cognitive task. Regional CBF 
changes indicate brain areas involved in stimulus process- 
ing* These focal changes are Often too (5"') to be We have implemented a 3D featurematching procedure 

peated in a series of individuals. The results are averaged correlation function (FCCF) between two images [1-3~. 
after linear resampling Of each data data a The required transformation is found using the SIMPLEX 
standardized or stereotaxic 3D coordinate space to remove optimization algorithm on linear (3 trans- 

Limitations arise from non-linear neuroanatomic variation in a multi-scale loop, beginning with 

state and during some form of cerebral activation, e.g. 111. 3D IMAGE-MATCHING 
PROCEDURE 

discerned from a subject and the experiment is re- which employs repetitive evaluation of the feature crow 

@- differences in brain dimensions and Orientation [5,6i* lations, 3 rotatiom and 3 scales). The feature-matding 
procedure 

Persisting linear resampling i7i. These differences 
Prevent exact superposition of equivalent activation sites 
from different subjecte, reducing the signal-b 

Of this residual vari- 

a heavily-smoothed version of e& image and s u c c ~ i v e l y  
sharpening the images at each iteration. The use of blurred 
images for obtaining approximate transformation param- 
eters reduces the likelihood of encountering local minima gain* To investigate the 

ability we have collected over 300 MRI volumetric datasets 
from normal individuals and these datasets 

rithm. We then generated a series of statistical measures 
which express this population non-linear variability in the 

during the search and is approximately times faster than 
single-stage high-resolution optimization. At each stage 

smoothing kernel before the best transformation is deter- 
mined by the FcCF at (SD of Gaussian 

'Pace using a 3D linear resampling 'g* the original image is first convolved with a 3D Gamian  

form Of Parae t r ic  volU" e& 
Variance. A mode' for anatomical 

kernel) of 16, 8 and 4". At present, the method - im- 
age intensity and gradient magnitude as features. For the 
linear mapping approach employed in this work, recover- 
ing a known transformation applied to a given MRI volume 

expressed 
to an 

and tested against the 
the width Of a Gauesian 

ideal sing1e subject, 

(intra-subject) exhibits r.m.8. errors for rotation, transla- 
tion and landmark distance were less than or equal to 0.1O. 
0.1" and 0.2" respectively. Inter-subject registration 
residuals can be estimated by identifying corresponding 

observed data. 
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landmarks in different volumes. We have previously shown 
an r.m.s distance of 6.65" between equivalent landmarks 
from different individuals [3]. 

IV. STEREOTAXIC TRANSFORMATION 

For comparison of individual MRI volumes we employed 
a modification of the stereotaxic space of Talairach and 
Tournoux (1988) in a two-stage process. The cross- 
correlation procedure requires a starting target volume. 
This was generated manually as follows. A set of neu- 
roanatomical landmarks were manually identified in each 
volume which defined an origin (the anterior commis- 
sure(AC), located on the brain mid-line), a base plane 
passing through both the AC and the posterior commissure 
(PC), and three orthogonal axes extending to the edge of 
the brain within (X,Y) and perpendicular (Z) to the AC- 
PC plane. Equivalent coordinates identified in the stereo- 
taxic space defined the 9 parameter linear transformation. 
The transformed volumes were re-sampled, using tri-cubic 
interpolation, to a 256 x 256 x 160 raster with voxel dimen- 
sions of 0.67" x 0.86" x 0.75". Application of this 
re-sampling to  each of the 305 MRI volumes, normaliza- 
tion for constant mean signal intensity in each transformed 
volume and intensity-averaging yielded a mean MRI vol- 
ume [6,7]. Secondly, each individual volume, in its original 
orientation, was again transformed into stereotaxic space, 
this time using the average MRI volume from stage one 
as a target volume for the automatic 3D cross-correlation 
procedure described above. This reduced the impact of 
subjectivity in choice of landmarks during the first stage 
and resulted in a sharpened average MRI volume. 

V. CORRECTION FOR R.F. 
INHOMOGENEITY 

The MRI database is contaminated by a small radiofre- 
quency inhomogeneity due to the linearly polarized 2-coil 
design of the MRI imaging unit. The inhomogeneity ap- 
pears as a band of elevated image intensities that runs from 
the lower left to the upper right corner of each transverse 
slice in the 3D MRI volume. It causes an intensity im- 
balance of up to 3% between mirror image points in the 
left and right hemispheres of the brain image, and is par- 
ticularly troublesome for the interpretation of left/right 
asymmetries in the image. Since the artifact is a low f r e  
quency phenomenon, we parameterized this inhomogene- 
ity in the mean brain image and used the resulting fit- 
ted intensity surface to remove the inhomogeneity from 
members of the brain image database used in subsequent 
analysis. The inhomogeneity was parametrized as a mul- 
tiplicative quadratic that is invariant along a 45O line ex- 
tending from (0,O) t o  (256,256) pixels in each transverse 
slice of the native data volume. This geometry is an ide- 
alization corresponding to a subject head whose z-axis is 

aligned with the axis of the coils. In stereotaxic space the 
axis of the quadratic is at  38' to the x-axis due to the 
change in sample spacing in the x and y directions. The 
parametrization contains two adjustable parameters which 
control the relative amplitude modulation of the inhomo- 
geneity, a, and the vertical offset of the axis from the origin, 
b. The parametrization used is the following, with x and 
y in pixel coordinates for 256 by 256 transverse slices with 
(0,O) in the lower left corner. 

f(x,y,z) = a.(-x.sin(t)+(y-b).cos(t))2+1 ; t=38' 

The parameters a and b were determined by performing 
a chi-squared fit to a hemispherical data volume formed 
by dividing the left half of the mean brain by the right 
half (L/R image). This L/R image removes much of 
the natural anatomical brain variation, which is close 
to being left/right symmetric, and accentuates the inho- 
mogeneity. The fitting function for the L/R image is 
f(xL,y,z)/f(xR,y,z) where XL and xR are mirror symmetric 
values of x. Inverse variance weight functions were re- 
quired at  each voxel in the L/R volume for the chi-squared 
fit, and these weights were determined from the voxel vari- 
ance map associated with the mean brain using standard 
linear error propagation for the quotient form of the L/R 
data. 

VI. CONSTRUCTION OF ANATOMICAL 
BLURRING KERNEL 

The mean brain constructed from the registered MNI im- 
age database has the appearance of a blurred individual 
brain image. We constructed an empirical blurring kernel 
which, when applied to an individual brain, results in a 
blurring similar to that which occurs in the mean brain. 
To remove the impact of noise in the individual data, 
smoother characterizations were obtained of the Fourier 
transform of a typical individual brain, B(k) ,  and the mean 
brain, A(k) .  We found that these Fourier transforms were 
decidedly non-Gaussian. After experimentation with al- 
ternate forms, we have found that the absolute value of 
both A(k)  and B(k)  can be adequately parametrized as 
the exponential of a Gaussian form, 

I A(k)  I= Ca.exp(Ga(k)) 
& 2 -  kz 2 Ga(k) = Da-exp(-(gI2 - (dye)  (x) 

and similarly for I B(k) I. The adjustable parameters 
Ca , Dal dxa, dya, and dza were determined by a chi-squared 
fit to the absolute value of the mean brain image Fourier 
transform over a band of k-values that excludes the lowest 
frequencies (less than 0.1 cycle/") and highest frequen- 
cies (greater than 80% of Nyquist) included in the discrete 
Fourier transform. The low frequencies were excluded be- 
cause they correspond to large scale image structure which 
is not affected by the inter-subject anatomical blurring be- 
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Figure 1: Effect of r.f. inhomogeneity correction 

ing characterized. The high frequency region was excluded 
because we observe empirically that the Fourier transforms 
stopped rolling off and hit a white noise floor at  about 80% 
of Nyquist. Similarly, C b ,  D b ,  d X b ,  d y b ,  and d z b  were deter- 
mined separately for each individual brain. The blurring 
hypothesis requires that B(k)  and A ( k )  are linearly related 
by a kernel K ( k )  = A ( k ) / B ( k ) .  When K ( k )  is applied to 
the Fourier transform of an individual brain, 1 ( k ) ,  the re- 
sultant k-space distribution, K ( k ) . I ( k ) ,  corresponds to a 
real space image volume which is a blurred version of the 
original individual image. When t,he inverse of K ( k )  is ap- 
plied to  the Fourier transform of the mean brain, M ( k ) ,  the 
resultant k-space distribution, M ( k ) / K ( k ) ,  corresponds to 
a sharpened version of the mean brain. 

VII. RESULTS 
Correction for R.F. inhomogeneity: The parameters 
derived for the quadratic model of r.f. inhomogeneity were 
a = -9.093-06 and b = 11.7. Results are shown in Fig- 
ure 1 which compares 2D and 1D transverse mean image 
slices before and after removal of the inhomogeneity. The 
1D slices in particular show the scale of the small inhomo- 
geneity modulation in the contaminated mean brain and 
its absence after removal of the inhomogeneity. 

Figure 2 shows a single slice through 
the volume of variance in normalized MRI intensity. Re- 
gions of high variance are evident near sharp boundaries 
in MRI intensity such as the ventricular margins. Low 
variance is exhibited in the white matter regions and in- 
termediate variance is observed in cortex, being highest in 
the perisylvian regions. 

Construction of Anatomical Blurring Kernel: 
The parameters determined by this fitting procedure fall 
into two classes. The fitted values of each of the parame- 

Variance image: 

Figure 2: Variance of normalized MRI intensity over 305 
stereotaxic MRI volumes 

ters for individual brains were found to  cluster together in 
a range of values that is quite distinct from the value of 
the corresponding parameter for the mean brain as shown 
in Table I. The width parameters are smaller in the mean 
brain, as expected. Figure 3 illustrates a 1D cut through 
the 3D FFT of the mean MRI volume and a single MRI 
volume. Also shown is a composite fit to the individual 
brain derived by taking the mean value for the parameters 
c b ,  Db, d X b r  dyb ,  and d Z b .  

The blurring kernel was constructed by using the mean 
values of the parameter clusters for B ( k )  and the fitted val- 
ues from the mean brain for A ( k ) .  To avoid spurious high 
frequency effects associated with frequencies outside the 
fitting region we applied a cosine taper to B ( k ) / A ( k )  with 
a rolloff to 0.5 at 80% of Nyquist. 1D axial cuts through 
the resulting 3D k-space blurring kernel are shown in Fig- 
ure 4, and axial cuts through the corresponding real space 
blurring kernel are shown in Figure 5 (displayed with the 
actual asymmetric sampling of the registered brain image 
database). Owing to the non-Gaussian nature and the in- 
adequate z-sampling of the real space form of the kernel, 
the effective width in each dimension of the kernel was de- 
termined by inverse Fourier transformation of the second 
moment of the frequency kernel. These figures were then 
used to generate an effective FWHM for the real space 
kernel as shown in Table 11. 
Figure 6 is a visual display of the effects of the blurring 
kernel and its inverse on mean and individual brain im- 
age volumes. The upper left quadrant is a transverse slice 
of the mean brain volume, and the upper right quadrant 
is the same slice from the sharpened version of the mean 
volume obtained by application of the inverse blurring ker- 
nel. These images are to be compared with the slices of an 
individual image volume directly below them. The lower 
right quadrant is the corresponding slice of an individual 
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Figure 3: 1D cuts in Y-direction through the ln-FFT- 
transforms of mean MRI and a single MRI. Also shown is 
the average fit to  an individual MRI, derived from individ- 
ual fit parameters of Table I 
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Figure 4: 1D cuts through blurring kernel, frequency do- 
main 
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Figure 5: 1D cuts through blurring kernel, real domain 

TABLE I 
Width parameters (mm-') obtained from mean MRI 

volume and from N=50 inidividual MRI volumes. 

Fit parameter I Mean f SD 
[ 0.207 f 0.000 dx a 

0.188 f 0.000 
0.148 f 0.000 
0.414 f 0.017 
0.390 f 0.019 
0.233 f 0.012 

TABLE I1 
R.m.s. width (mm) in each dimension and effective 

FWHM (mm) of blurring kernel 

Distance Measure I Width I 

brain volume from the registered dataset, and the lower 
left quadrant is the same slice after the individual volume 
has been subjected to the blurring kernel. 

VIII. DISCUSSION 
Despite the loss in resolution for the highly variable sec- 
ondary cortical features, the average MRI atlas provides a 
remarkable amount of detail on the most probable position 
of major features, e.g. the central SUICUS, parieto-occipital 
sulcus, calcarine sulcus. In the deeper brain, close to the 
transformation origin, some details are evident which are 
difficult to distinguish in single images e.g. the dorsomedial 
nucleus of the thalamus. White matter tracts are appar- 
ent as slightly darker projections than the adjacent white 
matter e.g. optic radiations. The MRI intensity variance 
image exhibited sharp increases a t  edge regions, e.g. ven- 
tricular borders, where intensity changes rapidly. In such 
regions, the width of the variance map for normalized MRI 
intensity is a useful indicator of local spatial variation in 
the corresponding anatomical boundary. However it does 
not provide useful information in areas where adjacent re- 
gions have similar contrast. The blurring kernel obtained 
by taking the average ratio of A ( k ) / B ( k )  over a population 
of MRI volumes has an effective FWHM of 4.08" (Ta- 
ble I). Figure 6 shows the effect of this kernel on a single 
MRI volume and, when applied in the inverse direction] on 
the mean MRI volume. While this latter operation can- 
not restore the highest spatial frequencies where noise is 
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ORIGINAL MEAN BRAIN MEAN BRAIN SHARPENED 

INDIVIDUAL BLURRED 0 RIG INAL INDIVIDUAL 

Figure 6: Effect of blurring kernel on individual images. 
Bottom images are from a representative individual brain. 

limiting, it raises the possibility of identifying an 'ideal' 
individual whose MRI volume has the highest intensity 
correspondence with the sharpened mean MRI. In previ- 
ous work [3,5] we found a 3D r.m.s. distance (ur) between 
corresponding landmarks of 6-7". For an isotropic 3D 
Gaussian distribution this would correspond to a U, of 3.5- 
4.0" and a FWHM ( 2 . 3 5 ~ ~ )  of 8.2-9.4". This FWHM 
discrepancy of a factor of approximately two between this 
study and previous landmark-based results may be ex- 
plained by the different methodologies and assumptions 
employed. Previous studies included numerous manually- 
identified cortical landmarks where 3D spatial variations of 
up to 5cm are possible. The current automated method, 
based on normalized MRI intensity and assuming a single 
spatially invariant blurring kernel, cannot model such gross 
deformation adequately, particularly in regions with highly 
variable and complicated folding patterns. The method is 
weighted toward regions with sharper intensity edges such 
as those around deep brain structures, e.g. basal ganglia 
and ventricular margins. It will also detect radial shifts at 
the cortical margin but not tangential shifts unless they 
correspond to radially-oriented sulci being moved tangen- 
tially. These will lead to a systematic underestimation of 
the overall deformation. For complete mapping of neu- 
roanatomical variability, the MRI intensity for each voxel 
in each MRI volume must be replaced by an anatomi- 
cal label and a probability assigned for each voxel having 
a particular label. This requires a precise segmentation 

of each MRI volume into component structures, features 
and tissue types. Manual labelling, in addition to being 
prohibitively time-consuming, would introduce intra- and 
inter-observer variations in labelling strategy which would 
confound the overall goal. Completely automatic and ac- 
curate image segmentation at the regional level is as yet an 
unsolved problem. At the MNI, three overlapping projects 
are addressing the problem of anatomical variability, aim- 
ing to obtain the automatic labelling of 3D MRI datasets 
by tissue-type [8], by specific neuroanatomical volume [1,2] 
and by gyral/sulcal surface anatomy [9]. 
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