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Abstract

Reinforcement Learning (RL) is a heuristic method for
learning locally optimal policies in Markov Decision
Processes (MDP). Its classical formulation (Sutton &
Barto 1998) maintains point estimates of the expected
values of states or state-action pairs. Bayesian RL
(Dearden, Friedman, & Russell 1998) extends this to
beliefs over values. However the concept of values
sits uneasily with the original notion of Bayesian Net-
works (BNs), which were defined (Pearl 1988) as hav-
ing explicitly causal semantics. In this paper we show
how Bayesian RL can be cast in an explicitly Bayesian
Network formalism, making use of backwards-in-time
causality. We show how the heuristic used by RL can
be seen as an instance of a more general BN inference
heuristic, which cuts causal links in the network and re-
places them with non-causal approximate hashing links
for speed. This view brings RL into line with stan-
dard Bayesian AI concepts, and suggests similar hash-
ing heuristics for other general inference tasks.

Introduction
Reinforcement Learning
An MDP is a tuple(S, A, ps, pr) wheres ∈ S are states,
a ∈ A are actions,ps(s

′|s, a) are transition probabilities and
pr(r|s, a) are reward probabilities. The goal is to select a se-
quence of actions{at} (a plan) over timet to maximise the
expected value〈vt〉 = 〈

∑T

t=1
γtrt〉, whereT may be infi-

nite, and each action is selected as a function of the current,
observable stateat = at(st). We consider the case where
ps andpr are unknown. Classical Reinforcement Learning
approximates the solution using some parametric, point es-
timate function̂v(s, a; θ) and seekŝθ to best approximate

v̂(st, at; θ̂) ≈ max
at+1:T

〈
T∑

τ=t

γτrτ 〉 = 〈rt + max
at+1

v̂(s′, a; θ)〉.

It runs by choosingat at each step (which may bea =
arg maxa v̂(s, a) if best available performance is required;
or randomised for ad-hoc exploratory learning), then observ-
ing the resultingrt andst+1 and updatingθ towards a min-
imised error value (withw0 + w1 = 1):
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θ ← w0θ+w1 arg min
θ′

(v̂(st, at; θ
′))−[rt+γ max

at+1

v̂(s, a; θ)])2

Bayesian RL uses a larger parameter setφ to parametrise
and learn a full belief over valuesQ(v|s, a; φ̂) ≈ P (v|s, a).
(So classical RL is a special case where this parametric prob-
ability function is assumed to be a Dirac Delta function,
Q(v|s, a; φ) = δ(v; v̂(s, a; θ)))

Causal Bayesian Networks
A Directed Graphical Model (DGM) is a set of vari-
ables {Xi} with directed links specified by parent
functions {pa(Xi)}, and a set of conditional proba-
bilities {Pi(Xi|pa(Xi))} so the joint is P ({Xi}) =∏

i
P (Xi|pa(Xi)). A Causal Bayesian Network (CBN)

is a DGM together with a set of operatorsdo(Xi = xi)
which when applied to the model, setpa(Xi) = ∅ and
P (Xi) = δ(Xi; xi). The do operators correspond (Pearl
2000) to the effects of performing an intervention on the sys-
tem being modelled. A DGM of a system ‘respects causal
semantics’ if its corresponding CBN faithfully models in-
terventions. (The name ‘Bayesian Networks’ originally re-
ferred (Pearl 1988) to CBNs.)

While DGMs and CBNs are generally treated as comple-
mentary, we will show how a hybrid net with some causal
and some acausal links is a useful way to think about Re-
inforcement Learning algorithms, and suggests generalisa-
tions for creating other approximate inference algorithms.

The model
Perceived backwards-in-time causality is possible
The general MDP problem can be drawn as the CBN shown
in fig. 1(a). Each(s, a) pair causes a reward and the next
state. The task is to choose a plan to maximise the expected
value. Classical AI tree-search methods ignore thev nodes
and literally search the whole space of plans, computing the
expected summed discounted rewards for each plan. This
is generally intractable. (Exact polynomial dynamic pro-
gramming can be used for cases where the set of possible
states is the same at each step, but the polynomial order is
the number of dimensions ofs which may be large, render-
ing exact solution impractical though technically tractable.)
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Figure 1: (a) Full inference. (b) RL action. (c) RL learning.

In the unknownps, pr case they must also infer these prob-
abilities from the results of their actions. Tree-searching
can equivalently be conceived of as using the determinis-
tic vt = γvt+1 + rt nodes to perform the summation. In-
ference proceeds as before: at each timet, for each plan
(ordered by the classical search algorithm), we instantiate
the plan nodes and infer the distributions over thev nodes,
then perform the first action from the plan with the highest
〈vt〉. Using message-passing algorithms (Pearl 1988), infor-
mation must propagate all the way from the left to the right
(via thea nodes) of the network and back again (via thev
andr nodes) to make the inference. This is time-consuming.

The network respects causal semantics, and despite this
it includes arrows pointing backwards through time. This is
not a paradox: the expected discounted rewardvt at timet
really is caused by future rewards: that is its meaning and
definition. Note thatvt does not measure anything in the
physical world, rather it is a ‘mental construct’. So there is
no backwards causation in thephysical world being mod-
elled. But thereis backwards causation in the perceptual
world of the decision maker: its percepts of future rewards
cause its percept of the presentvt. For example, ifvt is
today’s value of a financial derivative, and we are able to
give a delayed-execution instruction now that will somehow
guarantee its value next month, then the causaldo semantics
would give a faithful model of this future intervention and an
accurate current value. However value is a ‘construct’ rather
than an object in the physical world, so no physical causality
is violated.

Approximation method
We now present RL as a heuristic method for fast inference
and decision making in the previous CBN. The two steps of
RL, action selection and learning, (also known as the ‘actor’
and ‘critic’ steps) correspond to two DGMs derived from the
CBN. We change the computation of thev nodes, from being
exact to approximate expected discounted rewards. (Their
semantics are the same, they still compute value, but their
computational accuracy changes.)

In the action selection network shown in fig. 1(b), we
sever all the causal links and replace them with two acausal
links. So we assume an approximate, parametric distribution
Q(vt|st, at; φ). This is not a causal link: rather it is some
function, whose parameters are to be learned, that will ap-
proximate the true causalP (vt|st, at, ât+1, ...ât+N ) where
âi are the actions in the optimal plan givenat. It can be
thought of as a ‘hashing’ link, making the best available
guess under limited computational resources.

Onceat is thus determined (though not yet executed) the
learning step is performed. We remove the hashing links
and reinstate the two causal links required to exactly update
the parameters ofvt, shown in fig. 1(c). We assume that the
best action was selected and will result invt from the action-
selection step (which may be a Delta spike in classical RL or
a belief distribution in Bayesian RL). The previous step’s re-
wardrt−1 is already known, sovt−1 is updated accordingly,
using the standard Classical and Bayesian learning methods
described earlier.

Following the learning step, the results ofat are observed
(rt andst+1) and the actor phase begins again fort + 1.

Discussion
Exact inference for action selection in the exact CBN is
time-consuming, requiring inference across the complete
temporal network and back again to evaluate each candidate
in a plan searching algorithm. We have seen how RL can be
viewed as a heuristic which cuts the causal links of the CBN
and replaces them with acausal hashing links, mapping di-
rectly from the current state to an approximate solution. We
suggest that having viewed RL in the context of CBNs, a
similar method could be applied to more general inference
problems when cast as CBNs: isolate the time-consuming
parts of the network and replace them with trainable acausal
hashing functions. The process of switching between causal
and hashing links can also be seen in the Helmholtz machine
(Dayanet al. 1995) in a similar spirit to RL.

We also saw how the causaldo semantics allow for coher-
ent backwards-in-time causality, where the caused entities
are perceptual ‘constructs’ rather than physical entities. This
makes an interesting contrast to other conceptions of causal-
ity such as (Granger 1969) which assume that causality must
act forwards in time.
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