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Abstract 
This paper presents two modifications to the Boxes- 
ASEIACE reinforcement learning algorithm to improve 
implementation efficiency and performance. A state his- 
tory queue (SHQ) replaces the decay computations asso- 
ciated with each conwl state, decoupling the 
dependence of computational demand from the number 
of conml states. A dynamic link table implements 
CMAC state association to decrease training time, yet 
minimize the number of control states. Simulations of 
the link table demonstrated its potential for minimizing 
control states for unoptimized state-space quantization. 
Simulations coupling the link table to CMAC state asso- 
ciation show a 3-fold reduction in learning time. A hard- 
ware implementation of the pole-cart balancer shows the 
SHQ modification to reduce computation time 12-fold. 

Introduction 
The Boxes network, developed by Michie and 

Chambers [7] and later refined by Barto et al. [2], is a 
reinforcement learning algorithm designed to solve 
difficult adaptive control problems using associative 
search elements (ASE) and adaptive critic elements 
(ACE). The equations of motion of the physical system 
are not known to the network. Rather, it learns how to 
respond based upon feedback from past trials. This 
feedback evaluates system performance from a failure 
signal occurring when the controlled object reaches an 
undesired state. 

As shown in Figure 1, the ASE acts as a control 
table that uses the current system state as an address to 
retrieve a control action for the plant. The resulting 
action may generate a reinforcement signal, usually 
negative, that the ASE and ACE receives. On the basis of 
a first-order linear prediction from past reinforcement 
signals, the ACE uses this catastrophic reinforcement 
signal to compute a prediction of the reinforcement 
signal when the plant produces no actual reinforcement. 
The ASE updates its control information using both this 
improved reinforcement signal along with a trace 
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through the previously traversed system states. The effect 
of the reinforcement signal on a control parameter 
decreases exponentially with the elapsed time since the 
system had last entered that state. In [2], a single ASE, 
along with one ACE, successfully learned to solved the 
pole balancing problem. Many other researchers have 
also used a pole-cart balancer to benchmark the 
performance of their algorithms [81 [ll. 

The ASE assigns a register to hold an output control 
value for each unique system state. Taken together, these 
registers form a control table that maps a plant state to a 
control action. Each register holds the long-term trace 
that represents both the output action, the trace’s sign, 
and also a confidence level, the trace’s magnitude. Thus, 
high confidence levels are represented by large trace 
magnitudes. The ASE adjusts only the traces of those 
states that led to the reinforcement event. 

A second value for each state, the short-term 
memory trace, tracks the contribution of a state towards 
producing the current system state. For each state, this 
short-term trace weighs the reinforcement adjustment of 
the long-term trace value. This mechanism helps the 
ACE use past states to leam from a system failure in 
proportion to their contribution to the cutrent outcome. 

An ASE contains one control output (O(t)), one 
reinforcement input (i (t) ), and a decoded input state 
vector (&(t)). Each element of &(t) represents a unique 
state within the system. For each Ii(t), the i* element is 1 
and all other elements are 0. The ASE output, which 
controls the system, is just the thresholded long term 
trace selected by the decoded input state vector as in (1). 

I 

Figure 1. Example of a simple ASE and ACE system. 



€)(a) = 1 if a 2 0, else 9(a) = -1. 

The following equations recursively relate WO intemally 
stored variables: the long term trace, wi(t), and the short term 
trace, ei(t), to each input, i: 

w.(t) = w.(t-1) +ar ( t - l )e . ( t -1)  (2) 

(3) 
1 1 1 

ei(t) = 8ei(t-1) + ( l - t i ) I . ( t -1)O( t - l )  
1 

where r(t) = reinforcement signal, 
6 = ASE trace decay rate 
a = positive constant determining rate of change 

The ACE contains one modified reinforcement output, 
one reinforcement input, and a set of inputs equaling the 
number of outputs from the front end decoder. %o internally 
stored variables, jIi(t), the time decay factor, and vi(t), the 
state predictor, recursively update their values each cycle 
from the current system state. The change in the system 
predictor, p(t), provides feedback to update the variables, vi(t) 
and i (t) . The following equations describe the operation of 
the ACE: 

(4) Xi(') = q t - 1 )  + ( l -A)I i ( t - l )  

Vi(t) = vi ( t - l )  +p3(t-1)Xi(t-1) (5 )  

N 
P(t) = c. (Vi(t) XIi(t)) (6) 

(7) 
i = l  

i ( t )  = r(t)  +yp(t) -p ( t -  1) 
where h = ACE trace decay rate, 

N = number of possible input states 
y = discount factor, 
p = positive constant determining rate of change 

During operation of the pole-cart balancer, the system 
first quantizes each of four input variables: pole angular 
velocity, cart position, cart velocity, and the reinforcement 
feedback. The quantized system parameters then pass 
through the decoder and activate the unit state vector 
representing the current system state. The ASE/ACE network 
learned to balance the stick within an average of 70 trials [2]. 

State History Queue 
The short-term trace or eligibility function, ei(t), in the 

ASE, and the state trace, xi(t). in the ACE, decay 
exponentially, and, thus, only carry significant values over a 
limited time period. All computations involving these 
variables are influential only during this period. The state 
history queuing (SHQ) scheme takes advantage of this 
characteristic to reduce both memory and computation time. 

Rather than store a decay value for each system state, the 
SHQ scheme keeps only a truncated list of all recently 
traversed input states. Weighting these states by position in 
the history queue generates an equivalent decay value. By 
restricting the length of this list, the SHQ scheme, in effect, 
sets a threshold to truncate insignificant decay values. It 
ignores weight adjustments of those states whose last visits 
occurred beyond a time period specified by the list length. 
Thus for each network update, only variables associated with 
the states listed in the queue are adjusted. This limited 
updating decouples computation time from the size of the 
input state space. It not only eliminates unnecessary memory 
accesses and decay computations to these discarded states. 

The state history queue is just a shift register that keeps 
track of the past inputs states (Figure 2). The register depth, 
H, defines the length of the queue and sets the time threshold, 
beyond which, incremental weight adjustments ate assumed 
insignificant, and ignored. The ASE's state history queue 
records the decoded input address and the generated outputs. 

An exponential decay function is approximated by 
assigning linearly decreasing decay scalars to each register 
within the queue. The approximated decay function for each 
input state is just the sum of all decay scalars of registers 
holding the input state. This decay function replaces the 
decay variables ei(t) and Zi (t) in the original algorithm. A 
linear function to represent the set of constant decay scalars 
further reduces the complexity of the algorithm. When a 
system dwells in the Same input state long enough to fill the 
queue, the SHQ step response approximates the first two 
terms in a Taylor expansion of the exponential response 
given by (3): 

e(l) = ( l - & t ) u ( t )  = t H K -  ( t 2 - t ) 2  2 ( 8) 

where 6 = trace decay rate, u(t) = step function 
H = length of the state history queue, 
K = decay scalar rate of change. 

The simulations in the following sub-sections confirm 
that this approximation introduces only a small difference to 
the overall system performance. 

Our specific implementation of the SHQ is given by (9) 
and (10). They replace equations (2) and (4), respectively. 

w[SHQ.A[hll,, = 
W[SHV.A[~II,,~~ +a Wt) (h+l)(SHQ.O[hl)~a,, (9) 

Address Input State output Decayscalar 

Figure 2. The state history queue structure for the ASE. 
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Figure 3. Step responses of e,(!) & SHQ decay function. 

where: a =rate of change constant in ASWACE 
h =pointer in SHQ, 01 h c Has, -1 
K~~~ = SHQ weight, 
w = control weights (addressable memory) 

v[SHQ.A[~II,, = 

where: h = pointer in SHQ, 0 I h < H,, - 1, 
y= discount factor (a constant) 
v = prediction values (addressable memory) 

Matching the SHQ to the Eligibility Function 
Two parameters control the effective time decay in 

the SHQ scheme: K, the decay slope, and H, the register 
length. Matching end points of the SHQ response with 
the eligibility function's step response, and matching 
values after one time constant, one can derive the simple 
guidelines given by (1 1) to determine K and H. 

~[SHQ.A[hll~id +P - p(t-1)1~,, (10) 

The step response plot, Figure 3 plots the step 
responses of both the SHQ and the original eligibility 
function. For this example, the mean squared error 
between these two curves is 8%. The simulations shown 
on the next page confirm that the pole-cart adaptive 
control system using the SHQ performs at least as well 
as the original algorithm. 
Effectiveness of the SHQ Scheme 

We present two figures-of-merit to measure the 
effectiveness of these suggested improvements: TF, time 
efficiency factor, and MF, memory efficiency factor. A 
larger figure-of-merit indicates greater improvement. 

time to address memory without modification 
time to address memory with modification 

TF = 

(12) 
memory used without modification 

memory used with modification MF = 

The original system without the SHQ would need to 
update all elements in the e, X, w, and v arrays each 

Operations Per Update 

De6nitiondVUiabb.: 
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Figure 4 .  Comparative effectiveness of the SHQ. 
cycle; whereas the modified network with the SHQ only 
need update some elements within these arrays. Figure 4 
gives the number of multiplication and addition 
operations required to update each array. 

From equations (2) and (9). the time efficiency factor 
becomes: 

(4M + 2) Ta + (M + 2) Tm 
(13) TFshq = 2TsH + (3H + 2) Ta + (4H + 2) Tm 

where Ts = time to perform one shift operation, 
'ra =: Time to perform one addition operation 
Tm = Time to perform one multiply operation. 

The memory needed for the original network must 
be large enough to hold the four arrays: e, X, w, and v, 
resulting in a total memory demand of 4M. The SHQ 
eliminates the two arrays, e and X, but adds the state 
history queue of length H; the SHQ will need 2H 
memory registers. The memory efficiency factor is thus: 

4M 
2H + 2M 

MF,,, = - 
SHQ Simulation 

Computer simulations of this learning system, both 
with and without our modifications, measured the 
improvement in speed, performance, and hardware 
demand. The original adaptive network of [2] offered a 
reference for comparison. All programs are written in 
Objective C and ran under the Unix operating system. 
We took advantage of the NextStep interface library to 
generate a graphical user interface that animated real- 
time learning of the complete system. A hardware 
implementation using a 2 MHz, 8-bit microcontroller 
(MC68HC11) demonstrated the practical feasibility of 
such a system. 

The simulation recreated the environment and 
system of [Z] as faithfully as possible. The simulator 
used Euler's method to solve the differential motion 
equation, using a time step of 20 ms. We measured 
performance by observing the number of trails verses 
elapsed time between failures. 
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Effectiveness of the SHQ 
We evaluated the SHQs effects on leaming performance 

of the modified ASE/ACE network. The SHQ replaced the 
short-term trace, or eligibility function, in the ASE, and the 
state @ace in the ACE according to (9) and (10). respectively. 
For 6 = 0.9, equation (12) set ASE SHQ length, H,,= 25 and 
IC,,,, = 0.00307. Similarly, for h = 0.8, H, and K, equaled 13 
and 0.0109. We computed the average learning curves over 
ten random seeds, shown in Figure 5. Without SHQs, OUT 
simulator closely matched the performance reported in [2]. 

The faster leaming rate of the SHQ arose as a side effect 
of the SHQ’s truncating the decay impulse response and from 
the limited number of noise seeds for the simulation runs. 
The auncation eliminated from consideration those states 
whose effect on the current outcome was probabilistidly 
irrelevant. For the pole-cart simulation, the SHQ’s time and 
memory efficiency gains were: 

650Ta + 1298Tm 

TFShq = 50Ts + 77Ta + 102Tm 

648 - = 1.7326 
MFshq = 50 + 324 

Link Table Dynamic Memory Allocation 
The amount of control memory is proportional to the 

number of possible decoded states, and is exponentially 
related to the number of inputs and their quantization levels. 
To minimize the size of the state space, [2] manually 
optimized the quantization levels for his specific system. The 
quantization levels used were non-uniform and their number 
varied among the input parameters. 

In general, manual state optimization is not feasible. We 
would prefer a system that allows a large state space, but 
sparsely allocates physical memory only to states that the 
system actually uses. Otherwise, memory demand may 
become unreasonably large were physical memory allocated 
to every possible address. Furthermore, most complex 
systems do not access all possible states, many states are 
unstable or not physically possible. 

The link table only allocates physical addresses for states 
that have been accessed. It dynamically assigns new physical 

e ~u(a’. hXr El OW h ~ .  E l   US^ siia 

Figure 5. Average learning curves with and without SHQ. 

memory to each new state. However, each read or write 
operation requires comparing the input address to all 
addresses stored in the link table. For associative operation, 
the system accesses all addresses within a given distance 
from the input address. If no cached state exists within a 
given distance of the input state, the system adds it. 

Although searching the link table can significantly 
lengthen memory access time, several factors mitigate this 
problem. First, only a relatively small fraction of total system 
states will end up in the link table. And secondly, each new 
link table entry can be added in a presorted order, halving the 
search time, on average. And while sequential search is the 
simplest means of finding an address, more efficient search 
algorithms exist [SI that scale logarithmically with table size. 
Furthermore, the link table can be readily partitioned for 
parallel searching. Special hardware accelerators can speed 
access, as we implemented in our hardware system. 

For this work, we designed system with sufficient 
memory such that memory resources were never exhausted. 
In continuation of this work, we are investigating two 
approaches to reallocating memory when all physical 
memory is consumed: least recently used line replacement, 
and a modified Kohonen Self-organizing memory. 

In general, the number of accessed states accumulate 
much more slowly than the exponential memory space 
increase that follows a linear increase in state address length. 
In particular, as more complex systems require more 
quantization levels or system parameters, the ratio of possible 
states to accessed states grows rapidly. As this ratio grows, so 
does the memory efficiency provided by the link table. 

A memory efficiency factor, MF,inlffimeasures the 
effectiveness of the link table. This memory e ciency factor, 
h4Flin,, is given as: 

MF1ink = (16) 
memory used without link table - M 

2M, 
- -  

memory used with link table 

Link Table Effectiveness 
We applied the link table scheme to our adaptive control 

system with the SHQ modifications. ’No versions of the 
system with different input quantization levels were used to 
measure the link table scheme’s contribution to the overall 
memory savings for the system. The Wt system optimally 
quantized the input state space into 162 states, according to 
[2], such that nearly all states are frequented. The second 
system doubled the number of quantization intervals for each 
of the four input variables: cart position, cart velocity. stick 
angle, and stick angular velocity to 7, 7, 12, and 7 levels, 
respectively. This resulted in 4,116 possible system states, a 
25-fold increase. Figure 6 plots the normalized average 
number of input states allocated with physical memory 
verses trial for both systems. 

2300 



Normalized Memory Demand 
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igure 6. Unique accessed input states vs. trial 
number.Thin line-optimized quantization. Thick line - 
double the quantization intervals. 
For the Optimized system, the SHQ showed a 7% 

degradation in memory demand from the overhead of storing 
the link table itself. However, the second system realized a 
3.76-fold savings in memory. In more complex systems, 
where it is difficult to optimize quantization, the link table 
would provide significantly greater memory savings. It also 
provides an effective and flexible realization of vector 
quantization by dynamically mapping a large state space to a 
small number of quantized states. 

CMAC State Association 
Significant improvements in learning occur when the 

system can apply learning from previous experiences to 
similar but slightly different situations. This association of 
leaming from nearby states to a new state is equivalent to a 
form of interpolation that fills gaps in knowledge. Non-linear 
regression and CMAC state association have explicitly been 
applied to adaptive learning systems [2] [6]. Such associative 
learning systems incorporate a distance measure in their state 
addressing to interpolate a response from the values of 
neighboring states. 

In particular, [6] applied CMAC state association to the 
ASE/ACE system. However, they used an unspecified hash 
coding scheme which did not address many of the 
implementation concerns. Their hash function randomly map 
a sparse system state space to a denser set of physical 
registers. However in general, hash functions do not generate 
a uniformly dense mapping of states. Thus to prevent the 
overlay of several states mapping to the same control register, 
the density of physical registers is not minimal. When several 
system states overlay, control can become random and 
unpredictable. Methods to avoid such overlap, by necessity, 
require greater addressing computation and less efficient use 
of physical memory. Our dynamic link table memory 
allocation scheme minimizes the complexity in computing 
neighborhood state addresses, improves predictability and 
reliability, has a widely applicable neighborhood model, and 
minimizes hardware and physical memory demand. 
However, it does so at the expense of increased access time. 

The input state consists of several fields. Each field 
represents an input parameter. The control table address may 
be computed using (17). 

where N = number of input variables 
L. = number of quantization levels for input i 
x'fit) = quantized value of input i at time t 

0 5 Xi (t) < Li wherel. > 0 (18) 

The total number of addresses that the input vector may 
address is then, 

N 
Total Number of addresses = n Li (19) 

The distance function defines the distance between two 
states. Equation (20) describes a simple, yet effective 
distance measure between states X and Y. 

i =  1 

N 

D = C pjABS (Xj - Yj) (20) 
j = l  

In our work, we uniformly weighted the state parameters 
and set the weight of these differences, pj, equal to 1. A more 
accurate distance function might weight the elements' 
differences, but that would depend upon the control problem. 

Associatxve writing accesses all addresses within a given 
neighborhood distance threshold, D,, and accumulates the 
data into each location. Reading accumulates the contents of 
all addresses within Dth and thresholds the sum to form a 
two-level output. This is very similar to Kanerva's Sparse 
Distributed Memory, but with deterministic (rather than 
random) allocation of physical memory. 
Performance of State Association 

We observed the effect of this CMAC state association 
on system learning. The read and write distances were both 
set to 1 for this simulation. As before, a Gaussian noise signal 
was added lo the accumulated contents of the accessed 
neighborhood registers only during read cycles. The summed 
signal was then thresholded. The local %gression was 
introduced only on the weight array, not the eligibility array 
e, X, or the prediction array v. The average learning curve of 
the complete modified system, including SHQ, the link table, 
and CMAC state association, showed a 4-fold decrease in 
learning time and a 4-fold improvement in robustness (Figure 
7) with the following set of network parameters: H,,=10, 
standard deviation = 0.01, K~~ = 0.0182, and association 
distance = 1. All other parameters remained the same as 
before. The learning curve of Figure 7 plots the average 
number of time steps the stick remained balanced for each 
trial. 
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Figure 7. Average learning curve for state association. 
Hardware Implementation 

A hardware implementation of the Boxes ASE/ACE 
adaptive controller, with the SHQ modification, 
controlled a physical pole-cart plant to demonstrate the 
implementation advantages of the SHQ scheme. The 
reduction in hardware enable this system to be self- 
contained as a single portable unit capable of learning to 
balance the stick in real time. 

Except for the link table and CMAC state 
association, a single, low-cost 8-bit microcontroller, a 
Motorola 68HC11, implemented the entire ASE/ACE 
control algorithm. The reduction in computation time 
resulting from the State History Queue enabled this 2 
MHz processor to update weights in real time, a 50 Hz 
rate. A Xilinx 3090 programmable gate array augmented 
the 68HC11 to control extemal memory. A single Xilinx 
3090 contained all circuitry required to maintain the link 
table and the CMAC state association. 

The entire network fits onto a 5 in? board. All 2 
kilobytes of firmware resides within the 68HCll. 
Computations were performed with 16 bit integer 
arithmetic and shift-add multiplies. The 256 bytes of 
intemal controller RAM held system variables, 
parameters, and program stack. Less than 1 Kilobyte of 
extemal RAM implemented the SHQ, holding values for 
long-term traces and the ACE'S prediction array. For the 
68HCl1, TFw = 12. A separate 68HCll controlled the 
cart's stepper motors. It kept track of cart position and 
controlled acceleration. An optical sensor measured stick 
angle and fed this information to the built-in analog to 
digital converter in the other 68HC 1 1. 

This physical environment presented a non-ideal 
training environment to challenge the controller. 
Mechanical vibration from the motors reduced the angle 
sensor's accuracy in determining the stick's state. The 
stepper motors limited the cart's positional resolution. 
Inconsistency during human supervision when re- 
centering the stick set different initial states for 
successive trials. These uncertainties introduced excess 
noise that reduced system learning rate. Without state 

association, the controller with state history queuing and 
the dynamic link table successfully learned to balance 
the stick for more than 10 minutes after 100 human 
supervised trials. Debugging and measurement of the 
system with state association is in progress. 

Conclusion 
The compatibility of the Boxes-ASE/ACE 

reinforcement learning algorithm with digital 
technology, combined with the efficiency enhancements 
of the State History Queue and Dynamic Link Table, 
permitted a lowcost, real-time implementation of an 
entire, self-contained pole-cart balancer using only two 
low cost 8-bit microcontrollers, a single programmable 
gate array, 2 KEiytes of ROM and 1 KByte of RAM. 
These enhancements not only kept hardware demand at a 
practical level, it also improved learning speed. 

The State History Queue limits decay computations 
and memory access only to addresses are significant to 
the control system. It thereby reduced provided a 12-fold 
reduction in computation time and a 1.7-fold reduction in 
memory. A link table dynamically maps a sparse control 
state space to a small set of physical memory of control 
states the system actually accessed. CMAC state 
association provided local regression to fill gaps in 
control knowledge. It augmented the control algorithm to 
provide a 3-fold reduction in simulated training time. A 
single gate array integrated circuit contained all the 
circuitry to support state association and the link table. 

These enhancements demonstrate the practical 
application of associative reinforcement learning to the 
hardware implementation of a simple adaptive control 
problem and provide the foundation for implementation 
of complex intelligent control applications. 
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