
A Hardware Efficient Implementation of a
Boxes Reinforcement Learning System

Yendo Hu and Ronald D. Fellman

Department of Electrical and Computer Engineering. 0407
University of California at San Diego

December 21,1993

Abstract
This paper presents two modifications to the Boxes-
ASEIACE reinforcement learning algorithm to improve
implementation efficiency and performance. A state his-
tory queue (SHQ) replaces the decay computations asso-
ciated with each conwl state, decoupling the
dependence of computational demand from the number
of conml states. A dynamic link table implements
CMAC state association to decrease training time, yet
minimize the number of control states. Simulations of
the link table demonstrated its potential for minimizing
control states for unoptimized state-space quantization.
Simulations coupling the link table to CMAC state asso-
ciation show a 3-fold reduction in learning time. A hard-
ware implementation of the pole-cart balancer shows the
SHQ modification to reduce computation time 12-fold.

Introduction
The Boxes network, developed by Michie and

Chambers [7] and later refined by Barto et al. [2], is a
reinforcement learning algorithm designed to solve
difficult adaptive control problems using associative
search elements (ASE) and adaptive critic elements
(ACE). The equations of motion of the physical system
are not known to the network. Rather, it learns how to
respond based upon feedback from past trials. This
feedback evaluates system performance from a failure
signal occurring when the controlled object reaches an
undesired state.

As shown in Figure 1, the ASE acts as a control
table that uses the current system state as an address to
retrieve a control action for the plant. The resulting
action may generate a reinforcement signal, usually
negative, that the ASE and ACE receives. On the basis of
a first-order linear prediction from past reinforcement
signals, the ACE uses this catastrophic reinforcement
signal to compute a prediction of the reinforcement
signal when the plant produces no actual reinforcement.
The ASE updates its control information using both this
improved reinforcement signal along with a trace

’Ihb wok was funded by h e Microelectronic Information
Processing Systems Division of the National Science Foun-
dation. RIA Award #MP-9008839.

through the previously traversed system states. The effect
of the reinforcement signal on a control parameter
decreases exponentially with the elapsed time since the
system had last entered that state. In [2], a single ASE,
along with one ACE, successfully learned to solved the
pole balancing problem. Many other researchers have
also used a pole-cart balancer to benchmark the
performance of their algorithms [81 [ll.

The ASE assigns a register to hold an output control
value for each unique system state. Taken together, these
registers form a control table that maps a plant state to a
control action. Each register holds the long-term trace
that represents both the output action, the trace’s sign,
and also a confidence level, the trace’s magnitude. Thus,
high confidence levels are represented by large trace
magnitudes. The ASE adjusts only the traces of those
states that led to the reinforcement event.

A second value for each state, the short-term
memory trace, tracks the contribution of a state towards
producing the current system state. For each state, this
short-term trace weighs the reinforcement adjustment of
the long-term trace value. This mechanism helps the
ACE use past states to leam from a system failure in
proportion to their contribution to the cutrent outcome.

An ASE contains one control output (O(t)), one
reinforcement input (i (t)), and a decoded input state
vector (&(t)). Each element of &(t) represents a unique
state within the system. For each Ii(t), the i* element is 1
and all other elements are 0. The ASE output, which
controls the system, is just the thresholded long term
trace selected by the decoded input state vector as in (1).

I

Figure 1. Example of a simple ASE and ACE system.

€)(a) = 1 if a 2 0, else 9(a) = -1.

The following equations recursively relate WO intemally
stored variables: the long term trace, wi(t), and the short term
trace, ei(t), to each input, i:

w.(t) = w.(t-1) +ar (t - l)e . (t -1) (2)

(3)
1 1 1

ei(t) = 8ei(t-1) + (l - t i) I . (t -1)O(t - l)
1

where r(t) = reinforcement signal,
6 = ASE trace decay rate
a = positive constant determining rate of change

The ACE contains one modified reinforcement output,
one reinforcement input, and a set of inputs equaling the
number of outputs from the front end decoder. %o internally
stored variables, jIi(t), the time decay factor, and vi(t), the
state predictor, recursively update their values each cycle
from the current system state. The change in the system
predictor, p(t), provides feedback to update the variables, vi(t)
and i (t) . The following equations describe the operation of
the ACE:

(4) Xi(') = q t - 1) + (l -A)I i (t - l)

Vi(t) = vi (t - l) +p3(t-1)Xi(t-1) (5)

N
P(t) = c. (Vi(t) XIi(t)) (6)

(7)
i = l

i (t) = r(t) +yp(t) -p (t - 1)
where h = ACE trace decay rate,

N = number of possible input states
y = discount factor,
p = positive constant determining rate of change

During operation of the pole-cart balancer, the system
first quantizes each of four input variables: pole angular
velocity, cart position, cart velocity, and the reinforcement
feedback. The quantized system parameters then pass
through the decoder and activate the unit state vector
representing the current system state. The ASE/ACE network
learned to balance the stick within an average of 70 trials [2].

State History Queue
The short-term trace or eligibility function, ei(t), in the

ASE, and the state trace, xi(t). in the ACE, decay
exponentially, and, thus, only carry significant values over a
limited time period. All computations involving these
variables are influential only during this period. The state
history queuing (SHQ) scheme takes advantage of this
characteristic to reduce both memory and computation time.

Rather than store a decay value for each system state, the
SHQ scheme keeps only a truncated list of all recently
traversed input states. Weighting these states by position in
the history queue generates an equivalent decay value. By
restricting the length of this list, the SHQ scheme, in effect,
sets a threshold to truncate insignificant decay values. It
ignores weight adjustments of those states whose last visits
occurred beyond a time period specified by the list length.
Thus for each network update, only variables associated with
the states listed in the queue are adjusted. This limited
updating decouples computation time from the size of the
input state space. It not only eliminates unnecessary memory
accesses and decay computations to these discarded states.

The state history queue is just a shift register that keeps
track of the past inputs states (Figure 2). The register depth,
H, defines the length of the queue and sets the time threshold,
beyond which, incremental weight adjustments ate assumed
insignificant, and ignored. The ASE's state history queue
records the decoded input address and the generated outputs.

An exponential decay function is approximated by
assigning linearly decreasing decay scalars to each register
within the queue. The approximated decay function for each
input state is just the sum of all decay scalars of registers
holding the input state. This decay function replaces the
decay variables ei(t) and Zi (t) in the original algorithm. A
linear function to represent the set of constant decay scalars
further reduces the complexity of the algorithm. When a
system dwells in the Same input state long enough to fill the
queue, the SHQ step response approximates the first two
terms in a Taylor expansion of the exponential response
given by (3):

e(l) = (l - & t) u (t) = t H K - (t 2 - t) 2 2 (8)

where 6 = trace decay rate, u(t) = step function
H = length of the state history queue,
K = decay scalar rate of change.

The simulations in the following sub-sections confirm
that this approximation introduces only a small difference to
the overall system performance.

Our specific implementation of the SHQ is given by (9)
and (10). They replace equations (2) and (4), respectively.

w[SHQ.A[hll,, =
W[SHV.A[~II,,~~ +a Wt) (h+l)(SHQ.O[hl)~a,, (9)

Address Input State output Decayscalar

Figure 2. The state history queue structure for the ASE.

2298

Figure 3. Step responses of e,(!) & SHQ decay function.

where: a =rate of change constant in ASWACE
h =pointer in SHQ, 01 h c Has, -1
K~~~ = SHQ weight,
w = control weights (addressable memory)

v[SHQ.A[~II,, =

where: h = pointer in SHQ, 0 I h < H,, - 1,
y= discount factor (a constant)
v = prediction values (addressable memory)

Matching the SHQ to the Eligibility Function
Two parameters control the effective time decay in

the SHQ scheme: K, the decay slope, and H, the register
length. Matching end points of the SHQ response with
the eligibility function's step response, and matching
values after one time constant, one can derive the simple
guidelines given by (1 1) to determine K and H.

~[SHQ.A[hll~id +P - p(t-1)1~,, (10)

The step response plot, Figure 3 plots the step
responses of both the SHQ and the original eligibility
function. For this example, the mean squared error
between these two curves is 8%. The simulations shown
on the next page confirm that the pole-cart adaptive
control system using the SHQ performs at least as well
as the original algorithm.
Effectiveness of the SHQ Scheme

We present two figures-of-merit to measure the
effectiveness of these suggested improvements: TF, time
efficiency factor, and MF, memory efficiency factor. A
larger figure-of-merit indicates greater improvement.

time to address memory without modification
time to address memory with modification

TF =

(12)
memory used without modification

memory used with modification MF =

The original system without the SHQ would need to
update all elements in the e, X, w, and v arrays each

Operations Per Update

De6nitiondVUiabb.:
M L rarl rmmbcr dpodbkkptn EULI
H = h @ h d SUE blny Qvvc

Figure 4 . Comparative effectiveness of the SHQ.
cycle; whereas the modified network with the SHQ only
need update some elements within these arrays. Figure 4
gives the number of multiplication and addition
operations required to update each array.

From equations (2) and (9). the time efficiency factor
becomes:

(4M + 2) Ta + (M + 2) Tm
(13) TFshq = 2TsH + (3H + 2) Ta + (4H + 2) Tm

where Ts = time to perform one shift operation,
'ra =: Time to perform one addition operation
Tm = Time to perform one multiply operation.

The memory needed for the original network must
be large enough to hold the four arrays: e, X, w, and v,
resulting in a total memory demand of 4M. The SHQ
eliminates the two arrays, e and X, but adds the state
history queue of length H; the SHQ will need 2H
memory registers. The memory efficiency factor is thus:

4M
2H + 2M

MF,,, = -
SHQ Simulation

Computer simulations of this learning system, both
with and without our modifications, measured the
improvement in speed, performance, and hardware
demand. The original adaptive network of [2] offered a
reference for comparison. All programs are written in
Objective C and ran under the Unix operating system.
We took advantage of the NextStep interface library to
generate a graphical user interface that animated real-
time learning of the complete system. A hardware
implementation using a 2 MHz, 8-bit microcontroller
(MC68HC11) demonstrated the practical feasibility of
such a system.

The simulation recreated the environment and
system of [Z] as faithfully as possible. The simulator
used Euler's method to solve the differential motion
equation, using a time step of 20 ms. We measured
performance by observing the number of trails verses
elapsed time between failures.

2299

Effectiveness of the SHQ
We evaluated the SHQs effects on leaming performance

of the modified ASE/ACE network. The SHQ replaced the
short-term trace, or eligibility function, in the ASE, and the
state @ace in the ACE according to (9) and (10). respectively.
For 6 = 0.9, equation (12) set ASE SHQ length, H,,= 25 and
IC,,,, = 0.00307. Similarly, for h = 0.8, H, and K, equaled 13
and 0.0109. We computed the average learning curves over
ten random seeds, shown in Figure 5. Without SHQs, OUT
simulator closely matched the performance reported in [2].

The faster leaming rate of the SHQ arose as a side effect
of the SHQ’s truncating the decay impulse response and from
the limited number of noise seeds for the simulation runs.
The auncation eliminated from consideration those states
whose effect on the current outcome was probabilistidly
irrelevant. For the pole-cart simulation, the SHQ’s time and
memory efficiency gains were:

650Ta + 1298Tm

TFShq = 50Ts + 77Ta + 102Tm

648 - = 1.7326
MFshq = 50 + 324

Link Table Dynamic Memory Allocation
The amount of control memory is proportional to the

number of possible decoded states, and is exponentially
related to the number of inputs and their quantization levels.
To minimize the size of the state space, [2] manually
optimized the quantization levels for his specific system. The
quantization levels used were non-uniform and their number
varied among the input parameters.

In general, manual state optimization is not feasible. We
would prefer a system that allows a large state space, but
sparsely allocates physical memory only to states that the
system actually uses. Otherwise, memory demand may
become unreasonably large were physical memory allocated
to every possible address. Furthermore, most complex
systems do not access all possible states, many states are
unstable or not physically possible.

The link table only allocates physical addresses for states
that have been accessed. It dynamically assigns new physical

e ~u(a’. hXr El OW h ~ . E l US^ siia

Figure 5. Average learning curves with and without SHQ.

memory to each new state. However, each read or write
operation requires comparing the input address to all
addresses stored in the link table. For associative operation,
the system accesses all addresses within a given distance
from the input address. If no cached state exists within a
given distance of the input state, the system adds it.

Although searching the link table can significantly
lengthen memory access time, several factors mitigate this
problem. First, only a relatively small fraction of total system
states will end up in the link table. And secondly, each new
link table entry can be added in a presorted order, halving the
search time, on average. And while sequential search is the
simplest means of finding an address, more efficient search
algorithms exist [SI that scale logarithmically with table size.
Furthermore, the link table can be readily partitioned for
parallel searching. Special hardware accelerators can speed
access, as we implemented in our hardware system.

For this work, we designed system with sufficient
memory such that memory resources were never exhausted.
In continuation of this work, we are investigating two
approaches to reallocating memory when all physical
memory is consumed: least recently used line replacement,
and a modified Kohonen Self-organizing memory.

In general, the number of accessed states accumulate
much more slowly than the exponential memory space
increase that follows a linear increase in state address length.
In particular, as more complex systems require more
quantization levels or system parameters, the ratio of possible
states to accessed states grows rapidly. As this ratio grows, so
does the memory efficiency provided by the link table.

A memory efficiency factor, MF,inlffimeasures the
effectiveness of the link table. This memory e ciency factor,
h4Flin,, is given as:

MF1ink = (16)
memory used without link table - M

2M,
- -

memory used with link table

Link Table Effectiveness
We applied the link table scheme to our adaptive control

system with the SHQ modifications. ’No versions of the
system with different input quantization levels were used to
measure the link table scheme’s contribution to the overall
memory savings for the system. The Wt system optimally
quantized the input state space into 162 states, according to
[2], such that nearly all states are frequented. The second
system doubled the number of quantization intervals for each
of the four input variables: cart position, cart velocity. stick
angle, and stick angular velocity to 7, 7, 12, and 7 levels,
respectively. This resulted in 4,116 possible system states, a
25-fold increase. Figure 6 plots the normalized average
number of input states allocated with physical memory
verses trial for both systems.

2300

Normalized Memory Demand
NPmmlW m Y.dmYm Nunbr o(I)-

o 2s so n im 12s 1% 175 200 za
TrW Nu-

E Double amd. In(.w& = 8.m Optlmlmd Quant. Intawab

igure 6. Unique accessed input states vs. trial
number.Thin line-optimized quantization. Thick line -
double the quantization intervals.
For the Optimized system, the SHQ showed a 7%

degradation in memory demand from the overhead of storing
the link table itself. However, the second system realized a
3.76-fold savings in memory. In more complex systems,
where it is difficult to optimize quantization, the link table
would provide significantly greater memory savings. It also
provides an effective and flexible realization of vector
quantization by dynamically mapping a large state space to a
small number of quantized states.

CMAC State Association
Significant improvements in learning occur when the

system can apply learning from previous experiences to
similar but slightly different situations. This association of
leaming from nearby states to a new state is equivalent to a
form of interpolation that fills gaps in knowledge. Non-linear
regression and CMAC state association have explicitly been
applied to adaptive learning systems [2] [6]. Such associative
learning systems incorporate a distance measure in their state
addressing to interpolate a response from the values of
neighboring states.

In particular, [6] applied CMAC state association to the
ASE/ACE system. However, they used an unspecified hash
coding scheme which did not address many of the
implementation concerns. Their hash function randomly map
a sparse system state space to a denser set of physical
registers. However in general, hash functions do not generate
a uniformly dense mapping of states. Thus to prevent the
overlay of several states mapping to the same control register,
the density of physical registers is not minimal. When several
system states overlay, control can become random and
unpredictable. Methods to avoid such overlap, by necessity,
require greater addressing computation and less efficient use
of physical memory. Our dynamic link table memory
allocation scheme minimizes the complexity in computing
neighborhood state addresses, improves predictability and
reliability, has a widely applicable neighborhood model, and
minimizes hardware and physical memory demand.
However, it does so at the expense of increased access time.

The input state consists of several fields. Each field
represents an input parameter. The control table address may
be computed using (17).

where N = number of input variables
L. = number of quantization levels for input i
x'fit) = quantized value of input i at time t

0 5 Xi (t) < Li wherel. > 0 (18)

The total number of addresses that the input vector may
address is then,

N
Total Number of addresses = n Li (19)

The distance function defines the distance between two
states. Equation (20) describes a simple, yet effective
distance measure between states X and Y.

i = 1

N

D = C pjABS (Xj - Yj) (20)
j = l

In our work, we uniformly weighted the state parameters
and set the weight of these differences, pj, equal to 1. A more
accurate distance function might weight the elements'
differences, but that would depend upon the control problem.

Associatxve writing accesses all addresses within a given
neighborhood distance threshold, D,, and accumulates the
data into each location. Reading accumulates the contents of
all addresses within Dth and thresholds the sum to form a
two-level output. This is very similar to Kanerva's Sparse
Distributed Memory, but with deterministic (rather than
random) allocation of physical memory.
Performance of State Association

We observed the effect of this CMAC state association
on system learning. The read and write distances were both
set to 1 for this simulation. As before, a Gaussian noise signal
was added lo the accumulated contents of the accessed
neighborhood registers only during read cycles. The summed
signal was then thresholded. The local %gression was
introduced only on the weight array, not the eligibility array
e, X, or the prediction array v. The average learning curve of
the complete modified system, including SHQ, the link table,
and CMAC state association, showed a 4-fold decrease in
learning time and a 4-fold improvement in robustness (Figure
7) with the following set of network parameters: H,,=10,
standard deviation = 0.01, K~~ = 0.0182, and association
distance = 1. All other parameters remained the same as
before. The learning curve of Figure 7 plots the average
number of time steps the stick remained balanced for each
trial.

2301

Trul 1 Tn# I 1 Trill21 T d 3 1 Tn l ln TlillS1 Trill11 Tnll7l Tfhl81 T d S l

Figure 7. Average learning curve for state association.
Hardware Implementation

A hardware implementation of the Boxes ASE/ACE
adaptive controller, with the SHQ modification,
controlled a physical pole-cart plant to demonstrate the
implementation advantages of the SHQ scheme. The
reduction in hardware enable this system to be self-
contained as a single portable unit capable of learning to
balance the stick in real time.

Except for the link table and CMAC state
association, a single, low-cost 8-bit microcontroller, a
Motorola 68HC11, implemented the entire ASE/ACE
control algorithm. The reduction in computation time
resulting from the State History Queue enabled this 2
MHz processor to update weights in real time, a 50 Hz
rate. A Xilinx 3090 programmable gate array augmented
the 68HC11 to control extemal memory. A single Xilinx
3090 contained all circuitry required to maintain the link
table and the CMAC state association.

The entire network fits onto a 5 in? board. All 2
kilobytes of firmware resides within the 68HCll.
Computations were performed with 16 bit integer
arithmetic and shift-add multiplies. The 256 bytes of
intemal controller RAM held system variables,
parameters, and program stack. Less than 1 Kilobyte of
extemal RAM implemented the SHQ, holding values for
long-term traces and the ACE'S prediction array. For the
68HCl1, TFw = 12. A separate 68HCll controlled the
cart's stepper motors. It kept track of cart position and
controlled acceleration. An optical sensor measured stick
angle and fed this information to the built-in analog to
digital converter in the other 68HC 1 1.

This physical environment presented a non-ideal
training environment to challenge the controller.
Mechanical vibration from the motors reduced the angle
sensor's accuracy in determining the stick's state. The
stepper motors limited the cart's positional resolution.
Inconsistency during human supervision when re-
centering the stick set different initial states for
successive trials. These uncertainties introduced excess
noise that reduced system learning rate. Without state

association, the controller with state history queuing and
the dynamic link table successfully learned to balance
the stick for more than 10 minutes after 100 human
supervised trials. Debugging and measurement of the
system with state association is in progress.

Conclusion
The compatibility of the Boxes-ASE/ACE

reinforcement learning algorithm with digital
technology, combined with the efficiency enhancements
of the State History Queue and Dynamic Link Table,
permitted a lowcost, real-time implementation of an
entire, self-contained pole-cart balancer using only two
low cost 8-bit microcontrollers, a single programmable
gate array, 2 KEiytes of ROM and 1 KByte of RAM.
These enhancements not only kept hardware demand at a
practical level, it also improved learning speed.

The State History Queue limits decay computations
and memory access only to addresses are significant to
the control system. It thereby reduced provided a 12-fold
reduction in computation time and a 1.7-fold reduction in
memory. A link table dynamically maps a sparse control
state space to a small set of physical memory of control
states the system actually accessed. CMAC state
association provided local regression to fill gaps in
control knowledge. It augmented the control algorithm to
provide a 3-fold reduction in simulated training time. A
single gate array integrated circuit contained all the
circuitry to support state association and the link table.

These enhancements demonstrate the practical
application of associative reinforcement learning to the
hardware implementation of a simple adaptive control
problem and provide the foundation for implementation
of complex intelligent control applications.

References
Anderson, C. W., "Learning to control an inverted pendulum us-
ing neural nerworks,"lEEE Coturol Sysrem Magazine, vol. 9, pp.

AUteson, C. G. and Reinkensmeyer, D. J., "Using associative
content-addressable memories to control robots," in Neural Net-
works for Contml, Miller III, W. T.. Suam, R. S. and W e b . P.
J. eds.. Cambridge, MA: The MlT Press. 1990.
Barto, A. G, Sutton, R. S, and Anderson, C. W., "NeuronWte
adaptive elements that can solve difficult learning control prob-
lems,"inIEEE Trans. Syst., Man. Cybern., SMC-13, pp. 834-846,
1983.
Kanerva, P, Sparse Distributed Memory, Cambridge, MA:
The MlT Press. 1988.
Knuth, D., "Sorting and Searching," in The Art ofcomputer Pro-
gramming. voL3. Menlo Park, CA: Addison Wesley, 1973.
Lin, C. and Kim, H, "CMAC-Based Adaptive Critic Self-Leam-
ing Contro1,"IEEE Trans. NeuralNets, vol.2.No. 5.. Sept. 1991.
Michie, D. and Chambers, R.A., "BOXES: An Exper i"~ in
Adaptive Control." in Machine Intelligence 2, Editon: E. Dale
and D. Michie. Edinburgh: Oliver and Boyd, pp. 137-152, l%8.
Widrow, B., "The original adaptive neural net broom-balancer,"
in In!. Symp. Circuits and Syst., pp. 351-357, May 1987.

31-37 April 1989.

2302

