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Abstract— The basal ganglia (BG) are a set of functionally
related and structurally interconnected nuclei in the human brain
which form part of a closed loop between cortex and thalamus,
receiving input from the former and outputting to the latter. The
BG have been implicated in motor control and cognitive switching
tasks; in particular, it is believed that the BG function as a
controller for motor tasks by selectively disinhibiting appropriate
portions of the thalamus and hence activating, via a feedback
loop, cortical regions. These switching behaviors are perforce
discrete, whereas the underlying dynamics of neuron voltages
and neurotransmitter levels are continuous-time, continuous-
state phenomena. To this end, we propose and simulate a
hybrid automaton for modeling individual neurons that affords
explicit representation of voltage discharges and discrete outputs
along with continuous voltage dynamics within a single, elegant
model; and which is amenable both to the construction of large
networks—in particular the cortico-basalthalamic loops—and to
analysis on such networks.

I. I NTRODUCTION

Motor control in the human brain has long been known
to involve, inter alia, a series of topologically interconnected
nuclei known collectively as the basal ganglia (BG). Specifi-
cally, these nuclei are believed to perform task-switching—
for motor as well, perhaps, as cognitive routines—by first
compressing cortical input and then selectively disinhibiting
the appropriate region(s) of the thalamus. The disinhibited
thalamic regions in turn activate corresponding regions of the
cortex via feedback loops [1], [2]. This form of control has
been likened to “releasing the brakes” on certain regions of
the thalamus and hence enabling cortical activation [3]. These
cortico-basal-thalamic loops are thought to be organized into
parallel, segregated channels [1], [4].

Recently, the BG have attracted the attention of control
theorists and other mathematical modelers, although at varying
levels of model detail. These models can be divided roughly
into two types: “Top-down” models take the BG network
architecture as the point of departure either to implement a par-
ticular control scheme or to demonstrate some other systems-
level property of the network. The results are then compared
for congruence with, for example, properties of specific neuron
populations. Alternatively, “bottom-up” schemes are simula-
tions which attempt to reproduce the (putative) functionality
of the BG by assembling models of neuron dynamics into
large networks in accordance with BG connectivity.

So, for example, [4] has proposed that the BG implement
a static and dynamic state (SDS) feedback control scheme

which performs speed-field tracking. This top-down scheme
requires for the stability of the system that certain matrices
in the equations of motion for the plant (i.e., the arm, leg, or
etc. which is being controlled) be uniformly positive definite
over the state space (“sign proper”). It is hypothesized that the
parallel channels of the BG which are activated correspond to
those which are sign-proper for the particular task at hand.

Alternatively, [5] begins with the premise that the BG
perform action selection via signal selection, and then devises
a neural network architecture for this purpose which is consis-
tent with the architecture of the BG. Again, [6] has proposed
that the BG instantiate an actor-critic system that implements
reinforcement learning. Or again, [2] has modeled the BG
using (modified) stochastic Petri nets, with particular attention
to the firing functions for various nuclei and the fine-grained
connectivity of the network.

All of these top-down models aim primarily at fidelity to
the overall network architecture of the BG while implementing
this or that computational scheme. The alternative is to build
models from the bottom up, based on individual neural dy-
namics. This approach has been taken with the medium spiny
neurons of the neostriatum [7]; the neurons of the subthalamic
nucleus and the globus pallidus [8] (see Section II on the
nuclei of the BG); and with a small number of loops from the
prefrontal cortex through the direct pathway of the BG (see
Section II), through the thalamus, and back to the cortex [9],
[3]. These approaches share a focus on simulation rather than
analysis, and quite generally aim at reproducing network-level
behavior.

In the present paper, we propose a model situated between
the top-down and bottom-up approaches, one which offers
facility in simulation, susceptibility to analysis (particularly
reachability proofs), and fidelity to the underlying neural
dynamics. The model shares this much in common with those
of Gillies ([10], [11]), but whereas the latter use non-linear
dynamics which limit the feasibility of analysis, the present
model proposes that individual neurons (or neural populations)
be treated as hybrid systems. This provides in particular for (1)
the reset-like nature of neuron voltage discharges; (2) discrete,
on-or-off output, which appears to be a key feature of the BG
(see Section II); and (3) a linear model of the system.



Fig. 1. The primary interconnections of the basal ganglia. Red arrows are
glutaminergic (excitatory), blue are GABAergic (inhibitory), and magenta is
dopaminergic (courtesy of Andrew Gillies).

II. OVERVIEW OF THE BASAL GANGLIA

The basal ganglia comprise four distinct nuclei: the striatum
(STR), the globus pallidus, the subthalamic nucleus (STN),
and the substantia nigra. The globus pallidus is further subdi-
vided into an internal and an external segment, the GPi and
GPe, respectively; and the substantia nigra divided into the
pars reticula (“netlike”) or SNr, and the pars compacta or SNc
[1].

The primary interconnections of the BG are shown in Fig.
1. Note that the SNc is a sort of controller, which mediates
output of the STR via dopaminergic input. The STR can be
thought of as the input nucleus of the BG, though it in turn
receives input from the cortex. The GPi and SNr are the output
nuclei of the BG: they tonically inhibit the thalamus, which in
turn feeds back to the cortex. All the interconnections of the
BG are in fact inhibitory except for the dopaminergic output
of the SNc, which can be either excitatory or inhibitory; and
the excitatatory glutaminergic output of the STN [1], [11].

For our purposes, the following facts about the BG should
also be noted:

1) The paths shown in Fig. 1 are not single channels, but
series of segregated parallel channels (i.e., “topograph-
ically” organized). The entire network is vastly parallel
[2].

2) The striatum has on the order of108 cells, whereas the
rest of the BG nuclei have on the order of105 cells.
This suggests that the BG perform some sort of data
compression from the cortex [2].

3) The BG are widely believed to perform a sort of action
selection by activating only certain of the topograpically
connected loops through the thalamus and back to the
cortex [2], [1], [5]. Since in particular some of these
actions are mutually exclusive with one another, this
selection is an all-or-nothing affair; thus it is neither
plausible nor, in many cases, possible to have actions

which have not been selected nevertheless be activated
by however small a signal. So, e.g., since motor com-
mands are produced directly in the motor and premotor
regions of the cortex, these areas should receive only
“go” and “no go” input from the thalamus; i.e. a discrete
input.

4) The BG consist of two pathways: the direct pathway
from STR through the output nuclei (SNr and GPi) to
the thalamus; and the indirect pathway from the STR
through the GPe to the STN and thence to the output
nuclei. These two pathways have opposite effects on
the thalamus: activation of the direct pathway serves to
disinhibit the thalamus, whereas activation of the indirect
pathway reduces inhibition of the thalamus. However,
these two pathways in general work in concert, since
the same mechanism which serves to activate the direct
pathway deactivates the direct pathway. This is the input
from the SNC, the “controller.” Dopamine from the
SNC facilitates firing of the so-called D1 receptors in
the STN, which innervate the direct pathway, just as
it reduces firing in the D2 receptors which feed the
indirect pathway. Thus, we see that the two pathways
work together by a “push-pull” mechanism: dopamin-
ergic input to STR “pushes” the output nuclei via the
excitatory influence of the indirect pathway, while the
direct pathway remains quiescent; and reduction of SNc
input “pulls back” the output nuclei via the inhibitory
input of the direct pathway, while the indirect pathway
stays inactive. This mechanism implements the action
selection lately noted.

5) Several well-known disorders are caused by malfunction
of the BG, viz. hyperkinetic disorders like Huntington
disease and hemiballismus, and hypokinetic disorders,
which includes Parkinson disease. Much is known about
the pathologies of these diseases, and the clinical data
enforce constraints on any computational model. So,
for example, Parkinson disease is associated with a
decrease in dopamine product, as well as overactivity
in the indirect pathway. In particular, the hypoactivity
is believed to result from increased output from the
STN, which in turn increases inhibitory output from the
GPi to the thalamus, decreasing activation of the cortex
[1]. Similar observations have been made about other
disorders of the BG.

6) Neurons in the striatum exhibit bistable behavior, mean-
ing that sufficient upstream input can put the neuron into
an “up” state, in which the neuron requires less input in
order to fire.

III. T HE MODEL

A. Constraints

The primary constraints on the model are as follows:

• Scalability. Since the current model assumes a bottom-
up approach, the primitives must be simple enough that a
network consisting of scores of them be simulatable. The



BG themselves consist of about 100 million neurons, so
ideally the simulation could handle a network consisting
of on the order of a million or more of the neuron models
(it is supposed that every pathway in the BG need not be
simultaneously simulated).

• Amenability to analysis. Unlike other bottom-up models,
the present approach is intended to be susceptible to
analysis in addition to simulation. We are particularly
interested in reachability analyses; so, for example, that
it might be shown that overactivity (specificied in terms
of mean firing rate) of the GPi results from (is reachable
from) a certain range of dopamine upstream in the STR.

• Discrete Output. As we saw in Section II, the basal
ganglia implement discrete switching behaviors, which
means that output from neurons should be cast as a simple
“on” or “off.” There are other approaches to capturing
this switching behavior, among them a winner-take-all ap-
proach [5], but there is little biological evidence for such
a mechanism in the BG; whereas the present proposal is
consistent with the evidence that neuronal output which
does not exceed a certain threshold is simply ignored by
the downstream neuron. Additionally, modeling neurons
as either on or off lends itself nicely to modeling the up
and down states of the striatal medium spiny neurons.
Finally, on/off output is much simpler for both analysis
and simulation than winner-take-all implementations.

• Fidelity to neural dynamics. [2] has constructed a vastly
parallel network that is consistent with constraints (1)-(3),
but relies on a purely discrete formalism which ignores
the underlying neural dynamics. We hypothesize that such
dynamics are crucial to capturing the functionality of the
BG.

B. Structure of the Model

The hybrid automaton is depicted in Fig. 2. The first
equation governs the membrane voltage, which functions like
a capacitor (hence the proportionality toV ). An input vector
y consists of the output of other neurons. Note that this
vector y is not the same as the scalary which appears in
the fourth differential equation; the latter is the output of the
present neuron, whereas the former contains the outputs of
all the neurons which input to the present one. These are
weighted according to some parameter vectora (hence the
inner product).

Next consider the equation forz(t), which is simply the
spike trainx(t) convolved with a Heaviside function minus
another delayed (byW seconds) Heaviside function. Thusz(t)
is a positive integer-valued function which simply counts the
number of spikes that occur within a moving periodW . This
captures the fact that neural signals use frequency-coding over
short (W = 100 ms) windows.

The spike train is produced by a reset map triggered by the
voltage. Note that all reset maps are taken to be forcing rather
than enabling; the automaton was depicted thus rather than
using domains to enforce transitions for the sake of simplicity.
When the membrane voltage exceeds a certain thresholdθ, it

is reset to its resting potential and a spike emitted from the
axon. Thusx(t) is reset to a Dirac delta at the timet of
threshold crossing, and the voltage is reset to zero. Note that
the resting potential of a neuron is in fact about -70 mV, but
the model simply adds a DC shift for simplicity; the threshold
is similarly shifted, so the net effect on the model is nil.

The two remaining reset maps turn the neuron “on” and
“off”; that is, they encode whether the neural spiking fre-
quency is sufficient to count as a signal to downstream
neurons. If this threshold,α, is exceeded while the neuron
is in its off state, then the outputy is turned on; the same
appliesmutatis mutandisto switching from on to off. This
same mechanism may be used (though it is not depicted in
Fig. 2) to model bistable neurons (see Section II): the on (off)
reset map, in addition to toggling the output y, also resets
the thresholdθ to a lower (higher) value. This captures the
increased susceptibility to input evinced by such neurons in
their “up” state.

Finally, both the outputy and the spikingx have trivial
(i.e. no) dynamics associated with them, hence the final two
equations of the automaton are zero-valued.

C. Dynamics of the Hybrid Automaton

The hybrid automaton proposed in the previous section can
be rewritten in the following form:

v̇(t)
ż(t)
ẋ(t)

 = A1

v(t)
z(t)
x(t)

 + A2

v(t−W )
z(t−W )
x(t−W )

 + B


y1

y2

...
yM

 :

A1 =

−τ 0 0
0 0 1
0 0 0

 , A2 =

0 0 0
0 0 −1
0 0 0

 ,

B =

a1 a2 . . . aM

0 0 . . . 0
0 0 . . . 0

 (1)

y =
{

1 , z(t) ≥ α
0 , z(t) < α

(2)

whereM is the number of inputs to the system. The inputs,
{yi}M

i=1, are the outputs of the upstream neurons. The reset
maps are not listed here, but are just as given in Section III-
B. Note in particular that there are no continuous dynamics
associated withx(t); the dynamics are rather given entirely
by the resets.

Equation (1) is a linear delay-differential equation (DDE),
and as such is amenable to reachability analysis via the
techniques for linear DDEs (though we will avoid these
complications – see below). This model is also perfectly
appropriate to the bistable neurons of the striatum: as lately
noted, the reset map on the output need only be modified to
additionally lower or raise the membrane threshold voltage (θ)
according to whether the output is on or off, respectively.



Fig. 2. A hybrid automaton representing neural dynamics. There are three state variables, an outputy, and three reset maps.

D. An Approximate Model

We began by proposing a state variablez that was a
convolution of a spike train with a “time window,” i.e. the
difference between a Heaviside function and another delayed
(by W seconds) Heaviside function:

z(t) = x(t) ∗ h(t) (3)

where
h(t) := u(t)− u(t−W ) (4)

is the difference of Heaviside functions (unit steps). Recall
that equations (3) and (4) can be written as the differential
equation which appears in the state-space equation (1):

ż = x(t)− x(t−W ). (5)

Now, the reset maps entail thatx(t) is a spike train, i.e. a sum
over Dirac deltas with various delaysτi:

x(t) :=
I∑

i=1

δ(t− τi). (6)

Writing out the convolution explicitly in terms of an integral,
we can see thatz(t) is nothing but a count of the number of
spikes that have occurred in the precedingW seconds:

z(t)=
∫ +∞

−∞
x(s)[u(t− s)− u(t−W − s)]ds

=
∫ +∞

−∞
x(s)u(t− s)ds−

∫ +∞

−∞
x(s)u(t−W − s)ds

=
∫ t

−∞
x(s)ds−

∫ t−W

−∞
x(s)ds

=
I∑

i=1

∫ t

t−W

δ(s− τi)ds. (7)

Unfortunately, eq. (5) is a delay differential equation (DDE),
which renders reachability analysis rather complicated. Our
model is also so far strictly deterministic, whereas neural
firing is more accurately conceived of as a stochastic process.
However, a single felicitous substitution can simultaneously
resolve both of these difficulties.

Consider first substitution of eq. (6) into the first line of (7):

z(t) =
I∑

i=1

∫ +∞

−∞
δ(s− τi)[u(t− s)− u(t−W − s)]ds. (8)

Now employing the change of variablesλi = s− τi for each
i yields

z(t)=
I∑

i=1

∫ +∞

−∞
δ(λi)[u(t− λi − τi)− u(t−W − λi − τi)]dλi

=
I∑

i=1

[∫ t−τi

−∞
δ(λi)dλi −

∫ t−τi−W

−∞
δ(λi)dλi

]

=
I∑

i=1

[∫ t−τi

−∞
δ(λi)dλi −

∫ t−τi

−∞
δ(ηi −W )dηi

]
(9)

where the last line follows by changing variables again, this
time in the second term and viaηi = λi + W .

We now “relax” our spike counter by substituting a prob-
ability density function for each impulse function in eq. (9).
Our choice of pdf is the Erlang density function

fErlang(t|n, α) =
αntn−1

(n− 1)!
e−αt, (10)

since in the limit asn and α approach+∞, this function
approaches a Dirac delta situated at the mean,n

α :

lim
n,α→∞

αntn−1

(n− 1)!
e−αt = δ(t− n

α
). (11)



(This can be seen by noting that the variance of the Erlang
distribution is n

α2 . If the mean is kept constant whilen and
α are increased toward∞, then the variance will approach
zero.) Reconsidering eq. (9) in light of this pdf, we find that

z(t)=
I∑

i=1

[∫ t−τi

−∞
fE(λi|n1, α1)dλi −

∫ t−τi

−∞
fE(ηi|n2, α2)dηi

]
,

=
I∑

i=1

[
PE(T ≤ t− τi|n1, α1)−

PE(T ≤ t− τi|n2, α2)
]
, (12)

where, finally, we choose
n1
α1

= 0
n2
α2

= W
(13)

How shall we interpret this substitution? Let us first consider
the meaning of the Erlang distribution. Suppose that the
process of interest is Poisson. (That is, if we divide the time
interval over which the process occurs into subintervals, then
the following three properties hold: [1] the probability of an
event occurring in any one subinterval is the same as the
probability of an event occurring in any other subinterval; [2]
the probability of more than one event occurring in a subinter-
val is zero; and [3] events in one subinterval are independent
of events in other subintervals.) For such a process, we may
want to know the probability that exactlyn events (an integer
number) have occurred in a certain period of time, given the
rate at which events take place,α. This probability is given
by the Erlang probability density function (10).

Thus the value ofz at time t is a sum of the probabili-
ties associated withI different Poisson processes, each one
representing a neural discharge (the first cumulative density
function) and a “forgetting” of that discharge (the second cdf),
i.e. its passing out of the time window of the neuron. Thus
ith term is the difference of two probabilities: The first is the
probability thatn1 events have occurred in theith process by
time t−τi, given that the process started at timet = 0 and that
there areα1 events/second. Equivalently, this density function
represents the probability thatn1 events have occurred in the
ith process by timet, given that the process started at time
τi, and again that events occur at the rateα1 events/second.
Sinceτi is the time of theith threshold crossing, this may be
interpreted as the probability that then1 independent events
necessary for neural discharge (“firing”) have occurred in the
T seconds following the voltage threshold crossing. The mean
time for T is n1

α1
= 0, from eq. (13).

The second of the two probabilities in the difference given
by the ith term is just like the first, save that the number
of events and rate aren2 and α2, respectively, and that
consequently the mean time for the occurrence of thenth

2

event isW seconds (from eq. (13)) after the starting time,
τi.

So: we can interpret substitution of Erlang density functions
for Dirac deltas as a transformation of the original deter-
ministic system into a stochastic one. Neural firings are no

longer deterministically occasioned by threshold crossings but
now have their expectation value at the threshold crossing—
hence the mean atτi. The subtracted probability on the other
hand represents the “forgetting” of past threshold crossings
(i.e. their passing out of the moving time window), which
occurs at a mean time of W seconds after the original crossing.
The firings minus the “forgotten” firings are summed over all
the spikes that have occurred; this is exactly what eq. (12)
represents. And of course, as we letn and α approach+∞
while maintaining the value of the ratios, the variances of both
probabilities approach 0 and eq. (12) reduces to eq. (7), a
deterministic running sum of the total number of spikes in the
last W seconds.

We now consider what the substitution of the Erlang density
function for the Dirac delta has bought us in the way of
eliminating the DDE in eq. (5). Returning again to eq. (3),
this time substituting in eqs. (6) and (4), yields

z(t) =
I∑

i=1

δ(t− τi) ∗ [u(t)− u(t−W )]. (14)

Taking Laplace transforms,

ẑ(s) =
( I∑

i=1

esτi

)(
1− esW

s

)

=
( I∑

i=1

1
s
esτi

)(
1− esW

)
(15)

so that transforming back,

z(t) =
( I∑

i=1

u(t− τi)
)
∗ [δ(t)− δ(t−W )]

= ζ(t) ∗ [δ(t)− δ(t−W )], (16)

where

ζ(t) :=
I∑

i=1

u(t− τi). (17)

Replacing the Dirac deltas once more with the appropriate
versions of the Erlang pdf from eq. (10) gives

z(t) = ζ(t) ∗
[
αn1

1 tn1−1

(n1 − 1)!
e−α1t − αn2

2 tn2−1

(n2 − 1)!
e−α2t

]
. (18)

Now, since the mean of the first distribution is zero (eq.
(13)), we would liken1 to be as small as possible, i.e.n1 =
1 (we can’t be waiting for less than one event). We leave
α1 as a free parameter for now, but it is clear that we need
it to be as large as possible to satisfy eq. (13), subject to
our other constraints, which we shall consider shortly. The
choice ofn2 as well is constrained by eq. (13) for the mean.
However, as we shall see presently,n2 will also determine
the number of additional dimensions of the state space, so we
would like to keep this parameter small. Finally, the Erlang
denstity more closely approximates the impulse function as the
variancen2

α2
2

decreases. However, we cannot simply choosen2

arbitrarily small (say,n2 = 1) andα2 arbitrarily large in order



to achieve this while keeping the state space small, since eq.
(13) constrains the ratio of the two.

Bearing these considerations in mind and lettingn1 = 1,
we look for a way to simplify the equation

z(t) = ζ(s) ∗ α1e
α1t − ζ(s) ∗ −αn2

2 tn2−1

(n2 − 1)!
e−α2t. (19)

There is in fact a technique for reducing this equation to a
simple set of linear ODEs, known as the “linear chain trick.”
For simplicity we now letα1 = α2 = α. The first step is to
define a new state variable as

ξ1(t) := ζ(t) ∗ αe−αt, (20)

which yields the differential equation

ξ̇1(t) = α[ζ(t)− ξ1(t)], (21)

or, in the Laplace domain,

ξ̂1(s) =
α

s + α
ζ̂(s), (22)

where indeed̂ξ1(s) denotes the Laplace transform ofξ1(t) and
likewise ζ̂(s) that of ζ(t). Similarly, we define a set of state
variables{ζj(t)}n2

j=2 by

ξj(t) := ζ(t) ∗ αjtj−1

(j − 1)!
e−αt. (23)

We take Laplace tranforms, factor out a term, and then
substitute in the first line but atj − 1:

ξ̂j(s) =
αj

(s + α)j
ζ̂(s)

=
α

s + α

αj−1

(s + α)j−1
ζ̂(s)

=
α

s + α
ξ̂j−1 (24)

Performing the inverse transform yields the governing ODEs:

ξ̇j(t) = α[ξj−1(t)− ξj(t)], j = 2, 3, · · · , n2. (25)

Furthermore, it will be noticed from equations (19), (20), and
(23) that

z(t) = ξ1 − ξn2 (26)

and hence from (21) and (25):

ż(t) = α[ζ(t) + ξn2(t)− ξ1(t)− ξn2−1(t)]. (27)

Finally, we letζ(t) be a new state variable, with no dynamics;
it is rather updated solely by the reset map:

ζ̇(t) = 0 (28)

G(q) = {x ∈ Rn2+3|v ≤ θ},
R(q, ζ) = ζ + 1, (29)

where G and R are the relevant guard and reset maps,
respectively;v is the voltage;θ is the voltage threshold;q
is the sole discrete state, andx = (v, ξ1, ..., ξn2 , ζ, z)T is the

Fig. 3. Erlang distributions for various values ofn andα. The ratio of the
two was kept constant atW = 100 ms.

continuous state vector. We shall see presently why it is of
lengthn2 + 3.

We are at long last in position to rewrite the state-space
equations, this time as a simple linear system:
0
BBBBBBBB@

v̇(t)

ξ̇1(t)

.

.

.
ξ̇n2 (t)

ζ̇(t)
ż(t)

1
CCCCCCCCA

=

0
BBBBBBB@

−τ 0 0 · · · 0 0 0 0
0 α 0
0 D 0 0

.

.

.
.
.
.

.

.

.
0 0 0 · · · 0 0 0 0
0 −α 0 · · · −α α α 0

1
CCCCCCCA

0
BBBBBBB@

v(t)
ξ1(t)

.

.

.
ξn2 (t)
ζ(t)
z(t)

1
CCCCCCCA

+

0
BBB@

a1 a2 · · · aM

0 0 · · · 0

.

.

.
.
.
.

. . .
.
.
.

0 0 · · · 0

1
CCCA

0
BBB@

y1
y2

.

.

.
yM

1
CCCA , (30)

where

D =


−α 0 0 · · · 0
α −α 0 · · · 0

0 α −α
...

...
...

...
...

... 0
0 · · · 0 α −α

 . (31)

We are finally left with a choice for the value ofn2 which, as
Fig. 3 shows, determines the shape of the approximant Erlang
distribution.

IV. RESULTS

The hybrid automaton system of eq. (1) was simulated in
MATLAB. A network of neurons was assembled to demon-
strate a proof of concept and is not strictly faithful to the
interconnections of the BG. Fig. 4 depicts the interconnections
of this network. Note that the inputs were chosen (somewhat
arbitrarily) to be sine waves. The architecture was chosen to
correspond to a small-scale neural network in the BG: activa-
tion propagates uni-directionally and is organized roughly into
layers.



Fig. 4. The interconnections of the simulation. The colors correspond to the
colors in Fig. 5. The green and yellow nodes are inputs (sine waves) and the
blue is the output.

Fig. 5. The output of the input nodes (green and yellow), output node (blue),
and a middle-layer node (red). The units of time and voltage are arbitrary.

Fig. 5 shows the neural output with time for the input
nodes, output nodes, and a middle-layer node. Note that the
network outputs a discrete signal, which can be interpreted
as “go”/“no go” signal; this was one of our constraints for a
BG simulation. Secondly, the execution time for this program,
running on a 1.30 GHz machine with 256 MB of RAM, was
0.3 seconds. A similar model which is twice as large runs in
about 0.5 seconds. If we assume that computation time is linear
in number of units, then a network consisting of one million
neurons—a reasonable approximation of the BG—will take
about 12 hours, not an unreasonable figure.

V. FUTURE WORK

The hybrid automaton developed in this paper should now
be assembled into a larger network which captures the connec-
tivity of the basal ganglia. The functionality of the BG could
then be simulated and specific hypotheses tested against the
simulation. In particular, the disease pathologies mentioned in
Section II must be reproducible in the model. The model could

then be used to generate further hypotheses for clinicians,
whence the model parameters and interconnections be further
refined. The second future direction, contingent on the first,
is the analysis of the basal-ganglia network. Again, disease
pathologies would provide the constraints; in this case, “down-
stream” manifestations of the disease (e.g. in the thalamus
or cortex) would provide bounds for a backward reachability
analysis to input or other parameters “upstream.” It should
be stressed that the current model appears to be unique in
providing the possibility of analysis of the BG at this level of
detail.

VI. CONCLUSION

A hybrid-system model of neural dynamics was proposed
for specific application in the basal ganglia, which exhibit
discrete switching behavior, superimposed on continuous
lowlevel dynamics. The proposed formalism lends itself both
to simulation and analysis, though neither was performed
in the present paper on large scale networks. Instead, the
dynamics were simulated on a small scale, and the analysis
procedure outlined. The present model meets the constraints of
scalability, fidelity to neural dynamics, amenability to analysis,
and discrete output (switching) behavior.
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