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Historically, there has been a long controversy concern-
ing functional localization in the cortex. Franz and
Lashley1 were the first to devise an experimental method
for tackling the question, making lesions in the cortex
and testing their effects on the performance of behav-
ioural tasks. Although experimental lesions had been
made before, it was the use of psychological tasks that
was crucial in these studies. Experiments of this sort led
Lashley2 to challenge the degree to which functions were
localized in the cerebral cortex.

Lashley worked with rats, which have a lissencephalic
brain, and he was not able to make lesions reliably in
specific cytoarchitectural areas. It was not until the
1950s that lesions were placed in specific cytoarchitec-
tonic areas in non-human primates3,4. These and subse-
quent studies supported a greater degree of localization
than Lashley had been prepared to accept. It could be
shown, for example, that lesions in inferotemporal 
cortex area 21 impaired visual-discrimination learning5,
lesions in the premotor cortex (area 6) impaired visuo-
motor associative learning 6,7, and lesions in the dorsal
prefrontal cortex (area 46) impaired the learning of spa-
tial delayed-response tasks4,8. Now that it is possible to
locate lesions in the human brain using computerized
tomography (CT) and magnetic resonance imaging

(MRI), it is also possible to show similar dissociations
between areas for human subjects9,10.

It is a limitation of these studies that they attempt to
derive the normal function of an area from the effects of
damage to that area11. More recently, it has become pos-
sible to use functional brain imaging to compare activa-
tion patterns in different cortical areas when healthy
human subjects perform specific tasks. The hope is that,
by comparing tasks that differ in just one respect, it will
be possible to identify the contributions made by par-
ticular cytoarchitectonic areas. For example, in an early
study, Petersen et al.12 compared verb generation with
noun repetition, and showed a difference in activation
of the ventral prefrontal area 47. By introducing the
subtraction method, this study opened up the use of
imaging for cognitive neuroscience13. Given the sub-
sequent proliferation of functional studies that make
use of neuroimaging, we think that it is time to re-assess
what is meant by functional localization, and to try to
provide a conceptual basis for the enterprise.

Connectional fingerprints
The operation that can be performed by an area is deter-
mined by its extrinsic and intrinsic connectivity, by the
distribution of receptor types, and by the information-
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BETZ CELLS

Giant pyramidal neurons that
are located in layer V of the
primary motor cortex. Their
axons project to the spinal cord,
terminating directly on motor
neurons.

MULTIDIMENSIONAL SCALING

A multivariate statistical method
that provides a visual
representation of the pattern of
similarities between data sets.
For example, given a matrix of
similarities between various
phenotypes, multidimensional
scaling plots them on a map
such that phenotypes that are
perceived to be similar are placed
near to each other, and those
that are perceived to be different
are placed far apart.

different dendritic trees17. So, the different cytoarchitec-
ture of different areas has consequences for processing
within those areas.

However, here we propose that each cytoarchitec-
tonic area also has a unique set of extrinsic inputs and
outputs, and this is crucial in determining the func-
tions that the area can perform. We call this unique set
a ‘connectional fingerprint’. The term fingerprint was
first introduced by Hudspeth et al.18 to describe the
distribution of cell density across cortical layers in the
human primary visual cortex. Subsequently, Zilles and
colleagues19 used it to describe the particular pattern
of receptor architecture for each cortical region, as
shown by the degree of binding for the different
receptor types.

FIGURE 1 presents an example of two anatomical 
fingerprints. These are based on a meta-analysis of data
for prefrontal regions in the macaque connectivity
database CoCoMac20. The areas are designated according
to the numbers given by Walker21. In these fingerprints,
the strength of any connection (rated as weak = 1,
medium = 2, strong = 3) is shown by the radial distance.
For simplicity of presentation, the fingerprints include
only the local connections between prefrontal areas;
more detailed fingerprints could be produced by includ-
ing the afferents from and efferents to other regions of
the brain. It can be seen that area 9 and 14 share some
connections. For example, both receive afferents from
area 25 and send efferents to area 24. However, even
when they have common afferents or efferents these
might differ in strength. For example, the strength of the
efferents to area 13 differs for these two areas. Last, there
also connections that are unique to one area or the other.
This is true of the afferents to area 9 from areas 8A and
8B, or of the efferents from area 9 to area 46. It is the
overall pattern that distinguishes the two areas.

The hypothesis of unique connectional fingerprints
has been supported by statistical analyses of cortical
connectivity in primate22 and feline cortex23. For exam-
ple, Young22 compared the connectivity of visual, audi-
tory and somatomotor regions in the macaque cortex. A
strong test of the hypothesis is provided by analyses that
restrict their focus to areas from a single cortical region.
For example, the recent analyses by Stephan et al.20 and
Kötter et al.24 used data from CoCoMac to examine the
connectional organization of subregions within the pre-
frontal cortex. Fortunately, the connectivity of different
prefrontal regions has been well studied25,26, and an
extensive account of these data is available in CoCoMac.
We have used these data to examine the hypothesis of
unique connectional fingerprints, adapting the statisti-
cal analyses of Kötter and colleagues24. Methodological
details have been reported elsewhere20,24,27–29.

In our formal analysis, we used two independent
multivariate techniques — MULTIDIMENSIONAL SCALING

(MDS) and HIERARCHICAL CLUSTER ANALYSIS (HCA). These
methods reveal similarities and dissimilarities between
elements in a multidimensional feature space. Applied
to the SPEARMAN CORRELATION MATRIX of the connectivity
data, MDS and HCA provide intuitive visual represen-
tations of the relationships between cortical areas on

processing properties of the intrinsic neurons. The
unique cytoarchitecture of an area might be an indirect
reflection of these properties. For example, the division
of layer IV in the striate cortex (area 17) into IVa, IVb,
IVcα and IVcβ reflects the extent of the afferents from
the lateral geniculate, and the separation of the magno-
cellular and parvocellular pathways. The existence 
of large pyramidal neurons — BETZ CELLS — in layer V of
motor cortex reflects the extent of the efferent projec-
tions through the pyramidal tract and the importance of
speed of conduction through this pathway. The number
and definition of the cortical layers in the different pre-
frontal regions can be related to the laminar pattern of
the connections14.

Much less is known about the intrinsic connectivity
of the different cytoarchitectonic areas than about their
extrinsic connectivity. It has been reported that different
cytoarchitectonic areas of the neocortex, with the excep-
tion of the striate cortex, have the same complement of
neurons when counts are taken through a vertical slab15.
Although the claim has been challenged, few data have
been presented to refute it16. But we also know that
different areas differ in the thickness of the laminae,
and therefore in the number of pyramidal, stellate and
other cell types. Moreover, the different cell types have
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Figure 1 | Diagram of anatomical fingerprints for two prefrontal areas — Walker’s areas
9 and 14. Afferent (upper row) and efferent (lower row) connections of Walker’s areas 9 and 14,
with other prefrontal areas that are identified by their cytoarchitectonic numbers, as designated
by Walker21. The strength of any connection (rated as weak = 1, medium/ambiguous/unknown
strength = 2, strong = 3) is shown by the radial distance. When visually comparing the figures for
the two areas, it is necessary to ignore the direct connections between them. Based on data
from REF. 20.
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premotor areas as a single area — that is, area 6.
However, on the basis of staining with cytochrome oxi-
dase, it is possible to distinguish several subregions31,32.
FIGURE 3 shows the anatomical fingerprints for areas F3
and F5 (REF. 27). These correspond to the supplementary
motor area (SMA) proper and the ventral premotor
area, respectively. As in FIG. 1, for simplicity, these finger-
prints include only the local connections between the
motor areas.

FIGURE 4a presents the results of MDS. Again, no two
areas share the same space. The analysis distinguishes
between motor cortex (F1), the medial premotor cor-
tex (SMA and pre-SMA, F3 and F6), the dorsolateral
premotor cortex (F2 and F7) and the ventrolateral pre-
motor cortex (F4 and F5). FIGURE 4b shows the results
of HCA. The same subdivisions result, but with the
added information that there is a relationship between
the dorsolateral and medial sectors, and between the
ventrolateral sector and the motor cortex.

In the analysis of prefrontal and premotor areas, the
pattern of connections has been studied using bound-
aries defined by either cytoarchitecture (prefrontal) or
cytochrome oxidase staining (premotor). Kötter et al.27

have used a formal method for comparing the classifica-
tion of areas by their connectivity with the classification
of areas on the basis of other criteria, such as receptor
architecture. The same method could now be used to
compare formally the classification of prefrontal areas
by connectivity (FIG. 2a,b) with the classification obtained
for these areas on the basis of cytoarchitecture33.

the basis of the similarities of their connectional 
fingerprints.

MDS (FIG. 2a) arranges the prefrontal cortical areas in
a sequence of lateral (45, 46, 8A), dorsal (8B, 9), dorso-
medial (24) and orbitomedial (10, 11, 12, 13, 14, 25)
areas. So, we find clusters of regions with varying
degrees of resemblance. However, no two areas share the
identical location, even after scaling similarities down to
only two dimensions. This means that no two areas have
exactly the same pattern of connections. This result is
not trivial; although any sparse parcellation divides the
cerebral cortex into areas with distinct characteristics,
Walker’s map21 is based on cytoarchitectural rather than
connectional distinctions.

The same message is conveyed independently by
HCA. This procedure amalgamates the individual areas
to groups on the basis of the similarities of their connec-
tional fingerprints (FIG. 2b). Clearly, no two areas share
the same pattern of connections. If any pair of areas did
so, the distance at which the two areas merge would be
zero. Compared with the MDS results, there are minor
differences in the detailed arrangements (for example,
areas 14 and 25 are the first to merge, but not the closest
in MDS), but the groups of areas that emerge from
HCA correspond exactly to the MDS arrangement.

To show that the validity of our conclusions is not
restricted to the prefrontal cortex, a similar analysis has
been carried out for the premotor cortex27. Whereas
Brodmann30 divided the prefrontal cortex into several
different cytoarchitectonic regions, he defined the 

HIERARCHICAL CLUSTER

ANALYSIS

A multivariate method for
solving classification problems.
The object is to sort items into
groups such that the degree of
association is strong between
members of the same cluster and
weak between members of
different clusters. In addition,
this technique visualizes the
hierarchical structure of
similarity between all identified
clusters.

SPEARMAN CORRELATION

MATRIX

A matrix of so-called Spearman
correlation coefficients, each of
which represents a measure of
association between two sets of
rank-ordered measurements.
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Figure 2 | Analysis of prefrontal connectivity. a | Multidimensional scaling creates a high-dimensional metric representation in
which distances between elements optimally reflect the overall similarity between their properties; in this case, the connectional
patterns of the cortical areas (identified by their cytoarchitectonic numbers, as designated by Walker21). Spearman correlation
coefficients between the connectivity vectors of the individual areas were computed, and MDS was then applied to these correlation
coefficients, with Kruskal’s STRESS values to determine the goodness-of-fit. Values approaching zero denote a better fit. RSQ gives
the proportion of variance of the scaled data that is explained by the distances computed by MDS. b | Hierarchical cluster analysis
was applied to the same correlation coefficients between area-connectivity vectors using a Euclidean distance metric. Distances
between areas are an inverse measure of the correlation between their connectional patterns. The fact that no two areas are
merged at a distance of zero means that each of the prefrontal areas has a unique connectional fingerprint. The figure also shows
that the definition of families of areas depends on the somewhat arbitrary choice of the threshold for similarity (see main text for
details). Both parts of the figure are based on data from REF. 20.
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somatosensory motor system and ‘frontolimbic com-
plex’. More recently, Hilgetag et al.42 introduced optimal
set analysis (OSA), a cluster analysis that is based on an
evolutionary algorithm, to determine clusters of cortical
areas on the basis of their anatomical connections.
Similar clusters have been shown using data from
STRYCHNINE NEURONOGRAPHY43. Applying several indepen-
dent statistical approaches to these data on functional
interactions, Stephan et al.43 showed that these interac-
tions are not equally distributed. Instead, they are clus-
tered into three main groups of areas — sensorimotor,
visual and orbito-temporo-insular clusters.

We have shown that, in the prefrontal cortex (FIG. 2b)

and premotor cortex (FIG. 4b), it is possible to detect clus-
ters of areas with a similar, although not identical, pat-
tern of connections. However, it is important to note
that there is no objective criterion for defining the size of
a family. As shown in FIG. 2b, the threshold for defining
‘families’ of areas is arbitrary. For example, if one
chooses d

2
(dashed line in FIG. 2b) as a similarity thresh-

old, one finds exactly the same three groups of areas that
were identified by MDS (FIG. 2a). On the other hand, if a
stricter threshold is chosen (d

1
in FIG. 3), each of these

three groups is broken up into two smaller clusters. We
make the assumption that, for the purpose of functional
localization, the more dissimilar their pattern of connec-
tions, the easier it will be to distinguish between the
functions of areas.

Until now, the standard for functional localization
has been the double dissociation44. A lesion in area X
should have an effect on task A but not on task B,
whereas a lesion in area Y should have an effect on 
task B but not on task A. So, removal of superior tem-
poral area 22 impairs the performance of auditory but
not visual discriminations, and removal of inferior
temporal area 21 impairs the performance of visual
but not auditory discriminations5,45. Similarly, removal
of parieto-occipital cortex impairs the ability to choose
spatial locations on the basis of a landmark, but has
much less effect on the performance of visual discrimi-
nations46,47; and removal of the inferotemporal cortex
impairs the performance of visual discriminations, but
has much less effect on the performance of the land-
mark task47. Removal of dorsal prefrontal area 46 leads
to a very severe impairment on spatial delayed-response
tasks, but does not impair the performance of visual
discriminations4,8,48. Correspondingly, lesions in infero-
temporal area 21 impair the performance of visual
discriminations, but do not impair performance on
delayed-response tasks5,49.

These dissociations occur between areas with a very
different pattern of connections — that is, between areas
belonging to different large families in parallel systems.
For the above examples, these are the visual and auditory
streams, the dorsal and ventral visual stream, and the
ventral visual stream and the extension of the dorsal
stream into the prefrontal cortex50. It has been more diffi-
cult to find double dissociations within streams,
although they can be found. For example, Buckley et al.51

were able to show that lesions in inferotemporal area 21
impair the performance of colour discriminations but

Connectional families
In functional systems, different areas share some of their
inputs and outputs. For example, Selemon and
Goldman-Rakic34 have pointed out that there are simi-
larities in the pattern of outputs of the parietal lobe area
7a and the lateral intraparietal area (LIP), and the pre-
frontal area 46 with which they are interconnected. They
form part of the same distributed system. It is presum-
ably the common connectivity patterns that lead to the
functional co-activation of areas within this distributed
system. For example, studies using 2-deoxyglucose35,
single-unit recording36, positron emission tomography
(PET)37 and functional MRI (fMRI)38 show co-activation
of the dorsal prefrontal cortex and intraparietal cortex
during a spatial working memory task.

We suggest the term ‘family’ for a cluster of areas that
share a similar pattern of connections. We take the term
from Zilles et al.39, who noted that related areas within
the motor system, such as the SMA and the pre-SMA,
can be grouped into neurochemically similar families on
the basis of receptor mapping. A formal proof of the
existence of connectional families was provided by
Young22,40 for the macaque brain and by Scannell 
et al.23,41 for the feline brain. Young22 used MDS to dis-
tinguish between visual areas in the dorsal and ventral
visual stream, and between the auditory system,

STRYCHNINE NEURONOGRAPHY

A method in which (potentially
polysynaptic) anatomical
connections are identified by
applying strychnine to one area
and then recording spikes in
other areas.
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Figure 3 | Diagram of anatomical fingerprints for two premotor areas — F3 and F5. 
The upper row shows the afferent and the lower row the efferent connections of the
supplementary motor area (F3), the ventral premotor area (F5) and other motor areas that are
defined on the basis of staining with cytochrome oxidase31,32. The strength of any connection
(rated as absent = 0, weak = 1, medium/ambiguous = 2, strong = 3) is shown by the radial
distance. Based on data from REF. 27.
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account for the processing of form or motion in terms of
the detailed anatomy of the pathways53,54.

Clearly, the problem of relating the physiology to the
extrinsic connections becomes much more intractable
the further one is from peripheral sensory inputs. If one
compares any two areas, both will have a very large
number of inputs, and the two areas might be con-
nected through one or two synaptic relays22. Consider,
for example, the premotor cortex, the SMA and the
motor cortex. These structures lie within the somato-
motor system that was defined by Young22 on the basis
of multivariate statistics. They share many inputs and
outputs, and are interconnected55–57.

It is therefore not surprising that cells can be found in
these three areas that fire in association with the same
task events. For example, one can find similar cell types in
the SMA and the motor cortex58–61, in the premotor 
cortex and the motor cortex62,63, in the pre-SMA and the
SMA64,65, and in the premotor cortex and the SMA66,67.
However, the proportions of cells with activity that is
related to particular tasks or task components differ
between these areas. For example, Shen and Alexander62,63

compared the activity of cells in the premotor and motor
cortices. They distinguished between cells that fired in
relation to the target location and cells that fired in rela-
tion to the direction of the movement. There were more
‘target’ cells in the premotor than in the motor cortex,
and more ‘direction’cells in the motor cortex.

The crucial question is whether it can be shown that
differences in the proportions of functional cell types
between areas relate to their different inputs or outputs.
FIGURE 5 presents a worked example from Mushiake 
et al.66. The comparison was made between the ventral
premotor cortex (F5), the SMA (F3) and the motor 
cortex (F1). The monkeys were trained on two tasks. In
the first, they performed a sequence of three movements

not the recognition of objects, whereas lesions in the
perirhinal cortex had the opposite effect. In general, the
more connections two areas share, the more difficult it is
to find double dissociations between them.Young et al.11

have discussed at length the problems associated with
making functional interpretations on the basis of
double dissociations, but have shown formally how
knowledge about connectivity can help in interpreting
the effects of lesions.

Proportions of functional cell types
A crucial question is the extent to which differences in
the patterns of activity of cell firing in different areas are
determined by differences in extrinsic connectivity of
these areas. Unfortunately, we do not have adequate
information on intrinsic connectivity, which also differs
between areas. However, the extrinsic connections must
set a limit for the processing that can occur within the
area. This idea has been previously expressed by
Young22, who stated that “the place of an area in the cor-
tical macro-circuitry might determine in large part the
area’s functional properties”.

The analysis is clearly easier the nearer we are to the
sensory inputs. For example, reviewing physiological
studies of visual areas V4 and V5, DeYoe and Van Essen52

found that 85% of cells in V5 showed direction selectiv-
ity, whereas only 5% of cells in V4 did so. By contrast,
50% of the cells in V4 showed neuronal activity that was
selective to wavelength, whereas no cells had been found
in V5 that did so. In both areas, there was orientation-
selective activity, accounting for 75% of the cells in V5
and 50% of the cells in V4. The difference in the pattern
of activity can be directly related to the visual inputs to
these areas from the magnocellular and parvocellular
pathways53. However, even in the case of early visual pro-
cessing, there is considerable complexity in trying to
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Figure 4 | Analysis of premotor connectivity. Areas are defined on the basis of staining with cytochrome oxidase31,32. a | Analysis
using multidimensional scaling (see legend to FIG. 2a). b | Analysis using hierarchical cluster analysis (see legend to FIG. 2b). The fact
that no two areas are merged at a distance of zero means that each of the motor areas has a unique connectional fingerprint. Both
analyses are based on data from REF. 27.
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The question is whether the differences in the overall
pattern relate to differences in the pattern of inputs. The
anterior intraparietal area (AIP) projects to F5, but not to
F3 or F1 (for a review, see REF. 68). Many cells in AIP are
visual in the sense that they fire when monkeys observe
objects that they are going to grasp69–72. F5 also receives a
heavy input from thalamic nucleus X (REFS 73–75), which
in turn receives input from the dentate nucleus of the
cerebellum75.Van Donkelaar et al.76 recorded in nucleus
X when monkeys were performing visually guided or
internally generated movements, and found that most of
the cells fired exclusively or preferentially in association
with the visually guided task.

In the study by Mushiake et al.66, there was also a ten-
dency for cells in the dorsal premotor cortex (F7) to fire
in association with the visually guided task. Furthermore,
in progressing anteriorly from area 4 through dorsal
area 6, there was a progressive increase in the proportion
of cells that fired in association with the presentation of
visual cues77. There are projections to the anterior part 
of dorsal area 6 (F7) from the middle intraparietal area
(MIP) in the dorsal bank of the intraparietal sulcus78,
and there are visual responses in MIP79. There is also a
decrease in the proportion of cells that fire at the time of
movement as one progresses anteriorly from area 4
through area 6 (REF. 77). Motor cortex and the posterior
part of the dorsal premotor cortex (area F2) receive the
somatic input from parietal area 5 (REF. 68). These find-
ings indicate a possible relationship between anatomical
inputs and the electrophysiological data.

Functional fingerprints
The above examples provide informal support for the
proposed relationship between connectional finger-
prints and the functional properties of areas. To provide
more formal support, we have analysed the data of
Humphrey and Tanji80. These data give the response
properties of cells in the motor cortex, the SMA, the

as instructed by visual cues. In the second, they per-
formed the same sequence from memory. The figure
shows the percentage of cells that fall into one of seven
categories, with the actual number of cells above each
histogram; the analysis is for the movement period, but
similar results were found for the pre-movement period.
Category 4 was given to cells that fired equally on the
two tasks, category 1 to cells that fired exclusively on 
the visually guided task, and category 7 to cells that fired
exclusively on the memory guided task. The other cate-
gories are for activity that was associated more with one
task than the other.

As shown previously, MDS of connectivity data
places the motor cortex (F1) on its own among the
motor areas (FIG. 5). In the motor cortex, almost all 
the cells fired equally on the two tasks (category 4). In
other studies, it has also been shown that, when mon-
keys perform sequences of movement, cells in the motor
cortex tend to fire in association with the execution of
individual movements61,67. FIGURE 5 also shows that, even
in the premotor cortex and the SMA, many cells also fire
equally (category 4) irrespective of whether the sequence
is guided by visual cues or performed from memory.

However, the overall pattern differs between the areas.
MDS (FIG. 4a) and HCA of connectivity data (FIG. 4b) dis-
tinguish between the ventrolateral premotor cortex (F5)
and the SMA (F3). In area F5, the greater proportion of
cells fired in association with sequences guided by visual
cues (categories 1–3), whereas in area F3 the greater 
proportion of cells fired in association with sequences
performed from memory (categories 5–7). There was a
statistically significant difference between the overall pat-
tern for the motor cortex and those for other areas, and
between the patterns seen for F5 and F3 (REF. 66). Other
studies have also shown that many cells in F3 fire when
monkeys perform sequences from memory, with many
cells firing differently according to the specific sequence
that is performed61,67.
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To allow a comparison with the connectional finger-
prints for the motor areas, we have analysed the data
presented by Humphrey and Tanji80 using the unfolding
model of MDS. FIGURE 6b presents the results, which can
be compared with those shown in FIG. 4 — the statistical
analyses of anatomical connectivity. The SMA in FIG. 6

corresponds roughly to F3 in FIG. 4, arcuate premotor
area in FIG. 6 to F5 in FIG. 4, and dorsal premotor cortex in
FIG. 6 to F2/F7 in FIG. 4. In both figures, motor cortex
area 4 (M1) is separate from all premotor areas. In FIG. 6,
area 5 is closest to motor cortex M1, and there are direct
connections from area 5 to M1 (REF. 68). The figure dis-
tinguishes between areas that are strongly related to
movement and areas that are responsive to visual and
auditory stimuli and show preparatory activity. The 
statistical analyses would have distinguished further
between different premotor areas had data been
included for other functional comparisons, such as
those made by Muskiake et al.66 (FIG. 5).

Brain imaging
There are practical problems in acquiring data to con-
struct functional fingerprints: it is difficult to record
electrophysiologically from more than one area at once,
and it takes time to train the animals on the different
tasks. It is therefore not practical to collect electrophysio-
logical data on a wide range of areas over a wide range
of tasks. Comparisons are made on the basis of either a
few tasks in one experiment (as in FIG. 5) or an analysis
across experiments in the literature (as in FIG. 6a). The
chances of distinguishing between areas in their pattern
of activity should increase in proportion to the number
of sampled tasks. Connectional fingerprints are based

dorsal premotor cortex and the arcuate premotor area,
which forms part of the ventral premotor cortex. The
analysis includes the superior parietal cortex (area 5),
which makes direct connections with the motor
cortex68. Humphrey and Tanji80 analysed published
studies to rate cells in these five areas in terms of their
discharge properties. There are five scales: first, the 
proportion of cells that show SET-RELATED ACTIVITY only;
second, the proportion that are responsive to
auditory/visual stimulation; third, the proportion that
are responsive to proprioceptive/cutaneous stimulation;
fourth, the proportion that show specificity in their
movement/muscle field; and fifth, the relative coupling
to motor variables.

FIGURE 6a shows the data for each area in the form of
‘functional fingerprints’. We use this term to describe a
polar plot in which the data are the proportions of
active neurons with given response properties. These
response properties can be assessed over a series of dif-
ferent tasks (such as memory-guided or visually guided
sequences) or in terms of other properties of cellular
discharge (such as set-related or muscle/movement
fields). The same format is used for these plots as for 
the anatomical fingerprints, the difference being that the
rating is for the proportion of cells with specific proper-
ties, rather than the strength of the connections. Parietal
area 5 and the motor cortex are similar in their finger-
prints, and they differ in their fingerprints from the
three premotor areas. Because the ratings of Humphrey
and Tanji80 resulted from a meta-analysis of the litera-
ture, and not from a single study in which all five mea-
sures were obtained, we should be cautious in drawing
any other firm conclusions from the fingerprints.

SET-RELATED ACTIVITY

Neuronal activity that reflects
the behavioural ‘set’ of the
animal, which can include
information about a planned
movement or about the state of
readiness of the animal.
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single cells, it is possible to derive population vectors. In
the motor system, these vectors represent the net direc-
tional signal of the population of cells, in which the cells
have votes89,90. Furthermore, one can show a shift in the
vector of the population response as learning pro-
ceeds91,92. The difference is that the BOLD signal, reflect-
ing the population response, has amplitude but no
direction. This means that it is not possible, for example,
to use fMRI to do the experiment of Shen and
Alexander62,63 in which they distinguished cell activity
that was related to the targets of movement or to the
direction of movement for the whole population. The
BOLD signal would be the same for all directions.

Imaging makes it possible to carry out meta-analyses
across studies. Whereas the absolute amplitude of the
activations is difficult to compare across studies, it is eas-
ier to test whether tasks of type X lead to significantly
greater activation in area A than do tasks of type Y. For
example, both Paus and colleagues93,94 and Duncan and
Owen95 collected studies that manipulated experimen-
tally high versus low processing demands. They were able
to show that the anterior cingulate cortex93,94 and dorsal
prefrontal cortex95 are more active the greater the task
difficulty and the processing demands. Analyses of this
sort will be furthered by the development of databases of
functional data from brain imaging studies96.

Relating functional to anatomical fingerprints
One of the goals in neuroscience is to establish compre-
hensive and quantitative structure–function relation-
ships across all levels of brain organization. A large
number of variables would be required for a complete
model of brain architecture and dynamics, and measur-
ing these variables simultaneously and in real time is
impossible. It is therefore essential that relatively simple
metrics for brain architecture and dynamics be found to
allow a sufficiently accurate description of the brain as a
dynamic system97.

We believe that connectional and functional finger-
prints, as defined here, provide useful measures for this
purpose. Anatomical connectivity fundamentally con-
strains effective connectivity — that is, how distinct
brain structures causally influence each other at both the
synaptic and population levels98. Effective connectivity is
fundamental for the principles of brain dynamics,
including population rates and synchrony97, and is the
most likely direct determinant of functional finger-
prints, as defined here. So, connectional fingerprints are
linked with functional fingerprints through effective
connectivity.

We do not claim to have provided a formal proof of
the relationship between anatomical and functional
fingerprints. This would require the investigation of
large sets of connectional and functional data for vari-
ous cortical areas. A pioneering step in this direction has
been made by Scannell and co-workers99. They predicted
the likely responses of cells in the anterior ectosylvian
visual area of the cat to moving gratings and plaid 
stimuli. Their prediction was made on the basis of a
multivariate analysis of a large database that comprised
the entire network of feline cortico-cortical connections23.

on a very large database, whereas functional data for the
macaque are based on a slim one.

This is of consequence. Consider the comparison
of two interconnected regions — dorsal prefrontal
cortex and the ventral bank of the intraparietal sulcus.
If we test monkeys on an oculomotor delayed-response
task, the proportion of cells that fire in association
with the cue, the delay period and the response are
similar for these two areas36. But we know that lesions
in these two areas have different effects: lesions in the
dorsal prefrontal cortex severely impair performance
on spatial delayed-response tasks4,8, whereas parietal
lesions do not81. A proper comparison of the cell
populations in these two areas requires that the mon-
keys be tested over a wide range of tasks, not just on
working memory tasks.

In contrast to single-cell recording, functional brain
imaging is a whole-brain method, and this makes the
comparison of many areas more feasible. As it can be
used in humans, it takes little time to convey the task
instructions, and it is therefore possible to sample many
tasks. For imaging data, a functional fingerprint would
consist of profiles of activations over a wide range of
specific task comparisons.

In fMRI, the amplitude of the blood oxygen level
dependent (BOLD) signal is proposed to be a function
of the proportion of cells in an area that are active
when subjects perform the particular task, and the fir-
ing rate of the cells82–84. By simultaneously recording
electrophysiological signals and the BOLD signal in
macaques, Logothetis et al.85 have shown that the rela-
tion between neural activity and BOLD signal might
be more complicated. The local field potential, which
might reflect synaptic input to neuronal dendrites and
somata, was a better predictor of the BOLD signal than
multiunit activity, which largely represents action
potentials. So, Logothetis et al.85 concluded that “the
BOLD signal reflects the input and intracortical pro-
cessing of a given area rather than its spiking output”.
Other authors have questioned this conclusion, argu-
ing that the neural mechanisms that underlie the pro-
duction of local field potentials and multiunit activity
are not entirely different but have considerable over-
lap86. Whatever the exact causal relationship between
neural activity and the BOLD signal, it is clear that the
relationship is tight.

It is, of course, possible that information be carried
by the synchrony of firing of different cells. However, on
the basis of computational modelling, Chawla et al.87,88

have shown that mean firing rates and the synchroniza-
tion of activity between different cells are tightly cou-
pled. This relationship held true in almost the entire
domain of the model’s parameter space, both under
‘steady state’ conditions and for stimulus-evoked tran-
sients, and for different types of anatomical architecture
and functional dynamics. These authors therefore sug-
gested that the BOLD signal in fMRI not only reflects
mean firing rates, but is also sensitive to changes in
synchronous coupling.

There is, however, an important difference between
single-unit recording and imaging. If one records from
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human brain. The problem can be solved by producing
a probability atlas that incorporates data on the cytoar-
chitecture of a group of brains, and therefore provides
the probability that an activation is localized in any par-
ticular area110,111. Information of this sort is available for
only some regions, such as the primary somatosensory
cortex112 and Broca’s area113, and it will be a while before
data are available for the entire brain.

These problems are perhaps of less concern for
studies of the early visual areas. Much progress has
been made in establishing homologies between visual
areas in the human and macaque brain114–117, and it is
unlikely that there are significant differences between
the connectivity of these areas in these species.
However, the most reliable method would be to com-
pare in macaque monkeys functional data from
MRI103,118 with connectional data. The connections of
visual areas have been much researched and are well
described40,119.

It is feasible to present a wide variety of visual stim-
uli in the same fMRI experiment. Stimuli could be pre-
sented that make demands not only on the low-level
processing of aspects such as colour, orientation and
motion, but also on higher-level processing, as in the
perception of objects120,121, faces122, aftereffects123 and
illusions124. The practicality of presenting a wide range
of visual stimuli during a single fMRI session has
already been shown. The results of such studies can be
seen in Orban et al.125, Sunaert et al.126 and Moore and
Engel127. So, by using the statistical methods described
above, it should be possible to determine functional
fingerprints of the various visual areas, and to relate
them to connectional fingerprints, such as those as
documented in the CoCoMac database20.

Conclusions
Here, we have spelled out what many neuroscientists
probably believe already. However, we hope that we
have clarified the necessary stages of the argument,
made it clear where we have relevant evidence, and
indicated what evidence should be collected to estab-
lish the last stage of the argument.

The paper has made five claims. First, that each
cytoarchitectonic area has a unique connectional 
fingerprint; we have provided worked examples for
prefrontal and premotor areas using the CoCoMac
database. Second, that there are families of areas that
share a resemblance in their connections; again, we
have provided examples for prefrontal and premotor
areas using CoCoMac. Third, that the proportion of
cells that fire in association with different tasks or task
events differs between areas; areas have their own func-
tional fingerprints. We have provided examples for the
premotor areas. Fourth, that the differences between
these functional fingerprints are determined by the
extrinsic and intrinsic connections of these areas. Last,
that imaging will be a useful tool for detecting func-
tional fingerprints. Carrying out fMRI studies on the
many areas of the visual system could allow a formal
test of the relationship between functional and
anatomical fingerprints.

Subsequently, they confirmed their predictions by 
single-unit recordings. Their approach has recently been
continued by Burns and Young100, who also used a large
database, and mathematically analysed on this basis 
the connectivity of hippocampus-related structures in the
rat. They found good agreement between the connec-
tional organization and known physiological properties
of neurons in the various areas.

What we now need are formal analyses of connec-
tional and functional fingerprints for the same corti-
cal areas and in the same species. One methodological
problem is that these two sets of data can be on differ-
ent scales: connectivity data are on an ordinal scale,
whereas electrophysiological data are on a ratio scale.
Recently, a mixture of correlation analyses and multi-
variate techniques has been suggested to deal with 
this type of problem27. Briefly, the principle of this
approach is to compute similarity profiles in each data
modality by applying scale-dependent cross-correla-
tion techniques to the feature vectors of all areas. The
structure of the resulting correlation matrices can
then be compared qualitatively by multivariate classi-
fication techniques such as MDS or HCA. In addition,
MULTIPLE CORRESPONDENCE ANALYSIS (MCA) can be used to
determine the overall classification of areas on the
basis of the combined data sets. In addition, this
method can show the correspondence between vari-
ables from different data modalities. Further advances
towards a quantitative assessment of the direct rela-
tionship between data sets can be derived from the
GENERAL LINEAR MODEL — that is, multivariate analysis of
covariance or canonical correlation analysis101.
Alternatively, INFORMATION THEORY could be used to
quantify directly the degree of mutual information
between different data sets102.

So, it should be feasible to test the hypothesis that
we have put forward in this paper. We suggest that it
would be most practicable to attempt the task for the
visual areas, and to collect the functional data by brain
imaging. This would be done best in the macaque, in
which both detailed information on anatomical con-
nections and sophisticated fMRI technology are avail-
able85,103. The functional data could also be collected
for the human brain, although this would introduce
the added problem that assumptions have to be made
about the correspondence of connections in the
human and macaque brain. We have very little direct
information, other than from studies of anterograde
degeneration104, about the connections of the human
brain105. It is not yet clear to what extent DIFFUSION-

WEIGHTED IMAGING106–108 will be able to discriminate the
fine details of anatomical connections that can be
observed using tracing methods. For the time being,
despite the uncertainty as to how well identical cyto-
architecture predicts functional equivalence, the inputs
and outputs of areas that are activated in imaging
experiments on human subjects must be inferred from
the connections of areas with similar cytoarchitecture
in the macaque brain109.

This means that one must be able to identify the
cytoarchitectonic area in which there is activation in the

MULTIPLE CORRESPONDENCE

ANALYSIS

A method that aims to explain
the relationships between
multiple variables that are
identified on identical or
different measurement scales,
and may include categorical data.

GENERAL LINEAR MODEL

A general mathematical
framework from which many
commonly used statistical
procedures (for example,
analysis of variance) are derived.

INFORMATION THEORY

A scientific discipline that is
concerned with mathematical
laws underlying systems that
transmit, store and process
information. It also deals with
the quantitative measurement of
various types of information.

DIFFUSION-WEIGHTED

IMAGING

A magnetic resonance imaging
method that makes use of the
variability in the random
movement of water molecules in
nervous tissue, which is
restricted by cell bodies, blood
vessels, axon bundles and other
structures. Two opposite
magnetic field gradients are
applied. The magnetic spins will
be de-phased by the first
gradient and, because of water
diffusion, the second gradient
will not completely re-phase
them. As the directionality of
diffusion is highly ordered in
white matter, the spatial
orientation of the bundles can
be reconstructed.
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