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Abstract
Lyapunov design methods are used widely in control engineering to design controllers that achieve
qualitative objectives, such as stabilizing a system or maintaining a system’s state in a desired
operating range. We propose a method for constructing safe, reliable reinforcement learning agents
based on Lyapunov design principles. In our approach, an agent learns to control a system by
switching among a number of given, base-level controllers. These controllers are designed using
Lyapunov domain knowledge so thatany switching policy is safe and enjoys basic performance
guarantees. Our approach thus ensures qualitatively satisfactory agent behavior for virtually any
reinforcement learning algorithm and at all times, including while the agent is learning and taking
exploratory actions. We demonstrate the process of designing safe agents for four different control
problems. In simulation experiments, we find that our theoretically motivated designs also enjoy a
number of practical benefits, including reasonable performance initially and throughout learning,
and accelerated learning.
Keywords: Reinforcement Learning, Lyapunov Functions, Safety, Stability

1. Introduction

Practitioners of artificial intelligence are paying increasing attention to the reliability and safety of
approximate solutions to sequential decision problems (Singh et al., 1994; Weld and Etzioni, 1994;
Schneider, 1997; Neuneier and Mihatsch, 1999; Gordon, 2000; Perkins and Barto, 2001a,b). These
issues are particularly important for learning agents. Such agents may come to behave in ways not
expected by their designers, and the process of learning and exploring alternative behaviors may
itself be costly or dangerous. Where safety is not a concern or is easily achieved, reinforcement
learning techniques have generated impressive solutions to difficult, large-scale stochastic decision
problems. Examples include such diverse problems as backgammon playing (Tesauro 1994, 1995),
job-shop scheduling (Zhang and Dietterich, 1996), elevator dispatching (Crites and Barto, 1998),
and option pricing (Tsitsiklis and Van Roy, 1999). However, there are obstacles to applying rein-
forcement learning to problems in which it is important to ensure reasonable system performance
and/or respect safety constraints at all times. Most reinforcement learning algorithms offer no guar-
antees on the quality of control during learning. In practice, the initial performance of learning
systems is often poor. Even after the agent has started to perform well, exploratory actions, which
are necessary for learning, can degrade performance. For many algorithms, performance does not
always improve monotonically as learning progresses (Bertsekas and Tsitsiklis, 1996). If learning
stops at some point, and the agent begins behaving according to a fixed policy, then exploratory ac-
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tions and learning errors cease to threaten the agent’s performance. However, one still may not know
if the behavior that the agent has learned is safe and successful in all possible situations. Depending
on the precise criteria used, this may be difficult or impossible (undecidable) to determine.

Safety and reliability have always been important issues in control engineering. Often, the
problems studied in control engineering are not formulated as optimal control problems. Commonly
stated goals for controlling a system include: stabilizing a system around some operating point,
tracking a desired system trajectory, or keeping the system’s state in some range (see, for example,
Sontag, 1990; Levine, 1996; and Vincent and Grantham, 1997, for general treatments and Craig,
1989, for a discussion of robotics problems in particular). For a number of individual problems
and abstract classes of problems, provably correct solutions have been developed for achieving
qualitative goals such as these. Of course, the number of problems that have yielded to analysis is
not as large as one would like. And in implementing such a solution, one must worry about whether
the real system to be controlled behaves enough like the abstract problem that the solution is valid.
Still, analytical solutions to qualitative formulations of control problems have been invaluable in a
wide array of disciplines, including robotics, networking, and numerous branches of engineering.

In this paper we show that by using qualitative control technologies in a reinforcement learn-
ing framework, one can designqualitatively safe and reliableagents that can learn approximate
solutions tooptimal control problems. We find that appropriate use of qualitative domain knowl-
edge greatly improves the initial performance of a learning system; ensures reasonable performance
throughout learning; and extends the range of problems that can reasonably be solved to include,
for example, problems requiring high-precision control.

The primary qualitative technique we use is Lyapunov control design. Lyapunov functions are a
fundamental tool used in control theory, and other disciplines, for studying the stability of systems
evolving through time. Intuitively, a Lyapunov function is a scalar function of the system state
on which system trajectories descend monotonically. Often, a Lyapunov function is thought of
as a kind of “energy” which the system continually dissipates. In physical systems, a Lyapunov
function may correspond to some real, natural notion of energy. For example, a ball rolling on
a horizontal plane subject to friction is continually sapped of its kinetic energy, slowing the ball
down. A mechanical wristwatch winds down as the potential energy stored in its spring is expended
in driving the motion of the hands. In other cases, a Lyapunov function may be more abstract, such
as an error or distance measure between the system state and a desired system state or trajectory.
A Lyapunov function can be viewed as a form of domain knowledge that qualitatively describes
certain aspects of the dynamics of the system. We know, for example, that the rolling ball and the
wristwatch will eventually slow to a halt, though we may not know precisely where or when.

The notion of a control Lyapunov function generalizes the Lyapunov function concept to sys-
tems that receive control inputs. A control Lyapunov function is a scalar function of the system
state on which some control inputs cause trajectories that descend. Intuitively, our main proposal
is to achieve safe, reliable reinforcement learning control by constraining the action choices of the
agent so thatall actions cause the system to descend on an appropriate control Lyapunov function.
Qualitative performance guarantees follow directly from the descent constraint. We do not need to
make any assumptions about the internals of the learning agent. It may be actively learning to con-
trol the system, choosing actions randomly, or simply executing a previously-learned policy. Thus,
our approach is consistent with virtually any choice of reinforcement learning algorithm.

Our approach is primarily applicable to the same kinds of problems to which Lyapunov design
applies: stabilization, regulation, and tracking problems. In other words, our techniques are relevant
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to problems in which the agent’s task is to optimally bring the state of its environment to some
region of state space, possibly a goal region, to maintain the state there, or to cause the state to
follow some desired path. For a given optimal control problem of one of these types, finding an
appropriate Lyapunov function may not be an easy task. Further, it may be that in restricting the
agent to behave in ways that are provably qualitatively satisfactory, we may be ruling out other
qualitatively satisfactory behaviors that are superior according to the cost function of the optimal
control problem. Nevertheless, we expect that when Lyapunov domain knowledge is available, the
theoretical assurances we gain and the ability to readily solve new classes of problems will outweigh
such drawbacks.

In Section 2 we define the Markov decision process framework that we use to formulate optimal
control problems. We also describe a number of qualitative safety and reliability properties that can
be established using Lyapunov-based action constraints. Section 3 begins with background on Lya-
punov functions and concludes with definitions and theorems necessary for establishing qualitative
system properties. Following this is a sequence of four example problems in which we demon-
strate Lyapunov analysis, demonstrate the process of designing learning agents based on Lyapunov
domain knowledge, and present empirical evaluations of learning both with and without Lyapunov
domain knowledge. In Section 7 we describe related work, and in Section 8 we conclude and discuss
directions for future work.

2. Markov Decision Processes and Qualitative Solution Properties

We model the agent’s environment as a Markov decision process (MDP), evolving on an arbitrary
state setS. The state of the environment at timet ∈ {0,1,2, . . .} is denoted byst . The initial state,s0,
is determined according to an initial state distributionS0 (or probability measure, if one prefers). At
each timet, the agent chooses an action,at , from the set of allowed actions,A(st). The immediate
cost incurred,ct ∈ R, and the next state of the environment,st+1 ∈ S, are determined stochastically
according to a joint distribution depending on the state-action pair(st ,at).

In some MDPs there is a set of goal states,G⊂ S. When the environment enters a goal state, the
agent incurs a terminal cost but no further costs are incurred and no further actions are taken. As
far as the optimal control problem is concerned, we say that the trial, or trajectory, ends once a goal
state is reached. However, real systems do not necessarily stop once a goal state is reached. For
example, once a robot arm is moved to a goal configuration, we may consider the optimal control
task to be completed. However, in practice we may be concerned with whether the arm stays in
the goal configuration. In our demonstration problems, and for the qualitative properties described
below, it is sometimes useful to consider what happens to the system after it reaches a goal state.

A stochastic policyπ maps each states∈ S to a distribution overA(s). The expected (un)-
discounted return of policyπ is defined to be

Vπ = lim
τ→∞

E

{
τ

∑
t=0

γtct

}
,

where the expectation is with respect to the initial state distribution, the stochastic transitions of the
environment, and the stochastic action selections of the policy. The factorγ is a discount rate in the
range [0,1]; in the caseγ = 1, Vπ is referred to as the undiscounted return. The agent’s task is to
find a policy that minimizes the expected discounted return.
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In general, we cannot expect a reinforcement learning controller to obtain an optimal or even
near optimal policy to an optimal control problem. During learning, suboptimal behavior is a given.
Yet in some settings, it may be important for us to ensure reasonable performance at all times. For
example, we may want to know that excessive costs will not be incurred or that safety constraints
will not be violated. Below, we define a number of qualitative system properties that can be used to
express safety or performance objectives.

Let T ⊂ S. One of the simplest questions we may ask is, “Does the agent keep the environment
in setT, if it starts there?” IfT is taken to be a set of “safe” states, then this property can be used to
express a safety constraint that we want the controller to satisfy. Such a property may hold for all
possible trajectories of the system, or for a probability one1 set of system trajectories.

Property 1 (Remain in T) For certain/with probability 1, if s0 ∈ T, then for all t∈ {1,2, . . .},
st ∈ T.

Another natural question is, “Does the controller cause the system to enterT from any initial state?”
WhenT = G, this property expresses a guarantee of goal achievement.

Property 2 (ReachT) For certain/with probability 1, there exists t≥ 0 such that st ∈ T.

Combining the two previous properties expresses the property that the agent is guaranteed to bring
the environment to a part of state space and keep it there.

Property 3 (Reach and remain inT) For certain/with probability 1, there existsτ ∈ {0,1,2, . . .}
such that for all t≥ τ, st ∈ T.

For some MDPs it is impossible to maintain the state in a given setT. A less restrictive requirement
is that the environment spend an infinite amount of time inT—always returning toT if it leaves.

Property 4 (Infinite time in T) For certain/with probability 1, for infinitely many distinct t∈
{0,1,2, . . .}, st ∈ T.

The final property we describe is convergence toT. For this we require a distance-to-T function
δT : S→ R

+. At the least, this function should satisfyδT(s) = 0 for s∈ T andδT(s) > 0 for s /∈ T.

Property 5 (Converge toT) For certain/with probability 1,limt→∞ δT(st) = 0.

Questions such as the first four are often addressed in the model-checking literature. Indeed,
Gordon (2000) has demonstrated the relevance of model-checking techniques for verifying learning
systems. In her approach, policy changes recommended by a learning component of an agent are
verified for safety by a model-checking component. Only if the changes are safe are they imple-
mented. Model-checking techniques are most successful in finite-state domains. It remains to be
seen whether such approaches can be usefully applied to the continuous, infinite state-set problems
upon which we focus.

Property 5 is often studied in control theory, typically takingT to contain a single state. Since
our MDP framework allows for problems with infinite state sets, all of these properties are unde-
cidable. (See Blondel and Tsitsiklis, 2000, for a survey of complexity results from a control theory
perspective. Interestingly, even quite innocent-looking finite-dimensional continuous-state systems
can implement Turing machine computations.) Our situation differs from the usual control theory
setting because of the presence of the learning agent acting on the system. Nevertheless, control-
theoretic techniques can be useful in establishing the qualitative properties listed above.

1. By “probability one”, we mean probability one with respect to the initial state distribution, the stochastic transitions
of the environment, and the potentially-stochastic action selections of the reinforcement learning agent.
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3. Lyapunov Functions and Design

Lyapunov’s so-called “second” method was originally proposed as a tool for studying the stability
of systems of differential equations. The central task is to identify aLyapunov functionfor the
system—a scalar function of the system’s state with negative derivative along system trajectories.
Identifying a Lyapunov function for a system establishes that the system is stable. Lyapunov func-
tions are used in control theory to validate control strategies by showing that the resulting behavior
of the controlled system is stable. The vast majority of the applications are to problems whose
dynamics are modeled by systems of differential equations. Examples include robot manipulator
control (Craig, 1989), robot motion planning (Rimon and Koditschek, 1992; Connolly and Grupen,
1993), coordination of distributed agents (for example, Narendra et al., 2001), orientation control of
ships, airplanes, and spacecraft; stability of networks and queueing systems; and chemical process
control (see, for example, Levine, 1996, for further references). In artificial intelligence, perhaps
the best-known applications of Lyapunov functions are in showing the stability of neural network
computations (Grossberg and Cohen, 1983; Hopfield and Tank, 1985).

The basic idea of a Lyapunov function has been extended beyond systems of differential equa-
tions to quite general settings, including discrete-time deterministic control problems (Kalman and
Bertram, 1960b) and Markovian systems with general state sets evolving stochastically in discrete
time (Meyn and Tweedie, 1993). We must further extend these approaches because of the reinforce-
ment learning agent in the control loop. We make no assumptions about how the agent chooses
actions; we treat the agent as a black box that non-deterministically selects actions in a manner
unknown to us. Thus, we must ensure reasonable performance for any possible behavior of the
agent. In the Section 3.1, we present and prove two Lyapunov-style theorems that provide guidance
for designing reinforcement learning agents. These general theorems, along with specific domain
knowledge in the form of a Lyapunov function, can be used to establish qualitative safety and per-
formance guarantees of the types described above.

3.1 Lyapunov-Style Theorems for Reinforcement Learning Agents

Let T ⊂ Sand letL : S→ R be a function that is positive onTc = S−T. We uses′ to denote any
state that may result when the state of the environment issand the agent chooses an actiona∈ A(s).
Let ∆ > 0 be a fixed real number.

Theorem 1 If for all s /∈T, all a∈A(s), and all possible next states s′, either s′ ∈T or L(s)−L(s′)≥
∆, then from any st /∈ T, the environment enters T within k= dL(st)/∆e time steps.

To paraphrase, if on every time step the environment either entersT or ends up in a state at least∆
lower on the Lyapunov functionL, regardless of the agent’s choice of action, then the environment
entersT in bounded time.

Proof: Suppose the environment is in statest at timet and that the agent chooses a sequence
of k = dL(st)/∆e actions without the environment enteringT. At each successive time step, the
environment enters a state at least∆ lower onL than at the previous time step. Afterk time steps,
we haveL(st+k) ≤ L(st)− k∆ = L(st)−dL(st)/∆e∆ ≤ L(st)− L(st) = 0. But L is positive for all
states not inT, sost+k ∈ T, contradicting the assumption that the environment does not enterT by
that time.�
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In stochastic systems, guaranteeing descent can be unrealistic. However, if there is always some
probability of descending, then intuitively there is some “attraction” towards the setT. If L can be
bounded above, this attraction is sufficient to ensure reachingT eventually. An interpretation of the
upper bound is that the system never gets “too far away” fromT. Let ∆, p, andq be positive reals.

Theorem 2 If sups/∈T L(s) = U ∈ R, and if, on every timestep t for which st /∈ T, with probability
at least q (independent of any prior events) the agent chooses an action for which either s′ ∈ T or
L(s)− L(s′) ≥ ∆ holds with probability at least p, then from any st /∈ T the environment enters T
eventually with probability 1. The probability that the environment does not enter T within k time
steps is bounded above by a function that decays exponentially to zero in k.

Proof: At each time step, there is probability at leastpq> 0 that the propertyP ≡ s′ ∈ T or
L(s)− L(s′) ≥ ∆ holds. Letn = dU/∆e. If P holds for n steps in a row, then the environment
certainly entersT, by an argument similar to that in the proof of Theorem 1. The probability that
P holds forn steps in a row is at leastpnqn > 0. Thus, the probability thatP fails to hold during at
least one of the firstn steps aftert is no more than(1− pnqn) < 1. The probability thatP fails to
hold during at least one of the firstn steps aftert and at least one of the secondn steps aftert is no
more than(1− pnqn)2. More generally, the probability thatP fails to hold for at least one time step
in each of the firstmblocks ofn time steps aftert is no more than(1− pnqn)m. This establishes the
second claim. The first claim follows since the probability thatP never holds forn time steps in a
row is no more than limm→∞(1− pnqn)m = 0. �

3.2 Lyapunov Design for Reinforcement Learning Agents

The general approach we propose is to identify a candidate Lyapunov function for a given control
problem and thendesignor restrict the action choices of the agent so that one of the theorems
above applies. In turn, these theorems allow us to establish the properties described in the previous
section. The details of how this is done, and the sorts of safety and reliability properties that can
be established, depend on the domain. For example, consider a goal-based task for which one can
construct a set of actions and a Lyapunov function,L, that satisfy Theorem 1. Then, from any initial
states0, one is certain that the agent will bring the environment toG (the Reach property, with
T = G), and will do so withindL(s0)/∆e time steps. In doing so, the environment will also Remain
(Property 1) in the set{s : L(s) ≤ L(s0)}, which may represent a notion of safety; depending on
the initial state of the environment, the trajectory produced cannot deviate too far from the goal.
If the environment is stochastic, and only the conditions of Theorem 2 can be met, then reaching
G can be guaranteed with probability one. However, no absolute bound can be put on the time at
which the agent brings the environment to the goal. Below, we demonstrate the general approach
we propose in four different domains, using Lyapunov domain knowledge to design reinforcement
learning agents and to establish performance guarantees.

4. Deterministic Pendulum Swing-Up and Balance

Pendulum control tasks have been used as demonstration problems in theoretical control research
for many years, in part because pendulum dynamics are simply stated yet highly nonlinear. Many
researchers have discussed the role of mechanical energy in controlling pendulum-type systems (for
example, Spong, 1995; Boone, 1997a,b; DeJong, 2000; Perkins and Barto, 2001a,b). The standard
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θ

gravity

Figure 1: A single-link pendulum.

tasks are either to swing the pendulum’s end point above some height (swing-up) or to swing the
pendulum up and balance it in a vertical position (swing-up and balance). In either task, the goal
states have greater total mechanical energy than the initial state, which is typically the hanging-
down, rest position. Thus, any controller that solves one of these tasks must somehow impart a
certain amount of energy to the system. We first demonstrate our approach on a deterministic
pendulum swing-up and balance task.

4.1 Problem Definition and Controllers

Figure 1 depicts the pendulum. The state of the pendulum is specified by an angular position,
θ, which is measured counter-clockwise from upright, and an angular velocity,θ̇. The angular
acceleration of the pendulum obeys the dynamics equation

θ̈ = sinθ+u ,

where the sine term is due to gravity andu is a control torque. This equation assumes the pendulum
is of length one, mass one, and gravity is of unit strength. Since the pendulum’s dynamics are identi-
cal at the states(θ+2kπ, θ̇), for k∈ {0,±1,±2, . . .}, we assume thatθ stays in the range[−π,π]. In
our simulations, ifθ leaves that range, our code returns it to that range by adding or subtracting 2π,
as appropriate. We also artificially restrictedθ̇ to the range[−6,6]. This was important only for the
worst-behaved, naive reinforcement learning agents, which sometimes developed control policies
that tended to drive the pendulum’s velocity to+∞ or−∞.

The particular problem we study is mimimum-time control to a goal set comprising near-upright,
near-stationary states:G1 = {(θ, θ̇) : ‖(θ, θ̇)‖2 ≤ 0.01}. We assume that the control torque is
bounded in absolute value byumax = 0.225. With this torque limit, the pendulum cannot be di-
rectly driven toG1. Instead, the solution involves swinging the pendulum back and forth repeatedly,
pumping energy into it until there is enough energy to swing upright.

Most reinforcement learning algorithms are designed for discrete-time control. To bridge the
gap between the learning algorithms and the continuous-time dynamics of the pendulum, we define
a number of continuous-time control laws for the pendulum. Each control law chooses a control
torque based on the state of the pendulum. The discrete-time actions of the agents in our experiments
correspond to committing control of the pendulum to a specific control law for a specific period of
time. Discrete-time control of continuous-time systems is often done in this manner (see Huber and
Grupen, 1998b; Branicky et al., 2000, for other examples). In all, we introduce five control laws for
the pendulum. The first two are simple constant-torque control laws.

P1(θ, θ̇) = +umax , P2(θ, θ̇) =−umax .
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A third control law we use is a saturating linear-quadratic regulator design for the linear approx-
imation of the pendulum dynamics centered at the origin. (See Vincent and Grantham, 1997, for
details.) For a region of state space surrounding the origin, this controller is sufficient to pull the
pendulum into the origin and hold it there.

P3(θ, θ̇) = max(min(−2.4142θ−2.1974θ̇,umax),−umax) .

In other words,P3 is the function−2.4142θ− 2.1972θ̇ clipped so as to remain in the range
[−umax,+umax]. The constants 2.4142 and 2.1972 come from numerical solution of a matrix equa-
tion that is part of the LQR design process; they have no special meaning by themselves.

None of these control laws rely on Lyapunov analysis, and none alone can bring the pendulum
to an upright, balanced state from all initial states. We now develop two controllers based on a
Lyapunov analysis of the pendulum.

The mechanical energy of the pendulum is ME(θ, θ̇) = 1+ cos(θ)+ 1
2θ̇2. The first two terms

correspond to gravitational potential energy, and the last term corresponds to kinetic energy. At the
origin, the mechanical energy of the pendulum is precisely 2. For any other state with ME= 2, if
u is taken to be zero, the pendulum will naturally swing up and asymptotically approach the origin.
So, the pendulum swing-up and balance problem can be reduced to the problem of achieving any
state with a mechanical energy of 2.

The time derivative of the pendulum’s mechanical energy isṀE(θ, θ̇)=−sin(θ)θ̇+ θ̇θ̈ = θ̇u. So
a natural control law for rapidly increasing the pendulum’s energy is to chooseu to be of magnitude
umax and with sign matchinġθ. It turns out that this control law has potential difficulties near
positions where the control torque of±umax is at equilibrium with the effects of gravity (Perkins,
2002). However, a modification of this rule can avoid the equilibrium point problem. We call this
strategy MEA for “modified energy ascent.” Parameterized byw, this rule supplies a control torque
of magnitudew in the direction ofθ̇ “most of the time.” When that choice is close to equilibrium
with gravity, however, the control law switches down to a torque of magnitudew/2, which is not
near equilibrium with gravity. The precise formulation is

MEA(w,θ, θ̇) =




sgn(θ̇)w if |θ̇|> ε̇
or (0 < θ̇ < ε̇ andθ /∈ E1)
or (−ε̇ < θ̇ < 0 andθ /∈ E2)

1
2sgn(θ̇)w if (0 < θ̇ < ε̇ andθ ∈ E1)

or (−ε̇ < θ̇ < 0 andθ ∈ E2)
sgn(θ)w if θ̇ = 0 ,

where sgn(x) = {+1 if x ≥ 0 and−1 if x < 0}, ε̇ > 0 is a constant (we usėε = 0.1 in our ex-
periments), andE1 and E2 are sets of states surrounding the equilibrium points of±w torque
with gravity. In particular, lettingθw = sin−1(w) and ε = 1

2(sin−1(w)− sin−1(1
2w)), then E1 =

[−π+θw−ε,−π+θw+ε)∪ [−θw−ε,−θw+ε) andE2 = (θw−ε,θw+ε]∪(π−θw−ε,π−θw+ε].
We use MEA to define two final control laws.

P4(θ, θ̇) = MEA(umax,θ, θ̇) ,

P5(θ, θ̇) = MEA(1
2umax,θ, θ̇) .
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Experiment Control laws Goal set Summary
1 P4,P5 G2 Descent onL certain.
2 P1,P2,P4,P5 G2 Descent onL possible, not guaranteed.
3 P1,P2 G2 No guarantees.
4 P1,P2,P3 G1 No guarantees.

Figure 2: Control laws and goal sets for Experiments 1–4.

Theorem 3 If the pendulum is controlled continuously by P4 or P5 from any initial state, then the
mechanical energy of the pendulum increases monotonically and without bound. Further, from
any initial state, if the pendulum is controlled by either P4 or P5 for a period of timeδ, then the
mechanical energy of the pendulum increases by at least some amount∆. The amount∆ differs for
P4 and P5 and depends onδ, but it does not depend on the initial state of the pendulum.

Proof sketch: A full proof was presented by Perkins (2002). We sketch the main idea here,
focusing on the second claim, from which the first claim follows easily. Recall thatṀE = θ̇u.
BecauseP4 andP5 apply at least14umax torque in the direction oḟθ, we know that the change in ME

over a period ofδ time is at least14umax
∫ δ

t=0 |θ̇(t)|dt, whereθ̇(t) denotes the angular velocity of the
pendulum at timet. Sinceθ̇(t) can be zero, it is not immediately obvious that the integral should be
bounded above zero. Conceivably,θ̇(t) could stay arbitrarily close to zero, and the integral could
be arbitrarily small. Besides keepinġME nonnegative, a key property of MEA is that it keepsθ̈
bounded away from zero, regardless of the state of the pendulum. Thus, MEA ensures that ifθ̇
is near zero at some point, it will quickly move away from zero; either the pendulum accelerates
rapidly, or it slows rapidly to a stop and accelerates the other way. Thus,θ̇ cannot stay near zero
for the wholeδ time period, and the integral can be bounded above zero across all possible initial
states.�

The pendulum can be brought to the upright balanced position by using eitherP4 or P5 to in-
crease the pendulum’s energy to precisely 2, and then lettingu = 0 so that the pendulum swings
up and asymptotically approaches the origin. Is this an optimal strategy? It is not. As we see in
the next section, a reinforcement learning controller that learns to switch betweenP4 andP5 can
produce significantly faster swing-up. Allowing switching between other controllers enables even
faster swing-up. ThatP4 is significantly suboptimal may be surprising.P4 applies magnitudeumax

torque most of the time, and thus more or less maximizes the instantaneous rate at which energy
is pumped into the system. Reasons for its suboptimality, and an explanation of how the learning
agents do better, are provided in Section 4.3.

4.2 Experiments

We performed four learning experiments in the deterministic pendulum domain. In each experiment,
the agent had different actions to choose from—that is, different sets of control laws with which
it could control the pendulum—as summarized in Figure 2. Choosing an action meant that the
pendulum was controlled according to the corresponding control law for a period of one second, or
until the pendulum entered the goal set.

In all experiments, the task was to get the pendulum to the goal set,G1, in minimum time.
However, in the first three experiments, we used the fact that from any state with mechanical energy
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2, fixing u= 0 results in a trajectory which asymptotically approaches the origin and thus entersG1.
For these experiments, we defined a surrogate goal set,G2 = {(θ, θ̇) : ME(θ, θ̇) = 2}. The cost of a
non-terminal action (one that did not bring the pendulum intoG2) was one. The cost of a terminal
action was equal to the time from the start of the action until the pendulum reachedG2, plus the
time it took the pendulum to swing up toG1 from there. With this cost function, an optimal policy
reflects minimum time control to the setG1, even though we used the goal setG2. For Experiment
4, action costs were simply equal to the duration of the action—one for non-terminal actions, and
one or less for actions which caused the pendulum to enterG1.

We used the Sarsa(λ) algorithm withλ = 0.8 to learn control policies. The action value func-
tions were represented using separate CMAC function approximators for each action. Each CMAC
covered the range of states−π ≤ θ ≤ π and−6≤ θ̇ ≤ 6. Each CMAC had 10 layers, and each
layer divided each dimension into 24 bins, for a total of 576 tiles per layer. Offsets were random.
The learning rate for thekth update of a tile’s weight was 1/

√
k. (See Sutton and Barto, 1998, for

details and references on Sarsa and CMACs.) We performed 25 independent runs of 20,000 learn-
ing trials. Agents chose actions according to theε-greedy strategy, withε = 0.1. That is, on each
time step, with probability 0.1 an agent took an action selected uniformly randomly. Otherwise,
the agent chose an action with best estimated action value. Ties were broken randomly. After each
learning trial we performed a test trial, in which there was no learning and no exploration, in order
to evaluate the current policy. All trials started from state(θ, θ̇) = (π,0). Trials were terminated
if they exceeded 900 time steps, which is approximately 50 times longer than the time required to
reachG1.

The pendulum dynamics were simulated using 4th-order Runge-Kutta integration with a fixed
time step of 0.01 seconds. Because of the fixed time-step size, exactly hitting theG2 goal set
in simulation is very unlikely; slightly overshooting ME= 2 is the norm. To make our simulation
behave more like our theoretical model, we set the pendulum torque tou=−100sgn(θ̇)(ME(θ, θ̇)−
2) instead ofu = 0 once ME(θ, θ̇) reached or exceeded 2. This shed any slight excess energy the
pendulum had, usually on the order of 0.0001, and ensured that the pendulum reachedG1 correctly.

In the first experiment, the agent had two actions to choose from, corresponding to control laws
P4 and P5. By Theorem 3, on any time step, both of the actions for the agent in Experiment 1
either cause the pendulum to enterG2 or increase the mechanical energy by at least some amount
∆ > 0. Using this fact, we were able to establish a number of qualitative performance guarantees
for the agent in Experiment 1. DefiningL(θ, θ̇) = 2−ME(θ, θ̇) and lettingT = G2, we see that
the conditions of Theorem 1 are satisfied. This means that the agent was guaranteed to bring the
pendulum toG2, and by extension, toG1 on every trial (Property 2 withT = G1). If we imagine
the pendulum continuing to evolve underu = 0 after reachingG1, we know that it would stay inG1

forever and asymptotically approach the origin (Property 3 withT = G1 and Property 5 withT =
{(0,0)}). Further, the pendulum was guaranteed to remain in the setT = {(θ, θ̇) : ME(θ, θ̇) ≤ 2}
at all times, which can be viewed as a safety constraint. The agent could not pump an arbitrarily
large amount of energy into the pendulum, which in reality might result in damage to the equipment
or dangerously fast motions. In short, we were able to establish many reassuring performance
guarantees for the agent by virtue of the actions we designed for it.

In Experiment 2, the agent chose from four actions, corresponding to control lawsP1, P2, P4,
andP5. UsingP4 or P5, the agent was able to continuously increase the pendulum’s energy, until
it reachedG2. However, the agent did not have to do so. For example, it could repeatedly select
actionP1, corresponding to+umax torque. This puts the pendulum on a cyclic trajectory that does
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not intersectG2. Thus, during test trials, there was no guarantee that the agent would bring the
pendulum to the goal. During learning trials, reaching the goal was guaranteed. Recall that during
learning trials agents chose a random action on each time step with probability 0.1. This was done
to ensure that the agents tried out and learned about all actions. For the agent of Experiment 2, it
also ensured some probability of choosingP4 or P5 on each time step. SinceL(θ, θ̇) = 2−ME(θ, θ̇)
is bounded above on the set{(θ, θ̇) : ME(θ, θ̇) < 2}, Theorem 2 applies withq = 0.1 andp = 1.
The agent in Experiment 2, then, was guaranteed to bring the pendulum toG1 on every learning
trial with probability 1, as long as the trials lasted long enough. (Because trials were limited to 900
seconds, it was possible in principle that the pendulum would not reach the goal in some learning
trials. In the next section, however, we observe that no learning trials in Experiment 2 were even
one-tenth that long.) The other guarantees established for Experiment 1, that energy stays bounded,
and that the pendulum converges to the origin after reachingG2, apply in Experiment 2 as well.

In Experiment 3, there were just two actions, corresponding to control lawsP1 andP2. By virtue
of using theG2 goal set, the pendulum was guaranteed to remain in the setT = {(θ, θ̇) : ME(θ, θ̇)≤
2} (Property 1). And the pendulum was guaranteed to approach the origin after reachingG2. But
there was no guarantee, during learning or test trials, that the pendulum would reachG2, regardless
of the length of those trials.

In Experiment 4, the agent had three actions to choose from, corresponding to control lawsP1,
P2, andP3. In this case, we usedG1 as the goal set. Initially, we experimented with an agent that
chose between just theP1 and P2 control laws. However, it turned out to be extremely difficult
to bring the pendulum to the smallG1 goal set by switching between+umax and−umax torque in
discrete time. We added theP3 control law in Experiment 4 to make the problem tractable.

We have described the experiments in this order because it represents decreasing dependence on
Lyapunov domain knowledge. In Experiment 1, the agent was constrained to make the pendulum
ascend on mechanical energy and reach theG2 goal set. In Experiment 2, the agent had actions
based on the Lyapunov-designed controllersP4 andP5, and used goal setG2. But the agent was
not constrained to increase the pendulum’s mechanical energy at all times. In Experiment 3, we
dropped the actions based on the Lyapunov-designed control laws, and in Experiment 4 we dropped
theG2 goal set. Experiment 4 might be considered the formulation of the control problem that uses
the least prior knowledge while still allowing a solution to be learned with reasonable effort.

4.3 Results and Discussion

Figure 3 displays learning curves for the agents in Experiments 1 through 4, plotted on the same
scale to facilitate comparison. The dark lines represent the time toG1 during test trials, averaged
across the 25 independent runs. The lighter lines represent the shortest and longest test trials across
runs. For readability purposes, the curves are smoothed by averaging blocks of 5 trials together; the
mean-time-to-goal curve omits trials that time out without reachingG1. The horizontal axis shows
the trial number, going up to 1,000 of the 20,000 total trials. By way of comparison, the strategy of
usingP4 to pump energy into the pendulum until it reachesG2 and then letting it swing toG1 takes
24.83 seconds.

Most striking is the high-quality, low-variability initial performance of the “safe” learning agent
in Experiment 1. This contrasts sharply with the results of Experiment 4, which show a more typical
profile for a reinforcement learning system solving a dynamical control task; initial performance is
poor and highly variable. In Experiments 2 and 3, we see intermediate behavior. Because the trials

813



PERKINS AND BARTO

Experiment 1 Experiment 2

200 400 600 800 1000
15

20

25

30

35

40

45

50

trial number

tim
e 

to
 g

oa
l (

m
in

,m
ea

n,
m

ax
)

200 400 600 800 1000
15

20

25

30

35

40

45

50

trial number

tim
e 

to
 g

oa
l (

m
in

,m
ea

n,
m

ax
)

Experiment 3 Experiment 4

200 400 600 800 1000
15

20

25

30

35

40

45

50

trial number

tim
e 

to
 g

oa
l (

m
in

,m
ea

n,
m

ax
)

200 400 600 800 1000
15

20

25

30

35

40

45

50

trial number

tim
e 

to
 g

oa
l (

m
in

,m
ea

n,
m

ax
)

Figure 3: Mean, min, and max time toG1 across runs during test trials.
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Experiment 1 Experiment 2 Experiment 3 Experiment 4
% of first 10 Learn 100 100 100 88.4
reachingG1 Test 100 96.0 82.4 50.4

Time toG1 Learn 25.4± .2 35.8± .7 62.1± 2.2 317± 38
first 10 Test 25.4± .3 70.7± 22 222± 33 584± 39

Time toG1 Learn 21.2± .05 21.0± .1 21.4± .1 22.3± .2
last 1000 Test 21.0± .06 19.8± .1 19.5± .1 18.7± .2

Longest Learn 34.6 80.9 171 timeout
trial Test 35.2 timeout timeout timeout

Figure 4: Summary statistics for Experiments 1–4.

are so short in Experiment 1, that agent also learns significantly faster (in terms of total time steps)
than the agents in the other experiments. Figure 4 gives more detailed statistics summarizing the
experiments. The table reports the percentage of the first ten trials which make it toG1 before timing
out at 900 time steps, the mean duration of the first ten learning and test trials, the mean duration of
the last 1000 learning and test trials, and the longest trials observed in each experiment. The means
are accompanied by 95% confidence intervals.

The initial performance of the agent in Experiment 1 was clearly the best, an order of magnitude
better than that of the agent in Experiment 4, which incorporated the least prior knowledge. Impor-
tantly, only in Experiment 1, for which the strongest theoretical guarantees were established, did the
agent bring the pendulum to the goal on every learning and test trial. The longest trial generated in
that experiment was 35.2 seconds, whereas all the other experiments included much worse learning
trials and test trials that timed out. In this domain, ensuring descent on the Lyapunov function, and
not the mere presence of Lyapunov-based actions, is necessary for ensuring good performance at all
times.

The performance figures for the final 1000 trials reveal significant improvements from initial
performance in all experiments. In the end, all the learning agents also outperform the simple strat-
egy of usingP4. However, the numbers reveal a down-side to using Lyapunov domain knowledge.
The constraint to descend on the Lyapunov function limits the ability of the agent in Experiment 1
to minimize the time toG1. In the final test trials, it takes an average of 21.0 seconds to swing the
pendulum upright. The agents in Experiments 2 and 3 do better because they are not constrained
in this way. Their final test trials take 19.8 and 19.5 seconds on average. Why is this? Recall that
the time derivative of the pendulum’s mechanical energy isṀE(θ, θ̇) = θ̇u. In Experiment 1, the
agent always chose au that matcheḋθ in sign, thus constantly increasing mechanical energy. Note,
however, that wheṅθ is close to zero, mechanical energy necessarily increases only slowly. Every
time the pendulum changes direction,θ̇ must pass through zero, and at such times the agent in Ex-
periment 1 did not make much progress towards reachingG2. It turns out that a better policy in the
long run is to accelerate againstθ̇ and turn the pendulum around rapidly. This way, the pendulum
spends more time in states whereθ̇ is far from zero, meaning that energy can be added to the system
more quickly. The agent in Experiment 1 was able to achieve this to some degree, by switching
from P4 to the lower-torqueP5, allowing more rapid turn-around. But this did not match the free-
dom afforded in Experiments 2 and 3. The agent in Experiment 4 had yet another advantage. It was
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not constrained to chooseu = 0 once the pendulum had reachedG2 and before it had reachedG1.
The agent was able to continue accelerating the pendulum towards upright and then decelerate it as
it approached, resulting in even faster trajectories toG1.

5. Stochastic Pendulum Swing-Up and Balance

In this section, we consider a swing-up and balance problem for a pendulum with stochastic dynam-
ics. We formulate the problem as a continuing task, not a goal-based task. The agent seeks to swing
the pendulum upright and maintain it upright for as much of the time as possible. The pendulum’s
position variable is subject to random disturbances which tend to push the pendulum away from the
balanced state, making the task more challenging.

5.1 Dynamics and Controllers

We model the pendulum’s dynamics by the system of stochastic control differential equations:

dθ = θ̇dt+0.1dW ,

dθ̇ = sin(θ)dt +udt ,

whereW denotes a Wiener process with mean zero and standard deviation one (see, for example,
Kushner, 1971). The Wiener process is the standard model of a continuous-time Gaussian dis-
turbance, or “white noise.” The equations above describe a Gaussian disturbance to the position
variable, with mean zero and standard deviation 0.1.

As mentioned above, there are no goal states for this problem. The agent’s task is to keep
the pendulum near upright as much as possible, where “near upright” is defined by the setSup =
{(θ, θ̇) : |θ| ≤ 0.5}. The agent incurs unit cost per time as long as the pendulum is not inSup, and
incurs no cost while the pendulum is inSup. Sup contains all states up to approximately 30 degrees
away from upright.

Because of the random disturbances to the position variable, no controller can maintain the
pendulum in the setSup indefinitely. Indeed, because the disturbance toθ is Gaussian, with infinite
tails, there is some probability that the pendulum will “jump” out ofSup on any given time step,
regardless of how it is controlled. On the other hand, the same disturbances insure that, regardless
of how the pendulum is controlled, with probability one it will eventually enterSup from any initial
state. Thus, under any controller the pendulum reachesSup with probability one (Property 2) and
spends an infinite amount of total time there (Property 4). In Section 5.3, however, we will see
that these guarantees are very weak, and that controllers that are explicitly designed to return the
pendulum toSup can have a much stronger influence.

We define four new control laws for this problem. One is just the zero torque control law.

P6(θ, θ̇) = 0 .

The other three control laws,P7, P8, andP9, are designed to return the pendulum toSup. They
behave identically when the pendulum is outsideSup, and differ only in that they apply−umax, 0,
or +umax torque when the pendulum is inSup. To bring the pendulum toSup, the control laws
use a strategy that depends in part on the MEA control law defined above. In particular, when the
pendulum’s energy is below 2, each control law matchesP4. This pumps energy into the pendulum,
which ultimately sends it towardSup. When the energy is above 2, the pendulum is at risk of
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Experiment Control laws Summary

5 P7,P8,P9 Designed to return toSup; choice of±umax and 0 inSup.
6 P1,P2,P6 Choice of±umax and 0 torques.

Figure 5: Design of Experiments 5 and 6.

swinging upright, passing throughSup quickly, and swinging down again on the other side. In
this case, the control laws apply a braking torque to the pendulum, with strength proportional to
the amount of excess energy the pendulum has. Intuitively, when the pendulum is outsideSup,
these control laws “aim for” the upright, stationary position in the center ofSup. LettingB(θ, θ̇) =
max(min(−100sgn(θ̇)(ME(θ, θ̇)− 2),umax),−umax) be the braking force applied to a pendulum
with energy in excess of 2, we define

P7(θ, θ̇) =




+umax if (θ, θ̇) ∈ Sup
P4(θ, θ̇) if (θ, θ̇) /∈ Sup and ME(θ, θ̇) < 2
B(θ, θ̇) if (θ, θ̇) /∈ Sup and ME(θ, θ̇)≥ 2 ,

P8(θ, θ̇) =




0 if (θ, θ̇) ∈ Sup
P4(θ, θ̇) if (θ, θ̇) /∈ Sup and ME(θ, θ̇) < 2
B(θ, θ̇) if (θ, θ̇) /∈ Sup and ME(θ, θ̇)≥ 2 ,

P9(θ, θ̇) =




−umax if (θ, θ̇) ∈ Sup
P4(θ, θ̇) if (θ, θ̇) /∈ Sup and ME(θ, θ̇) < 2
B(θ, θ̇) if (θ, θ̇) /∈ Sup and ME(θ, θ̇)≥ 2 .

5.2 Experiments

Figure 5 summarizes the two experiments we performed in the stochastic pendulum domain. In
Experiment 5, the agent chose from actions corresponding toP7, P8, andP9. This agent did not need
to learn how to get the pendulum intoSup. Outside ofSup, all three of its control laws are identical
and are designed to do that task. All that the agent had to learn was how best to keep the pendulum
in Sup once it was there, by switching among−umax, 0, and+umax torques. In Experiment 6, the
agent chose from control lawsP1, P2, andP6, corresponding to torques−umax, 0, and+umax. This
agent had to learn how to get the pendulum intoSup, as well as how to keep it there. Neither agent
could keep the pendulum inSup indefinitely and, for either agent, the pendulum was guaranteed to
return toSup regardless of the choices the agent made. However, the Lyapunov-based actions in
Experiment 5 strongly biased that agent toward bringing the pendulum toSup. At the least, superior
initial performance was expected in Experiment 5.

We performed 25 independent learning runs with 1,000 learning and 1,000 test trials in each
run. Since there are no goal states to determine an end to a trial, each trial was run for 999 simulated
seconds. We instituted a discount rate ofγ = 0.95 so that expected discounted returns would be
finite and the agents’ action value estimates would not diverge to+∞. Action selection wasε-
greedy withε = 0.1. We used the same learning algorithm, Sarsa(λ) with λ = 0.8, and CMACs as
in Experiments 1 through 4. In pilot experiments, we found that for an agent to perform well on this
task, it had to be allowed to choose new actions more frequently than once per second. We present
results of experiments in which the agents were allowed to choose a new action every 0.3 seconds.
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Figure 6: Mean, min, and max across runs of time spent not near upright during test trials.

Experiment 5 Experiment 6
Cost of first Learn 523± 11 848± 9
trial Test 468± 44 922± 28

Mean cost in Learn 366± 8 841± 4
first 10 trials Test 287± 10 925± 8

Mean cost in Learn 279± 5 301± 9
last 100 trials Test 193± 7 203± 11

Highest cost Learn 555 964
trials Test 635 999

Figure 7: Summary statistics for Experiments 5 and 6.

The pendulum dynamics were simulated using a time step size of 0.1 second. On each time step,
4th-order Runge-Kutta integration was used to compute the deterministic dynamics, after which a
mean zero, standard deviation 0.1

√
0.1 Gaussian disturbance was added to the position variable.

5.3 Results and Discussion

Figure 6 displays learning curves representing the minimum, mean, and maximum test trial costs
across the 25 runs. Note that trial cost is the same as time the pendulum spends outside ofSup.
These curves are not smoothed, and are plotted for the first 500 of the 1,000 total test trials. By way
of comparison, the single best-performing control law for the task isP8, which keeps the pendulum
in Sup approximately 43% of the time, corresponding to an average trial cost of around 570.

The agent in Experiment 5 had better initial and final performance than the agent in Experiment
6, with its naive, constant-torque action formulation. There is less variance in its performance, and
it completes most of its learning in the first few tens of trials. By contrast, the agent in Experiment
6 was still learning its policy after 300 trials. Even after 200 learning trials, in some test trials the
pendulum spend no time inSup.
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Figure 7 presents detailed statistics supporting these observations. The difference in perfor-
mance between the first trial and first ten trials of Experiment 5 indicates how much learning hap-
pened early on. Of course, trials were 999 seconds long, almost 4,000 decision steps, so it is not
surprising that significant learning could take place in the first few trials. The performance figures
for the final 100 test trials indicate that the agent in Experiment 5 did better than the agent in Ex-
periment 6. However, the difference is on the edge of statistical significance. Although the shapes
of the learning curves suggest that the agents had reached an asymptotic level of performance, it is
possible that with further learning or tweaking of learning parameters, greater performance could
be obtained. At any rate, the restriction in Experiment 5 to push the pendulum’s energy towards
2 whenever it is not inSup appears not to have negatively impacted the agent’s performance. The
figures for the highest-cost trials demonstrate once again the benefits of Lyapunov-based designs
in ensuring good performance. Even in the worst test trial in Experiment 5, the pendulum was in
Sup for more than one third of the 999 seconds. In the worst learning trial, the pendulum was near
upright for almost half of the time. Experiment 6 included many test trials in which the pendulum
spent no time inSup and some learning trials that were almost as bad.

6. Robot Arm Movement and Stabilization

Robot arm, or manipulator, control is possible through the well-known technique of “feedback
linearization,” described below. Feedback linearization is an important tool in control theory and
widely used in control practice as well. For robot arm control and other problems, however, control
based on feedback linearization is notorious for being inefficient, slow, and “robotic”, and/or for
exerting unnecessarily high torques. Feedback linearization does not take advantage of the natural
dynamics of the arm. Indeed, the main idea is to use control torque to eliminate most of the natural
dynamics, making analytical solution of the problem possible. From an optimal control point of
view, then, robot arm control remains an interesting and unsolved problem.

The last two problems we consider are simulated robot arm control problems. We treat the two
largely simultaneously, as the only difference between them is that in one case the arm’s dynamics
are deterministic and in the other case the dynamics are stochastic. The same goal set, cost function,
and sets of control laws are used for both versions of the dynamics.

6.1 Dynamics and Controllers

The robot arm is depicted in Figure 8. Its state is specified by three angular joint positions and three
angular velocities. We usex to denote the state vector. The vector of joint positions and the vector of
joint velocities are denoted byΘ andΘ̇ respectively. For the deterministic version of the dynamics,
we use a standard frictionless model (Craig, 1989):

d
dt

[
Θ
Θ̇

]
=

[
Θ̇

H−1(Θ,Θ̇)(τ−V(Θ,Θ̇)−G(Θ))

]
,

whereH is the inertia matrix,τ is the vector of actuator torques applied at the joints,V is a vector
modeling Coriolis and other velocity-dependent forces, andG is a vector modeling gravitational
forces. For the stochastic version of the dynamics, we perturb the joint positions by noise that is

819



PERKINS AND BARTO

θ2θ1

θ3

3
21

link masslength

1
2
3

1.0
1.0
1.0

1.0
1.0
1.0

Figure 8: Diagram of the 3-link arm.

multiplicative in the joint velocities.2

d

[
Θ
Θ̇

]
=

[
Θ̇(dt+0.2dW)

H−1(Θ,Θ̇)(τ−V(Θ,Θ̇)−G(Θ))dt

]
.

Here,W should be interpreted as a vector of three independent Wiener processes with mean zero and
standard deviation one. We assume joint positions are limited to the range[−π,+π]. If the dynamics
try to push a joint’s position out of this range, its position is held at the edge of the range (that is, at
+π or−π) and the joint’s velocity is set to zero. We do not explicitly bound joint velocities.

The task is to move the arm to the goal setGarm = {x : ‖x‖ ≤ 0.01}. This is a set of low-velocity
states near to a fully-extended horizontal configuration,Θ = 0. Rather than having a single initial
state, we use an initial state distribution that is uniform over the configurationsΘ0 = (a,b,−b) for
a∈ {−π,−2

3π,−1
3π} andb∈ {−1

2π,0,+1
2π}, with zero velocity.

As in Experiments 1 through 4, agents’ actions correspond to choosing control laws to apply to
the arm for a period of one second. Lettingτ(t), t ∈ [0,1], denote the torques chosen by a control
law during one second of control, and lettingΘ(t) denote the joint positions the arm goes through
during that time, we define the cost of choosing that control law to be

∫ 1
0 ‖Θ(t)‖2 +‖τ(t)− τ0‖2dt,

whereτ0 is the amount of torque needed to hold the arm steady at the origin. Intuitively, this cost
function penalizes the agent to the extent that the state is far fromGarm and to the extent that large
control torques, beyond the unavoidableτ0, are applied to the arm.

In pilot experiments, we found that it was virtually impossible for an agent to bring the arm
to Garm using naive action formulations. With three joints to actuate and a range of torques that
need to be applied to reachGarm, a sufficient set of constant-torque actions would be unmanageably
large. We also found that a control law based on a linear approximation to the arm dynamics at the
origin brought the arm intoGarm for only a fairly small set of surrounding states. It is possible that
learning algorithms explicitly designed to handle continuous action spaces could be successful on

2. There is no special reason for choosing multiplicative instead of additive noise, except to demonstrate another com-
mon noise model.
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the problem (for example, Gullapalli, 1992). However, we used the same approach that we found
successful on the pendulum—defining a small set of well-chosen control laws with which an agent
can learn to control the arm.

The standard method for controlling a robot arm is to combine feedback linearization with some
form of linear system control (Craig, 1989). A simple approach to feedback linearization in the robot
arm case is to reparameterize the control torque in terms of a vectoru so thatτ = Hu+V +G . This
puts the robot dynamics into the simple linear form

d
dt

[
Θ
Θ̇

]
=

[
Θ̇
u

]
,

for the deterministic case, and

d

[
Θ
Θ̇

]
=

[
Θ̇(dt+0.2dW)

udt

]
,

for the stochastic case. SinceH is always non-singular, this transformation is lossless; anyτ can
be achieved by the proper choice ofu. Once the dynamics are expressed in linear form, linear
control design methods apply. We use a linear-quadratic regulation (LQR) approach. This results
in controllers that are able to move the arm to any desired configuration, and also provides the
Lyapunov function which constrains one of the action sets we define below. We briefly describe the
LQR approach. (See, for example, Vincent and Grantham, 1997, for a more thorough discussion.)

Consider a linear system of the form ˙x= Ax+Bu, wherex is a state vector,u is a control vector,
andA andB are constant matrices. Suppose we want to move this system to a target statexT from
any initial statex0, and suppose we specify a control law for performing this task. Letx(t) be
a system trajectory that results from that control law. The “quadratic” part of LQR says that the
quality of that control law should be measured by the cost function

∫ ∞
0 [(x(t)− xT)′Q(x(t)− xT)+

u(x(t))′Ru(x(t))]dt, whereQ andR are symmetric positive-definite matrices of our choosing. That
is, a quadratic penalty is associated with the deviation of the state,x(t), from the target state,xT , and
a quadratic penalty is associated with the control effortu. If we restrict ourselves to control laws of
the formu =−K(x−xT), whereK is a constant “gain” matrix, then the optimalK can be found by
solving a matrix algebraic Ricatti equation. This equation is typically solved numerically, though in
the present case it can readily be solved by hand (Perkins, 2002). By varying our choices ofQ and
R, we can produceK’s that represent different tradeoffs between the speed of approachingxT and
the size of the control effort,u, that is applied.

Note that the cost function of our optimal control problem and the cost function of the LQR
design are similar in form. Both include a quadratic penalty on the deviation of the state from the
target and a quadratic penalty on control effort. A key difference is that the LQR design penalizes
u, which is just a part of the total torque,τ = Hu+V + G , applied by a feedback linearization-
LQR design. This is one reason that robot arm control based on feedback linearization tends to
be unsatisfactory from an optimal control point of view. When one designs a controller for an
arm in feedback-linearized form, one treatsu as if it were the only control effort being applied.
Really, the control effort that ought to be minimized isτ, or τ− τ0, and the dynamics that should
be exploited, given byH, V, andG , are all hidden by the feedback linearization transformation.
All the control laws we design for the arm are based on the linear feedback transformation. By
specifying a cost function that accounts for the true effort of controlling the arm, however, we hope
to re-instill some sensitivity to the arm’s natural dynamics. By trying to minimize this cost function,
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our reinforcement learning agents are able to discover policies for controlling the arm that use less
real effort and/or less time than a standard LQR design.

We define five controllers based on the feedback linearization transformation and LQR design.
That is, each controller choosesτ = Hu+V + G , whereu is chosen by an LQR design. Let
LQR(Q,R) stand for the gain matrix resulting from LQR design with penalty matricesQ andR;
let Q0 be the matrix with diagonal{1,1,1,0.01,0.01,0.01}; let R0 be the 3×3 identity matrix; let
K=LQR(Q0,R0); and letΘ4, andΘ5 respectively be the joint position vectors[−1

2π, 1
2π,−π], and

[−1
2π,−1

2π,π]. Our first five control laws for the arm are

A1(Θ,Θ̇) =−H(Θ,Θ̇)K
[

Θ
Θ̇

]
V(Θ,Θ̇)+ G(Θ) ,

A2(Θ,Θ̇) =−H(Θ,Θ̇)K2

[
Θ
Θ̇

]
V(Θ,Θ̇)+ G(Θ) whereK2=LQR(4Q0,R0) ,

A3(Θ,Θ̇) =−H(Θ,Θ̇)K3

[
Θ
Θ̇

]
V(Θ,Θ̇)+ G(Θ) whereK3=LQR(Q0,4R0) ,

A4(Θ,Θ̇) =−H(Θ,Θ̇)K
[

Θ−Θ4

Θ̇

]
V(Θ,Θ̇)+ G(Θ) ,

A5(Θ,Θ̇) =−H(Θ,Θ̇)K
[

Θ−Θ5

Θ̇

]
V(Θ,Θ̇)+ G(Θ) .

The intuitions behind these control laws are as follows. The first three control laws move the arm
to the origin, which is in the center of the goal set,Garm. They move the arm there at different rates,
however. Q0 primarily penalizes the arm’s position for being far from the zero position, putting
relatively little weight on the arm’s velocity being different from zero. This reflects the fact that
we want the arm to be moved to the goal position, but we are not particularly concerned about the
velocity of the arm as it goes to the goal.R0 puts a unit penalty on control effort,u, so theA1 design
represents an equal balance between getting the arm to the zero position and exerting control effort.
A2 uses a higher penalty on the distance to the goal position; this control law tends to move the arm
to the origin more quickly thanA1 by using a larger control effort,u. A3 is biased in the opposite
direction. The final two control laws,A4 andA5, do not move the arm intoGarm at all. They move
it to the configurationsΘ4 andΘ5 respectively, which are 90 degrees fromGarm with the outer two
links of the arm folded in. This can be useful because when the arm is folded, its moment of inertia
around the first joint is reduced, allowing it to be swung around that joint with little actual torque.

Under the deterministic dynamics, each of the control lawsA1, A2, andA3 individually cause the
arm to asymptotically approach the origin, and thus enterGarm, from any initial state. The standard
proof that an LQR design causes the controlled system to asymptotically approach the target point
uses a Lyapunov argument. Any LQR controller causes system trajectories that descend on a simple
positive-definite quadratic function,(x− xT)′V(x− xT). The time derivative of this function along
system trajectories is(x− xT)′U(x− xT), whereU is a symmetric negative-definite matrix. The
matricesV andU are readily constructed from the computations that are required to generate the
gain matrixK (Vincent and Grantham, 1997). We take the matrixV corresponding toA1 to define
our Lyapunov functionLarm = x′Vx. Since the time derivative ofLarm is negative-definite underA1,
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it is bounded below zero outside ofGarm. Thus from any initial state, during any one second period,
A1 causes the arm to either enterGarm or descend onLarm by an amount at least∆.

Control lawsA2 throughA5 do not always cause descent onLarm, but we can readily define
similar controllers that do. LetC be any control law. We can define anLarm-descending version as

LD(C,Θ,Θ̇) =
{

C(Θ,Θ̇) if Larm(Θ,Θ̇)≥ 0.1 andC(Θ,Θ̇) causesd
dt Larm(Θ,Θ̇)≤−0.1

A1(Θ,Θ̇) otherwise.

We define four more control laws for the arm as theLarm-descending versions of control lawsA2

throughA5.

A6(Θ,Θ̇)=LD(A2,Θ,Θ̇) ,

A7(Θ,Θ̇)=LD(A3,Θ,Θ̇) ,

A8(Θ,Θ̇)=LD(A4,Θ,Θ̇) ,

A9(Θ,Θ̇)=LD(A5,Θ,Θ̇) .

Theorem 4 For the deterministic arm dynamics, there exists∆ > 0 such that for any s/∈ Garm, if
the arm is controlled for one second by A1,A6,A7,A8, or A9, then either the arm enters Garm or
the resulting state is at least∆ lower on Larm. For the stochastic arm dynamics, there exists∆ > 0
and p> 0 such that for any s/∈ Garm, if the arm is controlled for one second by A1,A6,A7,A8, or
A9, then with probability at least p either the arm enters Garm or the resulting state is at least∆
lower on Larm. For either set of dynamics, in any trajectory created by switching among any of the
controllers A1, . . . ,A9, the system state stays bounded at all times.

Proof sketch: First, we argue boundedness. TheΘ component of the state is bounded at all
times in the region[−π,π]3. The only concern, then, is with the velocity component of the state,
Θ̇. All of the control laws above are LQR controllers or combinations of LQR controllers for the
feedback-linearized arm. Each LQR controller has feedback gains on the joint velocities which
tend to slow each joint down. That is, the acceleration of jointi follows the rule:Θ̈(i) =−a(Θ(i)−
ΘT(i))− bΘ̇(i), wherea andb are positive constants andΘT(i) is the ith component of the target
configuration for the LQR controller. SinceΘ is bounded, for velocities larger in magnitude than
someV ∈ R, this rule results in braking force which reduces the joint’s velocity regardless of its
position. The only way for a joint velocity to be greater thanV is if it starts that way—that is, if
‖Θ̇0‖∞ > V . Thus, at all times in a trajectory, the joint velocities are bounded by max(V ,‖Θ̇0‖∞).

Next, we establish descent under controllersA1,A6,A7,A8, andA9. For the deterministic dynam-
ics,A1 keepsd

dt Larm bounded below zero off ofGarm. Specifically, we haveddt Larm≤ supx/∈Garm
x′Ux,

whereU is the negative-definite matrix giving the time derivative of the Lyapunov function at statex.
A6,A7,A8, andA9 also keepd

dt Larm bounded below zero, by construction. It is immediate, therefore,
that for any of these control laws, one second of control either brings the arm intoGarm or results
in a state lower onLarm by at least some∆. The same property holds for the stochastic dynamics,
but with probability p. With zero-mean noise, one can argue that there is some probabilityp that
one second of control results in a state withinε of the state that would result under the deterministic
dynamics. Thus, there is at least probabilityp that the arm entersGarm or results in a state lower
onLarm by ∆/2 (for example), where∆ is the amount of descent guaranteed under the deterministic
dynamics.�
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Experiment Dynamics Control laws Summary
7 deterministic A1,A6,A7,A8,A9 Descent onLarm guaranteed.
8 deterministic A1,A2,A3,A4,A5 Descent possible, not guaranteed.
9 stochastic A1,A6,A7,A8,A9 Probabilistic descent onLarm.
10 stochastic A1,A2,A3,A4,A5 Descent possible, not guaranteed.

Figure 9: Design of Experiments 7 through 10.

6.2 Experiments

We performed four experiments in the robot arm domain, as outlined in Figure 9. Experiments 7 and
8 used the deterministic version of the dynamics, while Experiments 9 and 10 used the stochastic
version. In Experiments 7 and 9, the agent chose from five actions, corresponding to the control
lawsA1,A6,A7,A8, andA9. In Experiments 8 and 10, the agent chose from actions corresponding to
the control lawsA1,A2,A3,A4, andA5.

For each experiment, we ran 25 independent runs of Sarsa(λ) with λ = 0.8. Each run consisted
of 1,000 blocks, or suites, of 18 trials—one learning trial from each of the states in our initial state
distribution, followed by one test trial from each initial state. Action selection wasε-greedy with
ε = 0.1. Action value functions were represented using a separate CMAC function approximator for
each action. Each CMAC covered the region of state space:[−π,π]3× [−5,5]3. Each CMAC had
20 layers, dividing each dimension into 5 equal-sized bins, with offsets being random. The learning
rate for thekth update of a tile’s weight was 1/

√
k. Trials were terminated after 250 time steps if

they did not reachGarm.

The deterministic arm dynamics were simulated using 4th-order Runge-Kutta integration with a
fixed time step size of 0.1 seconds. The stochastic dynamics were simulated by computing the de-
terministic dynamics and then multiplying the change to each joint position by one plus a Gaussian
random disturbance with mean zero and standard deviation 0.2

√
0.1.

By Theorem 4, the formulation of Experiment 7 satisfies the conditions of Theorem 1 with
T = Garm. Thus, that agent was guaranteed to control the arm toGarm on every trial (Property 2). If
we assume that, once the arm entersGarm, it continues to be controlled according toA1, then the arm
remains inGarm and asymptotically approaches the origin (Properties 3 and 5). Since we know that
all of the controllers available in Experiment 7 descend onLarm, a trajectory that starts at statex0 is
guaranteed not to leave the region{x : L(x)≤ L(x0)} (Property 1), which can be viewed as a safety
property. For Experiment 9, Theorem 4 implies that the conditions of Theorem 2 are satisfied, thus
this agent had a probability one guarantee of controlling the arm toGarm on every trial. Under the
stochastic dynamics, no control law can guarantee keeping the arm inGarm. However, one can show
using arguments based on martingale theory thatA1, for example, has some chance of keeping the
arm inGarm forever. This is possible because the position disturbance, which is multiplicative inΘ̇,
vanishes aṡΘ → 0. We do not delve into these arguments here, but see, for example, the book by
Kushner (1971).

The agents in Experiments 8 and 10 were not guaranteed to choose descending actions during
testing trials, hence there was no guarantee that these agents would bring the arm toGarm. During
learning trials, however, theε-greedy action selection strategy meant that there was at least probabil-
ity 0.1 on every time step that these agents would choose an action that causes descent (for certain,
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Figure 10: Mean, min, and max test suite costs across runs.

or with some probability). Thus, from Theorems 2 and 4, these agents were guaranteed to bring the
arm toGarm during learning trials, if given enough time.

6.3 Results and Discussion

Learning curves for the four experiments are displayed in Figure 10. We define the cost of a test
suite (a set of nine test trials, one from each initial state) to be the average of the costs of the nine
trials. The curves plot the minimum, mean, and maximum test suite costs, across runs, for the first
200 of 1,000 test suites. Using control lawA1 alone generates a test suite cost of 434 under the
deterministic dynamics and 448, on average, under the stochastic dynamics.

Results for the two agents with the Lyapunov-based theoretical guarantees appear in the left
column. Compared to the corresponding results in the right column, the Lyapunov-based designs
exhibit superior initial performance, lower-variability performance, and more rapid learning. The
agents in Experiments 8 and 10, however, show better performance in the long term. Comparing the
curves of the deterministic-dynamics experiments in the top row with the curves in the bottom row
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Expt. 7 Expt. 8 Expt. 9 Expt. 10
Mean trial cost in Learn 478± 7 806± 19 491± 6 862± 24
first 10 suites Test 445± 12 2,219± 1,900 458± 9 1,168± 950

Mean trial cost in Learn 353± 2.5 442± 4.3 360± 3.0 474± 4.9
last 100 suites Test 320± 1.8 284± 1.5 327± 2.7 308± 1.5

Highest cost suites Learn 749 2,301 818 1,952
Test 820 161,710 768 55,364

Highest cost single Learn 2,525 7,920 2,814 7,424
trials Test 2,412 244,510 2,488 244,580

Longest trials Learn 11.7 83.8 12.4 63.9
(seconds) Test 10.9 timeout 12.4 timeout

Figure 11: Summary statistics for Experiments 7–10.

shows that the position disturbance in the stochastic dynamics has essentially no qualitative effect
on learning. Its primary effect is to make performance during learning and test trials more noisy.

Summary statistics are presented in Figure 11. For the most part, these statistics support what
is visible in the learning curves—better initial performance and lower variability performance for
the agents with a Lyapunov-descent constraint, but better final performance for the unconstrained
agents. One thing not readily observed from the learning curves is the powerful effect Lyapunov-
descent constraints have on worst-case behavior. In the worst test suites and the worst individual
test trials, agents without Lyapunov constraints incurred two orders of magnitude more cost than the
constrained agents. There was a similar disparity in the durations of the longest trials for the two
types of agents. As in the other experiments above, Experiments 7–10 demonstrate that constrain-
ing an agent to descend on a Lyapunov function is important in ensuring reasonable performance.
Merely providing actions that are designed using Lyapunov analysis does not ensure good behavior.

7. Related Work

The methods for safe agent design that we propose in this paper rely on qualitative analysis ideas
that have been under development for more than a century. Lyapunov originally developed the idea
of a Lyapunov function late in the 19th century. The idea that there is more than one way for a system
to descend on a given Lyapunov function, and that this freedom can be used to optimize secondary
criteria, dates back at least to Kalman and Bertram’s early survey of Lyapunov function methods
(1960). Subsequent work has used this observation in various ways, sometimes to optimize a cost
function as we do here, and sometimes to produce controllers with improved stability or robustness
properties. (See, for example, Krsti´c et al., 1995; Freeman and Kokotovi´c, 1996; and Sepulchre et
al., 1997, for work of this sort and further references.) Viewed in this light, the primary novelty
of our work is the application of these ideas to learning systems, in which we are concerned with
on-line learning behavior and cannot necessarily trust the behavior of a learned policy.

In the field of reinforcement learning there has been increasing interest in issues of safe agent
design. In work quite similar to ours, Singh et al. (1994) propose an action formulation for a rein-
forcement learning agent in which action choice is a convex combination of the gradient directions
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of two different Lyapunov functions. In their robot motion planning setting, there are two natural
candidates for Lyapunov functions, and the agent can follow arbitrary convex combinations of their
two gradients and still enjoy collision-free control. In general, however, this method of combining
Lyapunov functions does not retain the beneficial properties of either. Huber and Grupen (1997,
1998a,b) apply reinforcement learning to robotics problems in which the system state is defined
by the status of a set of lower-level closed-loop controllers. Reinforcement learning is used to
choose which low-level controllers to activate, but, from the start, actions that violate basic safety
constraints are eliminated from the set of admissible actions. In spirit, this is quite similar to our
approach; domain knowledge is used to constrain the agent to a set of safe behaviors. One important
difference with our approach is that we do not stop at ensuring safety. Successful behavior, in terms
of bringing the environment to a goal state or other desirable states, is also guaranteed.

Kretchmar (2000) has recently proposed a method that combines reinforcement learning with
robust control theory to achieve safe learning of controllers for systems with partially-unknown
dynamics. In simulation, his approach works well for realistic regulation problems. However, the
forms of system dynamics and learning agents that are allowed by his theory are limited. Our ap-
proach applies to a much broader range of agents and environments. In its present form, however,
our approach requires explicit knowledge of a Lyapunov function, making it difficult to treat prob-
lems in which the environment dynamics are not known a priori. We suggest some means to address
this issue in our discussion of future work.

Gordon (2000) has recently proposed learning methods in which each control improvement
suggested by learning is first verified for safety using model-checking techniques. Like the work of
Kretchmar, and unlike ours, her approach uses on-line verification to ensure learning never results
in an unsafe system.

Schneider (1997) and Neuneier and Mihatsch (1999) propose learning methods that pay atten-
tion to the variability of outcomes, resulting in learned controllers that are risk-averse. Although
there are no theoretical guarantees on the performance of these learning algorithms, the goal of more
reliable, safer learning is the same as ours.

8. Conclusions

We have shown that by relying on qualitative control design methods, one can construct reinforce-
ment learning agents that provably enjoy basic safety and performance guarantees. Our primary
approach relies on constructing sets of base-level control laws using Lyapunov domain knowledge.
These control laws are designed so that any policy of switching among them enjoys basic safety and
performance guarantees. With this approach, any reinforcement learning algorithm can be applied
to the problem of learning a high-quality control policy, and reasonable performance is maintained
at all times. Our work has focused on Lyapunov-based design methods, which are primarily ap-
plicable to stabilization, regulation, and tracking problems. However, we have also demonstrated
the utility of other control design methods, such as approximating nonlinear dynamics by linear
functions, feedback linearization, and linear-quadratic regulator control. Our general contention is
that, in approaching a reinforcement learning problem, it is a mistake to ignore the wide variety of
analytical tools and design methods that have been developed by control theorists, engineers, and
roboticists. Incorporating these ideas into the designs of reinforcement learning agents allows for
safer, more reliable, and more rapid learning, and renders tractable problems that are very difficult
or impossible to solve with naive agent designs.
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9. Future Work

In Section 3.1 we presented two theorems that are useful for designing safe reinforcement learning
agents. One of these is mainly relevant to deterministic environments, while the other is applicable
to stochastic environments as well. This second theorem is somewhat atypical in comparison with
the stochastic stability literature (for example, Kushner, 1971, Meyn and Tweedie, 1994). In partic-
ular, our assumption of a global upper bound on the Lyapunov function is unusual. We have found
this theorem useful for our example domains—its conditions are easy to check—and it seems a nat-
ural way of extending Theorem 1 to the stochastic case. However, other types of descent conditions
might be more appropriate for other domains. For example, the supermartingale property requires
that the expected value of the Lyapunov function at the next state is less than or equal to its value
at the current state. Kushner (1971) and Meyn and Tweedie (1993) describe this and a number of
other stochastic descent conditions from which useful qualitative safety and stability properties can
be deduced. Developing versions of these conditions that can be applied to reinforcement learning
agents is one topic for future investigation.

Being able to construct a safe space of behaviors for an agent opens up new possibilities for
anytime approximate optimal control. In particular, we are presently looking at the grid-based
approximate dynamic programming approaches that are often applied to continuous-state control
problems of the sort we considered in this paper (Kushner and Dupuis, 1992, Fleming and Soner,
1993). Using fine grids, one is able to compute near-optimal policies, but there is difficulty in scaling
these approaches to high-dimensional problems. Using a variety of tricks, including intelligently-
allocated variable-resolution grids, Munos and Moore (2002) recently reported being able to solve
problems with at most four- or, to a degree, five-dimensional state spaces. With coarse grids, one
can approach problems of higher dimension. But coarse grids may result in no solution at all
(for example, if a goal set appears unreachable from some grid point) or may result in a policy of
very poor quality, possibly one that incurs infinite cost (Gordon, 1999). If, however, one can use
qualitative domain knowledge to restrict attention to a space of qualitatively satisfactory policies,
then we know that a grid-based approximate dynamic programming algorithm would produce a
working solution for any resolution grid. We are presently exploring the possibilities of solving
high-dimensional problems with coarse grids and of solving problems in anytime fashion using a
sequence of grids of increasing resolution.

In the examples we presented, we assumed that the system dynamics were known so that Lya-
punov analysis and other control methods could be applied. When the dynamics are known, on-line
learning is not strictly necessary. Learning can be done in simulation and then safety during learn-
ing is not an issue. (Of course, we still may be interested in determining whether a policy resulting
from off-line learning satisfies safety properties.) Lyapunov methods are desirable, in part, because
of their robustness to certain kinds of unmodeled dynamics or disturbances. Robust control theory,
however, explicitly deals with problems in which the system dynamics are not completely known.
Robust control Lyapunov functions, in particular, are functions that are simultaneously Lyapunov
for a whole set of control problems (Freeman and Kokotovi´c, 1996). In situations where an agent
does not know, a priori, what problem it will face, on-line learning is desirable because the agent
can tune its behavior to perform well on the particular problem it encounters. If one knows that the
problem the agent will face comes from some class, and if one can identify a robust control Lya-
punov function for that class, then we conjecture that it is possible to design a safe reinforcement
learning agent for that problem class using essentially the same approach we have proposed here.
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