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Abstract

Planning and learning at multiple levels of tempo�
ral abstraction is a key problem for arti�cial intelli�
gence� In this paper we summarize an approach to
this problem based on the mathematical framework
of Markov decision processes and reinforcement learn�
ing� Conventional model�based reinforcement learning
uses primitive actions that last one time step and that
can be modeled independently of the learning agent�
These can be generalized to macro actions� multi�step
actions speci�ed by an arbitrary policy and a way of
completing� Macro actions generalize the classical no�
tion of a macro operator in that they are closed loop�
uncertain� and of variable duration� Macro actions are
needed to represent common�sense higher�level actions
such as going to lunch� grasping an object� or travel�
ing to a distant city� This paper generalizes prior work
on temporally abstract models �Sutton ����	 and ex�
tends it from the prediction setting to include actions�
control� and planning� We de�ne a semantics of mod�
els of macro actions that guarantees the validity of
planning using such models� This paper present new
results in the theory of planning with macro actions
and illustrates its potential advantages in a gridworld
task�

Introduction

The need for hierarchical and abstract planning is a
fundamental problem in AI �see� e
g
� Sacerdoti� �
���
Laird et al
� �
��� Korf� �
��� Kaelbling� �

�� Dayan
� Hinton� �

��
 Model�based reinforcement learn�
ing o�ers a possible solution to the problem of inte�
grating planning with real�time learning and decision�
making �Peng � Williams� �

�� Moore � Atkeson�
�

�� Sutton� �

�� Sutton � Barto� �

��
 However�
conventional model�based reinforcement learning uses
one�step models that cannot represent common�sense�
higher�level actions
 Modeling such actions requires
the ability to handle di�erent� interrelated levels of
temporal abstraction


Several researchers have proposed extending rein�
forcement learning to a higher level by treating entire
closed�loop policies as actions� which we callmacro ac�
tions �e
g
� Mahadevan � Connell� �

�� Singh� �

��
Huber � Grupen� �

�� Parr � Russell� personal com�
munication� Dietterich� personal communication� Mc�
Govern� Sutton� � Fagg� �

��
 Each macro action is
speci�ed by a closed�loop policy� which determines the
primitive actions when the macro action is in force�
and by a completion function� which determines when
the macro action ends
 When the macro action com�
pletes a new primitive or macro action can be selected

Macro actions are like AI�s classical �macro opera�
tors� in that they can take control for some period
of time� determining the actions during that time� and
in that one can choose among macro actions much as
one originally chose among primitive actions
 However�
classical macro operators are only a �xed sequence
of actions� whereas macro actions incorporate a gen�
eral closed�loop policy and completion criterion
 These
generalizations are required when the environment is
stochastic and uncertain with general goals� as in rein�
forcement learning and Markov decision processes


This paper extends an approach to planning with
macro actions introduced by Sutton ��

��� based on
prior work by Singh ��

��� Dayan ��

��� and by Sut�
ton and Pinette ��
���
 This approach enables mod�
els of the environment at di�erent temporal scales to
be intermixed� producing temporally abstract models

Sutton ��

��� Dayan ��

�� and Sutton and Pinette
��
��� were concerned only with predicting the envi�
ronment� in e�ect modeling a single macro action
 Like
Singh ��

��� we model a whole set of macro actions
and consider choices among them� but the extension
summarized here includes more general macro actions
and control of the environment
 We develop a general
theory of modeling and planning with macro actions


To illustrate the kind of advance we are trying to
make� consider the example task depicted in Figure �
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Figure �� Example Task
 The natural macro actions
are to move from room to room


This is a standard gridworld in which the primitive
actions are to move from one grid cell to a neighbor�
ing cell
 Imagine that the learning agent is repeatedly
given new tasks in the form of new goal locations to
travel to as rapidly as possible
 If the agent plans at the
level of primitive actions� then its plans will be many
actions long and take a relatively long time to com�
pute
 Planning could be much faster if macro actions
could be used to plan for moving from room to room
rather than from cell to cell
 For each room� the agent
learns two models for two macro actions� for traveling
e�ciently to each of the two adjacent rooms
 We do
not address in this paper the question of how macro
actions could be discovered without help� instead we fo�
cus on the mathematical theory of planning with given
macro actions
 In particular� we de�ne a very general
semantics for models of macro actions�the properties
required for such models to be used in the general kind
of planning typically used with Markov decision pro�
cesses
 At the end of this paper we illustrate the the�
ory in this example problem� showing how models of
room�to�room macro actions can substantially speed
planning


Reinforcement Learning �MDP�
Framework

First we brie�y summarize the mathematical frame�
work of the reinforcement learning problem that we
use here
 In this framework� a learning agent inter�
acts with an environment at some discrete� lowest�level
time scale t � �� �� �� � � �
 On each time step� the agent
perceives the state of the environment� st� and on that
basis chooses a primitive action� at
 In response to
each primitive action� at� the environment produces
one step later a numerical reward� rt��� and a next
state� st��


The agent�s objective is to learn a policy �� a map�
ping from states to probabilities of taking each action�
that maximizes the expected discounted future reward
from each state s�

v��s� � E
n
r� � �r� � ��r� � � � �

��� s� � s� �
o
�

where � � ��� �� is a discount�rate parameter
 The
quantity v��s� is called the value of state s under policy
�� and v� is called the value function for policy �
 The
optimal value of a state is denoted

v��s� � max
�

v��s�

The environment is henceforth assumed to be a sta�
tionary� �nite Markov decision process �MDP�
 We as�
sume that the states are discrete and form a �nite set�
st � f�� �� � � � � ng
 The latter assumption is a tempo�
rary theoretical convenience� it is not a limitation of
the ideas we present


Macro Actions and Macro Models

In order to achieve faster planning� the agent should
be able to predict what happens if it follows a certain
course of action
 By a �course of action� we mean any
way of behaving� any way of mapping representations
of states to primitive actions
 Therefore� underlying
any course of action there is a policy
 In order to have
a well de�ned course of action� there are two additional
items that one needs to know� in what states can it be
applied �i
e
 what are its preconditions�� and when is
the course of action complete


We de�ne a macro action to be a triple s� �� �� where
s is the state in which the action applies� � is a pol�
icy that speci�es how the action is executed� and � is a
completion function� specifying the probability of com�
pleting the macro action on every time step
 The pol�
icy underlying a macro action� �� is of a slightly more
general form than we have considered so far
 Hith�
erto we required that a policy�s action probabilities at
time t should be a function only of the state at time
t
 For the policy of a macro action we instead allow
the action probabilities to depend on all the states and
actions from time t�� when the macro action began
executing� up through the current time� t
 We call
policies of this more general class o�set�causal
 The
completion function for a macro action is also o�set�
causal�its decision to complete or not at a given time
may depend on the history of states and actions since
the macro action began


What kinds of completion functions are meaningful
and useful Perhaps the simplest case is that of an



action that completes after some �xed number of time
steps �e
g
 after � step� as in the case of primitive
actions� or after n steps� as in the case of a classical
macro operator consisting of a sequence of n actions�

Another simple case is that in which the action could
complete during a certain time period� say �� to ��
time steps later
 In this case� the completion function
should specify the probability of completion for each
of these time steps


One of the most useful ways for an action to com�
plete is with the occurence of a critical state� often
a state that we think of as a subgoal
 For instance�
the action pick�up�the�object could complete when
the object is in the hand
 This event occurs at a very
speci�c time� but the time is inde�nite� not known in
advance
 This is a very common and important kind
of completion� but it requires the completion function
to depend on the state history of the system� rather
than explicitly on the time


Planning in reinforcement learning refers to the use
of models of the e�ects of actions to compute value
functions� particularly v�
 We use the term model for
any structure that generates predictions based on the
representation of the state of the system and on the
action that the system is following
 We will now de�ne
precisely what aspects of the future are worth predict�
ing


A macro action may have several possible outcomes�
that is� it may complete in several possible states
 For
instance� the action pick�up�the�object could com�
plete when the object is in the hand� or by realizing
that the object is too heavy� or if there is actually no
object to be picked up
 To handle such cases� the out�
put of a model should be a distribution over states�
rather than a single state


A n�vector p is a valid state prediction for state s if
and only if there exists an action s� �� � such that

p � E
�
�TxT js��s� �� �

�
���

where T is the time of completion� and xT denotes the
unit basis n�vector corresponding to sT 
 Therefore�
� � p�s�� � �p � �� �s�� where p�s�� denotes the s��th
component of vector p


In order to plan with di�erent actions� the model also
has to provide some information regarding the reward
received or the cost incurred when following the action
to completion


A scalar g is a valid reward prediction for state s if
and only if there exists an action s� �� � such that

g � E
�
r� � �r� � � � �� �T��rT js��s� �� �

�
� ���

A model is a set of state and reward predictions for
speci�c states
 A model is valid if and only if all of its
predictions are valid for the same policy � and com�
pletion function �
 The state prediction vectors of a
model are often grouped as the rows of an n� n state
prediction matrix� P� and the reward predictions are
often grouped as the components of an n�component
reward prediction vector� g
 We use the notation ���� as
in x �y� to represents the inner or dot product between
vectors or between a matrix and a vector


Combining Macro Actions and Their
Models

Our goal is to use models of macro actions in plan�
ning and decision�making in the same way in which
we use primitive actions
 In particular� we want to
de�ne policies that include both primitive and macro
actions� and to compute value functions for such poli�
cies
 Henceforth� we use the term action generically�
to mean both primitive and macro actions
 In order
to achieve our goal� we need to know how the models
of actions can be combined to make predictions in two
simple cases�

� when the actions are executed in succession

� when a probabilistic choice is made in a state among
the available actions

The semantics of these basic operations are described
by the following two theorems


Theorem � �Composition or Sequencing� Given
a valid prediction g� and p� for some action s� ��� ���
and a valid model g� and P� for some policy �� and
completion function ��� the prediction de�ned by�

g � g� � g� � p� ���

and
p � P� �p� ���

is a valid prediction for the action that starts in state
s� follows �� until it completes �as indicated by ��� and
then follows �� until completion�

Proof� Let k be the random variable denoting the
time at which �� completes� and T be the random
variable denoting the time at which �� completes
 We
denote by �� � the behavior described in the theorem
statement
 Then we have�

g � E
�
r� � � � �� �T��rT js��s� �� �

�

� E
�
r� � � � �� �k��rk js��s� ��� ��

�



� E
�
�krk�� � � � �� �T��rT js��s� �� ��

�

� g� �
�X
k��

Pfk j s��s� ��� ��g�
k

X
s�

Pfsk�s� j s��s� kg

E
�
rk�� � � � �� �T�k��rT jsk�s�� ��� ��

�

� g�s� �
X
s�

�X
k��

Pfk j s��s� ��� ��g�
k

Pfsk�s� j s��s� kgg��s
��

� g� �
X
s�

p��s
��g��s

��

� g� � g� � p�

The equation for p follows similarly
 �

Theorem � �Averaging or Choice� Let gi�pi be a
set of valid predictions associated to the actions ai �
s� �i� �i� and let wi � � be a set of numbers such thatP

i wi � �� Then the prediction de�ned by�

g �
X
i

wigi ���

and
p �

X
i

wipi ���

is valid for the action s� �� � � which chooses in state
s among the actions ai with probabilities wi and then
follows �i until completion� as indicated by �i�

Proof�

g � E
�
r� � � � �� �T��rT js��s� �� �

�

�
X
i

wiE
�
r� � � � �� �T��rT js��s� �i� �i

�

�
X
i

wigi

The equation for p follows similarly
 �

Planning with Macro Models

In this section� we extend the theoretical results of dy�
namic programming for the case in which the agent is
allowed to use an arbitrary set of actions� which can in�
clude macro as well as primitive actions
 Collectively�
this establishes a theory of planning for macro actions

Formally� we consider planning with an arbitrary set of
actions� A
 If A is exactly the set of primitive actions�
then our results degenerate to the conventional case

If A consists entirely of macro actions� then we have

planning at the macro level
 In general� A contains a
subset of the primitive and of the macro actions


Given a set of actions A� we can de�ne a macro pol�
icy � 	� as any stochastic rule that� when the agent is in
state s� chooses among the actions from A that apply
in state s �denoted As�
 The action is then taken until
it completes and then a new action is selected
 For
simplicity� we assume that As �� 	� �s� although the
theory extends with some complications to the case in
which As is empty for some states
 The value of macro
policy 	 in state s is de�ned as the expected discounted
reward if the macro policy is applied starting in s�

v��s� � E
n
r� � �r� � ��r� � � � �

��� s� � s� 	
o
� ���

Obviously� the de�nition is similar to the case of a pol�
icy over primitive actions
 The optimal value function�
given the set A� can be de�ned as

v�A�s� � sup
���A

v��s�� ���

for all s� where !A is the set of macro policies that can
be de�ned using the actions from A


The value functions are sometimes represented as n�
vectors� v� and v�A� each component of which is the
value of a di�erent state
 In addition� for any action
a� we denote its valid predictions by ga�pa


Theorem � �Value Functions for Composed
Policies� Let 	 be a macro policy that� when start�
ing in state s� takes action a and� when the action
completes� follows policy 	�� Then

v��s� � ga � pa � v
��

� �
�

The proof is similar to the one used for composition


Theorem � �Bellman Policy Evaluation Equa�
tion� For any macro policy 	�

v��s� � g��s	 � p��s	 � v
�� �s� ����

where 	�s� is the action suggested by 	 when starting
in state s

The proof is immediate from theorem �


Theorem 	 �Policy Evaluation by Successive
Approximation� Given a policy 	� the following al�
gorithm�

� start with arbitrary initial values v��s� for all states



� iterate for all s

vk���s� 
 g��s	 � p��s	 � vk

converges to v��

Proof� It is straightforward to show that for any
macro action a� the operator Ta�v� � ga � pa � v is
a contraction
 The result follows from the contraction
mapping theorem �Bertsekas �
���
 �

Theorem 
 �Bellman Optimality Equation�
For any set of actions A�

v�A�s� � max
a�As

ga � pa � v
�

A� ����

The proof is analogous to the case in which only
primitive actions are used �see� for instance� Ross�
�
���� and is omitted here due to space constraints


Theorem � �Convergence of Value Iteration�
For any set of actions A� the Bellman Optimality
Equation has a unique bounded solution� v�A and this
solution can be computed by the following algorithm�

� start with arbitrary initial values v��s�

� iterate the update�

vk���s� 
 max
a�As

ga � pa � vk� �s

Theorem � �Value Achievement� The policy 	�A
de�ned as

	�A�s� � arg max
a�As

ga � pa � v
�

A

achieves v�A� Note that 	�A is stationary in its choices
among actions from the set A�

The two previous theorems can be proven by show�
ing that for any set of actions A and any state s� the
operator TA�v� � maxa�As ga � pa � v is a contrac�
tion
 The results follow from the contraction mapping
theorem �Bertsekas �
���


Theorem 
 �Policy Improvement Theorem�
For any policy 	 de�ned using actions from set A� let
	� be the new policy de�ned by

	��s� � arg max
a�As

ga � pa � v
��

Then v�
�

�s� � v��s�� for all s� and there exists at least
one state s such that v�

�

�s� � v��s�� unless 	 was al�
ready optimal for A �	�	�A��

Theorem �� �Policy Iteration� � Given a set of
actions A such that As is �nite for all s� the policy it�
eration algorithm� which interleaves policy evaluation
and policy improvement� converges to 	�A in a �nite
number of steps�

Both these theorems can be proven exactly in the
same way as the analogous results for the case when
only primitive actions are used


Theorem �� �NOP� If g�p is a valid model for
some action s� �� �� then

g � p � v�� v��s�

We say that valid models are non�overpromising
�NOP�� i�e� they never promise more that the agent
can actually achieve�

Proof� Let 	 be the policy that selects actions ac�
cording to � until the action completes� then switches
to select actions according to the stationary optimal
policy for the environment� ��
 Then we have�

v��s� � v��s� � g � p � v� �by theorem ��

�

These results together guarantee that valid models
of macro actions can be safely mixed with models of
primitive actions� and they are suitable for use in all
the planning algorithms typically employed for solving
MDPs


Illustrative Example

In order to illustrate the way in which multi�timemod�
els can be used in practice� let us return to the grid�
world example �Figure ��
 The cells of the grid cor�
respond to the states of the environment
 From any
state the agent can perform one of four primitive ac�
tions� up� down� left or right
 With probability �	��
the actions cause the agent to move one cell in the cor�
responding direction �unless this would take the agent
into a wall� in which case it stays in the same state�

With probability �	�� the agent instead moves in one
of the other three directions �unless this takes it into a
wall of course�
 There is no penalty for bumping into
walls


For each state in a room� two macro actions are also
available� for going to each of the hallways adjacent
to the room
 Each of these actions has two outcome
states� the target hallway� which corresponds to a suc�
cessful outcome� and the state adjacent to the other
hallway� which corresponds to failure �the agent has



Iteration #1 Iteration #2 Iteration #3

Iteration #4 Iteration #5 Iteration #6

Figure �� Value iteration using primitive and macro actions

wandered out of the room�
 The completion function
is therefore � for all the states except these outcome
states� where it is �
 The policy � underlying the macro
action is the optimal policy for reaching the target hall�
way
 For each action� a� a valid model ga�pa is avail�
able


The goal state can have an arbitrary position in any
of the rooms� but for this illustration let us suppose
that the goal is two steps down from the right hall�
way
 The value of the goal state is �� there are no
rewards along the way� and the discounting factor is
� � ��

 We performed planning according to the stan�
dard value iteration method�

vk���s� 
 max
a�As

ga � pa � vk�

where v��s� � � for all the states except the goal state�
for which v��goal� � �
 In one experiment� As was
the set of all the primitive actions available in state s�
in the other As included both the primitive and the
macro actions possible in s


When using only primitive actions� the values are
propagated one step on each iteration
 After six itera�
tions� for instance� only the states that are within six

steps of the goal are attributed non�zero values
 The
models of macro actions produce a signi�cant speed�
up in the propagation of values at each step
 Figure
� shows the value function after each iteration� using
both primitive and macro actions
 The area of the
circle drawn in each state is proportional to the value
attributed to the state
 The �rst three iterations are
identical to the case in which only primitive actions
are used
 However� once the values are propagated to
the �rst hallway� all the states in the rooms adjacent to
the hallway receive values as well
 For the states in the
room containing the goal� these values correspond to
performing the macro action of getting into the right
hallway� and then following the optimal primitive ac�
tions to get to the goal
 At this point� a path to the
goal is known from each state in the right half of the
environment� even if the path is not optimal for all the
states
 After six iterations� an optimal policy is known
for all the states in the environment


The models and policies of the actions do not need
to be given a priori� they can be learned from experi�
ence
 Models and policies closely approximating those
used in the experiment described above were learned



�in a separate experiment� from a ����������step ran�
dom walk in the environment
 In order to learn the
policies and the models corresponding to each action�
we gave each target hallway a hypothetical value of
�� while the failure outcome state �stumbling onto the
wrong hallway� had a hypothetical value of �
 We used
Q�learning �Watkins �
�
� to learn the optimal state�
action value function for reaching each target hallway

The greedy policy with respect to this value function
is the policy associated with the macro action
 At the
same time� we used the ��model learning algorithm
�Sutton �

�� to compute the models for each action

The learning algorithm is completely online and incre�
mental� and its complexity is comparable to that of
regular ��step TD�learning
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