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On The Time Constant Under General Error Criterion
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Abstract—Time constant along with misadjustment offers a
manner of analyzing the convergence behavior of adaptive algo-
rithms. In particular, there are some advantages of using nonlinear
functions of the error instead of linear ones to have enhanced
convergence behavior. However, some equations for the time
constant suggested in the literature are noise dependent, yielding
an infinite value for the noiseless case, which is obviously wrong.
This problem may explain the fact that no works compared the
time constants theoretically found to those derived in practice. In
this letter, we derive a new time constant which depends on both
the inputs and the noise. The results show that the found equation
conforms to practical results.

Index Terms—Adaptive systems and adaptive filtering, non-
linear error, time constant.

I. INTRODUCTION

ANUMBER of works, in adaptive filtering, have been de-
veloped using the squared error as a cost function. Some

well-known algorithms, such as the Kalman Filter, recursive
least square (RLS), or least mean square (LMS) are based on that
cost function. Maybe due to computational complexity, little at-
tention was given to nonlinear functions of the error in adaptive
filtering. However, the exploration of their properties has led
to important findings in this area. For example, the LMS algo-
rithm is limited to a hard tradeoff between the final misadjust-
ment error and the convergence time, a fact which has forced
some researchers to resort to rather computationally expensive
methods [2], [6]. Thus, by simply using nonlinear functions of
the error, some works have shown that they yield overall en-
hanced performance for the algorithm.

In either case of linear or nonlinear functions, the usual ana-
lyzed adaptation parameters were time constant and misadjust-
ment. In the latter, the theoretical misadjustment conforms to
the empirical one [5]. However, there are no results comparing
the theoretical time constant to the practical one. It may be due
to the fact that the derived equations yield infinite values from
noiseless system [2], [3], [5]. Indeed, in some cases of noise-
less systems, the time constant found in those works would be
infinite.

In this work, we focus specifically on nonlinear even func-
tions which can be expressed into Taylor series as a combina-
tion of the error to even exponents. This is equivalent to adding
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the even moments of the error, as shown by Barros et al. [3].
The advantage of those kinds of surfaces when compared to the
squared one is that they naturally yield faster convergence with
lower misadjustment [3], [5], [6]. Indeed, it is easily seen that
the shape of the performance surface depends on the used cri-
terion. As criteria are functions of the least-mean error model
in which the performance surface shapes depend only on the
input signal [4], we can guess that the shape for nonlinear func-
tions shall also depend on the input signal. Indeed, the principal
axes of the performance surface contours for the squared error
corresponds to the eigenvectors of the input correlation matrix.
Moreover, the corresponding eigenvalues determine the rate of
change of the gradient along the principal axes of the surface
contours [4] and, therefore, shall affect the convergence time.

II. METHODS

Let us consider that we observe a signal , named measured
signal, and a number of others which are included into a vector

, called reference input. We say that
the measured signal is composed of the signal we want to
extract , added to a noise in the form . Let
us make the following assumptions.

• Each input data vector is statistically independent of
all previous data vectors , .

• is white noise statistically independent of .
• All variables have probability distributions which are not

necessarily Gaussian.
• The weight vector coefficients are statistically independent

of the reference input.
The filtering task is accomplished by changing the weights of

the filter which are given by . The
current error is given by , and the output signal
by . We define a cost function which is an
even continuous function acting upon the error. Moreover, we
assume that .1

In gradient-based adaptive filtering, the algorithms for up-
dating the weights are generally in the form

(1)

where is the gradient of the cost function with
respect to the weights and is a step-size parameter con-
trolling the stability and speed of convergence.

A. Convergence Behavior

Let be a weight deviation vector, where
is the optimal weight vector which makes . Thus,

. Then, we can rewrite (1) as

(2)

1There are many functions which satisfy this assumption. Examples are
ln(cosh(")), " , or any linear combination of " , 8m = 1; 2; 3; . . ..
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Expressing the nonlinearity into a Taylor series expan-
sion about the value , we obtain

(3)

where denotes the th derivative of the function .
Putting (3) into (2) and applying the expectation on both

sides, we obtain

(4)

in which is the noise variance.
Now, let us state the following theorem:
Theorem: Let be an odd nonlinearity defined, con-

tinuous, and whose derivatives exist in the
interval . Moreover, assume that . Thus,

.
Proof: First, note that . Let us now express

into a Taylor series expansion about the value
zero

(5)

Taking expectations of both sides and invoking our initial as-
sumptions, we see that

(6)

In a similar way, we can express into a Taylor
series about the value zero

(7)

Again, taking the expectations of both sides and invoking our
assumptions, we have

(8)

Remembering that , the theorem
is proven.

Then, (4) can be rewritten as

(9)

where .
This equation can be used to determine the algorithm conver-

gence condition. Therefore, let us define the eigenvectors and

eigenvalues matrices as and , respectively. Thus, we have
.

Now let represent a rotation on weight vectors
. Using similar reasoning as in the proof of the theorem,

we can expand both and in Taylor
series. Disregarding the higher order terms, we can see that

. Then, we can rewrite (9) as follows:

(10)

which can be easily solved by induction. Starting with the initial
guess , we obtain

(11)

Thus, as increases, we see that the expected weight vector
in (11) reaches the optimum solution (i.e., zero in the -axis
system) only if the right side of the equation converges to zero
[1]. This is satisfied by choosing so that

(12)

where is the maximum eigenvalue of .
Now we can determine the time constant associated with the

th eigenvalue of .
Since the product of two diagonal matrices is just the matrix

of products of the corresponding elements, the term between
parentheses in (11) is a diagonal matrix, whose diagonal ele-
ments are given by

(13)

for .
Following the steps of Widrow and Stearns [1], we define

(14)

as the rate of the geometric sequence of samples. If one unit of
time corresponds to one iteration, we obtain

(15)

When the signal-to-noise ratio (SNR) is sufficiently high to
make , we can neglect the second
factor in the denominator. Then we have

(16)

Equation (16) leads us a surprising result: the time constant
is not influenced by noise at high SNR. It depends only on the
performance surface characteristics.

III. RESULTS

In order to determine the accuracy of the derived equations,
we carried out different simulations, where we examined the ac-
tual time constant, the time constant proposed by us, and those
proposed in the literature. To highlight the results, here we show
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TABLE I
THEORETICAL AND EMPIRICAL TIME CONSTANTS FOUND FOR DIFFERENT VALUES OF �. THE LEFT COLUMNS SHOW THE EMPIRICAL VALUES OF ACTUAL � FOR

THREE ALGORITHMS. THE MIDDLE COLUMNS SHOW � CALCULATED USING (16) FOR EACH ALGORITHM. THE RIGHT COLUMNS SHOW � CALCULATED BY

THE EQUATION PROPOSED AT THE RESPECTIVE WORKS

a simulation where a five tap-delay line adaptive model was
used with coefficients [0.0000, 0.2037, 0.5926, 0.2037, 0.0000].
The input signal was a uniform random signal bounded between
[ 1, 1] and the noise was simulated as a Gaussian signal inter-
ference with zero mean and unity variance at different levels.
Let us write the measured signal as

(17)

where took the following values [0.04, 0.05,0.06, 0.07, 0.08,
0.09, 0.10].

To validate our results, we used three algorithms already pro-
posed in the literature: 1) the least mean fourth (LMF) [2], in
which the cost function is ; 2) the least mean mixed-
norm (LMMN) [6], whose cost function is given by

, where is the mixing parameter; and
3) the weighted even moment (WEM) [3], which uses

as the cost function, where and are pos-
itive integers. For each algorithm and for each noise level, 100
Monte Carlo runs were performed using exactly the same data.
We calculated the actual time constant as the time which the
error took to reach 36% of its initial value. For each al-
gorithm, we found the learning rate which guaranteed conver-
gence. For the LMF, we used . For the LMMN, we
used . For the WEM, we used . In Fig. 1, we
plotted the ensemble averaged error versus the number of itera-
tions in a trial where the LMF algorithm was used. Moreover, for
the sake of clarity, we show the exponential decay
for two derived equations. A straight line denoting 36%
of the initial error value is also plotted. We show the results in
Table I, where we can see, in the first column, several values
for the parameter , which is used in (17), denoting the noise
contribution. The following nine columns are divided into three
groups of three columns. In each group, the first column repre-
sents LMF, the second columns represents LMMN, and the third
column represents WEM. The leftmost group contains empirical
time constants values. The middle group contains the time con-
stants calculated by our proposal. In the right group, we have
the time constants calculated by using the equations proposed
in the respective works.

IV. DISCUSSIONS AND CONCLUSION

From (15) and (16), we can easily see that the time constant
is less influenced by the noise than by characteristics of the per-
formance surface at high SNR. This result was not encountered
before in the literature. For example, for LMF, the authors [2]

Fig. 1. Typical example of convergence. The straight line denotes the learning
curve; the dotted line represents 36.8% of the initial value of the learning
curve; the dashed line indicates the exponential decay proposed in [2], and the
dash–dotted line represents our proposal to the exponential decay.

proposed , which yields high dependence on
noise. Moreover, it means that in the noiseless case, this equa-
tion yields an infinite value, which is obviously wrong. In Fig. 1,
where we use , we have an inclined (dash-dotted)
line representing our proposal for the exponential decay. No-
tice that this line crosses the learning curve approximately at
the same time that the line which represents 36.8% of the initial
value, while a horizontal (dashed) line representing the expo-
nential decay proposed by Walach and Widrow clearly shows
that it is of very limited accuracy. In Table I, we can verify for
the LMF algorithm that for the same , the values obtained in
the middle column conform with the corresponding measured
values in the left column, while we have quite discrepant values
in the right column. For the LMMN algorithm, by using (16), we
have also an agreement between the values of the left columns
and the middle one. Still for the LMMN, despite the values in
the right column not being so different when compared with cor-
responding values at the left column, they are still more than
twofold larger. For the WEM algorithm, we did not find signif-
icant differences between the values in the middle column and
the ones in the right column. Moreover, in the left column, we
can notice less influence of the noise for values in each partic-
ular algorithm column. This agrees with our conclusion about
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the lack of influence of the noise in an adaptive filtering process
at high SNR.
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