
Accepted for publication in the Proceeedings of the Seventeenth International Conference on Machine Learning
(ICML-2000), Stanford University, California, June 29–July 2, 2000.

A Bayesian Framework for Reinforcement Learning

Malcolm Strens MJSTRENS@DERA.GOV.UK

Defence Evaluation & Research Agency. 1052A, A2 Building, DERA, Farnborough, Hampshire. GU14 0LX. U.K.

Abstract
The reinforcement learning problem can be
decomposed into two parallel types of inference:
(i) estimating the parameters of a model for the
underlying process; (ii) determining behavior
which maximizes return under the estimated
model. Following Dearden, Friedman and Andre
(1999), it is proposed that the learning process
estimates online the full posterior distribution
over models. To determine behavior, a
hypothesis is sampled from this distribution and
the greedy policy with respect to the hypothesis
is obtained by dynamic programming. By using a
different hypothesis for each trial appropriate
exploratory and exploitative behavior is
obtained. This Bayesian method always
converges to the optimal policy for a stationary
process with discrete states.

1. Introduction

Reinforcement learning (RL) is a form of machine
learning used to solve problems of interaction (Bertsekas
& Tsitsiklis, 1996; Kaelbling, Littman & Moore, 1996;
Sutton & Barto, 1998). It is a form of trial-and-error
learning; an agent starts interacting with the environment
with an arbitrary (random) policy for choosing control
actions. The agent receives rewards when these actions
lead to successful performance of the task. As the agent
explores the environment and finds routes to high reward
its behaviour changes from (near-random) exploration to
(near-deterministic) exploitation. Thus, reinforcement
learning acquires a model for the relationship between the
state of the environment, the available actions, and the
rewards that accrue over a period of time.

To make the decision as to what action to take in a
particular state, an agent can draw on previous experience
and take the action which, on average, led to the better
reward. This “greedy policy” fails when rewards are
uncertain; the system can converge to a local minimum
where the greedy behavior is sub-optimal because its
decisions are based on maximum likelihood estimates
(e.g. averages) which are not equal to the true parameters

of the underlying process (e.g. the true means of the
rewards associated with different actions). The
conventional approach to solving this problem is to
introduce occasional random actions, or some other way
of enhancing exploration (Sutton & Barto, 1998). A
theoretically justifiable approach is to retain a notion of
uncertainty in the model parameters and to take decisions
according to hypotheses for the true model parameters.
This cannot be achieved for primitive RL algorithms
which are model-free; however interval estimation Q-
learning and several other techniques explicitly represent
uncertainty in the discounted return. These techniques
were compared by Dearden, Friedman and Russell (1998)
which forms a baseline for this work.

Consider the case where there is an explicit model, and
the goal is to represent the uncertainty in the parameters
of this model, rather than in the discounted returns. This
has also been proposed by Dearden et al. (1999). For
infinite horizon problems, the Bayesian optimal solution
for action selection requires calculation of an intractable
integral over courses of action (Martin, 1967). Even the
optimal 1-step exploitative action is difficult to compute:
it is the action with the highest expected return under the
posterior distribution on models. Calculating this
expectation requires integration over the posterior, which
is also prohibitory for all but the most simple models.
Therefore approximation methods are required.

Dearden et al. (1999) review several sampling approaches
for achieving this approximation and use a myopic value
of perfect information (VPI) criterion for action selection.
I propose a different and simpler scheme which is similar
to their global importance sampling method. However, in
their work, resampling is performed as often as possible.
In contrast, I argue that preserving the same hypothesis
for several time steps has a very important advantage
(apart from reducing computation cost): exploration
strategy will be consistent over a period of time. This
observation is intuitive in that human learning operates
this way – a hypothesis can be tested through taking a
coherent course of action, before generating a new
hypothesis. The approach also requires only one model
hypothesis to be generated per trial and allows large
problems to be solved. A further speed-up is obtained by
initializing the value estimates of sampled models using
the maximum likelihood solution as a starting point.

As an example, suppose a decision-making system must
(repeatedly) choose between two actions which lead to
unknown rewards (the 2-armed bandit problem). It could
generate a random hypothesis of the form “action 1 is
best”. If prior observations are available, then a
hypothesis “action 1 leads to expected reward A and
action 2 leads to expected reward B” can be generated in
an unbiased fashion (by obtaining a sample of size 1 from
the posterior distribution on the true values of expected
rewards). A greedy policy with respect to this joint
hypothesis selects action 1 when BA > . After taking this
action, useful information will be gained, even if it is not
the true optimal action. A new hypothesis is drawn from
the updated posterior distribution before each action is
selected. Choosing actions according to unbiased
hypotheses from the posterior ensures both actions will
occasionally be taken and will eventually lead to optimal
behavior as the distribution collapses to a point over time.
(A and B approach the true expected rewards.) Hence
there is a natural way of smoothly moving from
exploratory to exploitative behavior. The same principle
is applicable to models for extended sequences of
interaction involving state and stochastic transitions, such
as Markov decision processes (MDPs).

The remainder of this paper shows how this is achieved.
Section 2 introduces RL terminology, primitive learning
techniques, and defines the MDP model. Section 3 shows
that online dynamic programming can be used to solve
the reinforcement learning problem and describes
heuristic policies for action selection. Section 4 shows
how to represent the prior and posterior probability
distributions for MDP models, and how to generate a
hypothesis from this distribution. Section 5 describes the
proposed algorithm and its implementation. This is
compared with some existing methods in section 6.
Section 7 identifies further avenues for research and
draws conclusions.

2. Primitive Reinforcement Learning

Q-learning (Watkins, 1989) is a widely used
reinforcement learning technique, and is very simple to
implement because it does not distinguish between
“actor” and “critic”. i.e. the same data structure is used to
select actions as to model the benefits of courses of
action. Q-learning is described here in order to introduce
several important concepts of reinforcement learning and
to provide a baseline with which to compare dynamic
programming approaches. Like many reinforcement
learning algorithms, Q-learning aims to maximize
discounted return. The discounted return is a sum, from
the current time until the end of the trial, of rewards
received, but each reward is discounted; i.e. rewards
received sooner are more significant. Formally, if tr is the
reward received at time t and γ is the discount rate, the
discounted return is given by:

...221 +++ ++ ttt rrr γγ

The quality function, ()asQ , , is defined as the discounted
return when action a is taken in state s, assuming an
optimal policy is taken thereafter. If ()asQ , can be
estimated by learning, then the optimal policy in state s is
to choose the action which maximizes ()asQ , . Q-learning
works by keeping running estimates that are updated at
each step or at the end of a trial. When action a in state s
leads to state s′ with instantaneous reward r, the Q-
learning rule updates the existing estimate for ()asQ , as
follows:

() () () ()()asQrasQasQ a ′′++−← ′ ,ˆmax,ˆ1,ˆ γαα

This is a linear combination between the previous
estimate, and an estimate obtained from the most recent
observation. The learning rate α determines the
proportions in this combination, and serves to average
over several forms of uncertainty. These uncertainties are
(i) the stochastic nature of state transitions; (ii) the
stochastic nature of immediate rewards; (iii) the error in
the current estimates of Q. The learning rate determines a
compromise between likelihood (and accuracy) of
convergence and the number of trials required. Q-learning
is very effective if a large number of trials can be
performed, but much faster learning can be obtained if a
more explicit mathematical model of the agent-
environment interaction is utilized. The most common
model is a Markov decision process.

A Markov decision process (MDP) or controlled Markov
system (Bellman, 1957a) is used to model an interactive
system with evolving state. It is defined by a quadruple
()RTAS ,,, . S and A are discrete sets of states and
actions. T is a stochastic state-action transition function.
For each state-action pair ()as, , the reward ()asR , is a
real-valued random variable. At any discrete time t, the
system state is tX and the state at the next time step,

1+tX , is given by probabilistic transitions determined by
T and an action tY received by the system from an
external agent:

() ()aYsXsXPsasT ttt ==′==′ + ,,, 1

When this transition takes place, the process emits a
scalar reward, generated from ()asR , .

The MDP model allows an explicit expression for ()asQ , :

() [] () ()∑ ′′′+= ′
'

,max,,),(,
s

a asQsasTasREasQ γ (1)

where []E is the expectation operator.

3. Dynamic Programming for RL

Dynamic programming (DP) is a means of solving
constraint satisfaction problems through repeated
resubstitution of estimates. It is particularly relevant for
estimating quantities associated with the nodes of a graph
such as the expected discounted reward in the RL
problem (Bellman, 1957b; Bertsekas, 1995). DP will be

used here for two different purposes. Firstly, it will be
used to solve for the optimal policy under the maximum
likelihood MDP parameters (expected rewards and
transition probabilities). Secondly it will be used to solve
for the optimal policy under each hypothesis drawn from
the posterior distribution on MDP model parameters.

3.1 Dynamic Programming on a MDP

If the reward distribution and state transition probabilities
are known then equation 1 yields a set of simultaneous
nonlinear equations in Q . (One equation for each state-
action pair.) The DP value iteration technique solves this
set of equations directly by repeated substitution of
estimates. Once Q is known, the greedy policy in state s
is to choose the action a for which ()asQ , is maximum.
However, the reward distribution and transition
probabilities are not known in many scenarios, and so
must be estimated online, while the agent explores the
environment. The maximum likelihood estimate of the
transition probability ()sasT ′,, is the proportion of times
that action a in state s led to state s′ (e.g. Barto, Bradtke
and Singh, 1995). The maximum likelihood estimate of

()[]asRE , is the average of the rewards received when
action a was taken in state s. Hence, dynamic
programming provides a solution to the reinforcement
learning problem without the need for a learning rate. A
drawback to the DP approach is that it requires an
assumption that the underlying reward distributions and
transition probabilities are statistically stationary. The
implication of this assumption is that retraining of the
system is required whenever the environment changes
significantly.

The DP solution method requires the storage of very large
structures of sparse data. In particular, DP must keep
track of the number of transitions between every pair of
states, for every possible action. Most of the counts are
zero, and the use of hash tables ensures that the space
required is proportional to the number of non-zero counts
(while retaining random access). This means that it is
possible to work with systems having several thousand
states. The DP solution method is made efficient by
avoiding unnecessary iteration of the DP “backup”
operation which propagates estimates of Q through the
MDP (equation 1). This is achieved by the prioritized
sweeping algorithm (Moore & Atkeson, 1993; Andre,
Friedman & Parr, 1998) which updates only the estimates
likely to have changed the most after each observation.

3.2 Heuristic Exploration Policie s

With most reinforcement learning methods, including Q-
learning and online dynamic programming, there remains
a problem of finding an appropriate compromise between
exploratory and exploitative behavior. In both cases, the
greedy policy is to choose the action which yields the
highest expected discounted return in each state.
However, if this action is not the true best action, then the

greedy policy can lead to learning becoming “stuck” in a
sub-optimal local maximum.

Many alternative policies have been proposed to mix
exploratory behavior with this exploitative behavior in
order to find new routes to reward or become more
confident about which policy is best (Kaelbling, Littman
& Moore, 1996; Thrun, 1992). The semi-uniform policy
chooses mostly greedy actions, but selects a random
action with a small probability. The Boltzmann policy
chooses actions according to a stochastic function of their
associated expected rewards. It has a “temperature”
parameter which can be reduced during learning, to move
from random (exploratory) behavior to deterministic
behavior over the course of learning, in a way analogous
with simulated annealing. Another policy (Strens, 1999)
chooses the least taken action in a given state with a
probability inversely proportional to a polynomial
function of the number of times that the least taken action
has been taken; otherwise the greedy action is chosen.
Kearns and Singh (1998) have proved convergence
bounds for a similar policy, polynomial in a measure of
the discounting horizon. Fiechter (1997) applied the PAC
(“probably approximately correct”) method to prove
convergence of another algorithm.

The use of these heuristic (i.e. rule-based) policies is often
very effective, but it is the aim of this work to eliminate
the need for such design decisions and to automatically
obtain a policy which gives the appropriate mix of
exploration and exploitation.

4. Representing MDP Posterior Distribution

I show how to represent the posterior probability density
(i.e. posterior distribution) for the MDP model
parameters. These parameters fully define the MDP (apart
from fixing the sets of states and actions), and so this
distribution is defined over the space of MDPs (or
“version space”) for this machine learning task (Mitchell,
1997). The posterior distribution must represent
uncertainty in transition probabilities and in reward
distributions, for each state-action pair. The MDP has the
Markov property, so each of these distributions is
independent. (The reward and transition probabilities
associated with a state-action pair are independent of the
sequence of states, actions and rewards which led to that
state.) The rewards are assumed to be independent of
transitions. (This constraint is not valid in state-value
models which require an alternative problem
formulation.) Hence, the posterior distribution is
represented independently for each state-action pair ()as,
as a distribution of immediate reward distribution
parameters and a distribution over the transition
probability vector p defined as:

() ()()NsasTsasT ,,,...,,, 1≡p

This vector has one element for each possible successor
state, so its maximum length is equal to the total number

N of states in the system. Note that 1=p and p
represents the parameters of a multinomial distribution.

4.1 Prior Probability Density over MDP Parameters

In order to regularize the learning problem, it is desirable
to choose a prior probability density for the parameters of
the MDP.

There are two possible types of prior distribution for the
transition probability vector p .

(i) The first option is to make no major assumptions and
to use a uniform or Dirichlet distribution over
allowable values as the prior. Friedman and Singer
(1999) show that a Dirichlet distribution can be used
as an incremental parametric posterior for
multinomial probabilities.

(ii) The second option is to assume that the transition
matrix is sparse. Only a certain number z of the
elements of p are non-zero (i.e. some successor
states are unreachable). A hierarchical version of the
Dirichlet formalism can be used to account for
uncertainty about reachability (Friedman & Singer,
1999).

I choose the latter option, but introduce a stricter form of
regularization which reduces the posterior itself to be a
(sparse) multinomial distribution. For each state-action
pair, a lower bound (minzz =) on the value of z is known
throughout processing, because any successor state with a
non-zero transition count is reachable. Observe that z
places an ordering on the complexity of the distributions
of p . In obtaining the posterior distribution for p , I will
allow only 1min += zz 1. Note that minz will change
dynamically as learning proceeds. (Alternatively, if
reachable successor states are known a priori then z
should be limited to this number.) Of the 1min +z
successors, all but one are fixed (they are the states with
non-zero transition counts), and the last one is chosen
uniformly over the remaining states. Thus there are

minzN − possible hypotheses for the set of successor
states. After this choice, a uniform prior can be used for
the non-zero elements of p (with the constraint 1=p).

There are many possibilities for the model for immediate
rewards. Here I consider only the Gaussian case. It is
important to choose an appropriate prior on the standard
deviation (σ) because a uniform prior would lead to
asymptotic behavior of likelihood at 0=σ .

— — — — —
1 This greatly simplifies the posterior density but restricts it

to a space which may not contain the true posterior. However
this space will expand to contain the true posterior as learning
proceeds and the lower bound on z increases. If the true value of
z is equal to minz then learning also converges to the exact
solution with one of the non-zero transition probabilities
asymptotically approaching zero.

Defining σψ 1= , I choose a prior probability density:

() ()2exp 2
0

2σψψψ −∝f

This has a maximum at 0σσ = . A prior probability
density on the mean (µ) is given by:

() ()2
0 ,σµµ Nf ∝

The constants ()00 ,σµ incorporate prior knowledge about
likely immediate reward distributions. However, 0µ
serves only for initialization; its value is given no weight
once the first observation has been made.

4.2 Bayesian Posterior Probability Density

The posterior probability density for model parameters is
obtained by combination between the prior density and
the evidence available from observations. Let n be the
actual observation counts for the events represented by
the elements of p . i.e. in is the number of times that
successor state is has been reached for the state-action
pair we are working with. Applying Bayes’ Theorem
yields the posterior for ()pf :

() () ()
()n

ppn
np

P
PP

P =

Restricting the set from which p is drawn at every time
step (as described in section 4.1) the prior ()pP over this
set is uniform throughout processing. Hence, ignoring
constants, the posterior is a multinomial distribution given
by:

() in
i

Ni
pf Π∝

≤≤1
p

The posterior density for the immediate reward
distribution parameters can be obtained by a similar
application of Bayes’ Theorem, in terms of a distribution
for ψ and a conditionally independent distribution for µ .
The posterior distribution for ψ is given by:

() ()()2exp 2
0

221 σψψψ +−∝ − ndf n

after n observations of immediate reward, with sample
variance 2d . Then the posterior on µ is:

() ()nxNf 2,σµ ∝

where ψσ 1= . (When 0=n , the prior is used.) Thus µ
depends on ψ , but the converse is not true; this indicates
the order in which these two quantities must be sampled.

4.3 Generating a Hypothesis for the MDP

The proposed algorithm requires an unbiased hypothesis
to be obtained from the posterior distribution over MDP
parameters at the start of each trial or at fixed intervals
during learning. (An unbiased hypothesis is equivalent to
an unbiased sample of size 1.) Values of σ , µ and p
must be generated for each state-action pair. Sampling p

can be decomposed into a chain of conditionally
independent sampling operations, one for each element of
p . µ is sampled from a Gaussian distribution. Samples

of σ and p are obtained by mapping the uniform
distribution []1,0U through cumulative probability density
functions obtained by adaptive numerical integration. For
numerical reasons, the probability density of the
dimensionless quantity given by equation 2 can be
integrated to sample σ . (The full details of the sampling
of p are not given here.)

()2
0211 σψ+ (2)

5. Overview of the New Learning Method

I have described how the agent can (i) solve for the
optimal policy of a particular MDP using dynamic
programming; (ii) estimate the posterior distribution over
MDP process parameters during learning; (iii) sample
from this distribution to obtain a particular example (or
hypothesis) for an MDP which could explain the set of
observations made so far. These components are now
combined into an algorithm for reinforcement learning.
The algorithm must yield an appropriate policy for action-
selection at each interaction step. Quantities associated
only with efficient implementation are ignored in this
overview.

5.1 Maximum Likelihood MDP

The following quantities are accumulated or calculated
for each state, and updated (if necessary) after each
learning step:

A1. Visit count.
A2. ML2 estimate of discounted return ()sV̂ .
A3. List of allowable successor states.

The following quantities are associated with state-action
pairs and also kept up-to-date:

B1. Visit count.
B2. Sum of immediate rewards.
B3. Sum of squares of immediate rewards.
B4. List of known successor states.
B5. Transition counts n .
B6. ML estimate of expected immediate reward µ̂ .
B7. ML estimate of transition probabilities p̂ .
B8. ML estimate of discounted return ()asQ ,ˆ .

The ML estimates are kept approximately up-to-date
using a few iterations of the prioritized sweeping
algorithm at each step. (These ML estimates will be used
to reduce the computational cost of calculating discounted
returns for each MDP hypothesis.)

— — — — —
2 ML is shorthand for Maximum Likelihood.

5.2 Hypothesis Generation

The agent must generate a new hypothesis on a regular
basis. For learning in trials of finite length, this is done at
the start of each trial. (Otherwise, it takes place every N
steps, where N is related to the number of state transitions
the agent is likely to need to plan ahead.) The hypothesis
is generated (as described in section 4.3) and the
following additional quantities are stored with each state-
action pair:

B9. Hypothesis for transition probabilities *p .
B10. Hypothesis for expected immediate reward *µ .

To obtain greedy behavior with respect to this hypothesis
rather than the maximum likelihood values (p̂ and µ̂),
the following quantities must also be calculated.

For each state:

A4. Discounted return for current hypothesis ()sV * .

For each state-action pair:

B11. Discounted return for current hypothesis ()asQ ,* .

These quantities are approximated by application of
prioritized sweeping, using the hypothesized MDP
parameters, after initializing them with the maximum
likelihood estimates (which greatly reduces computational
cost.) The greedy action â in state s is then given by:

()()asQa a ,maxargˆ *=

6. Experimental Comparison

Three standard problems with discrete state spaces
(Dearden, Friedman, Russell, 1998) were simulated and
learning performance was compared using the following
methods:

(i) Q-learning with a semi-uniform policy.

(ii) Q-learning with a Boltzmann policy.

(iii) Interval Estimation Q-learning ‘plus’ (“IEQL+”).

(iv) Bayes ‘value of perfect information’ with mixture
updating (“Bayes VPI+Mix”).

(v) Dynamic programming with a heuristic policy.

(vi) The proposed algorithm (“Bayesian DP”).

In (i) the learning rate and semi-uniform mixing
coefficient were decayed uniformly during learning (from
0.02 to 0.00). Methods (ii)-(iv) are primitive learning and
local-sampling methods tested by Dearden, Friedman and
Russell (1998). Their results (with tuned parameters) are
shown here for comparison. In (v), the action selection
policy is that of Strens (1999) mentioned in section 3.2,
with the probability of choosing the least-taken action La
given by ()24/4 n+ , in which n is the number of times that
action La has been tried previously.

1 2 3 4 5a,0 a,0 a,0 a,0

b,2
b,2
b,2
b,2

b,2 a,10

Figure 1. The “Chain” problem

6.1 Problem Descriptions

Figure 1 shows the 5-state “Chain” problem. The arcs are
labeled with the actions that cause that state transition,
and the associated rewards. However the agent has only
abstract actions { }2,1 available. Usually abstract action 1
causes real-world action a to take place, and abstract
action 2 causes real-world action b. With probability 0.2,
the agent “slips” and its action has the opposite effect.
The optimal behavior is to always choose action 1 (even
though this sometimes results in the transitions labeled
with b). Once state 5 is reached, a reward of 10 is usually
received several times before the agent slips, and starts
again at state 1. This problem requires effective
exploration and accurate estimation of discounted reward.

Figure 2 shows the “Loop” problem which involves two
loops of length 5 joined at a single start state. Two actions
are available and transitions are deterministic. Taking
action a repeatedly causes traversal of the right loop,
yielding a reward of 1 for every 5 actions taken.
Conversely, taking action b repeatedly causes traversal of
the left loop, yielding a reward of 2 for every 5 actions
taken. This problem requires a difficult compromise
between exploration and exploitation.

Figure 3 shows the “Maze” problem. The agent can move
left, right, up or down by one square in the maze. If it
attempts to move into a wall, its action has no effect. The
problem is to move from the start (top-left) to the goal
(top-right) collecting the flags on the way. When it
reaches the goal, the agent receives a reward equal to the
number of flags collected, and is returned to the start
immediately. The problem is made more difficult by
assuming that the agent occasionally “slips” and moves in

a direction perpendicular to that intended (with
probability 0.1). There are 33 reachable locations in the
maze (including the goal) and there are up to 8
combinations for status of the flags at any time. This
yields 264 discrete states. The agent was given limited
layout information (identifying the immediate successors
of each state) in order to reduce the complexity of the
posterior distribution for the Bayesian DP approach.

6.2 Results

The experimental results show accumulated totals of
reward received over learning phases which consist of
1000 steps for Chain and Loop, and 20000 steps for
Maze. Averages were taken over 256 runs for Chain and
Loop, and 16 runs for Maze. Table 1 summarizes
comparative performance after 1, 2, and 8 phases of
learning. (Note that these results are pessimistic in that
they show the rewards actually received during learning
rather than the rewards which could be received with the
instantaneous greedy policy.) In the Bayesian DP method,
a new hypothesis (for the MDP) was drawn each time the
system entered the starting state. In Maze, a new
hypothesis was also obtained every 24 steps because there
is no guarantee that the agent will return to the start in
finite time.

An optimal deterministic policy would yield average
rewards of 3677 in Chain and 400.0 in Loop. The optimal
policy for Maze is not obvious due to the effect of
slipping. Without slipping, the optimal policy would yield
2143. I estimate that the true optimal policy with slipping
would yield between 1860 and 1900.

The results show that the dynamic programming
approaches are significantly better than the primitive
learning approaches for these problems, except for Loop
where Q-learning also eventually achieves near-optimal
performance. The Bayesian approach is significantly
better than the Heuristic DP after 8 phases of Loop and
Maze, and performs similarly for Chain. Heuristic DP is
significantly better than Bayesian DP in phases 1 and 2 of
Maze, but this is at a cost of worse performance in later

0

1

4

2

3

a,0 a,b,0

a,b,2

a,b,0

a,b,0

5

8

6

7

b,0b,0

a,b,1

b,0

b,0

a,0

a,0
a,0

Figure 2. The “Loop” problem.

Figure 3. The “Maze” problem.

phases. (For all three problems Bayesian DP converges to
a near-optimal strategy by phase 8.)

7. Discussion and Conclusions

I have presented a powerful approach to the reinforcement
learning problem. Rather than using a maximum
likelihood estimate for the underlying process, the
posterior distribution over process parameters is fully
represented, and greedy behavior, with respect to a
sample from this posterior, is used. My approach is novel
in that each hypothesis is retained over a period of time,
ensuring goal-directed exploratory behavior without the
need to use approximate measures such as myopic VPI
(Dearden et al., 1998), or heuristic exploration bonuses
combined with backpropagation of uncertainty (Meuleau
& Bourgine, 1999). The number of steps for which each
hypothesis is retained limits the length of consistent
exploration sequences, and need not be constant. The
result is an automatic way of obtaining behavior which
moves gradually from exploration to exploitation, without
making heuristic design decisions. Accurate convergence
is guaranteed because all uncertainty is represented
explicitly, unlike primitive learning techniques where
there is a difficult compromise between computational

cost, likelihood of convergence, and accuracy of
convergence.

A generalization of the algorithm is to obtain a sample of
size greater than 1 from the posterior distribution. Each
hypothesis in this sample could potentially yield a
different greedy action and different discounted return.
There are several ways to combine this information in
order to choose the best action to take:

1. Choose the action with highest average predicted
discounted return. This gives a more exploitative
policy because it approximates an integral over the
posterior. This could improve learning rates because
it favors simpler models, at the cost of taking longer
to find more complex, but less likely ones.

2. Choose the action with the most votes. This is similar
to (1) in that it leads to more exploitative policies.

3. Choose the action corresponding to the maximum of
the predictions of discounted return. This is
analogous to an “optimistic” approach and may lead
to more exploratory behavior.

However, using multiple hypotheses in this way may have
an adverse effect on the goal-directed exploratory
behavior which results from retaining hypotheses for a
period of time. Exploration of these issues is an important
topic for future research.

The computational complexity of Bayesian DP, as
described, is relatively high compared with primitive
learning techniques. This is a result of needing to generate
hypotheses and perform prioritized sweeping at the start
of each trial. However, for complex problems, the main
computational cost is usually in the simulation rather than
the learning, and so the gain through learning in fewer
trials is much more important. For larger state spaces, it is
possible to convert the learning process I have described
into a purely local process. This is achieved by
recursively traversing the MDP from the current state and
resampling at any state-action pairs which have not been
resampled in the last N steps, where N is indicative of the
depth of (exploratory) planning likely to be required.
Similarly, the greedy policy can be obtained locally by
recursive traversal of the MDP. This observation leads to
a natural interpretation of Bayesian DP as “hypothetical
planning”, connecting the rigorous Bayesian approach
with a more intuitive psychological viewpoint.

Complex problems have large, continuous-valued state-
spaces, and so require approximation architectures to
represent state transitions and rewards. The same
Bayesian approach should also be applicable to such
architectures, but several new problems are introduced by

— — — — —
3 These results are from Dearden, Friedman and Russell

(1998).

Table 1. Comparison of accumulated rewards. Results for
phases 1 and 2 which are best by a significant margin shown
in bold-type. Results for phase 8 which are near the optimal
performance for the problem are also shown in bold-type.

CHAIN PHASE 1 PHASE 2 PHASE 8
QL SEMI-UNIFORM 1594 ± 2 1597 ± 2 1602 ± 2
QL BOLTZMANN3 1606 ± 26 1623 ± 22 N/A
IEQL +3 2344 ± 78 2557 ± 90 N/A
BAYES VPI+MIX3 1697 ± 112 2417 ± 217 N/A
HEURISTIC DP 2855 ± 29 3450 ± 21 3635 ± 18
BAYESIAN DP 3158 ± 31 3611 ± 27 3643 ± 24

LOOP PHASE 1 PHASE 2 PHASE 8
QL SEMI-UNIFORM 337 ± 2 392 ± 1 399.4 ± 0.1
QL BOLTZMANN3 186 ± 1 200 ± 1 N/A
IEQL+3 264 ± 1 293 ± 1 N/A
BAYES VPI+MIX3 326 ± 31 340 ± 31 N/A
HEURISTIC DP 314 ± 3 376 ± 2 394 ± 1
BAYESIAN DP 377 ± 1 397.5 ± 0.1 399.5 ± 0.1

MAZE PHASE 1 PHASE 2 PHASE 8
QL SEMI-UNIFORM 655 ± 24 1135 ± 14 1147 ± 12
QL BOLTZMANN3 195 ± 20 1024 ± 29 N/A
IEQL+3 269 ± 1 253 ± 3 N/A
BAYES VPI+MIX3 818 ± 29 1100 ± 38 N/A
HEURISTIC DP 1508 ± 17 1800 ± 4 1856 ± 3
BAYESIAN DP 750 ± 6 1763± 7 1864 ± 3

the continuous state-space. Representations must be
chosen for the continuous, stochastic state transition
function and the immediate reward function. It is also
necessary to calculate the discounted return from
hypotheses for these functions. If these problems can be
overcome, then the approach described in this paper
would be much more broadly applicable.

Acknowledgements

I thank the anonymous reviewers for their detailed
comments and references, which have led to significant
clarification of the work in this paper.

References

Andre, D., Friedman, N., & Parr R. (1998). Generalized
prioritized sweeping. Advances in Neural Information
Processing Systems 10. Cambridge, MA: MIT Press.

Barto, A. G., Bradtke, S. J., & Singh, S. P. (1995).
Learning to act using real-time dynamic programming.
Artificial Intelligence, Special Volume: Computational
Research on Interaction and Agency, 77, 81-138.

Bellman, R. E. (1957a). A Markov decision process.
Journal of Mathematical Mechanics, 6, 679-684.

Bellman, R. E. (1957b). Dynamic programming.
Princeton, NJ: Princeton University Press.

Bertsekas, D. P. (1995). Dynamic programming and
optimal control. Belmont, MA: Athena Scientific.

Bertsekas, D. P., & Tsitsiklis, J. N. (1996). Neuro-
dynamic programming. Belmont, MA: Athena
Scientific.

Dearden, R., Friedman, N., & Andre D. (1999). Model
based Bayesian exploration. Proceedings of Fifteenth
Conference on Uncertainty in Artificial Intelligence.
San Francisco, Morgan Kaufmann.

Dearden, R., Friedman, N., & Russell S. (1998). Bayesian
Q-learning. Proceedings of Fifteenth National
Conference on Artificial Intelligence. Menlo Park, CA:
AAAI Press.

Fiechter, C-N. (1997). Expected mistake bound model for
on-line reinforcement learning. Proceedings of
Fourteenth International Conference on Machine
Learning. San Francisco: Morgan Kaufmann.

Friedman, N., & Singer, Y. (1999) Efficient Bayesian
parameter estimation in large discrete domains.
Advances in Neural Information Processing Systems 11.
Cambridge, MA: MIT Press.

Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996).
Reinforcement learning: a survey. Journal of Artificial
Intelligence Research, 4, 237-285.

Martin, J., J. (1967). Bayesian decision problems and
Markov chains. New York: John Wiley.

Meuleau, N., & Bourgine, P. (1999). Exploration of
multi-state environments: local measures and back-
propagation of uncertainty. Machine Learning, 35, 117-
154.

Mitchell, T. M. (1997). Machine learning. Columbus,
OH: McGraw-Hill.

Moore, A. W., & Atkeson, C., G. (1993). Prioritized
sweeping: reinforcement learning with less data and less
time. Machine Learning, 13, 103-130.

Kearns, M., & Singh, S. (1998). Near-optimal
performance for reinforcement learning in polynomial
time. Proceedings of Fifteenth International Conference
on Machine Learning. San Francisco: Morgan
Kaufmann.

Strens, M. J. A. (1999). Learning, cooperation and
feedback in pattern recognition. Ph.D. Thesis, Physics
Department, King’s College London, London.

Sutton, R. S., & Barto, S. (1998). Reinforcement learning.
Cambridge, MA: MIT Press.

Thrun, S., B. (1992). Efficient exploration in
reinforcement learning (Technical Report CMU-CS-92-
102), School of Computer Science, Carnegie-Mellon
University, Pittsburgh, PA.

Watkins, C. J. C. H. (1989). Learning from delayed
rewards. Ph.D. Thesis, Psychology Department,
Cambridge University, Cambridge, U.K.

© British Crown copyright 2000. Published with the permission of the
Defence Evaluation and Research Agency on behalf of the Controller of
Her Majesty’s Stationery Office.

