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The activity of midbrain dopamine neurons is strikingly similar to the reward prediction error of TD
reinforcement learning models. Experimental evidence and simulation studies suggest that dopamine
neuron activity serves as an effective reinforcement signal for learning of sensorimotor associations in
striatal matrisomes.

In the current study, we simulate dopamine neuron activity with the Extended TD model (Suri and
Schultz, submitted) and examine the influence of this signal on medium spiny neurons in striatal
matrisomes. This model includes transient membrane effects of dopamine, dopamine-dependent long-
term adaptations of corticostriatal transmission, and rhythmic fluctuations of the membrane potential
between an elevated “up-state” and a hyperpolarized “down-state.” The most dominant activity in the
striatal matrisomes elicits behaviors via projections from the basal ganglia to the thalamus and the cortex.

This “standard model” performs successfully when tested for sensorimotor learning and goal-
directed behavior (planning). To investigate the contributions of these model assumptions to learning and
planning, we test the performance of several model variants that lack one of these mechanisms. These
simulations show that the adaptation of the dopamine-like signal is necessary for planning and for
sensorimotor learning. Lack of dopamine-like novelty responses decreases the number of exploratory acts,
which deteriorates planning capabilities. Sensorimotor learning requires dopamine-dependent long-term
adaptation of corticostriatal transmission. The model loses its planning capabilities if the dopamine-like
signal is simulated with the original TD model. The capability for planning is improved by transient
dopamine membrane effects, dopamine-dependent long-term effects on corticostriatal transmission,
dopamine- and input-dependent influences on the durations of membrane potential fluctuations, and
manipulations that prolong the reaction time of the model. These simulation results suggest that striatal
dopamine is important for sensorimotor learning, exploration, and planning.

INTRODUCTION
Midbrain dopamine neurons are phasically activated by unpredicted rewards or by the first sensory event
that allows the animal to predict the reward but do not respond to predicted rewards. When a predicted
reward is omitted, their activity is depressed at the time when the reward fails to occur (Schultz, 1998).
The reward prediction error of temporal difference models (TD models) reproduces these features of
dopamine neuron activity (Sutton and Barto, 1990; Montague et al., 1996; Schultz et al., 1997; Suri and
Schultz, 1999, submitted). In addition, dopamine neurons respond to novel, physically salient stimuli
(Schultz, 1998). Such stimuli elicit action potential bursts followed by activity decreases below baseline
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levels. These biphasic novelty responses diminish with repeated stimulus presentation. TD models
reproduce these characteristics of dopamine novelty responses if the associative weights of stimulus
onsets are initialized with positive values (Suri and Schultz, 1999).

Simulation studies with TD models demonstrate that a dopamine-like reward prediction error can
serve as a powerful effective reinforcement signal for sensorimotor learning (Houk et al. 1995; Suri and
Schultz, 1998, 1999). In such models, the TD model is termed “Critic” and the model component that
learns sensorimotor associations is termed “Actor.” The Critic was related to pathways from cortex via
striatal striosomes to midbrain dopamine neurons and the Actor to pathways from cortex via striatal
matrisomes, basal ganglia output nuclei, and thalamus to motor cortices (Fig. 1A) (Houk et al. 1995;
Montague et al., 1996; Schultz et al., 1997; Suri and Schultz, 1998, 1999).

Behaviors of humans and animals are often influenced by expectations about task outcomes. Such
goal-directed behavior requires planning (see section “Planning and Sensorimotor Learning”). Planning
was simulated with Actor-Critic models for which the action selection of the Actor is guided by transient
influences of the Critic (Sutton and Barto, 1981). Since dopamine bursts transiently influence striatal
activity (Gonon, 1997) and dopamine is involved in planning tasks (Wallesch et al., 1990; Salamone,
1992; Lange et al., 1992; Talor and Saint-Cyr, 1995), dopamine may guide action selection in such
planning tasks. To test this hypothesis, we simulate interactions between the anatomical structures shown
in Fig. 1A in a simulation experiment that assesses sensorimotor learning and planning.

To model the transient influences of dopamine on membrane properties of medium spiny neurons
in striatal matrisomes, we simulate the in vitro finding that activation of D1 class dopamine receptors
decreases firing evoked from resting potentials but increases firing evoked from elevated holding
potentials (Herndandez-Lopez et al., 1997; see section “Striatal Membrane Effects of Dopamine D1
Agonists In Vitro”). Likewise, dopamine long-term effects on corticostriatal transmission depend on the
postsynaptic membrane potential (Cepeda and Levine, 1998). The membrane potential is influenced by
synaptic inputs, by dopamine levels, and by rhythmic fluctuations of about 1 Hz between a depolarized
up-state and a hyperpolarized down-state (Stern et al., 1997). We propose a model for striatal medium
spiny neurons that mimics membrane potential fluctuations as well as dopamine effects on membrane
properties and on corticostriatal transmission (section “Striatal Dopamine Modulation In Vivo”).

Then we model the influence of dopamine neuron activity on medium spiny neurons in striatal
matrisomes in concert with the sensorimotor components of the basal ganglia-thalamocortical system
(Fig. 1B; section “Basal Ganglia-Thalamus-Cortex”). The dopamine-like signal is computed with the
Extended TD model (Suri and Schultz, submitted; section “Extended TD Model”). Since one out of two
acts can be selected in the simulated experiment, we model dopamine-dependent influences on two
neuron populations in striatal matrisomes. Each neuron population is thought to correspond to a small
population of medium spiny neurons with highly correlated activations that is able to elicit one of both
acts. We assume that the simulated signals in the basal ganglia-thalamocortical pathway are carried by
similar populations of neurons. For simplicity, we call these neuron populations “(simulated) neurons”.
Following the proposal of Berns and Sejnowski (1996), we assume that only the predominant striatal
firing rate is represented in the basal ganglia output nuclei globus pallidus interior (GPi) and substantia
nigra pars reticulata (SNr) and projected via thalamus to cortical areas. Strong and persistent depressions
of firing rates in these basal ganglia output nuclei elicit acts via thalamocortical projections.

In addition to testing the performance of this “standard model” (Fig. 1B) in sensorimotor learning
and planning, we are interested in the performance of simpler model variants. Therefore, we test model
variants without dopamine-like novelty responses, without projections from striatal matrisomes to the
Extended TD model (salience α = 0, see Fig. 1B), without synaptic long-term effects, without transient
dopamine membrane effects, with constant up- and down-state durations, and with the original TD model
instead of the Extended TD model.

The model is implemented in time steps of 100 msec to reduce computation time (about 200 hours
for the shown results on a Sun Ultra 1). The documented NSLJ code can be assessed and executed with
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standard web browsers (Suri, Marmol, and Arbib, in preparation) and a Matlab code at
http://www.cnl.salk.edu/~suri. A study proposal was presented in abstract form (Suri and Arbib, 1998).
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Fig. 1 (A) Interactions between cortex, basal ganglia, and midbrain dopamine neurons mimicked by the model. Cortical
pyramidal neurons project to the striatum, which can be divided in striosomes (patches) and matrisomes (matrix) (Graybiel,
1990). Prefrontal and insular cortices project chiefly to striosomes, whereas sensory and motor cortices project chiefly to
matrisomes (Graybiel, 1990). Midbrain dopamine neurons are contacted by medium spiny neurons in striosomes and project to
both striatal compartments (Graybiel, 1990; Smith and Bolam, 1990). Striatal matrisomes directly inhibit the basal ganglia
output nuclei globus pallidus interior (GPi) and substantia nigra pars reticulata (SNr), whereas they indirectly disinhibit these
output nuclei via globus pallidus exterior (GPe) and subthalamic nucleus (STN) (Albin et al., 1989; Alexander and Crutcher,
1990). The basal ganglia output nuclei project via thalamic nuclei to motor, occulomotor, prefrontal, and limbic cortical areas
(Alexander and Crutcher, 1990). The structures shown as grey boxes correspond to the Critic and those shown as white boxes
to the Actor. (B) Model architecture. The Extended TD model serves as the Critic component (grey box), and the Actor
component (remaining architecture) elicits acts. Actor: Sensory stimuli influence the membrane potentials of two medium
spiny projection neurons in striatal matrisomes (large circles). The membrane potentials of these neurons are also influenced by
fluctuations between an elevated up-state and a hyperpolarised down-state simulated with the functions s1(t) and s2(t).
Adaptations in corticostriatal weights (filled dots) and dopamine membrane effects are influenced by the membrane potential
and the dopamine-like signal DA(t) (open dots). The firing rates y1(t) and y2(t) of both striatal neurons inhibit the basal ganglia
output nuclei substantia nigra pars reticulata (SNr) and globus pallidus interior (GPi). An indirect disinhibitory pathway from
striatum to GPi/SNr suppresses insignificant inhibitions in the basal ganglia output nuclei (Berns and Sejnowski, 1996). The
winning inhibition disinhibits the thalamus. These signals in the thalamus lead only to acts, coded by the signals act1(t) and
act2(t), if they are sufficiently strong and persistent. This is accomplished by integrating the cortical signal and eliciting acts
when it reaches a threshold. Critic: The Critic and computes the dopamine-like reward prediction error DA(t) from the sensory
stimuli, the reward signal, the thalamic signals (multiplied with the salience α), and the act signals act1(t) and act2(t).
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PLANNING AND SENSORIMOTOR LEARNING

Animal Learning
In a broad spectrum of situations, animals select acts based on formation of novel associative chains.
Animals learn act outcomes and select their acts based on the motivational value of these outcomes
(reviews in Thistlethwaite, 1951; MacCorquodale and Meehl, 1954; Mackintosh 1974; Dennett 1978;
Dickinson 1980; Dickinson 1994; Dickinson and Balleine 1994; Balleine and Dickinson 1998). Such
goal-directed behavior is termed “planning” in reinforcement learning studies, or “cognition” in animal
learning studies (Craik 1943; Sutton and Barto, 1981, 1998; Sutton and Pinette 1985; Dickinson 1994).
Planning and sensorimotor learning were demonstrated for rats in T-maze experiments (Fig. 2A) (reviews
in Thistlethwaite, 1951; MacCorquodale and Meehl, 1954). The experiment consists of three phases: In
the exploration phase, the rat is repeatedly placed in the start box where it can go left or right without
seeing the two goal boxes at the end of the maze. When the rat turns to the left it reaches the red goal box,
and if it turns to the right it reaches the green goal box. In the rewarded phase, the rat is fed in the green
goal box. In the test phase, the rat is returned to the start of the T-maze. In the first trial of to the test
phase, the majority of the rats turns right. Note that neither the act of turning right nor the act of turning
left is ever temporally associated with reward. It was concluded that the rat forms a novel associative
chain between its own act, the color of the box, and the reward. Moreover, the rat selects its act dependent
on the outcome predicted by this novel associative chain. Thus, the rat demonstrates its capability to plan
in this first test phase trial.

In test phase trials, the rat is fed in the green goal box but not in the red goal box. The more test
phase trials are presented, the higher is the probability that the rat turns right. Since the rat is fed after
right turns, this progressive performance improvement is interpreted as a result of sensorimotor learning.
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Fig. 2 (A) Configuration of T-maze to test planning and
sensorimotor learning in rats.  (B) Simulated task to test planning
and sensorimotor learning. The task is composed of three
consecutive phases. Top: Exploration phase. When stimulus blue is
presented, the model selects with equal chance the act left or the act
right. Act left is followed by presentation of stimulus red, whereas
act right is followed by presentation of stimulus green. Middle:
Rewarded phase. Presentation of stimulus green is followed by
reward presentation. Bottom: Test phase. Stimulus blue is presented
to test if the model elicits the correct act right or the incorrect act
left. As in the exploration phase, act left is followed by presentation
of stimulus red, whereas act right is followed by presentation of
stimulus green and by that of the reward.
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Animal Learning Models
Based on such experimental findings, animal learning theorists suggest that animals form an internal
model of their environment that allows them to predict the sensory consequences of their acts and to form
novel associative chains. Furthermore, animals seem to use these predictions to select their acts (Sutton
and Pinette, 1985; Sutton and Barto 1981; Dickinson and Balleine 1994; Balleine and Dickinson 1998).
This insight led to the implementation of neural network architectures in which an internal model, serving
as the Critic, transiently influences the Actor to elicit acts (Sutton and Barto, 1981). In such Actor-Critic
architectures, the Actor computes small random variations in act preparation signals and executes acts
when these preparation signals reach a threshold. The Critic component learns associations between
sensory stimuli, rewards, and act preparation signals and uses these associations to form novel associative
chains. The output of the Critic is a signal that reflects the value of the predicted outcome and reinforces
or attenuates the act preparation signals. In this manner, the effective reinforcement signal of the Critic
selects the act that predicts the optimal outcome. This animal learning model resembles the model that
will be proposed in the current study.

Task Simulation
In the current study, we test model performance in a task analogous to the T-maze task. In the exploration
phase (Fig. 2B, top), each trial starts with presentation of a stimulus called “blue” (stimulus blue) that
represents sensory features of the start box. When either the act right or the act left is executed during
presentation of stimulus blue, the stimulus is extinguished and either stimulus green or stimulus red is
presented, respectively. The act right and the act left represent the rat’s right and left turn, respectively,
whereas the stimuli green and red correspond to the colors of the goal boxes. If no act is selected, stimulus
blue is extinguished after 600 msec. This exploration phase is simulated for a time span corresponding to
80 sec (exclusive of intertrial intervals), during which stimulus blue is presented about 100 times. The
subsequent rewarded phase consists of only one trial (Fig. 2B, middle), in which presentation of stimulus
green is followed by reward presentation. The beginning of the test phase (Fig. 2B, bottom) is equal to the
exploration phase. Stimulus green but not stimulus red is followed by reward presentation. In all three
phases, the stimuli green and red are presented for 300 msec and the reward for 100 msec. Planning is
assessed in the first trial of the test phase and the progress of sensorimotor learning in subsequent trials.

STRIATAL MEMBRANE EFFECTS OF DOPAMINE D1 AGONISTS IN VITRO
The resting membrane potential of medium spiny neurons in vitro is about -80 mV. If firing is evoked
from such polarized potentials, dopamine D1 class receptor activation attenuates the firing rate. This
reduction in firing rate has been attributed to subthreshold K+ channels (Pacheco-Cano et al. 1996), to the
modulation of Na+ channels (Calabresi et al. 1987; Surmeier et al. 1992; Cepeda et al. 1995), and to
channels participating in the afterhyperpolarization (Rutherford et al. 1988; Hernandez-Lopez et al.
1996). In contrast, if firing is evoked from elevated holding potentials, dopamine D1 class receptor
activation enhances firing via a G-protein dependent potentiation of an L-type calcium current (Surmeier
et al., 1995). Hernandez-Lopez and collaborators (1997) demonstrated that both effects occur in the same
medium spiny neuron. In this study, the effects of three dopamine D1 class agonists were investigated for
firing evoked by 200-300 msec current steps at a frequency of 0.1-0.2 Hz. Bath application of dopamine
D1 class agonists attenuated firing when evoked from the resting membrane potential. To test the effect of
D1 class agonists for elevated membrane potentials, a sustained subthreshold current was injected to hold
the membrane potential on an elevated value just below firing threshold. Suprathreshold current steps
were superimposed on this sustained holding current. Dopamine D1 class agonists enhanced firing rate
when evoked from this elevated holding potential (Fig. 3).
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Fig. 3 Dopamine D1 class receptor agonist SKF 81297 enhances or attenuates evoked firing depending on the holding potential
(Figure adapted with permission from Hernandez-Lopez et al., 1997). (A) Firing was evoked with a current step from the
resting potential of -82 mV (top, eight action potentials). 1 µM of D1 receptor agonist SKF 81297 attenuated evoked firing
(middle, three action potentials). Injected current was maintained for both conditions (bottom). (B) For the same neuron, firing
was evoked from a holding potential of -57 mV (top, 10 action potentials). 1 µM of D1 receptor agonist SKF81297 increased
evoked firing (middle, 14 action potentials). Injected current was again maintained for both conditions (bottom).

Model
Effects of neuromodulators on neuronal membrane properties have been simulated with various modeling
techniques (reviewed in Fellous and Linster, 1998). To simulate the findings of Hernandez-Lopez et al.
(1997), we propose a phenomenological model for membrane effects mediated by dopamine D1 class
receptors (Fig. 4A). Since dopamine D1 class receptor activation enhances or attenuates evoked firing
depending on the holding potential, we introduce a reverse potential (Table 1). This reverse potential
corresponds to the hypothetical holding potential between resting potential and firing threshold for which
the effect of D1 activation on evoked firing vanishes as it reverses its sign. The term reverse potential
should not be confused with the biophysically defined term reversal potential that is defined by a current
or voltage reversal. The influence of the holding potential on the firing rate during the current step is
modeled using a slowly varying parameter Wmem (t) that is initialized with a value of zero and then adapted
with

Wmem (t) = δ Wmem(t-100)+ηDA(t-100)[E(t-100)-reverse_potential]. (eq. 1)
The time t is given in units of msec throughout this paper. A constant δ denotes the decay rate of the D1
effects. Since the D1 agonist effects decay to a value of 40% over 10 minutes (see figure 4B in
Hernandez-Lopez et al., 1997), we estimate the value of the decay rate δ of the dopamine membrane
effects to be 0.99985, which corresponds to 0.015 % decrease for each 100 msec. Note that this value
depends on the mode of the D1 agonist application, since the D1 agonist effects decay faster if the
agonists are applied directly on isolated cells (Surmeier et al., 1995) and much faster if dopamine neurons
are activated in vivo (Gonon, 1997). Therefore, we use the value δ =0.99985 to reproduce the experiment
of Hernandez-Lopez et al. (1997) but will adjust this value for the in vivo model (see next section). The
signal DA(t)  corresponds to the dopamine D1 agonist concentration and the parameter η is a scaling
factor. A signal E(t) denotes the membrane potential in mV and is defined below. The absolute value of
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the dopamine membrane effects Wmem (t) is limited to Wmem,max = 9, as this value is appropriate to
reproduce the maximal amplitude of the D1 agonist effects.

The subthreshold membrane potential Esub(t) is computed from the resting membrane potential
Erest, from the resistance R, and from the injected current I(t) according to Ohm’s law with

Esub(t) = Erest + R I(t). (eq. 2)
For the neuron shown in Fig. 3, the value of the resting potential is estimated to Erest = -82 mV and the value of
the resistance R to 27 MOhm. The latter value does not correspond to a biophysical property of the neuron but
depends on the used electrode. Since the seal between the used intracellular sharp electrode and the neural
membrane is far from being complete, a major part of the injected current I(t) does not reach the inside of
the neuron. For membrane potentials below firing threshold, Esub(t) approximates the membrane potential.
For values above firing threshold, the membrane potential Esub(t) does not have a direct biological
correspondence, as it is only defined for time steps of 100 msec and therefore cannot reflect the quickly
varying time course of the membrane potential for the spiking neuron. Since we assume that the firing rate
increases with increasing values of the membrane potential Esub(t) and of the adaptive parameter Wmem (t),
we compute the firing rate y(t) of the striatal neuron with

y(t) = ymax × tanh{a × [Esub(t) + Wmem(t) –firing_threshold]/ ymax}. (eq. 3)
From Fig. 3, the firing threshold is estimated to be −56 mV. This value does not correspond to the average
firing threshold in vivo and will be adjusted for the in vivo model. The hyperbolic tangent tanh is a
sigmoid function, and the function ymax × tanh{ . / ymax } smoothly limits the firing rate y(t) to values
below the maximal firing rate ymax of medium spiny neurons. Medium spiny neurons fire with a maximal
firing rate ymax of about 6 Spikes per 100 msec (Apicella et al., 1992; Pineda et al., 1992; Nisenbaum et al.
1994). A factor a = 0.3 Spikes/(100 msec * mV) is used to scale the firing rate to experimental data and is
estimated from firing rates for constant current injections in the absence of dopamine agonists (estimated
from figure 1 in Nisenbaum et al. 1994; similar in figure 3 in Pineda et al., 1992). Eq. 3 does not take into
account that firing rate adaptations occur during a few hundreds of milliseconds after current step
injections (Fig. 3; Pineda et al., 1992). The dopamine-dependent signal Wmem (t) influences the firing rate
(eq. 3) rather than the subthreshold membrane potential Esub(t) (eq. 2), as the membrane potential before
and after current step injections is not substantially influenced by D1 agonist application (Hernandez-
Lopez et al., 1997).

Eq. 2 computes the subthreshold membrane potential Esub(t) but not the membrane potential for
the firing neuron. Since the 100 msec step size of our implementation is too long to simulate single spikes,
we approximate the membrane potential E(t) for a certain firing rate with the average membrane potential
of real neurons with this firing rate. This is achieved by computing the contribution of measured action
potentials to the average membrane potential. From intracellular voltage recordings of spontaneously
active striatal medium spiny neurons (figure 3F in Wickens and Wilson, 1998), we estimate for a single
spike an area of 6 mV × 100 msec between the firing threshold and the membrane potential. Using this
value, the membrane potential is computed with

E(t) = 




(eq. 4)

For subthreshold membrane potentials, this equation sets the membrane potential E(t) to Esub(t), whereas
for the firing neuron, E(t) is set to the average membrane potential of real neurons with this firing rate.

Simulation
To test the proposed model, we simulate the experimental conditions of Hernandez-Lopez et al. (1997)
(Fig. 3). To mimic the conditions for the result shown in Fig. 3A, we simulate current step injections of
1.3 nA amplitude and 300 msec duration with a frequency of 0.1 Hz. To reproduce Fig. 3B, the holding
potential of -57 mV is induced with a sustained current I(t) of 0.9 nA. Superimposed on this holding

firing_threshold + y(t) × 6 mV, if Esub(t) > firing_threshold

Esub(t), else.
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current, current steps of 0.4 nA amplitude and 300 msec duration are injected with a frequency of 0.1 Hz.
Therefore, these two simulated current injection protocols differ only in the holding current and not in the
total amount of current injection during current steps. For the slice experiment, this was at least
approximately the case (Fig. 3). The effective D1 agonist concentration η×DA(t) is set to zero for the
condition without D1 agonist application and to the value of 0.1 during D1 agonist application (the
symbol η is here only introduced to make the notation consistent throughout this paper). This value is
chosen to reproduce the extent of the effect measured by Hernandez-Lopez et al. (1997). To simulate the
condition with D1 agonist application, current steps are repeated until the firing response is stable, which
is the case after 30 sec of simulated physical time.

To reproduce dopamine modulation for the recorded neuron (Fig. 3), the value of the reverse
potential is set to the value of –58 mV. Values for the reverse potential between about –70 mV and about
–57 mV lead to results that are consistent with the experimental findings (results not shown).

Results
The finding that D1 agonists can be inhibitory or excitatory for medium spiny neurons depending on the
holding potential (see Fig. 3) is reproduced with the model (Fig. 4). Since the term η × DA(t) is set to zero
to simulate the control condition without D1 agonist application, the membrane effect signal Wmem (t)
remains on the initial value of zero (not shown, follows from eq.1). Therefore, the evoked firing rate (Fig.
4B and 4C, top) does not depend on the holding potential but only on the injected current (Fig. 4B and
4C, bottom line; eqs. 2 and 3). Although this model feature does not hold exactly for medium spiny
neurons (Pineda et al., 1992), the simulated subthreshold membrane potentials and firing rates reproduce
approximately those for the medium spiny neuron shown on top of Fig. 3.

Since the term η × DA(t) is positive to simulate D1 agonist application and the resting membrane
potential of -82 mV is below the reverse potential, the dopamine membrane effect signal Wmem (t) is
negative (Fig. 4B, line 3; eq. 1). In contrast, Wmem (t) is positive if the holding membrane potential of -57
mV is above the reverse potential  (Fig. 4C, line 3). Since the firing rate depends on the dopamine
membrane effect signal Wmem (t) (eq. 3), D1 agonist application attenuates firing evoked from the resting
potential of –82 mV but enhances firing evoked from the holding potential of -57 mV (Fig. 4B and 4C,
line 2). These simulated D1 effects reproduce approximately those for the medium spiny neuron shown in
Fig. 3.
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Fig. 4 (A) Model for effects of dopamine D1 class receptor activation on the firing rate of a medium spiny neuron in vitro . The
subthreshold membrane potential Esub(t) depends on the constant resting membrane potential Erest and on the product of the
injected current I(t) with a resistance R. The subthreshold membrane potential Esub(t) and dopamine D1 agonist concentration
DA(t) influence the value of the signal Wmem(t). The firing rate y(t) is a monotonically increasing function of the subthreshold
membrane potential Esub(t) and the signal Wmem(t). (B ,C) Simulation of the experimental result shown in Fig. 3. Note that for
the four lines on top (B and C, line 1 and line 2), the signal E(t) [mV] denotes the membrane potential averaged over the 100
msec step size of the model. Above firing threshold, values of E(t) also correspond to firing rates [spikes/100 msec]. (B)
Current injection of 1.3 nA for 300 msec (bottom line). Current injection without D1 agonist application (line 1, η×DA(t) = 0)
leads to a firing rate of about 3 spikes/100 msec. The signal coding for the dopamine membrane effects Wmem(t) remains on the
initial value of zero (not shown, follows from eq. 1). With dopamine D1 agonist application (line 2, η×DA(t) = 0.1), evoked
firing is attenuated to less than 1 spike/100 msec because the value of the dopamine membrane effect signal Wmem(t) is negative
(line 3). (C) Current injection of 1.3 nA for 300 msec from a sustained holding current of 0.9 nA (bottom line). Without
dopamine D1 agonist application (line 1), the rate of evoked firing does not depend on the holding current (line 1 in B) because
the dopamine membrane effect signal Wmem(t) remains on the value of zero (not shown). With dopamine D1 agonist application
(line 2, η×DA(t) = 0.1), evoked firing is increased to 4.5 spikes/100 msec because the dopamine membrane effect signal
Wmem(t) is positive (line 3).
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STRIATAL DOPAMINE MODULATION IN VIVO
In this section, we describe how the proposed model for membrane effects of dopamine D1 class receptor
activation in vitro (eqs. 1-4) is adapted to simulate dopamine membrane effects in vivo. In addition, the
model is extended to simulate dopamine-dependent long-term plasticity of corticostriatal transmission
(Fig. 5A).

Dopamine Membrane Effects
In vivo, dopamine released by bursts of action potentials influences firing rates of striatal neurons
primarily by dopamine D1 class receptor activation (Gonon, 1997). Indeed, the proposed model (eqs. 1-4)
for dopamine D1 class receptor effects reproduces short-term dopamine membrane effects on medium
spiny neurons reported in in vivo studies. Similar to the simulated D1 class effects, dopamine enhances or
attenuate firing of striatal medium spiny neurons (reviews by Cepeda and Levine, 1998; Schultz, 1998).
Moreover, striatal dopamine application in vivo increases the ratio between high firing rates and low firing
rates, which is interpreted as enhancement of signal-to-noise ratio (Rolls, 1984; reviewed by Servan-
Schreiber et al., 1998a). The following argument shows that the proposed model is consistent this finding
(simulation results not shown). When low firing rates are simulated by infrequent injection of brief
suprathreshold current steps, the term E(t-100)-reverse_potential in eq. 1 is negative most of the time.
Therefore, the membrane effect signal Wmem (t) decreases below zero and firing decreases (as in Fig. 4B).
When high firing rates are simulated with sustained suprathreshold current injection, the term E(t-100)-
reverse_potential in eq. 1 is always positive, and therefore the membrane effect signal Wmem(t) increases
above zero and firing increases (as in Fig. 4C). Thus, similar to dopamine application in vivo, the
simulated dopamine D1 class receptor activation enhances activity of neurons with high firing rates and
attenuates activity of neurons with low firing rates.

For these reasons, we adapt the proposed model for membrane effects of dopamine mediated by
D1 class receptors in vitro (eq. 1, eq. 3, and eq. 4) to simulate the membrane effects of dopamine in vivo.
The values of the maximal membrane effect Wmem ,max, maximal firing rate ymax, and scaling factor a for the
in vitro condition are also used to simulate the in vivo condition (Table 1). Some parameter values are
adapted to the in vivo condition. Action potential bursts of midbrain dopamine neurons in vivo have a
much shorter influence on striatal firing than dopamine bath applications in vitro (Williams and Millar
1990; Gonon 1997; Hernandez-Lopez et al., 1997). In vivo, effects of dopamine bursts on firing rates of
striatal neurons decay with a rate of about 20% each 100 msec (Gonon, 1997). This decay rate is
reproduced by setting the value of the decay rate δ of the dopamine membrane effects to 0.8. The firing
threshold is set to the average value for medium spiny neurons (Table 1) (Wickens and Wilson, 1998). As
for the in vivo simulation, the reverse potential is set to a value just below firing threshold (Table 1).

Dopamine Modulation of Corticostriatal Transmission
Activation of neocortical afferents evokes responses in neostriatal medium spiny neurons that are
mediated by NMDA, AMPA and kainate glutamate receptors (Cherubini et al. 1988, Cepeda and Levine
1998). Synaptic responses mediated by NMDA receptors are typically small at resting potentials, but
become significantly larger when the magnesium block is removed due to membrane depolarization
(Nisenbaum et al. 1993; Kita 1996; Levine et al. 1996). Dopamine D1 class receptor activation seems to
potentiate NMDA responses (Blank et al. 1997; Cepeda et al. 1998; Fienberg et al., 1998; but see
Calabresi et al. 1997a or Nicola et al. 1998). In contrast, several studies reported that dopamine attenuates
responses of striatal medium spiny neurons mediated by nonNMDA receptors (Cepeda et al. 1993; Levine
et al. 1996; Cepeda and Levine 1998; but see Nicola et al. 1998). These dopamine effects may play a role
in long-term plasticity of corticostriatal transmission, for instance via back propagating action potentials
(Cepeda and Levine, 1998). Indeed, in vitro studies reported dopamine-dependent posttetanic long-term
adaptations of corticostriatal transmission that depends on calcium influx throught Ca(L) channels
(Calabresi et al., 1992; Wickens et al., 1996; Calabresi et al., 1997b; Cepeda and Levine 1998). Removal
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of the magnesium block was reported to reverse postetanic long-term depression to D1 receptor-
dependent long-term potentiation (Calabresi et al. 1992; Calabresi et al. 1997b). Thus, long-term
potentiation of corticostriatal transmission may results from dopamine D1 class receptor activation during
depolarized postsynaptic membrane potentials, whereas long-term depression may results from dopamine
receptor activation during hyperpolarized membrane potentials (Cepeda and Levine, 1998).

In addition to the postsynaptic membrane potential, dopamine concentration seems to influence
the direction of long term adaptation in corticostriatal transmission. Tetanic stimulation of corticostriatal
fibers in slices that lack dopamine agonists in the bath produces long-term depression of excitatory
postsynaptic potentials, which is reversed by simultaneous pulsative dopamine application (Wickens et
al., 1996; Calabresi et al. 1997b).

A B

u(t)
presynaptic
activity

dopamine
DA(t)

 

Esub(t)

= s(t) + Wsyn(t)u(t)

Wmem(t)

firing rate
y(Esub(t), Wmem (t))

Wsyn(t)

s(t)

Fig. 5 (A) Model for dopamine membrane effects and synaptic effects for a medium spiny neuron in vivo. As in the model for
the in vivo findings, the membrane potential-dependent effect of dopamine on D1 class receptor activation is mimicked with
the dopamine membrane effect signal Wmem(t). The corticostriatal weight Wsyn(t) is adapted according to dopamine
concentration, membrane potential, and presynaptic activity. Membrane potential fluctuations are simulated with a
rhythmically fluctuating signal s(t). The firing rate y(t) is a monotonously increasing function of the subthreshold membrane
potential Esub(t) and the signal Wmem(t). (B) In vivo intracellular recording of striatal medium spiny projection neuron in
anesthetized rat (adapted from Stern et. al. 1997). The membrane potential fluctuates between the elevated up-state of -56 mV
and the hyperpolarized down-state of -79 mV.

Model. As in previous studies, we express long-term effects of dopamine on corticostriatal transmission
in the dynamics of adaptive weights (Montague et al., 1996; Schultz et al., 1997; Suri and Schultz, 1998,
1999). Since the direction of dopamine long-term effects depends both on the membrane potential of the
postsynaptic medium spiny neuron and on dopamine concentration, we include these two factors in the
adaptation rule. Thus, we model the long-term influence of dopamine on corticostriatal transmission with
the corticostriatal weight

Wsyn(t) = Wsyn(t-100)+ ε DA(t-100)[E(t-100)-synaptic_reverse_potential]u(t-100). (eq. 5)
A parameter ε denotes the adaptation rate of the corticostriatal weight (Table 1). The signal DA(t)
represents the normalized dopamine concentration. This signal is zero for average physiological
concentrations, negative for lower and positive for higher concentrations. As long-term adaptation in
corticostriatal transmission presumably requires presynaptic activity, the adaptation of the corticostriatal
weight Wsyn(t) is proportional to the presynaptic firing rate u(t-100).  E(t) denotes the membrane potential
of the striatal medium spiny neuron (eq. 4). The synaptic reverse potential is the membrane potential for
which synaptic adaptation switches its sign and should not be confused with the biophysically defined
synaptic reversal potential. Since dopamine membrane effects may mediate long-term adaptations in
corticostriatal transmission, eq. 5 is somewhat similar to eq. 1, and the value of the synaptic reverse
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potential is set to a similar value as the reverse potential for dopamine membrane effects (Table 1). In
contrast to eq. 1, we assume in eq. 5 that the synaptic adaptations do not decay during the simulated task,
and therefore we do not introduce a decay rate (the decay rate is one).

Striatal Membrane Potential Fluctuations
The effect of dopamine on striatal medium spiny neurons crucially depends on their membrane potential,
which fluctuates in vivo with a frequency of about 1.2 Hz between the hyperpolarized down-state and the
depolarized up-state (Fig. 5B) (Wilson and Kawaguchi 1996; Stern et al. 1997; Wickens and Wilson
1998). Membrane potential fluctuations were usually recorded in anesthetized animals but also occur in
awake animals with a less regular frequency (Wilson and Groves, 1981; Wilson, 1993). Increased activity
of corticostriatal neurons seems to induce transitions to the up-state and to maintain the up-state (Wilson
and Kawaguchi 1996; Stern et al. 1997). In vivo stimulation of the cortex resets the phase of the
oscillation (Katayama et al., 1980). Membrane effects of dopamine D1 agonists seem to prolong down-
state duration (Cooper and White 1998) by influencing an outward potassium current (Wilson 1992;
Surmeier and Kitai 1993; Kitai and Surmeier 1993) and to prolong up-state duration as they increase the
firing rate (Hernandez-Lopez et al., 1997). These findings suggest that up-state durations are prolonged
and down-state durations are shortened by influences that increase the membrane potential or the firing
rate. Furthermore, up-state durations seem to be shortened and down-state durations prolonged by
influences that decrease the membrane potential or the firing rate.
Model. When dopamine membrane effects and corticostriatal weights are at baseline levels (Wmem (t) = 0
and Wsyn(t)u(t) = 0), the simulated medium spiny neurons switch their state each 400 msec. As suggested
by experimental evidence, excitatory dopamine-dependent effects (Wmem (t) > 0 or Wsyn(t)u(t) > 0) prolong
the duration of the up-state and shorten the duration of the down-state, whereas inhibitory dopamine-
dependent effects (Wmem (t) < 0, Wsyn(t)u(t) < 0) have the opposite effects on state durations. This is
accomplished with the fluctuating function

s(t) = (eq. 6)

Parameters Eup and Edown denote the average membrane potentials in the up-state and in the down-state,
respectively (Table 1). A parameter ϕ scales the influence of dopamine membrane effects Wmem (t) and
corticostriatal activation Wsyn(t)u(t) on the typical state duration of 400 msec (Table 1).

Membrane Potential of Medium Spiny Neurons
Below firing threshold, we assume that the subthreshold membrane potential Esub(t) is determined by
membrane potential fluctuations s(t), the presynaptic activity u(t), and the corticostriatal weight Wsyn(t)
with

Esub(t) = s(t) + Wsyn(t) u(t). (eq. 7)
To avoid decreasing the simulated membrane potential Esub(t) below physiological values, it is limited to
values above the constant Emin (Table 1). For simulations of in vivo conditions, eq. 7 replaces eq. 2, since
eq. 2 describes the current injection in vitro.

BASAL GANGLIA-THALAMUS-CORTEX
In this section we present the model for the influence of sensory stimuli on activity in striatal

matrisomes and, via basal ganglia-thalamocortical pathways, on motor acts (Fig. 1B). Since only two acts
are important for the simulated task, two striatal medium spiny neurons are simulated, and each of them
can elicit one act. Dopamine effects on corticostriatal transmission and dopamine membrane effects on
the firing rates y1(t)  and y2(t) of the two simulated medium spiny neurons are simulated by using for each
neuron the eqs. 1, and 3-7. Dopamine concentration DA(t) (eqs. 1 and 5) is simulated with the Extended
TD model which will be presented in the next section.



 Eup, during 400 msec + [Wmem (t) + Wsyn(t)u(t)]ϕ

Edown, during 400 msec − [Wmem (t) + Wsyn(t)u(t)]ϕ.
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Since the striatal striosomes receive projections from somatosensory cortices that report about
sensory stimuli (Alexander et al., 1986), we assume that the firing rates of corticostriatal neurons are
proportional to delayed versions of the visual stimuli. Thus, we replace the presynaptic activity u(t) in eqs.
5-7 with a delayed representation of the visual input (see next section “Parameter Values and Initial
Conditions”)..

To simplify the model equations, the firing rates in GPi/SNr, thalamus, and cortex are simulated as
signals that are proportional to the difference of the firing rate from the baseline. Therefore, tonic firing
rates of the real neurons are ignored, and the baseline and the amplitude of the simulated firing rates are
chosen arbitrarily.

The model does not account for direct interactions between medium spiny neurons, as the
physiological effects of collaterals between medium spiny neurons was suggested to be weak (Jaeger et
al., 1994). The two simulated striatal neurons inhibit the simulated firing rates GPi_SNr1(t) and
GPi_SNr2(t) of the two neurons in the basal ganglia output nuclei globus pallidus interior and substantia
nigra pars compacta. Since there is strong convergence from cortex via striatal matrisomes to the basal
ganglia output nuclei (Alexander et al., 1986), only the predominant striatal activity may be represented in
the firing rates of the output nuclei. We implement a selection mechanism according to the proposal of
Berns and Sejnowski (1996), who demonstrated in simulation experiments that this selection may be
caused by the projections of the indirect pathway via the globus pallidus exterior (GPe) and the
subthalamic nucleus (STN). Their results suggest that the indirect pathway selects the predominant
representations by disinhibiting minor suppressions of neural activities in the basal ganglia output nuclei.
For the current study, we assume that firing rates GPi_SNr1(t) and GPi_SNr2(t) of two simulated neurons
in the basal ganglia output nuclei are inhibited by striatal firing rates y1(t) and y2(t), but at baseline levels
when both striatal neurons fire (y1(t) > 0 and y2(t) > 0):

GPi_SNrn(t) =  (for n = 1, 2). (eq. 8)

These neurons inhibit two neurons in the thalamus:
thalamusn(t) = - GPi_SNrn(t) (for n = 1, 2). (eq. 9)

The thalamus elicits cortical firing rates u5(t) and u6(t) that are proportional to the salience parameter α
(Table 1):

u5(t) = α* thalamus1(t), u6(t) = α* thalamus2(t). (eq. 10)
These cortical firing rates serve as inputs for the Extended TD model.

An act is elicited when the thalamic activation of motor cortical areas is substantial and persistent
enough. To take the duration and the amount of the thalamic activity into account, cortical activity is
computed from the thalamic signal with the leaky integrator

cortex integr,n(t) = λact × cortex integr,n(t-100) + thalamusn(t), (eq. 11)
where the initial values of the cortical activations equal zero (cortex integr,n(t = 0), for n = 1 or 2) and λact

denotes an integration constant (Table 1). As in previous model equations, this equation is expressed
using a step size of 100 msec.

The two acts are coded by the binary signals act1(t) (act left) and act2(t) (act right). We say that the
model is executing an act when the corresponding act signal equals one. The act with number n is
executed when the signal cortex integr,n(t) is above the threshold parameter actthres:

actn(t+100) = (for n = 1, 2) (eq. 12)

If both signals cortex integr,1(t) and cortex integr,2(t) are above actthres, then the act corresponding to the larger
signal is selected. Since we assume that a selected act persists for 200 msec, actn(t) is set to the value of
one for 200 msec.



 0, if  y1(t) > 0 and y2(t) > 0

- yn(t) , else.

 1, if cortex integr,n(t) > actthres

 0, else.
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Parameter Values and Initial Conditions
Since some parameter values cannot be determined from experimental findings, they are set to

values that are suitable to solve the task (Table 1). The fluctuating function s(t) (eq. 6) is randomly set to
the up-state value Eup or the down-state value Edown at the beginning of each trial for each neuron, since
membrane potential fluctuations are only weakly periodic and intertrial intervals are assumed to be
sufficiently long.

In the simulated task, the model should learn sensorimotor associations between stimulus blue and
the two acts. Stimulus blue is coded by the signal u1(t) that is one when stimulus blue is present and zero
when it is absent. We assume that the firing rate of some corticostriatal neurons is proportional to a
delayed version of u1(t). Thus, we substitute the presynaptic activity u(t) in eqs. 5-7 with the delayed
stimulus blue (u(t) = u1(t-100)). Since associations of the stimuli green and red with the acts are not
required, the simulated neurons do not receive inputs reporting about these stimuli.

The simulated task requires that the presentation of stimulus blue is often followed by act left or
act right during the exploration phase. To induce execution of these exploratory acts, the two
corticostriatal weights Wsyn,left(t=0) and Wsyn,right(t=0) that associate stimulus blue with the firing rate of
the two striatal neurons are initialized with a positive value (Table 1).
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Table 1. Standard model parameters for striatal medium spiny neurons in vivo and basal ganglia-thalamocortical pathway

Name Symbol Value Choice of Value

Membrane
Effects

decay of dopamine membrane
effects

δ 0.8 / 100 msec Gonon (1997)

maximal absolute value of the
membrane effect Wmem(t)

Wmem,max 9 from in vitro  simulation

initial value of the membrane
effects Wmem,1(t) and Wmem,2 (t)

Wmem,1(t=0)
Wmem,2(t=0)

0 from in vitro  simulation

maximal firing rate ymax 6 spikes / 100 msec Apicella et al., (1992), Nisenbaum
et al. (1994)

scaling factor a 0.3 Spikes × (100
msec *  mV)-1

Nisenbaum et al. (1994)

average firing threshold firing_
threshold

-46 mV Wickens and Wilson (1998)

reverse potential of membrane
effect

reverse_
potential

-48 mV just below firing threshold

amplitude of dopamine membrane
effects

η 180 appropriate for planning

learning rate for corticostriatal
learning

ε 0.45 chosen to induce sensorimotor
learning in a few trials

synaptic reverse potential synaptic_
reverse_
potential

-41 mV appropriate for simulated task

initial corticostriatal weights
stimulus blue – act left and
stimulus blue – act right

Wsyn,left(0),
Wsyn,right(0)

5 to induce a few exploratory acts in
exploration phase

average membrane potential in up-
state

Eup -47 mV Stern et al. (1997)

average membrane potential in
down-state

Edown -69 mV Stern et al. (1997)

lower limit of membrane potential Emin -82 mV Stern et al. (1997)

dopamine modulation of up and
down-states durations

ϕ 0.1 to get a small but significant effect
on model performance as compared
to ϕ  = 0

Thalamus-
Cortex

integration constant for leaky
integrator

λact 0.7 / 100 msec for plausible reaction time in
planning

act threshold actthres 2.6 for plausible reaction time in
planning

salience of thalamic activity for
Extended TD model

α 0.1 appropriate for successful planning

Membrane
Potential
Fluctuations

Corticostriatal
Transmission
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EXTENDED TD MODEL

TD Model
In Pavlovian learning paradigms, animals learn to anticipate reward delivery. In addition, they are often
able to estimate the time of reward occurrence (Gallistel, 1990). In order to implement a time estimation
mechanism, the TD model of Pavlovian learning (Sutton and Barto, 1990) assumes that the nervous
system represents each stimulus with a series of short components following stimulus onset. This is
achieved by mapping each stimulus to a fixed temporal pattern of phasic signals x1(t), x2(t), …  that follow
stimulus onset with varying delays. This temporal pattern is referred to as a “serial compound stimulus”
or “temporal stimulus representation” (Fig. 6A). The temporal stimulus representation is used to compute
the reward prediction signal with p(t) =  ∑

m

vm(t)× xm(t), where vm(t) are the adaptive weights (Sutton and

Barto, 1990; Montague et al., 1996; Schultz et al., 1997; Suri and Schultz, 1998). A representation of the
TD model using a neuron-like element is shown in Fig. 6B. The reward prediction develops during
learning in a similar way as the animal’s anticipatory behavior and shows a sustained increase before a
predicted reward. According to the TD model, the animal’s anticipatory response, and therefore also the
reward prediction, increase gradually before an anticipated reward if this reward is completely predicted.
The rate of this gradual increase is determined by the constant γ, which is referred to as the temporal
discount factor.

The TD model learns the reward prediction signal from stimuli antedating reward occurrence
using a signal that reflects “errors” in the reward prediction. The TD model uses the difference between
the actual occurrence and the prediction of the reward as this reward prediction error (Sutton & Barto,
1990). Thus, the TD model computes the reward prediction error e(t) from discounted temporal
differences in the prediction signal p(t) and from the reward signal with the equation e(t) = reward(t-100)
– [p(t-100) –γ p(t)] (time t in msec, 100 msec is the step size of the model implementation). The reward
prediction error is phasically increased above base line levels of zero for rewards and reward-predicting
stimuli if these events are unpredicted but remains on base line levels if these events are predicted. In
addition, if a predicted reward is omitted, the reward prediction error decreases below base line levels at
the time of the predicted reward when the predicted reward fails to occur. The TD model learns to predict
the time of reward occurrence due to the temporal stimulus representation. These characteristics of the
reward prediction error correspond to characteristics of dopamine neuron activity (Montague et al., 1996;
Schultz et al., 1997; Suri and Schultz, 1998, 1999).
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Fig. 6 Critic model. (A)  Temporal stimulus representation x1(t), x2(t), and x3(t). Stimulus u1(t) is represented over time as a
series of phasic signals x1(t), x2(t), and x3(t) that cover stimulus duration. This temporal stimulus representation is used to
reproduce the finding that dopamine neuron activity is decreased when a predicted reward fails to occur. (B) TD model. From
stimulus u1(t) the temporal stimulus representation x1(t), x2(t), and x3(t) is computed. Each component xm(t) is multiplied with
an adaptive weight vm(t) (filled dots). The reward prediction p(t) is the sum of the weighted representation components. The
difference operator D takes temporal differences from this prediction signal (discounted with factor γ). The reward prediction
error e(t) is computed from these temporal differences and from the reward signal. The weights vm(t) are adapted proportionally
to the prediction error signal e(t) and to the learning rate β. (C) Extended TD model for two input events u1(t) and u2(t). The
event signals uk(t) report about stimuli, rewards, thalamic activity, and acts. Each temporal representation component xm(t) is
multiplied with an adaptive weight vkm (filled dots). Event prediction pk(t) is computed from the sum of the weighted
components. Event prediction pk(t) is multiplied with a small constant κ and fed back to the temporal event representation of
this event uk(t). This feedback is necessary to form novel associative chains. Analogous to the TD model, the prediction error
ek(t) is computed from the event uk(t) and from the temporal differences between successive predictions pk(t) - γ pk(t+100)
(discounted with a factor γ). The weights vkm (filled dots) are adapted as in the TD model.
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Extended TD Model
Humans and animals associate sensory events (stimuli, rewards or behavioral responses) with

other sensory events and use these associations to form novel associative chains (Craik 1943; Piaget 1954;
Mackintosh 1974; Arbib 1972; Dickinson 1980; Wolpert et al. 1995). However, the TD model is limited
to associations between stimuli and one type of reward and does not form novel associative chains.
Therefore, the TD model has been extended to learn predictions for behaviorally relevant stimuli and for
different reinforcers (Sutton and Barto, 1981; Sutton & Pinette 1985). In order to form novel associative
chains, this approach learns an “internal model of its environment” that emulates the temporal
development of real world processes. Since there is evidence that dopamine neuron activity is influenced
by the formation of novel associative chains (Young et al., 1998), dopamine neuron activity was modeled
with such an internal model approach (Suri and Schultz, submitted). We adapt this internal model
approach and call it here the Extended TD model. This model is shown for two input stimuli in Fig. 6C.

The Extended TD model learns to predict all its input signals: the signals u1(t), u2(t), and u3(t)
coding for the stimuli green, red, and blue, respectively; the reward signal u4(t) = reward(t-100); the
thalamic activities u5(t) = α×thalamus1(t) and u6(t) = α×thalamus2(t); the acts u7(t) = act1(t) and u8(t) =
act2(t) (Table 2). Sensory events (acts, stimuli, reward) are coded as signals with a value of one when they
are present and zero when they are absent, except stimulus blue in the Extended TD model. This stimulus
corresponds to the start box in the T-maze. Since this place serves as a known context, novelty responses
of dopamine neurons should be smaller than those elicited by the stimuli red and green (see Introduction).
Therefore, presence of stimulus blue is coded with a signal of a small positive value, referred to as the
“salience of stimulus blue” (Table 3).

As in the TD model, each stimulus is represented with a series of stimulus representation
components that cover the duration of its presentation in order to learn to predict when the stimulus
occurs (Fig. 6A). Since the stimuli green and red are presented for 300 msec, both are represented with
three temporal representation components. Stimulus green is represented with the representation
components x1(t), x2(t), and x3(t) and stimulus red with the representation components x4(t), x5(t), and
x6(t). Stimulus blue, which is presented for at most 600 msec, is represented with the components x7(t),
x8(t),…, x12(t) (Table 2). The temporal representation components of stimulus blue are set to the value of
the salience of stimulus blue when they become active. The values of all components are set to zero when
stimulus blue gets extinguished.

The stimuli green and red are coded with the binary signals u1(t) and u2(t), respectively. Temporal
representations follow stimulus presentations with a delay of 100 msec to account for processing delays.
The reward is not represented over time, as the reward signal reward(t) is only nonzero during 100 msec
when the reward is presented. Also the thalamic signal is not represented over time, because this internal
signal is not binary and therefore does not have clear onsets and offsets. Instead of representing these
signals over time, the reward signal is copied with a delay of 100 msec to the input representation
component x13(t) = reward(t-100), and the thalamic signals to the representation components x14(t) =
α×thalmus1(t), and  x15(t) = α×thalmus2(t). Since acts usually lead to sensory stimuli during their
execution, they are also represented over time during their duration. As each of the two acts act1(t) and
act2(t)  persisted for 200 msec, act1(t) is represented with the components x16(t) and x17(t), and act2(t) with
the components x18(t) and x19(t) (Table 2).
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Table 2. Definitions of  Critic input signals uk(t) and their temporal representation components xm(t) (see
section “Extended TD Model”).

Signal Temporal representation
components

Green goal box (stimulus green) u1(t) x1(t), x2(t), x3(t)
Red goal box (stimulus red) u2(t) x4(t), x5(t), x6(t)
Start box (stimulus blue) u3(t) x7(t), x8(t),…, x12(t)
Reward u4(t) = reward(t-100) x13(t)
Thalamic activity related to act 1 u5(t) = α×thalamus1(t) x14(t)
Thalamic activity related to act 2 u6(t) = α×thalamus2(t) x15(t)
Act left (act 1) u7(t) = act1(t) x16(t), x17(t)
Act right (act 2) u8(t) = act2(t) x18(t), x19(t)

To form novel associative chains, a predicted event should elicit similar prediction signals as does
the experience of this event. More precisely, a predicted stimulus should produce internal representation
signals that resemble the representation of the stimulus itself. Therefore, Suri and Schultz (submitted)
proposed that the prediction of each stimulus is fed back to the temporal stimulus representation of this
stimulus and used to estimate further prediction signals. The loop time τ of this feedback is assumed to be
much shorter than the usual 100 msec step size of the model because the feedback is computed twice
within each time step.

The prediction pk(t − 2τ) for the input signal uk(t) (k = 1, 2,…, 8) is computed from the product of
the adaptive weights vkm(t) with the components of the temporal representation components xm(t):

pk(t – 2τ) = ∑
=
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1m

 vkm(t)× xm(t). (eq. 13a)

This prediction is fed back twice to the temporal stimulus representation with the two equations:

pk(t - τ) =  ∑
=
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1m

vkm(t)× [xm(t) + κ skm pk(t - 2τ)], (eq. 13b)

pk(t) = ∑
=
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1m

 vkm(t)× [xm(t) + κ skm pk(t - τ)]. (eq. 13c)

To avoid very large absolute values of the prediction signals pk(t), these signals are limited to values
between –pmax and +pmax (Table 3). We do not assign a value to the small time constant τ, as τ occurs only
in eqs. 13a and 13b and prediction signals will be shown in the figures for time steps of 100 msec. The
feedback constant κ (Table 3) determines the gain of the feedback loop and therefore the impact of a
predicted stimulus on further stimulus predictions. The number of these update equations seems to
correspond to the number of novel links in the associative chain the model can compute (unpublished
result). We are neither aware of mathematical considerations nor of experimental evidence that would
indicate which components of the temporal stimulus representation xm(t) should be influenced by this
feedback. For simplicity, we assume that the feedback influences only the first component of the temporal
stimulus representation. Feedbacks to further temporal stimulus representation components do not
influence most simulation results but lead to slightly different time courses of prediction signals in
simulations that test the formation of novel associative chains (unpublished result). Feedback to the first
component of the temporal stimulus representation is accomplished by setting the factor skm to one for the
first component of the temporal stimulus representation of each stimulus or act. Also for the reward and
the two thalamic signals skm is set to 1. Otherwise, the factor skm is set to zero (s1,1 = 1, s2,4 = 1, s3,7 = 1, s4,13
=1, s5,14 = 1, s6,15 = 1, s7,16 = 1, s8,18 = 1; skm = 0 otherwise).

The following equations of the Extended TD model are analogous to those of the TD model.
Therefore, the proposed Extended TD model with the parameter κ  = 0 is equivalent to a set of eight
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independent TD models. For this case, the equations are for each k equivalent to those of the TD model.
The prediction errors ek(t) are computed from discounted temporal differences between successive
predictions (differencer D in Fig. 6C) and from the input signals uk(t) with

ek(t) = uk(t-100) - [pk(t-100) - γpk(t)], (eq. 14)
where γ is the discount factor and the input signals uk(t) (k = 1, 2, …, 8) denote the three stimuli, the
reward, the thalamic signals (multiplied with salience α), and the two act signals. The value of the
discount factor γ is set to 0.98, because this value was estimated from dopamine neuron activity (Suri and
Schultz, 1999). To minimize the prediction error signals, the weights vkm(t) are incrementally adapted
according to the product of the input prediction errors ek(t) with the eligibility traces of the temporal input
representation x m (t)  with

vkm(t+100) = vkm(t) + βek(t) )(txm . (eq. 15)
The three weights vkm that associate the first component of the temporal representations of the three
stimuli with the reward are initiated with the positive value v (Table 3) to reproduce dopamine novelty
responses (Suri and Schultz, 1999). The other values of matrix vkm are initialized with zeros (v4,1(t=0) = v,
v4,4(t=0) = v, v4,7(t=0) = v; vkm(t=0) = 0 otherwise). For the current study, the positive value v is chosen as
small as possible to reduce the number of errors due to exploration, but large enough to significantly
increase the number of acts in the exploration phase.

The traces mx (t) are slowly decaying versions of the input representation components xm(t). Such
eligibility traces were introduced to explain how animals learn to associate sensory events that are
separated by a delay period (Sutton and Barto, 1990). Although TD models with temporal stimulus
representations learn to associate sensory events over a delay without representation traces (Montague et
al., 1996), traces accelerate learning (Sutton & Barto, 1998; Kearns and Singh, submitted). At the
beginning of an experiment, mx (t) is set to the initial condition mx (0) = 0. Then, the traces are computed
with

mx (t) = λc mx (t-100) + (1-λc) xm(t). (eq. 16)
The parameter λc is set to the value of 0.3, as this value guarantees fast learning. With this parameter
value, the eligibility traces increase with a rate of 30% each 100 msec during presentation of the event and
decrease 70% each 100 msec after event presentation.

The output signal of the Extended TD model is the reward prediction error e4(t) (eq. 14) that
resembles the firing rate of dopamine neurons (Suri and Schultz, submitted). Since dopamine
concentration in extracellular space is closely time-correlated with the firing rate of dopamine neurons
(Gonon, 1997), we compute the dopamine concentration DA(t) with

 DA(t) = e4(t). (eq. 17)
The simulated dopamine concentration DA(t) is used to simulate the effect of dopamine on medium spiny
neurons in striatal matrisomes (eqs. 1 and 5).



21

Table 3 Standard model parameters in Extended TD model
Parameter Name Symbol Value
initial weights for novelty
responses

v 0.001

Critic learning rate β 0.5

feedback constant κ 0.8

maximal value of prediction
signals

pmax 10

discount factor γ 0.98

decay of eligibility trace λc 0.3

salience of stimulus blue for
Critic

0.05

RESULTS
The proposed model was tested in the experiment described above. Since each trial started with a random
state of the striatal membrane potentials, the model performed differently in each experiment. We show
the model performance for a typical experiment and then present the statistical analysis of 1000
experiments.

In the exploration phase, the model learns to associate act left with stimulus red and act right with
stimulus green. In the first trial (Fig. 7A), stimulus blue was presented and the model executed the act left
(bottom line) that led to presentation of stimulus red (line 1). Since certain associative weights of the
Extended TD model had been initialized with positive values, this novel stimulus phasically activated the
reward prediction signal (line 2; eq. 13). This led to a biphasic response of the dopamine-like reward
prediction error signal (line 3; eq. 14) resembling dopamine novelty responses. Since the salience of
stimulus blue had been set to a smaller value than that of the stimuli red and green (see section “Extended
TD Model” and Table 3), onset of the stimulus blue led to very small activations of the reward prediction
signal and the reward prediction error signal (hardly visible). Since stimulus green was not presented, the
prediction signal for stimulus green remained zero (line 4). The simulated striatal membrane potentials
Eleft(t) and Eright(t) of the two striatal medium spiny neurons in the matrisome compartment fluctuated
each 400 msec between the elevated up-state and the hyperpolarised down-state (line 5; eqs. 4 and 7). The
membrane potentials were slightly increased during presentation of stimulus blue, since corticostriatal
weights associating stimulus blue with striatal activity were set to positive initial values (compare section
“Parameter Values and Initial Conditions”). As action potentials are much shorter than the 100 msec time
step, the averaged membrane potential is shown (eq. 4, as in Fig. 4B and 4C). The membrane potential of
the striatal neuron coding act left was increased above firing threshold for 500 msec. This persistent firing
was integrated by two neurons in motor cortex (line 6; eq. 11). When the firing rate of the neuron coding
for act left reached the act threshold actthres, this act was elicited (bottom line; eq. 12). The signal coding
for the act right remained on the value of zero (not shown).
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Fig. 7 Model performance during exploration phase. (A) First trial. When stimulus blue was presented (line 1), the model
elicited the act left (bottom line) that led to presentation of stimulus red (line 1). Since stimulus red was presented for the first
time, its onset phasically activated the reward prediction signal (line 2) and biphasically activated the dopamine-like reward
prediction error signal (line 3). Membrane potentials of the two simulated striatal medium spiny neurons fluctuated between an
elevated up-state and a hyperpolarized down-state (line 5). During presentation of stimulus blue, the simulated striatal neuron
coding for act left was firing for 500 msec. Neurons in motor cortex integrated this striatal firing rate over time (line 6). The act
left was elicited (bottom line) when the integrated signal reached a threshold. (B) A trial at the end of the exploration phase.
When stimulus blue was presented (line 1), the model elicited the act right (bottom line) that led to presentation of stimulus
green (line 1). Since stimulus green had been presented repeatedly during the exploration phase, novelty responses were almost
absent in the reward prediction signal (line 2) and in the dopamine-like reward prediction error signal (line 3). Prediction of
stimulus green (line 4) was already increased when the striatal neuron coding for the act right increased its firing rate (line 5),
because this had often antedated execution of act right followed by presentation of stimulus green. The striatal firing rates were
integrated in cortex and the act right was elicited (bottom line) when the cortical signal coding for the act right reached a
threshold (line 6).

For the next 80 presentations of stimulus blue, the model executed 11 times the act left, 14 times
the act right, and 55 times no act (not shown). Trials without acts occurred when striatal membrane
potentials of both neurons happened to fluctuate synchronously, as the effects of synchronous striatal
firing on the cortical neurons were suppressed by the indirect pathway (eq. 8). The 81st presentation of
stimulus blue was the last blue presentation in the exploration phase during which an act was executed
(Fig. 7B). Since the model selected act right, stimulus green was presented (line 1). Reward prediction
and reward prediction error remained on the values of zero, since dopamine-like novelty responses had
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extinguished as a consequence of the Critic learning rule (lines 2 and 3, eq. 15). The green prediction
signal was slightly activated when the striatal neuron coding the act right was firing (line 4, line 5), as
such increased striatal firing had been followed by the corresponding act right in some, but not all,
previous trials. Striatal activity influenced the green prediction signal via basal ganglia output nuclei,
thalamus, and cortex (via salience α, Fig. 1B, eq. 10). Since act right had previously been followed by
green presentations and an efference copy of the act signal reached the Critic, the green prediction signal
was fully activated when the act right was executed (bottom line), (Fig. 1B, eq. 13a). The green prediction
peaked at the correct value of three, as this value reflects the predicted future duration of stimulus green in
units of 100 msec. The striatal firing rates were integrated over time in cortical neurons, and the act right
was executed (bottom line) when the cortical signal coding for act right reached the act threshold actthres
(line 6).

The rewarded phase consisted of only one trial (Fig. 8) in which presentation of stimulus green
(line 1) was followed by reward presentation (line 2). The model did not execute an act during this trial,
as the initial values of the corticostriatal weights disfavored acts when stimulus blue was absent (see
section “Parameter Values and Initial Conditions”). The reward was unpredictable, as it was presented for
the first time. Therefore, the reward prediction error (line 3) was equal to the reward signal (eq. 14). The
temporal representation of stimulus green in the Critic consisted of three phasic components (line 6-8,
Fig. 6A). The peak of the first component x1(t) followed presentation of green with a delay of  100 msec
and the peaks of the two further components with delays of 200 msec and 300 msec. From each of these
components, eligibility traces were computed that decayed with the rate λc to zero (lines 9-12, eq. 16).
The adaptive weights v41(t), v42(t), and v43(t) (three lines at bottom), where the number 4 codes for the
reward, associate the components x1(t), x2(t), and x3(t) of the temporal representation of stimulus green
with the reward prediction signal (eqs. 13a-13c). Each of these weights was initialized with a value of
zero and was adapted proportionally to the product of the trace of its component )(1 tx , )(2 tx , or )(3 tx
with the reward signal (eq. 15). Therefore, the closer the activation of the component was to the reward,
the larger was the increase in the weight associating this component to the reward. Likewise, the Critic
learns the associative weights vkm(t) between the other input events (stimuli, reward, acts, thalamic firing
rate; Fig. 6C).

Fig. 8 Associative learning during rewarded phase. In this

second phase, presentation of stimulus green (line 1) was

followed by presentation of the reward (line 2) and no act

was executed. Since the reward was unpredictable, the

reward prediction error (line 3) was equal to the reward

signal. The three components of the temporal representation

of stimulus green were phasic signals with peaks following

green onset with delays of 100 msec, 200 msec, and 300

msec (lines 4-6). For each component an eligiblility trace

was computed (lines 7-9) that was used to adapt the weight

that associated this component with the reward (three lines at

bottom). (All signals shown in this figure start with a value

of zero.)
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Planning was assessed in the first trial of the test phase, as this trial tested the model’s ability to
select the correct act right based on the formation of a novel associative chain. At the beginning of the test
phase, stimulus blue was presented twice without act executions (not shown). These blue presentations
were not counted as trials. In the first trial (Fig. 9A), presentation of stimulus blue (line 1) was responded
to with the correct act right (bottom line). This correct act was selected, because of a positive feedback
between the striatal signal for the act right (line 8) and the dopamine-like reward prediction error (line 5).
In this trial, the striatal neuron coding the act right happened to stay in the elevated up-state during
presentation of stimulus blue for several hundreds of milliseconds (line 8). (If instead the neuron coding
for the act left had happened to stay in the up-state, this would not have increased the dopamine-like
reward prediction error and no act might have been elicited.) This persistent striatal firing reached the
Critic via basal ganglia output nuclei and thalamus (via salience α, Fig. 1B, eq. 10). Since in the
exploration phase the model had learned to associate such striatal firing coding for the act right with
presentation of stimulus green, the green prediction signal increased slightly (line 2). Because the model
formed novel associative chains for positive values of the feedback parameter κ, this activation in the
green prediction signal served as the stimulus green itself (Fig. 6C; eqs. 13a-c). Since the model had
learned in the rewarded phase to associate stimulus green with the reward, the reward prediction (line 4)
and therefore the dopamine-like reward prediction error were slightly activated (first small peak in line 5,
eq. 14). This activation in the reward prediction error increased the signal representing dopamine
membrane effects (line 6, eq. 1) and the corticostriatal weight (line 7, eq. 5) of the striatal neuron coding
for the act right. In addition, both signals for the striatal neuron coding the act left were decreased, since
the membrane potential of this neuron was below both reverse potentials. These adaptations increased the
firing rate of the striatal neuron coding for the act right and decreased the membrane potential of the
neuron coding for act left (line 8, eqs. 3 and 7). This increase in striatal firing rate was integrated in
cortical neurons (line 9), and the correct act right was executed (bottom line) when the integrated cortical
signal reached the act threshold actthres.

In the following 60 simulated trials of the test phase the correct act right was executed, except in
the incorrect trial 3 (not shown). In trial 19 (Fig. 9B), the prediction error signals for the stimulus green
(line 3) and for the reward (line 5) were phasically increased at onset of stimulus blue and the value of
zero otherwise, because onset of stimulus blue was unpredictable but occurrences of the following events
were predictable. Thus, all occurrences of event onsets and event offsets following onset of stimulus blue
were correctly predicted. These events were completely predictable, as in the previous 10 trials the
reaction times and the executed acts had been alike (not shown). The activations of the dopamine
membrane effects only weakly influenced the striatal membrane potentials (line 8), while a substantial
increase of the corticostriatal weight associating stimulus blue with the act right (line 7, eq. 5) strongly
activated the striatal neuron coding for act right (line 8, eqs. 3, 4, and 7). The predominant influence of the
corticostriatal weight demonstrates that performance is mainly controlled by sensorimotor associations.
The striatal firing rates were integrated over time by cortical neurons (line 9) that elicited the correct act
right (bottom line).

The previous three figures show model performance of the standard model in one typical
experiment. The outcome of each experiment was influenced by the randomly selected states of the
striatal membrane potentials at the beginning of each trial. Therefore, model performance was tested in
1000 experiments. In addition, we produced seven model variants by setting for each model variant one
crucial parameter of the standard model to zero. As for the standard model, we simulated 1000
experiments for each of these physiologically less plausible model variants.

During the exploration phase, the model variant without dopamine-like novelty responses to novel
stimuli (v = 0, eq. 15) executed substantially less acts than did the other model variants (Table 4). The
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number of acts during the exploration phase was also substantially reduced for the model variant without
transient effects of the dopamine-like signal on the membranes of striatal neurons (η = 0, eq. 1).

Fig. 9 Model performance in test phase. When presentation of stimulus blue (line 1) was responded to with the correct act right
(bottom line), the stimulus green was presented, which was followed by the reward presentation (line 1). (A) Successful
planning in first trial. The signal coding for prediction of stimulus green (line 2) was already slightly activated when the firing
rate of the striatal neuron coding for the act right was increased (line 8). The green prediction error (line 3) first increased
above zero and then decreased below zero, which reflects some uncertainty in the prediction of stimulus green. Since the green
prediction was associated with the reward prediction, the reward prediction shows a first small activation (line 4). This signal
shows a second higher peak when the partially predicted reward occurs. Therefore, the reward prediction was also uncertain
(line 5). The first slight activation of the reward prediction error enhanced the firing rate of the striatal neuron coding for the act
right (line 8), as the reward prediction error increased the corresponding dopamine membrane effect signal (line 6) and the
corresponding corticostriatal weight (line 7). The cortical neurons integrated the striatal neural activity over time, and the act
right was elicited (bottom line) when the cortical firing rate reached a threshold (line 9). (B) Successful sensorimotor
association in trial 19. Since the onset of stimulus blue was unpredictable, this onset activated the prediction error signals for
the stimulus green (line 3) and for the reward (line 5). These signals were otherwise on the value of zero, as the presentations
of the stimulus green and of the reward were correctly predicted. The corticostriatal weights associating stimulus blue with the
striatal membrane potentials (line 7) substantially increased the membrane potential of the striatal neuron coding for act right
(line 8)), which triggered execution of the correct act right (bottom line).
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Table 4. Number of Acts during Exploration Phase for Different Model Variants
standard ν = 0 β  = 0 κ = 0 α = 0 ε  = 0 η = 0 φ = 0

26.3
±  0.3

13.6
±  0.1

26.3
±  0.2

25.8
±  0.1

22.7
±  0.1

27.1
±  0.2

13.8
±  0.1

29.5
±  0.1

Mean values ±  standard errors were computed from 1000 experiments for each model variant.

The percentage of correct acts in the trials 1 to 19 of the test phase is shown for each model variant
(Fig. 10). Significantly more than chance levels of 50% correct trials in trial 1 indicates planning
capabilities, while performance improvements for successive trials indicates successful sensorimotor
learning due to dopamine-dependent adaptations in corticostriatal weights (eq. 5). For the standard model
(solid line with stars), in 79 % of the 1000 experiments trial 1 was correct, then performance worsened for
three trials and reached 100 % correct trials with further training. For a model variant without dopamine-
like novelty responses (ν = 0, dashed line with crosses), performance in the first trial was significantly
worse than that of the standard model (74 % correct, χ2 = 7.2, p < 0.01). For a model variant without
adaptation of the dopamine-like signal (β  = 0, eq. 15), the dopamine-like signal unconditionally
responded to the reward and the response did not transfer to predictive stimuli according to eq. 14. Since
responses in the dopamine-like signal reached the striatum too late to influence acts or associative
weights, this model variant performed at chance levels in all trials (dash dotted line with triangles). If the
TD model was used instead of the Extended TD model to simulate the dopamine-like signal (κ  = 0,
dashed line with triangles), novel associative chains were not formed (eq. 13a-c). Since this model variant
therefore did not profit from the two previous phases, performance was at chance levels in the first trial.
Surprisingly, performance then decreased for some trials below chance levels and slowly improved with
further training. If striatal activity could not influence the dopamine-like signal (salience α = 0, solid line
with squares), there was no feedback between striatal activity and the Extended TD model during
planning (Fig. 1B). Therefore, model performance was at chance levels for the first trial. In further trials,
model performance improved progressively. For a model variant without adaptation of the corticostriatal
weights (ε = 0, dash dotted line with triangles), 79% of the first trials were correct, as planning was
mostly controlled by dopamine membrane effects. Performance then decreased and kept slightly above
chance levels. Since sensorimotor learning was prevented in this model variant, performance above
chance levels reflects a minor influence of dopamine membrane effects. A model variant without
dopamine membrane effects on the striatal neurons (η = 0, dash dotted line with triangles) performed
significantly above chance levels in the first trial (60 % correct, χ2 = 21, p < 0.01), as dopamine-
dependent synaptic adaptations led to some planning capabilities. This model variant then learned the task
more rapidly than the standard model. If the dopamine-like signal did not influence the durations of up
and down-states (ϕ  = 0, dotted line with circles), performance was significantly worse than that of the
standard model (73 % correct, χ2 = 9.9, p < 0.01 for first trial).

We had expected that the model performance in the test phase would progressively increase in
successive trials because sensorimotor learning would progressively dominate planning processes.
Surprisingly, the learning curves of some model variants were u-shaped. We suspected that the
presentation durations of stimuli green and red (300 msec) could interfere with the durations of up and
down-states (about 400 msec). Therefore, the performance was tested when the stimuli green and red were
presented for 800 msec. Indeed, this prevented the performance of the model variant with κ  = 0 from
decreasing below chance levels. However, the learning curves of other model variants still were u-shaped.
In such incorrect trials, the dopamine-like signal was usually slightly increased although the striatal
neuron coding for the incorrect act was active, which seemed to elicit the incorrect act. Therefore, we
suspected that the stimulus blue became associated with the reward during the first correct test phase trials
and that the activation of the dopamine-like signal elicited not only correct but also incorrect acts. This
supposition was tested by decreasing the salience of stimulus blue in the Critic (from the standard value of
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0.05 to 0.02). The learning curve of the model with decreased salience of stimulus blue was substantially
better and less u-shaped than that computed with the standard parameters (improved trial 1: +2%; trial 2:
+8%; trial 3: +14%). However, reaction times to stimulus blue increased (trial 1: +200 msec; trial 2: +600
msec; trial 3: +1000 msec), presumably as the dopamine-like signal could not elicit incorrect movements.
Taken together, u-shaped learning curves are a consequence of specific stimulus presentation durations
and of the value for the salience of stimulus blue.
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Fig. 10 Learning curves in test phase for different model variants. Each curve was computed from 1000 experiments (standard
errors < 1.6 %). Trial 1 assesses planning and successive trials test the progress in sensorimotor learning. The standard model
(solid line with stars) and the model variant without dopamine membrane effects (η = 0, dash dotted line with triangles)
performed best. The model variant without dopamine novelty responses (ν = 0, dashed line with crosses) performed in the first
trial significantly worse than the standard model.

Average reaction times in test phase trials 1 to 19 were computed for each model variant (Fig. 11).
The reaction time was defined as the sum of the time periods during which stimulus blue was present
before act execution. Consequently, presentations of stimulus blue without acts contributed to the reaction
time of the next act. Since reaction times for the performance controlled by sensorimotor associations
were shorter than those controlled by planning, reaction times usually progressively decreased with
repeated trial presentations. For the standard model, the reaction time in the first trial was 690 ±  10 msec
(mean ±  standard error of the mean) and then progressively decreased to 200 msec as sensorimotor
learning progressively dominated planning. Reaction times were similar for the model variant without
novelty responses (ν = 0, dashed line with crosses). For the model variant without adaptation of the
dopamine-like signal (β  = 0, dash dotted line with triangles), the reaction times were increased to about
1800 msec. If the Extended TD model was substituted with the TD model (κ  = 0, dashed line with
triangles), the reaction times were increased to 2200 ±  60 msec in the first trial and then progressively
decreased. Similar reaction times resulted if the dopamine-like signal was not influenced by the striatal
activity (salience α = 0, solid line with squares). Without sensorimotor learning (ε = 0, dash dotted line
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with triangles), reaction times kept at about 800 msec. Without dopamine membrane effects (η = 0, dash
dotted line with triangles), the reaction time in the first trial was substantially increased to 3000 ±  100
msec and then decreased with further trials to 100 msec. If the dopamine-like signal did not influence the
durations of striatal up and down-states (ϕ  = 0, dotted line with circles), reaction times for the first trials
were slightly longer than those of the standard model.

In further simulations with the standard model, the experimental paradigm was slightly changed to
investigate the influence of the reaction time on planning capabilities. In these simulations, acts were
prevented during the first 10 presentations of stimulus blue of the test phase. This was achieved by setting
the two act signals act1(t) and act2(t) during these 10 blue presentations to zero (eq. 12). With this
paradigm, performance in the first trial of the test phase significantly improved to 85.2 ± 0.01% correct
trials (mean ± standard error, for 1000 experiments). The average reaction time to stimulus blue (670
msec, not considering the first 10 blue presentations) was similar to that in the standard paradigm. Also
performance in the next trials was better than in the control condition (73%, 85%, 94%, 99%, and 100%
correct). This performance improvement was the result of improvements of the corticostriatal weights
during the 10 presentations of stimulus blue. The corticostriatal weight that associated stimulus blue with
the correct act right increased by an amount of +0.76 ± 0.01, whereas the weight that associated stimulus
blue with the incorrect act left decreased by an amount of -0.85 ± 0.01 (mean ± standard error, for 1000
experiments). In this experimental paradigm, the model transfers information stored in Critic weights to
improve sensorimotor corticostriatal weights without executing any act.
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Fig. 11 Average reaction times in trials 1 to 19 of phase three for the different model variants. The reaction time for the act in
the first trial, which assessed planning, was usually longer than the reaction times in successive trials, which assessed
sensorimotor associations (line types and experimental data correspond with Fig. 10.).

DISCUSSION
This simulation study demonstrates that characteristics of dopamine neuron activity and striatal dopamine
modulation are advantageous for exploration, sensorimotor learning, planning, and behaviorally silent
improvement of associative strengths. Three types of membrane potential-dependent influences of
dopamine on striatal medium spiny neurons are simulated: long-term adaptation of corticostriatal
transmission, transient membrane effects, and influences on the durations of up and down-states. In our
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simulations, all three types of dopamine effects significantly improve planning capabilities. Sensorimotor
learning requires long-term adaptations of corticostriatal transmission and the transfer of the dopamine-
like signal to the first reward-predictive stimulus. Dopamine-like novelty responses lead to increases in
the number of exploratory acts, which significantly improves planning capabilities.

Dopamine Neuron Activity
Dopamine neuron activity was simulated with the Extended TD model (Suri and Schultz, submitted).
Learning of reward predictions may involve plastic changes in projections from cortex and to striatal
striosomes (Houk et al. 1995; Montague et al. 1996; Schultz et al. 1997; Suri & Schultz 1999; Brown et
al., in press), whereas stimulus predictions and novel associative chains may be evaluated in reciprocal
projections between cortical areas (Suri and Schultz, submitted). As the Extended TD model was
primarily motivated by studies of animal learning and neural activities, it does not closely correspond to
adaptive processes in these structures. Therefore, substantial differences between the Extended TD model
(Critic) and the proposed model for pathways from cortex via matrisomes to dopamine neurons (Actor)
are a result of our modeling technique and may not correspond to substantial differences in their
biological substrate.

After learning stimulus-reward associations, the reward prediction and the dopamine-like reward
prediction error of the Extended TD model are equal to these signals of the TD model (compare Fig. 9B
with Sutton and Barto, 1990). We model biphasic dopamine responses to novel stimuli by initializing
certain weights with positive values (Suri and Schultz, 1999). With this assumption, the model reproduces
biphasic dopamine novelty responses (Fig. 7A). Furthermore, these novelty responses decrease when the
same neutral stimulus is presented repeatedly (Fig. 7B), which resembles habituation of dopamine novelty
responses for repeated presentation of a neutral stimulus (see Introduction).

The reward prediction error of an internal model approach reproduces dopamine neuron activity
(Suri and Schultz, submitted). This approach is simplified for the current study and termed the “Extended
TD model.” In contrast to the TD model, the dopamine-like reward prediction error signal of both models
is influenced by the formation of novel associative chains. Whereas the previously proposed internal
model approach computed many signals that were almost identical, the Extended TD model computes
only one prediction error signal and one prediction signal for each sensory event. The prediction and
prediction error signals of both models, including the dopamine-like signal, do not differ after learning of
stimulus-reward associations (compare Fig. 9B with Suri and Schultz, submitted). Prediction signals of
both models resemble anticipatory activity in cortex and striatum (Suri and Schultz, submitted). However,
the time courses of the dopamine-like reward prediction errors differ when both models are tested for the
formation of novel associative chains (unpublished).

Recently, Brown et al. (in press) modelled dopamine neuron activity with an alternative to TD
models. Their simulations demonstrate that learning the time of reward occurrence may depend on
metabotropic glutamate receptor-mediated calcium currents of striatal medium spiny neurons.
Unfortunately, their model may fail to reproduce dopamine neuron activity for stimulus and reward
offsets. In their simulations, stimulus and reward offsets were both at the end of the tasks (see appendix in
Brown et al.), which is inconsistent with the experimental paradigm. In addition, the simulated dopamine-
like signal can not be completely compared with dopamine neuron activity, since these offsets were
outside the time intervals shown in their figures.

Sensorimotor Learning
Previous studies related sensorimotor learning to dopamine-dependent plasticity in projections from
cortex to striatal matrisomes (Houk et al. 1995; Suri and Schultz, 1998, 1999). These models assume that
corticostriatal transmission increases when “eligibility traces” of pre- and postsynaptic firing are active
together with the dopamine-like signal. In the current model, corticostriatal transmission adapts without
eligibility traces according to the product of dopamine activity, presynaptic activity, and postsynaptic
membrane potential (eq. 5). Consistent with a result of a previous simulation study (Suri and Schultz
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1998), successful sensorimotor learning requires an adaptive dopamine-like signal that can be computed
with the Extended TD model (standard parameter values) or with the original TD model (parameter κ = 0;
Sutton and Barto, 1990).

Planning
The simulated planning task requires the formation of novel associative chains and the selection of the act
that predicts the optimal outcome. During the reaction time, act preparation activity in striatal matrisomes
alternates between both possible acts, driven by the fluctuating membrane potentials of these neurons.
Indeed, activity of a subset of striatal neurons is related to act preparations (Schultz et al., 1995). The
reward-predictive values of both acts are evaluated by the Extended TD model and are reflected in the
dopamine-like signal. Increases in the dopamine-like signal reinforce preparatory firing of the neuron that
corresponds to the outcome with the best reward prediction. This reinforcement prolongs and increases
reward-promising preparatory striatal activities. Thus, the dopamine-like signal guides reward-promising
act preparations and elicits acts.

Our model simulations showed that successful planning requires that striatal activities serve as act
preparation signals and influence dopamine neuron activity before the act is elicited. Successful planning
requires the Extended TD model, as novel associative chains cannot be formed with the TD model.
Therefore, previous models using a dopamine-like reinforcement signal for learning of sensorimotor
associations are not able to solve the planning task (Houk et al. 1995; Montague et al., 1996; Schultz et
al., 1997; Suri and Schultz, 1998, 1999). Since the model evaluates sequentially the reward predictions
for both alternative acts, reaction times for planning are longer than reaction times for sensorimotor
responding. As reaction times for planning are about 600 msec (standard model, Fig. 11), the transient
influence of dopamine on membrane potentials of striatal medium spiny neurons contributes substantially
to the selection of the correct act in the planning phase. Also the persistent influence of dopamine on
synaptic transmission contributes to planning capabilities. When the paradigm is adapted to prolong the
reaction time in the planning task, the simulated long-term changes of cortico-striatal transmission lead to
an improvement in planning capabilities (see last paragraph of Results). Thus, the model improves
corticostriatal weights by simulating experience with the Extended TD model (Sutton and Barto, 1981;
Sutton and Barto, 1998). Consistent with this simulation result, motor performance for human and
animals can be improved by stimulating planning processes (Dickinson and Balleine, 1994; Decety,
1996).

Striatal Membrane Potential Fluctuations
Animal learning theorists suggest that animals vary their behavior in repetitive trials in order to find the
optimal behavior (Skinner 1938; Hull 1952). According to these theories, animals repeat rewarded
variations because a reward that follows a certain behavioral variation strengthens the processes that led
to this variation. In the proposed model, each striatal neuron uses this strategy to optimize the dopamine-
like reward prediction error. Spontaneous striatal membrane potential fluctuations lead to variations in the
act selections and variations in the act preparation signals. Therefore, acts are varied in the exploration
phase, and striatal act preparation signals are varied before they are executed in the planning phase.
Dopamine membrane effects and dopamine long-term effects on corticostriatal transmission are adapted
proportionally to both the dopamine-like signal and this variation in the firing rate. Therefore, processes
that caused a behavioral variation are strengthened if the outcome is better than expected and weakened if
the outcome is worse. A reinforcement learning algorithm with such random variations was proposed for
tasks that require continuous output signals (Gullapalli, 1990).

Dopamine-Like Novelty Responses Increase Exploration and Improve Planning
Capabilities
The presented simulations demonstrate that dopamine neuron activity could serve as an effective
reinforcement signal for sensorimotor learning. However, it has been claimed that dopamine responses to
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novel and physically salient stimuli are not consistent with this hypothesis (Pennartz 1995; Salamone et
al. 1997). Nevertheless, our simulations demonstrate that dopamine-like biphasic novelty responses do
not substantially impair sensorimotor learning, since the effects of the two phases cancel out and these
responses extinguish during the exploration phase. Novelty responses increase the number of acts in the
exploration phase (Table 4). This simulation result suggests that dopamine neuron responses stimulate
exploration, which is consistent with experimental evidence (Stahle, 1992). Such stimulation of
exploratory acts increases the number of task experiences in the exploration phase, which improves
planning capabilities in the test phase (Fig. 10).

In reinforcement learning studies, an agent often moves between different places in a maze and
learns to find the maximal amount of rewards. Performance of such algorithms depends on a trade-off
between exploration and exploitation as well as on the exploration strategy (Fe'ldbaum 1965). In
reinforcement learning studies, one popular technique is to be optimistic for places that have never been
explored (Thrun 1992; Dayan and Sejnowski 1996; Sutton and Barto, 1998). Similar to the proposal to
reproduce dopamine novelty responses with positive initial weights (Suri and Schultz, 1999), this has
been achieved for TD models by attributing optimistic initial values to novel places (Sutton 1990; Dayan
and Sejnowski 1996; Sutton and Barto 1998). When a novel place is visited that is preceded and followed
by familiar places that are not associated with the reward, the reward prediction error increases above zero
when the novel place is visited and decreases below the baseline level when the next place is visited. This
biphasic reward prediction error in studies of TD learning resembles biphasic dopamine responses to
novel stimuli. Furthermore, biphasic responses of dopamine neurons and of the reward prediction error
signal progressively diminish when the same situation is presented repeatedly. The current study suggests
that dopamine-like novelty responses may stimulate exploratory behaviors of animals as does the novelty
bonus of reinforcement learning agents.

Striatal Dopamine Concentration
Tonic dopamine concentration in the striatum and nucleus accumbens is increased or decreased in some
aversive situations that do not affect or decrease firing of dopamine neurons (Pennartz, 1995; Schultz,
1998). Tonic increases of dopamine concentration in these aversive situations could originate from release
of dopamine via contacts of cortical terminals on dopaminergic axons, from dopamine release by striatal
dopaminergic neurons (Betarbet et al., 1996), from slow changes in the firing rates of midbrain dopamine
neurons, or from dopamine novelty responses. Aversive stimuli can affect dopamine levels in different
regions of the striatum or the nucleus accumbens to a different extent and even in the opposite direction
(Besson and Louilot, 1995). Therefore, local changes in striatal dopamine concentration could indicate
that dopamine is locally regulated to serve as a local reinforcement signal that is specific for the subtasks,
such as orienting responses, processed in these local striatal areas. This hypothesis would explain why
dopamine antagonists worsen performance in some aversive tasks such as active avoidance behaviors
(Salamone, 1992). In reinforcement learning studies, such hierarchical architectures using subtask-
specific reinforcement signals have been shown to be advantageous if the agent’s performance can be
separated in subtasks that are sufficiently independent (Dayan and Hinton, 1993).

According to the proposed dopamine-dependent adaptation rules for long-term synaptic changes
and short-term membrane effects, increases in dopamine levels in the striatum increase the ratio between
high firing rates and low firing rates, which may be called an increase in the signal-to-noise ratio (see
section “Striatal Dopamine Modulation In Vivo”). Indeed, dopamine application increases signal-to-noise
ratio of striatal firing rates in vivo (Rolls, 1984; reviewed by Servan-Schreiber et al., 1998a). In addition,
pharmacological studies with dopamine agonists and antagonists indicate that dopamine decreases
reaction times for behavioral responses and is involved in behavioral activation (Salamone et al., 1997;
Robbins et al., 1998). In the proposed model, manipulations of dopamine concentration in the matrisomes
have a complex influence on the number of acts in the exploration phase, since the simulated dopamine
effects on elevated and on hyperpolarized membrane potentials are antagonistic and therefore sensitive to
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model parameters values (unpublished results). Moreover, sustained dopamine concentration increases do
not serve as a reinforcement signal, since the direction of dopamine effects depends on the fluctuating
membrane potential. The most reliable influence of sustained dopamine increases on the model
performance is probably a focussing effect in some tasks due to an increase in the signal-to-noise ratio of
striatal firing rates (Servan-Schreiber et al., 1998a,b).

Cortex
In hippocampal slices, pulsative application of dopamine D1 agonists increases the number of
spontaneous bursts of CA1 pyramidal cells if the agonist application is contingent on spontaneous bursts
but not if it is applied noncontingently (Stein et al., 1993; Stein, 1997). This L-type calcium current
mechanism was seen as a cellular substrate of operant conditioning and closely resembles the simulated
effects of dopamine on striatal medium spiny neurons. Dopamine membrane effects seem to stabilize the
activity patterns of cortical pyramidal neurons by suppressing weak and enhancing strong presynaptic
activation (Durstewitz et al., 1999a,b). Thus, dopamine enhances cortical working memory activity
(Sawaguchi and Goldman-Rakic, 1991; Durstewitz et al., 1999a,b). These mechanisms could contribute
to dopamine-induced signal-to-noise ratio enhancement (reviewed by Servan-Schreiber et al., 1998a).
Since dopamine effects in the cortex resemble those in the striatum, cortical dopamine modulation may
have similar functions as those simulated in the current study for the striatum.

Saccadic Eye Movements
Planning is a basic concept of modern control algorithms used in reinforcement learning and in

engineering sciences (Garcia et al. 1989; Sutton and Barto, 1998). Planning may not only be involved in
“cognitive” tasks but also in “motor” tasks that cannot be solved with sensorimotor learning (Wolpert et
a., 1995). Pure sensorimotor learning fails to explain behavior in tasks that require novel movements to
reach a goal. For example, sensorimotor learning cannot explain learning of saccadic eye movements to
fixate a behaviorally important object if the muscle commands vary due to varying start positions of the
gaze. The proposed model suggests how such goal-directed movements could be generated. The proposed
Extended TD model (Critic) learns prediction signals that precede sensory consequences of planned acts
(Fig. 7B). Neural recording studies during saccadic eye movement tasks report direct evidence for this
postulated phenomenon. Sensory and sensorimotor neural activity in frontal eye fields (Goldberg & Bruce
1990; Umeno & Goldberg 1997), superior colliculus (Walker et al. 1995), and lateral intraparietal area
(Duhamel et al. 1992), striate and extrastriate cortex (Nakamura and Colby, 1999) anticipates the retinal
consequences of saccades about 100 msec before these saccades are elicited. The saccade preparation-
dependent transformation of these receptive fields has been proposed to occur in frontal eye fields
(Goldberg and Bruce, 1990) or in lateral intraparietal area (Dominey and Arbib, 1992). Instead of
assuming a nonadaptive task-specific mechanism for this transformation (Dominey and Arbib, 1992;
Dominey, Arbib, and Joseph, 1995), the proposed model suggests that neurons in cortical areas learn to
anticipate sensory consequences of intended saccades. Moreover, we suggest that this anticipatory activity
can select a reward-promising target via increases in dopamine neuron activity. This hypothesis would
explain the surprising fact that these largely retinotopically organized areas can select context-dependent
saccade targets for arbitrary start and target positions. This hypothesis is also consistent with the view that
dopamine attributes salience to novel and reward-related stimuli and thereby triggers the animal’s visual
and internal attention to such targets (Pennartz 1995; Salamone et al. 1997; Redgrave et al. 1999).

Acknowledgement
This study was supported by a fellowship of the Swiss National Science Foundation (R.S.) and by a
Program Project grant from the Human Brain Project (M.A.).



33

REFERENCES
Alexander GE, DeLong MR, Strick PL. Parallel organization of functionally segregated circuits linking

basal ganglia and cortex. Annu Rev Neurosci 1986;9:357-81
Alexander GE, Crutcher MD. Functional architecture of basal ganglia circuits: neural substrates of

parallel processing. Trends Neurosci 1990 Jul;13(7):266-71
Albin RL, Young AB, Penney JB. The functional anatomy of basal ganglia disorders. Trends Neurosci

1989 Oct;12(10):366-75
Apicella, P., Scarnati, E., Ljungberg, T. and Schultz, W.: Neuronal activity in monkey striatum related to

the expectation of predictable environmental events. J. Neurophysiol. 68: 945-960, 1992
Arbib, M.A. (1972). The metaphorical brain. New York: Wiley- Interscience.
Balleine BW, Dickinson A Goal-directed instrumental action: contingency and incentive learning and

their cortical substrates. Neuropharmacology 1998 Apr-May;37(4-5):407-19
Besson C, Louilot A Asymmetrical involvement of mesolimbic dopaminergic neurons in affective

perception. Neuroscience 1995 Oct;68(4):963-8
Betarbet R, Turner R, Chockkan V, DeLong MR, Allers KA, Walters J, Levey AI, Greenamyre JT.

Dopaminergic neurons intrinsic to the primate striatum. J Neurosci 1997 Sep 1;17(17):6761-8
Berns G. S. and Sejnowski T.J. (1996). How the basal ganglia make decisions. In: Neurobiology of

decision-making (Damasio A. R. et al., eds.), Springer Verlag Berlin Heidelberg.
Blank T, Nijholt I, Teichert U, Kugler H, Behrsing H, Fienberg A, Greengard P, Spiess J The

phosphoprotein DARPP-32 mediates cAMP-dependent potentiation of striatal N-methyl-D-aspartate
responses. Proc Natl Acad Sci U S A 1997 Dec 23;94(26):14859-64

Brown, J., Bullock, D, and Grossberg, S. How the basal ganglia use parallel excitatory and inhibitory
learning pathways to selectively respond to unexpected rewarding cues. J Neuroscience, in press.

Calabresi P, Mercuri N, Stanzione P, Stefani A, Bernardi G. Intracellular studies on the dopamine-
induced firing inhibition of neostriatal neurons in vitro: evidence for D1 receptor involvement.
Neuroscience 1987 ; 20 (3): 757-71.

Calabresi P., Pisani A., Mercuri N. B. and Bernardi G. (1992) Long-term potentiation in the striatum is
unmasked by removing the voltage-dependent magnesium block of NMDA receptor channels. Europ.
J. Neurosci. 4, 929-935.

Calabresi P, Pisani A, Centonze D, Bernardi G Synaptic plasticity and physiological interactions between
dopamine and glutamate in the striatum. Neurosci Biobehav Rev 1997a Jul;21(4):519-23

Calabresi P, Saiardi A, Pisani A, Baik JH, Centonze D, Mercuri NB, Bernardi G, Borrelli E. Abnormal
synaptic plasticity in the striatum of mice lacking dopamine D2 receptors. J Neurosci 1997b Jun
15;17(12):4536-44

Cepeda C, Buchwald NA, Levine MS. Neuromodulatory actions of dopamine in the neostriatum are
dependent upon the excitatory amino acid receptor subtypes activated.Proc Natl Acad Sci U S A 1993;
90 (20): 9576-80

Cepeda C, Chandler SH, Shumate LW, Levine MS Persistent Na+ conductance in medium-sized
neostriatal neurons: characterization using infrared videomicroscopy and whole cell patch-clamp
recordings. J Neurophysiol 1995; 74 (3): 1343-8.

Cepeda C, Colwell CS, Itri JN, Chandler SH, Levine MS. Dopaminergic modulation of NMDA-induced
whole cell currents in neostriatal neurons in slices: contribution of calcium conductances. J
Neurophysiol 1998;.79.(1):.82-94.

Cepeda C, Levine MS. Dopamine and N-methyl-D-aspartate receptorinteractions in the neostriatum. Dev
Neurosci 1998; 20 (1): 1-18.

Cherubini E, Herrling PL, Lanfumey L, Stanzione P Excitatory amino acids in synaptic excitation of rat
striatal neurones in vitro. J Physiol (Lond) 1988; 400: 677-90.



34

Cohen JD, Servan-Schreiber D Context, cortex, and dopamine: a connectionist approach to behavior and
biology in schizophrenia. Psychol Rev 1992 Jan;99(1):45-77

Cooper DC, White FJ. Cocaine alters the bistable membrane potential in the nucleus accumbens: and in
vivo intracellular study in the mice. Soc Neurosci. Abstr. 1998; vol. 24.

Craik, K. (1943). The nature of explanation. Great Britain. Cambridge University Press.
Dayan P. and Hinton G.E. 1993. Feudal reinforcement learning. In: Advances in Neural Information

Processing Systems 5 (S.J. Hanson and J.D. Cowan and C.L. Giles eds.), San Mateo, CA, Morgan
Kaufmann: 271-278.

Dayan P and Sejnowski TJ (1996). Exploration bonuses and dual control. Machine Learning, 25, 5-22.
Decety J. The neurophysiological basis of motor imagery. Behav Brain Res. 1996 May;77(1-2):45-52.
Dickinson, A. (1980). Contemporary animal learning theory. Cambridge University press.
Dickinson, A. and Balleine B (1994). Motivational control of goal-directed action. Animal Learning and

Behavior 22 (1): 1-18.
Dominey PF, Arbib MA. A cortico-subcortical model for generation of spatially accurate sequential

saccades. Cereb Cortex 1992 Mar-Apr;2(2):153-75
Dominey, P., Arbib, M., & Joseph, J.-P. (1995). A model of corticostriatal plasticity for learning

oculomotor associations and sequences. J. Cognitive Neurosci. 7 (3), 311-336.
Duhamel, J.R., Colby, C.L., & Goldberg, M.E. (1992). The updating of the representation of visual space

in parietal cortex by intended eye movements. Science 255  (5040), 90-92.
Durstewitz D, Kelc M, Gunturkun O. A neurocomputational theory of the dopaminergic modulation of

working memory functions. J Neurosci 1999a Apr 1;19(7):2807-22
Durstewitz, D., Seamans, J. K., and Sejnowski, T. J. (1999b) Dopaminergic modulation of activity states

in the prefrontal cortex. Soc. Neurosci. Abstr., 25: 1216.
Fel’dbaum, A. A. (1965). Optimal Control Systems. New York, NY: Academic Press.
Fellous JM, Linster C Computational models of neuromodulation. Neural Comput 1998 May

15;10(4):771-805
Fienberg AA, Hiroi N, Mermelstein PG, Song W, Snyder GL, Nishi A, Cheramy A, O'Callaghan JP,

Miller DB, Cole DG, Corbett R, Haile CN, Cooper DC, Onn SP, Grace AA, Ouimet CC, White FJ,
Hyman SE, Surmeier DJ, Girault J, Nestler EJ, Greengard P. DARPP-32: regulator of the efficacy of
dopaminergic neurotransmission. Science 1998 Aug 7;281(5378):838-42 .

Gallistel CR (1990) The organization of learning. A Bradford Book, MIT press, Massachusetts.
Garcia, C.E., Prett, D.M., & Morari, M. (1989). Model Predictive Control: Theory and Practice-a survey.

Automatica, 25, 335-348.
Garcia-Munoz M, Young SJ, Groves PM. Presynaptic long-term changes in excitability of the

corticostriatal pathway. Neuroreport 1992 Apr;3(4):357-60
Goldberg, M.E., & Bruce, C.J. (1990). Primate frontal eye fields. III. Maintenance of a spatially accurate

saccade signal. J. Neurophysiol., 64  (2), 489-508.
Gonon F. Prolonged and extrasynaptic excitatory action of dopamine mediated by D1 receptors in the rat

striatum in vivo.J Neurosci 1997; 17 (15): 5972-8.
Graybiel AM. Neurotransmitters and neuromodulators in the basal ganglia. Trends Neurosci 1990

Jul;13(7):244-54
Gullapalli V. A stochastic reinforcement algorithm for learning real valued functions. Neural Networks, 3:

671-692 (1990)
Hernandez-Lopez S, Bargas J, Reyes A, Galarraga E. Dopamine modulates the afterhyperpolarization in

neostriatal neurones. Neuroreport 1996; 7 (2): 454-6.
Hernandez-Lopez S, Bargas J, Surmeier DJ, Reyes A, Galarraga E. D1 receptor activation enhances

evoked discharge in neostriatal medium spiny neurons by modulating an L-type Ca2+ conductance. J
Neurosci 1997; 17 (9): 3334-42



35

Houk JC, Adams JL, Barto AG (1995) A model of how the basal ganglia generate and use neural signals
that predict reinforcement. In: Models of Information Processing in the Basal Ganglia (Houk JC, Davis
JL, Beiser DG eds), Massachusetts Institute of Technology: 215-232.

Hull, C. L. (1952). A behavioral system: An introduction to behavior theory concerning the individual
organism. New Haven: Yale University Press.

Jaeger D, Kita H, Wilson CJ Surround inhibition among projection neurons is weak or nonexistent in the
rat neostriatum. J Neurophysiol 1994 Nov;72(5):2555-8.

Katayama Y, Tsubokawa T, Moriyasu N Slow rhythmic activity of caudate neurons in the cat: statistical
analysis of caudate neuronal spike trains. Exp Neurol 1980; 68(2):310-21

Kearns M and Singh S. “Bias-variance” error bounds for temporal difference updates. Submitted.
Kita H. Glutamatergic and GABAergic postsynaptic responses of striatal spiny neurons to intrastriatal and

cortical stimulation recorded in slice preparations. Neuroscience 1996; 70 (4): 925-40.
Kitai ST, Surmeier DJ. Cholinergic and dopaminergic modulation of potassiumconductances in

neostriatal neurons. Adv Neurol 1993; 60: 40-52.
Lange KW, Robbins TW, Marsden CD, James M, Owen AM, Paul GM L-dopa withdrawal in Parkinson's

disease selectively impairs cognitive performance in tests sensitive to frontal lobe dysfunction.
Psychopharmacology (Berl) 1992;107(2-3):394-404

Levine MS, Li Z, Cepeda C, Cromwell HC, Altemus KL. Neuromodulatory actions of dopamine on
synaptically-evoked neostriatal responses in slices. Synapse 1996; 24 (1): 65-78.

MacCorquodale K. and Meehl P.E. “Section 2: Edward C. Tolman”. pp. 177-266. In: Modern Lerning
Theory (Estes W.K. ed.), Appleton-Century-Crofts, New York, 1954.

Mackintosh, N.M. (1974). The psychology of animal learning. Academic Press, London.
Montague PR, Dayan P, Sejnowski TJ A framework for mesencephalic dopamine systems based on

predictive Hebbian learning J Neurosci 1996 Mar 1;16(5):1936-47.
Nakamura K. and Colby C.L. (1999). Updating of the visual representation in monkey striate and

extrastriate cortex during saccades. Soc. Neurosci. Abstr. 25 (1), 1163.
Nicola SM, Malenka RC Modulation of synaptic transmission by dopamine and norepinephrine in ventral

but not dorsal striatum. J Neurophysiol 1998 Apr;79(4):1768-76
Nisenbaum ES, Berger TW, Grace AA. Depression of glutamatergic and GABAergic synaptic responses

in striatal spiny neurons by stimulation of presynaptic GABAB receptors. Synapse 1993;14 (3): 221-
42.

Nisenbaum ES, Xu ZC, Wilson CJ Contribution of a slowly inactivating potassium current to the
transition to firing of neostriatal spiny projection neurons. J Neurophysiol 1994 Mar;71(3):1174-89

Pacheco-Cano MT, Bargas J, Hernandez-Lopez S, Tapia D, Galarraga E. Inhibitory action of dopamine
involves a subthreshold Cs(+)-sensitive conductance in neostriatal neurons. Exp Brain Res 1996; 110
(2): 205-11

Pennartz CM The ascending neuromodulatory systems in learning by reinforcement: comparing
computational conjectures with experimental findings. Brain Res Rev 1995 Nov;21(3):219-45

Piaget, J. (1954). The construction of reality in the child. New York: Basic books.
Pineda JC, Galarraga E, Bargas J, Cristancho M, Aceves J Charybdotoxin and apamin sensitivity of the

calcium-dependent repolarization and the afterhyperpolarization in neostriatal neurons. J Neurophysiol
1992 Jul;68(1):287-94

Redgrave P, Prescott TJ, Gurney K. Is the short-latency dopamine response too short to signal reward
error? Trends Neurosci 1999 Apr;22(4):146-51

Robbins TW, Granon S, Muir JL, Durantou F, Harrison A, Everitt BJ. Neural systems underlying arousal
and attention. Implications for drug abuse. Ann N Y Acad Sci 1998 Jun 21; 846:222-37.

Rolls ET, Thorpe SJ, Boytim M, Szabo I, Perrett DI. Responses of striatal neurons in the behaving
monkey. 3. Effects of iontophoretically applied dopamine on normal responsiveness. Neuroscience
1984 Aug;12(4):1201-12



36

Rutherford A, Garcia-Munoz M, Arbuthnott GW An afterhyperpolarization recorded in striatal cells 'in
vitro': effect of dopamine administration. Exp Brain Res 1988;71(2):399-405

Salamone JD Complex motor and sensorimotor functions of striatal and accumbens dopamine:
involvement in instrumental behavior processes. Psychopharmacology (Berl) 1992;107(2-3):160-74

Salamone JD, Cousins MS, Snyder BJ Behavioral functions of nucleus accumbens dopamine: empirical
and conceptual problems with the anhedonia hypothesis. Neurosci Biobehav Rev 1997 May;21(3):341-
59

Sawaguchi T, Goldman-Rakic PS. D1 dopamine receptors in prefrontal cortex: involvement in working
memory. Science 1991 Feb 22;251(4996):947-50

Schultz W. Predictive reward signal of dopamine neurons. J Neurophysiol. 1998 ;80(1):1-27.
Schultz, W., Apicella, P., Romo, R. and Scarnati, E.: Context-dependent activity in primate striatum

reflecting past and future behavioral events. In: Models of Information processing in the basal ganglia
(Eds. J.C. Houk, J.L. Davis and D.G. Beiser. MIT Press, Cambridge, MA, USA, pp. 11-28, 1995.

Schultz W, Dayan P, Montague PR A neural substrate of prediction and reward. Science 1997
275(5306):1593-9

Servan-Schreiber D, Bruno RM, Carter CS, Cohen JD. Dopamine and the mechanisms of cognition: Part
I. A neural network model predicting dopamine effects on selective attention. Biol Psychiatry 1998
May 15; 43(10): 713-22

Servan-Schreiber D, Carter CS, Bruno RM, Cohen JD Dopamine and the mechanisms of cognition: Part
II. D-amphetamine effects in human subjects performing a selective attention task. Biol Psychiatry
1998 May 15; 43(10): 723-9

Skinner, B. F. (1938). The behavior of organisms: An experimental analysis. New York: D. Appleton
Century.

Smith DA and Bolam JP (1990) The neural network of the basal ganglia as revealed by the study of
synaptic connections of identified neurons. TINS 13 (7):259-265.

Stahle L Do autoreceptors mediate dopamine agonist--induced yawning and suppression of exploration?
A critical review. Psychopharmacology (Berl) 1992;106(1):1-13

Stern EA, Kincaid AE, Wilson CJ. Spontaneous subthreshold membrane potential fluctuations and action
potential variability of rat corticostriatal and striatal neurons in vivo. J Neurophysiol 1997; 77(4) :1697-
715.

Suri, R.E., and Arbib, M.A. Modeling sensorimotor learning in striatal projection neurons. Soc. Neurosci.
Abstr. vol 24: p. 174. 1998.

Suri RE, Marmol JS, and Arbib MA. A documented online model of striatal dopamine modulation. 1999.
In preparation at http://latte.usc.edu/~bmw.

Suri RE, Schultz W Learning of sequential movements by neural network model with dopamine-like
reinforcement signal Exp Brain Res 1998 Aug;121(3):350-4

Suri RE, Schultz W A neural network model with dopamine-like reinforcement signal that learns a spatial
delayed response task. Neuroscience 1999;91(3):871-90

Suri and Schultz, submitted. Internal model reproduces anticipatory neural activity. Available at
http://www.cnl.salk.edu/~suri

Surmeier DJ, Bargas J, Hemmings HC Jr, Nairn AC, Greengard P Modulation of calcium currents by a
D1 dopaminergic protein kinase/phosphatase cascade in rat neostriatal neurons. Neuron 1995
Feb;14(2):385-97

Surmeier DJ, Kitai ST. D1 and D2 dopamine receptor modulation of sodium and potassium currents in rat
neostriatal neurons. Prog Brain Res 1993; 99: 309-24.

Surmeier DJ, Eberwine J, Wilson CJ, Cao Y, Stefani A, Kitai ST. Dopamine receptor subtypes colocalize
in rat striatonigral neurons.Proc Natl Acad Sci U S A 1992; 89 (21): 10178-82.

Sutton RS, Barto AG (1981) An adaptive network that constructs and uses an internal model of its world.
Cognition and Brain Theory, 4(3): 217-246



37

Sutton, R.S., Barto, A.G. Time derivative models of Pavlovian reinforcement. In: Learning and
computational neuroscience: Foundations of adaptive networks (eds Gabriel M. and Moore. J.) MIT
Press, Cambridge: 539-602, 1990.

Sutton, R.S., & Barto, A.G. (1998). Reinforcement Learning: An Introduction. MIT Press, Bradford
Books, Cambridge, MA. (Available: http://envy.cs.umass.edu /~rich/book/the-book.html)

Sutton RS Pinette B The learning of world models by connectionist networks. Proceedings of the seventh
annual conference of the cognitive science society, Lawrence Erlbaum, Irvine, California, August
1985: 54-64

Taylor AE, Saint-Cyr JA The neuropsychology of Parkinson's disease. Brain Cogn 1995 Aug;28(3):281-
96

Thistlethwaite D., A critical review of latent learning and related experiments. Psychological Bulletin 48
(2): 97-129, 1951.

Thrun, S. B. (1992). The role of exploration in learning control. In D.A. White and D.A. Sofge, eds,
Handbook of Intelligent Control: Neural, fuzzy and adaptive approaches. New York, NY: Van
Nostrand Reinhold.

Umemiya M, Raymond LA Dopaminergic modulation of excitatory postsynaptic currents in rat
neostriatal neurons. J Neurophysiol 1997 Sep;78(3):1248-55

Walker, M.F., Fitzgibbon, E.J., & Goldberg, M.E. (1995). Neurons in the monkey superior colliculus
predict the visual result of impending saccadic eye movements. J. Neurophysiol. 73 (5), 1988-2003.

Wallesch CW, Karnath HO, Papagno C, Zimmermann P, Deuschl G, Lucking CH. Parkinson's disease
patient's behaviour in a covered maze learning task. Neuropsychologia 1990;28(8):839-49

Wickens JR, Begg AJ, Arbuthnott GW Dopamine reverses the depression of rat corticostriatal synapses
which normally follows high-frequency stimulation of cortex in vitro. Neuroscience 1996 Jan;70(1):1-5

Wickens JR, Wilson CJ. Regulation of action-potential firing in spiny neurons of the rat neostriatum in
vivo.J Neurophysiol 1998; 79 (5): 2358-64

Williams GV, Millar J. Concentration-dependent actions of stimulated dopamine release on neuronal
activity in rat striatum. Neuroscience 1990; 39 (1):1-16.

Wilson CJ The generation of natural firing patterns in neostriatal neurons. Prog Brain Res 1993;99:277-
97.

Wilson CJ. Dendritic morphology, inward rectification, and the functional properties of neostriatal
neurons. In: Single Neuron Computation (McKenna T, Davis J, and Zornetzer SF eds.) Academic
Press, San Diego. 1992

Wilson CJ, Groves PM Spontaneous firing patterns of identified spiny neurons in the rat neostriatum.
Brain Res 1981 Sep 7;220(1):67-80

Wilson CJ, Kawaguchi Y The origins of two-state spontaneous membrane potentialfluctuations of
neostriatal spiny neurons. J Neurosci 1996; 16 (7): 2397-410.

Wolpert DM, Ghahramani Z, Jordan MI An internal model for sensorimotor integration. Science 1995
Sep 29;269(5232):1880-2.

Young, A.M., Ahier, R.G., Upton, R.L., Joseph, M.H., & Gray, J.A. (1998). Increased extracellular
dopamine in the nucleus accumbens of the rat during associative learning of neutral stimuli.
Neuroscience  83 (4), 1175-1183.


