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Abstract

Population coding is widely regarded as a key mechanism for achieving reliable
behavioral responses in the face of neuronal variability. But in standard reinforce-
ment learning a flip-side becomes apparent. Learning slows down with increasing
population size since the global reinforcement becomes less and less related to the
performance of any single neuron. We show that, in contrast, learning speeds up
with increasing population size if feedback about the population response mod-
ulates synaptic plasticity in addition to global reinforcement. The two feedback
signals (reinforcement and population-response signal) can be encoded by ambient
neurotransmitter concentrations which vary slowly, yielding a fully online plasticity
rule where the learning of a stimulus is interleaved with the processing of the sub-
sequent one. The assumption of a single additional feedback mechanism therefore
reconciles biological plausibility with efficient learning.
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1 Introduction

It borders on a truism that information processing in the brain is highly dis-
tributed in order to achieve reliable behavioral responses despite neuronal
variability. Consequently the role of neuronal populations in encoding sen-
sory stimuli and the associated problem of decoding the population activity
has been intensively studied (see [1,2] for reviews). For investigating reward
based learning, a common strategy has been to use aggregate descriptions of
population activity, where the population is in effect treated as a single rate
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based unit [3]. But the resulting plasticity rules involving pre- and postsynap-
tic population rates are difficult to interprete at the level of a single spiking
neuron. On the other hand, most models of reinforcement learning which ex-
plicitly deal with spiking neurons have focused just on single neurons or small
neuronal assemblies [4–6].

The reason for these discrepancies becomes apparent when one considers stan-
dard approaches to reinforcement learning where a single global reward signal
assesses the response of an entire neural network. Applied to a population,
where the read-out is by design relatively invariant to the behavior of any
single neuron, the reward signal evaluating the population response cannot
reliably assign credit at the level of a single neuron or even a single synapse.
In human terms, the standard reinforcement approach is analogous to having a
class of students write an exam and being informed by the teacher on the next
day only whether the majority of the class has passed or failed whereas the in-
dividual scores are kept secret. That this leads to slow learning is highlighted
by the otherwise biologically plausible simulations reported in [7]. There, a
large network of integrate and fire neurons was trained to associate a single
stimulus with one of just two responses. To achieve an 80% probability of a
correct response, more than 100 presentations of the stimulus where required
and performance did not improve with training extended beyond this point.
In contrast to this, behavioral results indicate that reinforcement learning can
be reliable and fast. Macaque monkeys, for instance, correctly associate one
of four complex visual scenes with one of four targets after a total of just 12
presentations on average [8].

To some extent the population learning problem can be sidestepped if plas-
ticity is confined to the read-out with the population neurons themselves just
serving as fixed feature detectors. This seems adequate for basic sensory-motor
integration tasks when stimuli can be described by a few features such as spa-
tial location or angle. Further, in this case, the topographically organized
lateral connectivity observed in sensory areas can provide an effective way
of damping neuronal response variability. But for learning complex stimuli a
prohibitively large population size is necessary if only the read-out is plastic.
In particular, for feature neurons with Gaussian tuning curves the flexibility
of read-out learning is severely compromised unless the population size in-
creases exponentially with the stimulus dimension [1]. It thus seems unlikely
that plasticity in higher cortical areas is confined to a population read-out.

Instead of a broadcasting a single reward signal, learning procedures in ar-
tificial intelligence (such as the back-propagation algorithm) use an involved
machinery to compute individualized feedback signals for each neuron [9,10].
Our objective is to point out that for learning in a population of spiking neu-
rons there is a large and fertile middle ground between such complex and
biologically unrealistic procedures and the standard reinforcement approach.

2

Nature Precedings : hdl:10101/npre.2008.1976.1 : Posted 16 Jun 2008



For this, we present gradient based learning schemes where synaptic plasticity
is modulated not just by reward feedback but also by a single additional feed-
back signal encoding the population response. Since the two signals change
on similar time scales, reward and population feedback can be provided by
similar mechanisms, e.g. ambient neurotransmitter concentrations. Applied to
different neuronal coding strategies such as firing rate or latency, the scheme
results in slightly different learning rules, suggesting that there ought to be
a match between coding and plasticity. With regard to performance, the key
finding is that the additional modulation by the population response dra-
matically changes the scaling properties of population learning. Instead of
becoming slower and slower with increasing population size, as for standard
reinforcement procedures, learning now speeds up when the population size is
increased.

2 Results

2.1 Coding in a population

Behavioral decisions are hardly controlled by the postsynaptic output of a
single neuron. For robustness, and in the case of mean firing rates codes also
for speed, one needs to consider a population of N neurons, each encoding
more or less the same information about the stimulus. We shall denote by
wν (ν = 1, . . . , N) the synaptic vector of the ν-th neuron and assume that
its presynaptic input is a spike pattern Xν . So the neurons in the population
need not have exactly the same input, but we assume that the Xν are highly
correlated. This allows for variations in the connectivity to the input layer as
shown in Fig. 1.

Different neurons will produce different postsynaptic spike trains Y ν and ag-
gregating these into a population response must be based on how neurons
encode information. Since different encoding strategies are likely to exist, we
adopt a general approach by assuming a scoring function c(Y ν), which assigns
a numerical value to any spike train. Aggregating the neural responses then
amounts to simply adding the scores. Possible choices for the scoring func-
tion are counting the number of spikes (a pure firing rate code) or the time
elapsed between the start of stimulus and the first spike. While we shall con-
sider different scoring functions, initially, and for most of the paper, we shall
assume the following spike/no-spike code: c(Y ν) = 1 if the neuron produces
one or more postsynaptic spikes, otherwise c(Y ν) = −1. This is also the cod-
ing assumed in Fig. 1. We shall say that the population response determining
behavioral decisions is 1, if the majority of neurons has c(Y ν) = 1 (otherwise
the population response is −1).

3

Nature Precedings : hdl:10101/npre.2008.1976.1 : Posted 16 Jun 2008



Fig. 1. Sketch of a population of spiking neurons and the corresponding population
read-out. Each neuron is connected to only a part of the input layer, neuron 3, for
instance, just responds to the spike pattern X3 underlayed in green. The majority
of the neuronal decisions determines the population read-out. The implementation
of this read-out is considered in the Discussion. Learning modifies the synaptic
strengths, driving the individual neurons (red) to achieve a correct population re-
sponse.

2.2 Learning in the single neuron

To learn from trial and error different responses to a given stimulus must
be explored and, for this, randomness in the neuronal activities provides a
convenient mechanism. In numerical simulations we shall assume as specific
mechanism the fluctuating spike threshold provided by the escape noise model
(Methods) but our main findings do not depend on the details of the reinforce-
ment learning procedure at the single neuron level.

We assume that plasticity can be understood as updating the vector of synap-
tic strengths w in the neuron to modulate the log-likelihood Lw(Yt|X) of
producing the postsynaptic spike train Yt upto time t in response to an input
spike pattern X. (We have dropped the neuron index ν, since we deal with
only a single neuron in this section). In the simplest learning scenario, the i-th
synapse compute its eligibility

ei(t) =
d

dt

∂

∂wi

Lw(Yt|X)

and updates the synaptic strength by ẇi = −ηei(t) in case of an erroneous
response. This decreases the odds of repeating the same mistake again. The
parameter η, controlling the magnitude of the update, is called the learning
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rate. For the escape noise neuron, ei(t) depends on pre- and postsynaptic spike
timing and on the value of the membrane potential at time t (see Methods
and [11]).

To learn based on ei(t), however, requires that information about reward is
provided instantaneously at each point in time. In a realistic setting, success
or failure only become apparent once the entire stimulus encoded by the spike
trains in X has been processed. Mathematically, the most convenient way to
deal with this is to integrate ei(t) over the stimulus duration and to use this
for updating the synapses after the stimulus has been presented. To calculate
this so called eligibility trace, however, each synapse would need to know when
the stimulus starts and ends in order to initiate and terminate the integration.
Since this requires intricate feedback mechanisms, we replace the hard time
window of the integral by a soft time window and obtain the eligibility trace
as a running mean. This is achieved by having each synapse low pass filter
ei(t), computing its eligibility trace Ei as

τMĖi = ei(t) − Ei , (1)

where the time constant τM controls the memory length of the synapse. The
time constant should be roughly matched to the duration of the stimuli and
we assume τM = 500 ms in all simulations.

Based on the above eligibility trace , we will eventually present a fully on-line
theory of learning where no explicit information about stimulus onset and
termination is needed at the level of the synapse. But, for the sake of clarity,
we will initially assume that synaptic changes occur only at times T when a
stimulus ends (e.g. via Δwi = −ηEi(T ) if there is an error).

2.3 Episodic learning in a population

In this section we shall assume that immediately after a stimulus presentation
has ended, feedback becomes available and synaptic updates occur only then.
To learn a fixed number of prescribed stimulus-response associations, these
learning episodes are repeated with a different stimulus-response pair used in
each episode. The goal of learning of course is to obtain the correct population
response for each of the associations.

In the standard reinforcement learning approach one assumes a critic produc-
ing a reinforcement signal R which indicates whether the population response
is correct (R = 1) or not (R = −1). For a stimulus presentation ending at
time T , the synaptic update occurring then is

Δwν
i = η(R − Rbase)E

ν
i (T ) , (2)
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Fig. 2. The performance (percentage of correct responses) after a fixed number of
learning episodes as function of the population size N . The red curves show the per-
formance of the population read-out, the blue ones show the average performance
of the single neurons. a: Learning based just on global reward, Eq. (2). b: Learning
with individual reward for each neuron, Eq. (3). c: Attenuated learning with individ-
ual reward, Eq. (5). In all cases 30 patterns had to be learned with target responses
equally split between the two output classes ±1. The pattern statistics are detailed
in Methods. In each learning episode a randomly selected pattern was presented; the
number of episodes was 5000 in Panel a and 2000 for Panels b,c. The performance
values shown are averages over between 100 (N = 1) and 20 (N = 33) learning
tasks, with a different set of patterns and different initial synaptic strengths in each
task. The error bars represent the standard deviation of the performance fluctua-
tions from task to task. The corresponding 1 SEM values for the mean are much
smaller, in fact smaller than the symbols used in the plot. The error bars shown
demonstrate that learning becomes more reliable with increasing N (for Panels b
and c) since the task to task fluctuations in the population performance decrease.

where the eligibility trace Eν
i (T ) is obtained by using (1) for each neuron in

the population. The reinforcement baseline Rbase balances reinforcement and
punishment. We shall use Rbase = −1, i.e synaptic updates only occur if the
population response is wrong. For binary decision problems this is a robust
choice whereas reinforcing correct behavior requires a careful tuning of the
amount of reinforcement to the progress in learning.

We have evaluated this rule for different population sizes after a fixed number
of learning episodes. The performance of the population (percentage of correct
responses) is shown in Fig. 2a and compared to the average performance of the
individual neurons. While for any given population size N > 1 the population
outperforms the average single neuron, population performance nevertheless
deteriorates quickly with increasing N . The reason for this is rather simple:
From the perspective of the single neuron, the global reinforcement signal R
is an unreliable performance measure, since the neuron may be punished for
a correct response just because other neurons made a mistake. The odds of
this happening increase with the size of population, average single neuron
response deteriorates and this is not compensated for by the boost provided
via the population response.
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To investigate what level of performance is achievable in principle by a popu-
lation, we have considered alternatives to the standard reinforcement prescrip-
tion (2). The perhaps simplest approach is to train the neurons individually
and to only use the population read-out to boost recognition. For this we as-
sume an individual reinforcement signal rν = ±1 indicating whether neuron
ν did the right thing and use

Δwν
i = η(rν − 1)Eν

i (T ) (3)

for the synaptic updates. As shown in Fig. 2b, average single neuron perfor-
mance now no longer deteriorates with increasing population size, and it is in
fact independent of N . In contrast to this, population performance improves
with increasing N and reaches a quite high level.

While, compared to global reward, individual reward works far better, the per-
formance nevertheless saturates rather quickly with increasing N . The neurons
are all trying to learn the same thing and this leads to correlations which are
detrimental to the population performance. To address the correlation prob-
lem, we consider attenuating the learning once the population response is reli-
able and correct. The reliability can be assessed by introducing the population
signal

S =
1√
N

N∑
ν=1

c(Y ν) . (4)

The 1/
√

N normalization reflects the fact that, given the stimulus, neuronal re-
sponses are conditionally independent. Hence, the fluctuations in

∑N
ν=1 c(Y ν),

due to the noisy neural processing, will be on the order of
√

N . In particular,
if the absolute value of S is large, the sign of the population signal S (the
population response) is unlikely to fluctuate and the response is reliable. The
following rule implements learning attenuation

Δwν
i = ηa (rν − 1) Eν

i (T ) with a =

⎧⎪⎨
⎪⎩

1 if R = −1

e−S2
if R = 1 .

(5)

If the population is wrong, this is the same update as in (3), whereas, due
to the attenuation factor a, only a small step is made if the population out-
put is reliable and correct. So, as for individual reward, a neuron does not
adapt when it votes correctly. But even when it is wrong, only small synaptic
changes occur, if the majority of the other neuron do the right thing. Due
to learning attenuation, perfect performance is now approached with increas-
ing population size without saturating earlier (Fig. 2c). The update (Eq. 5)
can be understood as a gradient descent rule (Methods and Supplementary
Information).

A population, properly trained, has an additional benefit besides improved
average performance. The error bars in Fig. 1 measure the fluctuations in per-
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formance from task to task, were a different set of stimuli-response pairs and
different initial synaptic strength where used for each task. These fluctuation
decrease with population size (more pronouncedly in Fig. 2c than Fig. 2b),
showing that it becomes less likely that learning unexpectedly fails for a spe-
cific set of patterns. This is a definite advantage when failing to learn a specific
task incurs a severe penalty (e.g. getting eaten).

2.4 On-line learning in a population

At first sight it might seem that providing an individual reward to each neuron
in a population requires a biophysically implausible number of feedback sig-
nals. However just two feedback signals, global reward (R) and the strength of
the population response (S) are needed, if each neuron keeps a memory of its
past spiking behavior. For instance, if most neurons in the population spiked
erroneously (i.e. S > 0, R = −1) a neuron ν that stayed silent, c(Y ν) = −1,
did the right thing and therefore rν = 1. More generally, the individual reward
signal for neuron ν has the form

rν = sign
(
R S c(Y ν)

)
, (6)

and hence differs from the global reward signal only if the neuron’s response
is at variance with the population response.

Based on this observation, we now present a fully on-line learning rule, where
the delivery of feedback is explicitly modeled by changes in ambient neuro-
transmitter concentrations. These implicitly also encode information about
the stimulus duration. Now, synapses can change in continuous time show-
ing that there is no need to assume that plasticity is explicitly triggered by
stimulus endings. Since the biophysical machinery required in this framework
for plain learning with individual reward (Eq. 3) is essentially the same as for
attenuated learning (Eq. 5) we shall focus on adapting the better performing
rule (5). The overall feedback structure is sketched in in Fig. 3a.

We assume that in the absence of any reinforcement information the con-
centration crew of the neurotransmitter signaling reward (e.g. dopamine) is
maintained at a homeostatic level where a baseline release rate is balanced by
a linear degradation with time constant τrew = 10 ms. Reinforcement informa-
tion leads to a step increase (R = 1) or decrease (R = −1) in the release rate
for a duration Lrew = 50 ms, whereafter the release returns to its baseline level.
In due course, the changes in release rate are reflected in the ambient concen-
tration level crew (Fig. 3b, green curve) providing one signal which modulates
synaptic plasticity. In Fig. 3b, and in most of the paper, we assume that the
change in release rate is triggered immediately at the end of stimulus presen-
tation (Δrew = 0) but our model is robust to a modest delay in the onset of
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Fig. 3. On-line feedback signals interact with synaptic memory to modulate plas-
ticity. Panel a sketches the overall feedback structure. In Panel b an example for
the temporal evolution of the corresponding chemical concentrations is shown. The
reward feedback crew and the population feedback cpop are drawn assuming that the
population signal S > 0, i.e. the majority of the neurons fired in response to the
stimulus X ending at time T , and that this was the incorrect response (R = −1).
The memory variable sν of a neuron which fired quickly in response to X is also
shown. Since sν is above threshold for a while after time T , the neuron remembers
that its responded to X by spiking. But, since it fired early, the neuron forgets this
around time T+80, leading to the first jump of ρν in Panel c. In plotting sν we have
additionally assumed that the neuron happens to spike (at T + 150) in response to
the current stimulus. In the considered scenario, the episodic variable rν equals −1
and the value of ρν is thus correct initially. But since the neuron first forgets that
it spiked and then spikes again, ρν later changes to 1 and then flips back to −1
again. But these complications only happen at times when crew is again close to its
homeostatic value. They hence have only a minor effect on γ(ρν − 1) in Panel c,
the total feedback controlling the synaptic update. For Panel b we have assumed
no delay in reward onset (Δrew = 0). This is also the case in the simulations unless
delayed onset is mentioned explicitly.

the reward signal (Δrew > 0).

Feedback about the population output is provided in a similar fashion, via the
concentration level cpop of a second neurotransmitter (Fig. 3b, blue curve).
Again, the end of stimulus presentation triggers a step change in the release
rate of this transmitter for a duration Lpop = 50 ms, but now we assume that
the magnitude as well as the direction of the change is controlled by the value
of the population signal S (Methods). Once the release rate has returned to
its baseline level, a homeostatic value of cpop is again approached, with time
constant τpop = 50 ms.

Finally, we consider the memory mechanism for the past spiking behavior
enabling each neuron to determine c(Y ν). For this, we assume a calcium like
variable sν decaying as τMṡν = −sν when neuron ν does not fire. But if there
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is a postsynaptic spike at time t the concentration is updated to sν(t) = 1. So
the value of sν is directly related to the time elapsed since the last spike and
comparing it to an appropriate threshold θ yields an indication if the neuron
fired in response to the stimulus. Note that we are assuming the same time
constant τM as for the synaptic eligibility trace (Eq. 1), since in both cases
the relevant time scale is the typical length of a stimulus.

Based on crew, cpop and sν , an approximation ρν to the individual reward signal
rν in Eq. (6) can now be computed at the synaptic level (Fig. 3c). Explicitly,
we use

ρν = sign
(
c∗rew c∗pop (sν − θ)

)
, (7)

where c∗rew and c∗pop are the deviations of the neurotransmitter concentrations
from their respective homeostatic levels. Hence, c∗rew and c∗pop can be positive
or negative and decay to zero once enough time has elapsed since stimulus
presentation. For appropriate values of the threshold θ (and of the time con-
stant τM) the value of ρν(t) is a good approximation to rν for quite a while
after the end of the stimulus. But the approximation becomes less reliable as
time goes by (reflected by the changing value of ρν in Fig. 3c). Large synaptic
updates are confined to a time window after the reward signal by introducing
the factor

γ =

⎧⎪⎨
⎪⎩
|c∗rew| if c∗rew < 0

|c∗rew||c∗pop| if c∗rew > 0

where |c∗rew| ensures eventual decay to zero. Further, the inclusion of |c∗pop| for
positive c∗rew implements the attenuated learning from reward in analogy to
Eq. 5. In terms of these quantities the on-line version of (5) for the synaptic
updates is now simply given by

ẇν
i = η γ(t) (ρν(t) − 1) Eν

i (t) . (8)

An example of the effective feedback determining synaptic plasticity is shown
in Fig. 3c. Using Eq. 8, we arrive at a fully on-line scheme where the learning
of the previously presented stimulus occurs concurrently with the processing
of the current one.

Simulations results comparing the on-line procedure to episodic learning show
that using our biologically reasonable model for the feedbacks hardly slows
down learning (Fig. 4a, red vs black). We also tested the learning with stimuli
of variable lengths (duration randomly chosen between 400 and 600 ms). In
contrast to the 500 ms stimuli used in the previous simulation, the time con-
stant τM for the eligibility and the memory traces is now no longer precisely
matched to stimulus duration. The green learning curve shows that the on-line
procedure is insensitive to such deviations. For a further check on robustness,
we simulated delayed onset of reward by setting Δrew to 100 ms, corresponding
to 20% of stimulus duration. Even though reward onset now occurs during the
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Fig. 4. Learning curves (performance vs. number of pattern presentations) for on–
line reinforcement learning. a: The red curve shows the performance of the on-line
procedure on the same tasks as in Fig 1. For comparison, the results obtained with
episodic learning (Eq. 5) are given by the black curve. To check for robustness, we
tested the on-line procedure on variable length patterns (green curve) with a dura-
tion of between 400 and 600 ms (in contrast to the fixed 500 ms length previously
assumed). We also simulated delayed onset of reward (Δrew = 100ms, blue curve)
for the fixed length patterns. The insets show the distribution of postsynaptic spike
times after learning without (red) and with (blue) delay in reward onset. The x-axis
is time elapsed from start of stimulus to spike; the contributions from the patterns
where the goal is to spike is highlighted by the use of a dark color. The histograms
are based on the postsynaptic spikes of all neurons in the population. All results
in the panel are for N = 33, averaged over 20 tasks. b: Performance for different
population sizes: N = 33 (red, same curve as in Panel a), N = 67 (green), N = 135
(blue circles). The blue diamonds represent mean single neuron performance for
N = 135.

presentation of the subsequent stimulus, perfect performance is nevertheless
approached (blue curve in Fig. 4a). But there is a noticeable slow down in
learning. While it may be possible to improve performance by adjusting the
learning rate or the memory time constant τM to the additional delay, to focus
on robustness, we refrained from such re-tuning and used the same parameter
values in the on-line procedure for the three kinds of tasks.

Postsynaptic spike timing after learning (Fig. 4a, insets) is distributed quite
uniformly with only a slightly reduced frequency towards the start of the
stimuli. The noticeable difference in activity between the spike and the no-
spike patterns, already in the first few time bins of the histograms, shows that
the eligibility trace can bridge a delay of some 500 ms between action and
reward delivery.

The on-line procedure speeds up considerably with increasing population size
as shown in Fig. 3b. But the figure also highlights a second advantage of a large
population. Essentially perfect population performance is attained despite of
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Fig. 5. Learning of 4-way decisions by two populations. a: Sketch of the feedback
structure used for the task. b: Learning curve for two populations with N = 25
neurons each. The number of patterns learned was 24, with 6 pattern allocated to
each of the four output classes. The reported values are averages over 20 tasks.

the fact that mean single neuron performance does not increase much during
learning. So, in a large population, the single neuron has to learn only very
little and can stay close to a homeostatic regime of operation.

For a fixed number of neurons in the population and a given synaptic load,
one expects total learning time to scale linearly with problem size. So, if twice
as many patterns have to be learned but neurons have also twice as many
afferents (thus doubling number of synaptic weights), the number of times
each pattern needs to be presented in order to achieve a given performance
level should not increase. For the N = 33 population, we checked that this is
the case (data not shown).

2.5 Flexibility of the on-line scheme

Behavioral adaptation takes many different forms, and there is certainly more
to learning than just binary decisions tasks based on a spike/no-spike code.
While the network architecture may be task dependent, it seems unlikely that
the underlying synaptic learning mechanisms are highly specific. Here we pro-
vide some examples showing that the above on-line scheme applies to different
learning scenarios with little or no modification.

We first consider the non-binary case where one of n > 2 responses must be
chosen based on a stimulus. Within the current framework this can be ad-
dressed by assuming that there are several (m) populations of neurons, each
responding with a binary decision to a stimulus. The behavioral response is
determined by the combined output of the populations and can thus have one
of n = 2m values. The global reinforcement signal R then encodes whether
this combined output is correct. We now assume that each of the m popu-
lations has its individual population feedback and then use the above online
procedure for each of the populations. So, as sketched in Fig. 5a learning at
the level of the single neuron is based on its own response to the stimulus, on
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Fig. 6. Different coding strategies for a binary decision task. a: Learning curve
(blue) when the population read-out assumes a firing rate code (N = 33 and 30
patterns). For comparison the corresponding curve for the spike/no-spike code is
shown in red (same curve as in Fig 3). After learning with the firing rate code, b:
distribution of the number of spikes within stimulus length (500ms), c: scatter-plot
of the firings for each neuron, d: distribution of the spike times. In the three panels
dark (light) blue gives the contribution from the patterns with target output 1 (-1).
e: Learning curve for the spike-early/spike-late code (N = 67, 30 patterns) and the
corresponding spike number histogram (Panel e, inset), firing scatterplot (Panel
f), and spike timing histogram (Panel g). Dark (light) green is for target 1 (-1)
patterns. The values reported are averages over 20 tasks except in the scatter-plots,
which are for a single trained population.

feedback about the output of the population it belongs to, and on the global
reinforcement assessing the behavioral response. Simulation results for two
populations learning a 4-way decision task are shown in Fig. 5b. While 4-way
decisions are harder than binary decisions since the combined output is incor-
rect if just one of the two population responses is wrong, learning nevertheless
succeeds rather quickly.

Next we investigate the use of different coding strategies at the level of the
single neuron. Until now we have assumed that in decoding postsynaptic spike
trains the population read-out only considers whether the neuron does or
does not fire. While this spike/no-spike code suggests itself for its theoretical
simplicity other codes are possible as well. In particular, for a proper firing rate
code we redefine the scoring function c(Y ν) to be the number of spikes in the
output spike train of neuron ν. Correspondingly we redefine the population
signal (Eq. 4) by setting

S =
1√
N

(
N∑

ν=1

c(Y ν) − ϑ

)
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with a threshold ϑ = 2
3
N . Since the population response is the sign of S,

choosing a threshold which is greater that 1
2
N takes into account that a neuron

may occasionally spike more than once in response to a stimulus. As the
learning curve in Fig. 6a shows, using a firing rate code instead of the spike/no-
spike code does not discernibly change performance. Note, that for simplicity
we are still using the same learning mechanisms at the neuronal and synaptic
level as for the spike/no-spike code. So the memory trace sν of each neuron
now provides only a rather rough approximation of c(Y ν), since the exact
number of postsynaptic spikes cannot be determined from sν . But since the
output activity level is fairly low (Fig. 6b) the limited information encoded in
sν is sufficient for learning to succeed.

As inputs we have throughout assumed fixed low activity spike patterns, so the
neuronal outputs are highly dependent on relative input spike times. But the
two output codes considered upto now do not take postsynaptic spike timing
into account and there is thus a code switch between inputs and outputs. While
this could be a avoided by using mean firing rate inputs, it is nevertheless of
interest to ask if population learning itself can be based on a spike timing
dependent output code. For this, we study a spike-early/spike-late code. In
particular we use as scoring function c(Y ν) = 1 if there are more spikes in Y ν

during the second half of stimulus duration than during the first, otherwise
c(Y ν) = −1. (For an equal number of spikes and in the case of no spike,
c(Y ν) = 0). Since the output code is now balanced around 0 we revert to
our standard measure of population activity (Eq. 4). As shown in Fig. 5e
population learning can be based on such a spike timing dependent output,
even if it is slower than for the rate codes. The spike early/spike-late coding is
easily seen as a the difference between target 1 and target -1 patterns in the
timing histogram (Fig. 3g) whereas firing rates do no distinguish between the
two target classes (Fig. 5e, inset).

For learning to succeed with the timing dependent code the neuronal and
synaptic memory traces had to be modified. First, a larger value of the thresh-
old θ in (Eq. 7) is needed since the distinction is now between an early and
a late firing and not between spike/no-spike. But a more subtle modification
is necessary as well. Assume there are two or more spikes in the spike train
Y ν and the last spike occurs in the second half of stimulus duration. With
our usual computation for the neuronal trace variable sν , the last spike erases
the memory of all previous spikes due to the deterministic update. Hence, the
neuron only remembers that it spiked late. This creates a systematic mismatch
to the value of c(Y ν) which depends on the number as well as on the timing of
spikes. Since this mismatch can prevent successful learning, as a simple remedy
we used a stochastic update of the trace sν : A postsynaptic spike at time t,
does not always update sν to 1 but only with a probability of 1− sν(t). Hence
the memory about early spikes may be retained even if the neuron fires during
the second half of the stimulus duration. While the stochastic update does not
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ensure that the memory trace correctly reflects the score c(Y ν), the errors are
now no longer systematic and the simulations show that the resulting memory
trace is reliable enough for successful learning (Fig. 6).

The stochastic memory trace is more flexible than the deterministic one, since
it can also be used in conjunction with the other coding strategies. The flex-
ibility, however, comes at a price. For the spike/no-spike code, we observed
a twofold increase in learning times when using the stochastic instead of the
deterministic memory trace (data not shown).

3 Discussion

We have presented a theory of reinforcement learning in populations of spiking
neurons where synaptic plasticity is modulated by global reinforcement, feed-
back about the population response as well as a memory trace encoding the
neuron’s past firing behavior. Learning now speeds up with increasing popula-
tion size, in contrast to the case where only global reinforcement is available.
In presenting simulation results we have assumed a specific neuronal model
and synaptic reinforcement procedure, the escape noise neuron presented in
[11]. The model suggests itself because of its flexibility and because it leads to
a spike-timing dependent learning rule. However, our population approach is
not confined to this synaptic plasticity model and could readily be adapted to
use other reinforcement learning procedures [4–6] at the single neuron level.
Indeed, the population neurons could even be tempotrons with the associated
supervised plasticity rule [12]. But the tempotron applies just to the episodic
learning of binary decisions and these restrictions would then equally apply
to the population learning. Obviously, in absolute terms, population perfor-
mance will depend on the specifics of the neuronal model and the associated
plasticity rule. But considering the scaling of the performance we expect our
findings to be generic: With just global reinforcement performance degrades
with increasing population size, but it improves when plasticity is properly
modulated by the population response and the neuronal memory trace.

These results also throw light on the biophysical mechanisms implied by mean
firing rate models of learning where, for processing speed, the postsynaptic rate
is often taken to represent the average over a population of neurons (in lieu
of a single neuron average over an extended time period). But then, even in
cases where the mean firing rate description of the spiking population is itself
carefully established [13], it is often unclear what the mean firing rate plasticity
rule actually means at the level of the single spiking neuron. In particular,
this interpretational conundrum arises when plasticity is modulated by the
mean postsynaptic rate, as in e.g. Hebbian learning. Since this rate is really
a population average it is (i) not immediately available at the synaptic level
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and may (ii) be at variance with the true postsynaptic behavior of any single
neuron. Our model resolves this conundrum, with regard to the first point,
by explicitly describing a biophysically reasonable delivery mechanism for the
population response. With regard to the second point, we have shown how
differences between the population averaged and the neuronal postsynaptic
rate can be resolved when each neuron keeps a memory trace of its recent
spiking behavior. But the focus here was not on training a population of
spiking neurons to just emulate a single mean firing rate unit. This would
amount to using a learning rule similar to the one we considered in Fig. 1b
which tries to force all of the neurons to march in lock-step. Then, learning
performance eventually becomes independent of population size, whereas it
can be increased by using a better plasticity rule. This suggests that modeling
a spiking population by a mean firing rate unit underestimates its learning
capacity.

Our model does not rely on the assumption that the neurons code by firing
rate and can be used in conjunction with spike timing dependent codes. But it
does suggest that there should be a relationship between postsynaptic coding
and plasticity. In its basic form, the learning rule for the escape noise neuron
we use, just changes the probability that a postsynaptic spike train generated
in response to a stimulus is produced again on a further presentation of the
same stimulus. So the neuron can in principle be reinforced to learn any output
code. (This is in contrast to e.g. the tempotron where the spike/no-spike code
is hard-wired into the plasticity rule.) But in the present framework, the gen-
erality of the escape noise rule is compromised when plasticity is modulated
by a comparison between the population response and the neuronal memory
trace. Since the outcome of such a comparison depends on the code assumed
in reading-out the population, the resulting plasticity rule must depend on
the postsynaptic code. One should keep in mind though, that matching code
and plasticity may need only minor adjustments. The essential step in going
from the spike/no-spike to the spike-early/spike-late code is the adjustment of
a threshold parameter in the synaptic plasticity rule, whereas no modification
at all was needed for the mean firing rate code.

We have not considered how the postsynaptic code is read out. Since this en-
tails monitoring the population during the duration of the stimulus, a neural
integrator is needed which is likely to involve a combination of cellular mech-
anisms (e.g. plateau potentials) and recurrent network connectivity [14]. In
addition, to read a spike timing dependent output code, a way to measure the
time elapsed since stimulus onset is needed. While this can be seen as a special
case of a neural integrator, dedicated implementations of such neural clocks
are also possible [15,16]. A detailed model of a decision making circuitry has
been presented in [17]. There a neural integrator is formed by a group of pyra-
midal neurons with recurrent excitatory connectivity mediated by AMPA and
NMDA receptors. For assessing the accumulated activity difference between
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two input populations, two such integrators were used, each receiving input
from one of the populations. Since a pool of interneurons provides mutual in-
hibition between the integrators, the circuitry amplifies the difference between
the accumulated population signals, leading to a binary decision.

This circuitry readily specializes to a read-out for our model when decisions
are encoded in the firing rates of a single population. For this, just assume
that the population projects to one of the neural integrators whereas the sec-
ond integrator receives input with a constant, stimulus-independent, firing
rate providing the threshold. But our rule could also be used to train the
two input populations driving the decision circuitry in [17]. Then we would
no longer needs to assume that the duration of stimuli is known at the level
of the population read-out. Instead, the duration itself could be learned. The
reason is that with two populations the downstream decision making circuitry
will not generate a binary decision as long as the difference in the accumu-
lated population activities is small. So the system knows that it has to wait
for further evidence until the excess accumulated activity of one population
is large enough to trigger the corresponding decision. Further, the decision
making could be based on a leaky accumulation of the populations activities.
Then the read-out does not have to be reset at stimulus onset, so not even the
onset need not be known prior to learning.

We believe that such reinforcement learning with competing input popula-
tions may become an important avenue for research since one can consider
a behaviorally very natural framework: embedded at possibly unknown times
within a continuous stream of events, initially unknown subsequences (stimuli)
appear and a response results in reward if it is timely as well as appropriate.
An instance of this framework is the learning of reaction times when detecting
coherent motion within a random motion field [18]. An analysis of behavioral
data [19] indicates that performance improvements in this task largely result
from an increase in the evidence rate. So the input into the decision making
circuitry becomes more reliable, as it would in our population learning. In
contrast, plasticity in the decision making circuitry itself was found to play a
smaller role. While the onset of stimuli was obvious in the random motion field
experiments, this need not always be the case. For instance, temporal segmen-
tation is crucial in the processing of complex auditory stimuli such a speech
[20,21] and it would be fascinating, if rather ambitious, to computationally
model how infants learn to parse sequences of syllables into words.
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4 Methods

4.1 Single neuron model

The input to the model neuron is a spike pattern X consisting of M spike
trains Xi (i = 1, . . . , M) where each Xi is a list of the spike times in afferent
i. The resulting postsynaptic spike train Y is also a list of spike times. If the
neuron, with synaptic vector w, produces the output Y in response to X its
membrane potential at a time t is:

u(t) = Urest +
M∑
i=1

wi

∑
s∈Xi

ε(t − s) − ∑
s∈Y

κ(t − s) .

Here Urest = −1 (arbitrary units) is the resting potential, ε(t) is the postsy-
naptic and κ(t) the reset kernel. For t ≤ 0 the kernels vanish and for t > 0
they are given by

ε(t) =
1

τm − τs

(
e−t/τm − e−t/τs

)
and κ(t) =

1

τm
e−t/τm ,

where τm = 10 ms is used for the membrane time constant and τs = 1.4 ms for
the synaptic time constant.

The emission of postsynaptic spikes is controlled by a stochastic firing intensity
φ(u) which increases with the membrane potential: At each point t in time
the firing probability is φ(u(t)) Δt where Δt represents an infinitesimal time
window (we use Δt = 0.2 ms in the simulations). Our stochastic intensity is

φ(u) = keβu,

with k = 0.01 and β = 5; in the limit of β → ∞ one would recover the
deterministic model with a spiking threshold θ = 0. As shown in [11] the log-
likelihood of actually producing, upto some time t, the output spike train Yt

is given by

Lw(Yt|X) =
∑
s∈Yt

log φ(u(s)) −
∫ t

0
φ(u(s))ds .

From this the basic quantity for computing the learning updates is obtained
as

d

dt

∂

∂wi

Lw(Yt|X) =

⎧⎪⎨
⎪⎩
−φ(u(t)) β PSPi(t) if t �∈ Y

δ(t) β PSPi(t) if t ∈ Y

Here PSPi(t) =
∑

s∈Xi
ε(t−s) is the contribution of the postsynaptic potential

of synapse i and δ(t) is Dirac’s delta function.
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In all the simulations initial values for the synaptic strength were picked from
a Gaussian distribution with mean and standard deviation equal to 1.7, inde-
pendently for each afferent and each neuron.

4.2 Pattern statistics

Input patterns are made up of 50 independent Poisson spike trains with a
mean firing rate of 6 Hz, independent realizations are used for each pattern.
An input layer with 50 nodes presents patterns to the neuronal population.
The connectivity from the input layer to the neurons is random, with each
neuron receiving a connection from an input node with a probability of 0.8. So
the input Xν effectively seen by the ν-th neuron consists of roughly 40 parallel
spike trains, and inputs to different neurons are different but highly correlated.
Except for the simulations with stimuli of variable length, the duration of
stimuli is 500 ms. The presentation order of the stimuli-response pairs was
random.

4.3 Episodic learning

Simulations. With just global reinforcement (Eq. 2) the learning rate was
η = 1250/N . Decreasing the learning rate with increasing population size was
essential to compensate for the increasingly loose relationship between single
neuron performance and reward. We also tested higher learning rates by using
the scaling η = 1250/

√
N . For N > 1, this results in a significant deterioration

in performance both on the population and the single neuron level. For learning
with individual reward (Eq. 3) the learning rate was η = 625, and η = 2500
was used for attenuated learning (Eq. 5).

Gradient property. The update (5) can be understood as a stochastic gradi-
ent step. A detailed derivation is given in the Supplementary Information, here
we just sketch the main ideas. Instead of optimizing expected reward (R), we
optimize the expected value of g(R|S|), where |S| denotes the absolute value.
The function g is increasing but it saturates for large positive values, leading
to learning attenuation. Using this objective function in conjunction with the
standard gradient estimator [22], does not yield an update with individualized
reward. To achieve this, we analytically average the standard estimator over
the two outcomes c(Y ν) = ±1, instead of leaving this to the sampling pro-
cedure. Hence compared to the standard estimator our update has reduced
variance and this speeds up the learning.
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4.4 On-line learning

Modeling of the feedback signals. For the reward feedback, we assume a
temporary increase in the release rate of a neurotransmitter (e.g. dopamine)
in case of success, whereas failure results in a decrease. Assuming that the
stimulus X ends at time T , a simple model for the concentration crew of the
neurotransmitter is

τrewċrew = −crew + 1 + R Θ(t; T + Δrew, Lrew) .

Here Θ(t; T+Δrew, Lrew) is equal to 1 for t between T+Δrew and T+Δrew+Lrew

and is zero otherwise. So Lrew gives the time during which the release rate is
changed, and the parameter Δrew allows to model delayed onset of the reward.
A typical time course of crew is shown in Fig. 3. The above describes the time
course of crew upto the time T ′ > T when the stimulus X ′ immediately follow-
ing X ends. Then the reward variable R is replaced by the value appropriate
for the response to stimulus X ′.

Feedback about the population output is modeled similarly. In the time inter-
val from T to T ′ the concentration cpop of the corresponding neurotransmitter
evolves as

τpopċpop = −cpop + β + α sign(S)e−S2

Θ(t; T, Lpop)

where we assume that the change in release rate is modulated by the strength
of the population signal via the e−S2

term. Further, the onset of population
feedback occurs immediately when the stimulus ends (Δpop = 0).

The explicit formulas for the deviations of the concentrations from their home-
ostatic levels (used above in Eq. 7) are simply c∗rew = crew − 1 and c∗pop =
cpop − β .

Magnitude of the population feedback. For episodic attenuated learning
the magnitude of the weight vector change given by Eq. 5 is essentially the
same for R = 1 and R = −1 if S is close to zero. For binary decision tasks this
is reasonable since success and error yield the same amount of information
about the desired output, and a small value of |S| means that population
performance is unreliable. To achieve the same effect in the on-line procedure
we have to consider the magnitude of γ(t) in Eq. 8. For R = 1 this depends on
the magnitude of the population feedback which is controlled by the parameter
α. For the timing parameters of the feedback signals we use, the value of the
integral of γ(t) over a reward period is approximately the same for R = 1 as
for R = −1 if α = 2.5 (and |S| is small). Hence, we always use α = 2.5 for
binary decision problems. In contrast, success is much more informative than
failure in the four-way decision task, since in the case of an error any of the

20

Nature Precedings : hdl:10101/npre.2008.1976.1 : Posted 16 Jun 2008



remaining three output values can be the correct one. So for small |S| a larger
learning step is appropriate if R = 1 and, hence, we use α = 5 in the four-way
task.

Read-out of the neuronal memory traces. The threshold value in Eq.
7 is θ = e−1.1 in all simulations but the ones using the spike-early/spike-late
code. The rationale behind this choice is the following. If the time constant τM

is equal to stimulus duration, then a spike occurring in response to a stimulus
yields a memory trace sν ≥ 1/e when the stimulus ends. Hence, choosing
θ = 1/e gives sign(sν − θ) = c(Y ν) for the spike/no-spike code at the time T
when the stimulus ends. So, at this point in time, the read-out of the memory
trace accurately reflects what the neuron was doing. But, due to the latency
of crew, the strongest synaptic changes occur around T +50 (Fig. 3b,c) even if
reward onset is instantaneous and so a θ slightly smaller than 1/e is used in
simulations.

For the spike-early/spike-late code θ = e−0.55 since the scoring function now
distinguishes between spiking during the first and the second half of stimulus
duration. In addition Eq. 7 is now used only if sν ≥ θ2, otherwise, i.e. when
sν indicates that the neuron has not fired for a long time, we set rν = 0. This
reflects the fact that the spike-early/spike-late scoring function has the value
of zero, c(Y ν) = 0, if the stimulus elicited no postsynaptic spike. (The cases
where c(Y ν) = 0 because the same number of spikes are produced during
the first and second half, are approximately accounted for by the stochastic
update already described in main text.)

Learning rate and performance measure A learning rate of η = 8 was
used in all of the simulations of the on-line procedure (Eq. 8 ), except for the
ones using the spike-early/spike-late code. There η = 2 was used. The perfor-
mance percentages shown in the learning curves are computed as a running
mean p̄ which is updated after each pattern presentation by p̄ ← (1−λ)p̄+λp.
Here p = 100% if the presented stimulus was classified correctly, otherwise
p = 0. The timing parameter was set to λ = 0.2/P , where P is the total
number of patterns to be learned.
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