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Artificial neural networks are often trained by using the back propagation algorithm to compute the gradient
of an objective function with respect to the synaptic strengths. For a biological neural network, such a gradient
computation would be difficult to implement, because of the complex dynamics of intrinsic and synaptic
conductances in neurons. Here we show that irregular spiking similar to that observed in biological neurons
could be used as the basis for a learning rule that calculates a stochastic approximation to the gradient. The
learning rule is derived based on a special class of model networks in which neurons fire spike trains with
Poisson statistics. The learning is compatible with forms of synaptic dynamics such as short-term facilitation
and depression. By correlating the fluctuations in irregular spiking with a reward signal, the learning rule
performs stochastic gradient ascent on the expected reward. It is applied to two examples, learning the XOR
computation and learning direction selectivity using depressing synapses. We also show in simulation that the
learning rule is applicable to a network of noisy integrate-and-fire neurons.
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I. INTRODUCTION

In engineering applications, the parameters of a learning
machine are often trained by optimizing an objective func-
tion that quantifies performance at a desired computational
task. A popular method of optimization is to iteratively
change the parameters in the direction of the gradient of the
objective function. For example, back propagation learning
is a gradient-following algorithm for artificial neural net-
works [1].

Animals can also learn to optimize performance at certain
tasks, and it is widely believed that such optimization occurs
at least in part through changes in synaptic strengths. How-
ever, it is unclear what mechanism could perform such an
optimization. For biological neural networks, computing the
gradient of an objective function with respect to synaptic
strengths is difficult, because the dynamics of intrinsic and
synaptic conductances is so complex. An alternative is to
compute a stochastic approximation to the gradient by corre-
lating fluctuations in the network dynamics with fluctuations
in its performance[2–6].

A prominent source of fluctuations in neural systems is
the irregular firing of action potentials. For example, cortical
neurons recorded in vivo often produce interspike interval
distributions that are roughly exponential, with a coefficient
of variation that is close to 1[7]. This suggests that the spike
trains of cortical neurons are roughly Poisson. Such irregular
spiking could be used as a mechanism for learning. Suppose
there exists a global reward signal that assesses the overall
performance of the network. Then the correlation between
reward and spiking fluctuations can serve as an error signal
for training the network.

Deriving a learning rule with mathematically proved con-
vergence property in realistic neuronal networks is difficult,

since it is hard to to describe the precise statistics on the state
of the whole network. Previous work has been concentrated
on much simplified network models with Bernoulli logistic
units in which each neuron is a memory-less device and cur-
rent state of neurons completely describes the whole network
[4–6,8,9]. In this work, we consider a more realistic class of
network models in which two fundamental properties of bio-
logical synapses are taken into account: First, neurons inter-
act with each other through synaptic currents. The time scale
of synaptic currents is much longer then action potentials.
Therefore, the state of the network has to be described by
both the state of neurons and the state of synaptic currents.
Second, synapses are allowed to be dynamic with short-term
plastic effects such as facilitation and depression.

In order to derive a learning rule in such networks, we
simplify the spike generation process of neurons, and model
it with a Poisson process with firing rates of each neuron
determined by its synaptic inputs. The synaptic update rule
we derived, on average, is in the direction of the gradient of
the expected reward with respect to the synaptic strengths.
The algorithm is compatible with dynamic properties of syn-
apses such as short-term facilitation and depression. We il-
lustrate the algorithm with two simple examples, to learn the
exclusive OR(XOR) computation and to learn direction se-
lectivity using depressing synapses[10].

For real neurons, the spike trains will not exactly follow
Poisson statistics. We show in simulation that the learning
rule can still be applied in a network of noisy integrate-and-
fire neurons to learn XOR computation.

II. BASIC DEFINITIONS

We consider a model network in which each neuron re-
ceives a total synaptic currentI istd and produces a Poisson
spike train with instantaneous firing rate*Email address: xhxie@mit.edu
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listd = f i„I istd…, s1d

wheref i is the current-discharge relationship, orf-I curve, of
the ith neuron. The total synaptic current received by neu-
ron i is given by the sum of the contributions over presyn-
aptic neuronsj :

I istd = o
j=1

n

Wijhijstd. s2d

Wij is the synaptic strength from neuronj to neuroni. The
synaptic currentWijhijstd in neuron i due to the spiking of
neuronj behaves with a time course given by

ts
dhij

dt
+ hijstd = o

a

dst − Tj
adzi j

a, s3d

whereTj
a is the time of theath spike of neuronj . zi j

a is a
binary random variable modeling the stochastic release of
neurotransmitters in response to a presynaptic spike.zi j

a=1
denotes a release event of neurotransmitters from neuronj to
neuron i in response to theath spike of neuronj , and zi j

a

=0 denotes a nonrelease event. A synapse can be dynamic, in
which case the release variablezi j

a depends on the history of
neurotransmitter release experiencing short-term dynamic ef-
fect such as depression or facilitationf11–13g.

In our synaptic transmission model, the postsynaptic cur-
rent jumps instantaneously in response to a presynaptic re-
lease event and otherwise decays exponentially with time
constantts [Fig. 1(a)]. The amplitude of the postsynaptic
current is determined by the synaptic strengthWij .

Equation(3) is a simplistic model of a synapse, but there
is no barrier to replacing it with more complex dynamical
equations. A more serious limitation is Eq.(1), which models
spike generation statistically, without reference to biophys-
ics.

Strictly speaking, the validity of the learning rule to be
introduced shortly is dependent on the Poisson assumption.
However, we expect the learning rule to be valid for more
realistic networks of conductance-based model neurons un-
der conditions when spiking is approximately Poisson. For
example, such a network can be made to approximate Pois-
son firing at low rates by injecting white noise into each
model neuron. Alternatively, approximate Poisson spiking
can arise from internally generated fluctuations of synaptic
input in a network with balanced excitation and inhibition
[14].

III. LEARNING RULE

We first consider the episodic form of the learning rule.
Suppose that the learning process falls into distinct episodes.
The network is reinitialized at the beginning of each episode
at a fixed initial condition or one drawn at random from
some probability distribution. For each episode, the perfor-
mance of the network is evaluated by a reward functionR,
which depends on the spike trains.

At the end of each episode, the synaptic weights are up-
dated by

DWij = hReij , s4d

whereh.0 is a learning rate,R is a reward signal, andeij is
the eligibility trace of the synapse from neuronj to i. The
eligibility trace is defined by

eij =E
0

T

fisI idfsistd − f isI idghijstddt, s5d

wheresistd=oadst−Ti
ad is the spike train of neuroni, andT is

the length of an episode. The functionfisI id= f i8sI id / f isI id is a
positive factor, assuming thatf i is monotonically increasing.

In the following section, it is shown that expectation value
of the right-hand side of Eq.(4) is proportional to the gradi-
ent of the expected reward with respect toWij . This means
that the learning rule performs stochastic gradient ascent on
the expected reward. The learning rule can be applied to
either feedforward or recurrent networks.

The eligibility trace, Eq.(5), depends on both presynaptic
and postsynaptic activities. Presynaptic activity contributes

FIG. 1. Poisson model of spiking neurons.(a) An example neu-
ron which fires Poisson spike train with the average rate of 20 Hz
(top panel), and the corresponding change in synaptic activation
variable withts=10 ms(second panel). In this example, every pr-
esynaptic spike is successfully transmitted.(b) The transfer function
f used in the simulation, which takes the formfsxd=20fx/3−3.3
+ln(1+exps−x/3+3.3d)g where the parameters are chosen to imi-
tate the shape of thef-I curve of real neurons.(c) The shape of the
function fi with the transfer function in panel(b).

X. XIE AND H. SEUNG PHYSICAL REVIEW E69, 041909(2004)

041909-2



through the synaptic activationhijstd, which is elevated upon
successful transmission of each spike from neuronj . The
postsynaptic neuron contributes throughsistd− f istd, scaled by
the positive factorfi.

In this learning rule, synaptic change depends on the cor-
relation between the global reward signal and the fluctua-
tions in neural spiking. The learning rule can be understood
intuitively as follows. When greater than expected activity in
a neuron leads to greater reward, the total inputs to this neu-
ron should be increased. Therefore, we increase excitatory
synaptic weights and decrease inhibitory synaptic weights to
this neuron. Conversely, if greater than expected activity
leads to reduced reward, we decrease excitatory synaptic
weights and increase inhibitory synaptic weights to this neu-
ron.

The eligibility trace in learning rule Eq.(4) depends on
the fluctuation of the postsynaptic activity away from its av-
erage activity, its expected value is zero(proof in the next
section). Hence, if the reward function is constant, or uncor-
related to the eligibility trace, there will be no change in
average synaptic strength. Therefore, in the learning rule of
Eq. (4), we can substituteR by R−R0 as long asR0 is uncor-
related with the Poisson randomness of the spike trains. Us-
ing R0 will not change the expected value of the synaptic
strength, but a carefully chosenR0 could be helpful in reduc-
ing the variance of each update.

IV. DERIVATION OF THE LEARNING RULE

In this section, we derive the episodic version of the al-
gorithm. Suppose the network is run between time 0 andT.
At the end of each episode, the overall performance of the
network is evaluated by a reward functionR that depends on
the output states of the network. The episodic version of the
algorithm performs stochastic gradient ascent on the ex-
pected rewardR, which we prove next.

The spike generation is a continuous process. To facilitate
derivation of the algorithm, we discretize the time into suf-
ficiently small intervalsDt such that the probability for pro-
ducing two spikes in the interval is close to zero. Let the
binary variablesistd denote the state of theith neuron in the
time interval ft ,t+Dtd. sistd=1 denotes spiking of the neu-
ron, andsistd=0 denotes nonspiking. For a network ofn
neurons, we will also use vector sstd
=fs1std ,s2std , ... ,snstdg to denote the state of all neurons.
The state of neurons in the network between time 0 andT
can be completely described byV;fss0d ,ssDtd , ... ,ssTdg.
Besides randomness in the generation of spikes, we also con-
sider stochasticity in the release of neurotransmitters with the
state variable denoted byG;fzs0d ,zsDtd , ... ,zsTdg, where
zstd is a binary vector with its component representing
whether there is a synaptic transmission from neuroni to
neuron j for all i and j at the time intervalft ,t+Dtd. In the
case of dynamic synapses with depression or facilitation, the
release probability will change depending on the activities of
presynaptic neurons. The overall state of the network in one
episode is fully determined by the random variablesV and
G, and the expected reward is

kRl = o
V,G

PsV,GdRsVd, s6d

wherePsV ,Gd is the probability for the stateV andG, and
the summation is over all possible states.

The gradient ofkRl with respect to weightWij is

] kRl
] Wij

= o
V,G

] PsV,Gd
] Wij

RsVd = keijRsVdl, s7d

whereeij ;]ln PsV ,Gd /]Wij is called the eligibility trace,
which determines the direction on updating different syn-
apses. The expected value of the eligibility trace is zero.
This can be proved by settingR to be constant in Eq.s7d,
in which case the left hand side of the equation iskeijl and
the right-hand side is zero.

Using the eligibility trace, we can write down the stochas-
tic gradient ascent algorithm to gradually increase the ex-
pected reward function,

DWij = hRsVdeij , s8d

whereh controls the learning rate.
To further calculate the eligibility trace, we first factorize

the probabilityPsV ,Gd of the state into

PsV,Gd = p
t=0

T

P„hsstd,zstdjuhsst8d,zst8d, ∀ t8 , tj…, s9d

which is the product of the probability at each time step
conditioned on all previous states. Because at any one time
the spike generation and the neurotransmitter release be-
tween different neurons are conditionally independent of
each other, the logarithm of the probabilityPsV ,Gd can be
written as

ln PsV,Gd

= o
t=0

T

o
i=1

n

ln P„hsistd,zi jstd, ∀ jjuhsst8d,zst8d, ∀ t8 , tj….

s10d

Hence, the eligibility trace is

eij = o
t=0

T
]

] Wij
ln P„hsistd,zi jstd, ∀ jjuhsst8d,zst8d, ∀ t8 , tj….

s11d

Let us assume that the neurotransmitter release is indepen-
dent of the spike generation process at any one particular
time. Then we have

eij = o
t=0

T
]

] Wij
ln P„hsistdjuhsst8d,zst8d, ∀ t8 , tj…. s12d

Given the Poisson assumption on the generation of the
spike train of each neuron, the probability for neuroni to fire
a spike or not during the intervalft ,t+Dtd is determined by
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sistd = H1 with probabilitypistd = listdDt,

0 with probability 1 −pistd,

which holds whenDt is sufficiently small. Given this, the
eligibility trace eij can be further simplified to

eij = o
t=0

T

sistd
] ln pistd

] Wij
+ †1 − sistd‡

] ln„1 − pistd…
] Wij

=o
t=0

T Fsistd
pistd

−
1 − sistd
1 − pistd

G ] pistd
] Wij

s13d

=o
t=0

T
sistd − listdDt

listdDt„1 − listdDt…

] listd
] Wij

Dt s14d

=E
0

T

f i8std/f istdfsistd − f istdghijstddt, s15d

wheresistd=oad st−Ti
ad is a series of delta functions repre-

senting spiking of neuroni in continuous time. The last equa-
tion is derived in the limit ofDt being zero. Substituting the
eligibility trace eij into Eq. s8d, we derive the episodic ver-
sion of the learning rule Eq.s4d for Poisson spiking neurons.

From the derivation of the algorithm, we see that the al-
gorithm can be applied to stochastic and/or dynamic syn-
apses, as long as the random process for generating synaptic
transmission is independent of the process for generating
spike trains. The differences only reflect on the way for cal-
culating synaptic activation variables. For stochastic and/or
dynamic synapses, the right-hand side of Eq.(3) includes
only the successfully transmitted spikes.

V. ONLINE LEARNING

In some contexts it is not possible to segment the learning
process into discrete episodes, and reward is administered
continuously in time. Then one can apply the online learning
rule

dWij

dt
= hRstdēijstd, s16d

where the weights are updated continuously in time. The
eligibility trace ēij is defined by

te

dēij

dt
+ ēij = fistdfsistd − f istdghijstd. s17d

The convergence of online learning rules like Eq.s16d is
mathematically far more complex than that of episodic learn-
ing. Equations16d can be viewed as an approximation to
stochastic gradient ascent. The time constantte of the eligi-
bility trace should be set with reference to the correlation
between spiking fluctuationssistd− f istd and rewardRst8d for
t8. t. Suppose that this correlation decays over some char-
acteristic time scaletc. Roughly speaking, the approximation
to stochastic gradient ascent is expected to be good ifte is
longer thantc. However, it is bad to makete too long, as that

will increase the noisiness of the gradient estimate. Next we
demonstrate the application of the online learning rules in
two examples.

VI. APPLICATION OF THE LEARNING RULE

Next, we illustrate the application of the learning rule in
two examples. The first one is to learn XOR computation,
which is known to require hidden layer representation in
feedforward networks. The second example is to learn direc-
tion selectivity using dynamic synapses. We use this example
primarily to illustrate the applicability of the algorithm in
networks with dynamic synapses.

A. Learning XOR computation

The learning rule Eq.(16) is used to train a three-layer
feedforward network of Poisson neurons to learn the XOR
computation. The feedforward architecture consists of two
input neurons, ten hidden neurons and one output neuron.
The training data are four binary patterns
hf1,0g ,f0,1g ,f1,1g ,f0,0gj with desired outputs of
h1,1,0,0j, respectively. For input neurons, we model the
input data 1 with Poisson spike trains of high rates200 Hzd,
and 0 with Poisson spike trains of low rates5 Hzd. Lower
rates can be used if each binary variable is represented by a
neural population, rather than by a single neuron.

At each training epoch, a randomly chosen input pattern is
presented for 500 ms. The reward is evaluated based on ac-
tivities of the output neuron. If the input pattern isf1,0g or
f0,1g, we give a positive reward ofR=2 whenever the out-
put neuron fires a spike. For the input patternsf1,1g and
f0,0g, we administer a negative reward ofR=−1 when the
output neuron fires a spike. No reward is administered when
the output neuron fires no spikes. Other reward schemes are
possible, and may be better or worse for the speed of con-
vergence or for escaping from local optima. For example, the
algorithm often gets stuck in local optima if instead we use
R=1 for output spiking in response to input patternsf1,0g
and f0,1g. The problem of escaping from local optima is a
potential problem for all gradient algorithms.

We use the same transfer functionf i for all neurons;f i has
a shape similar to thef-I (firing rate vs input current) curve
of real neurons[Fig. 1(b)]. Under this transfer function, the
corresponding scale functionfisI id in Eq. (5) decreases for
large neural activities[Fig. 1(c)], and therefore acts to stabi-
lize the algorithm.

The online learning algorithm is used to learn both layers
of synaptic weights(input to hidden, and hidden to output),
starting from random initial conditions for the weights. An
example of the learning process is shown in Fig. 2. Initially,
the output neuron fires at high rates only when both inputs
are 1. By the end of training, the output neuron fires at high
rates only when one input neuron receives 1, but not both
[Fig. 2(a)]. The total reward administered during one epoch
gradually increases on average, although it fluctuates up and
down on short time scales[Fig. 2(b)].

The network learns to represent XOR computation by bal-
ancing excitation and inhibition(Fig. 3). After learning, each
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hidden neuron is excited by one input neuron and inhibited
by the other one. Therefore, if both input neurons are acti-
vated, the hidden neurons are inactive because their total
synaptic inputs roughly cancel out.

In the above simulation, the reward signal is administered
following each spike of the output neuron. This constraint
can be relaxed under the condition that the correlation be-
tween the reward signal and the eligibility trace is large
enough. For example, in simulation we find that with the
time constant of eligibility tracete=10 ms, the XOR can still
be learned even if the reward signal is delivered after a delay
of 10 ms. To compensate much longer delay, we have to

choose correspondingly a largerte, but at the price of slow-
ing down the learning process. For a delay of reward in the
scale of seconds, the system needs to solve the temporal
credit assignment problem of estimating current reward. Al-
gorithms such as temporal difference learning may provide a
solution to such problems[15].

B. Learning direction selectivity using dynamic synapses

Many theories have been proposed for the computational
functions of dynamic synapses, such as gain control, tempo-
ral information processing, and sequence recognition

FIG. 2. (Color) Learning XOR computation.(a) The change in the firing rates of the output neurons corresponding to the four input
patterns plotted as a function of training epochs. During training, the activities of the output neuron to patternf1,1g gradually decrease,
whereas those corresponding to patternf0,1g and f1,0g increase.(b) The total reward administered during one training epoch drawn as a
function of training epochs. The total reward in one training epoch is the sum of the reward administered during four training episodes for
each pattern.

LEARNING IN NEURAL NETWORKS BY… PHYSICAL REVIEW E 69, 041909(2004)

041909-5



[13,16–19]. In particular, one study showed that a neural
circuit of depressing synapses can possess the property of
direction selectivity[10]. Here we show that such a circuit
can be learned through the synaptic update rules introduced
earlier.

Direction selectivity can be produced by mechanisms
other other dynamic synapses. Our main goal here is not to
argue against other models, but to illustrate the applicability
of the algorithm to dynamic synapses.

A simple model for producing a direction selective neuron
is shown in Fig. 4. The neuron receives 40 presynaptic in-
puts, which are separated into two groups. Each group con-
tains 20 neurons representing inputs from a region in visual
space. The regions of the two groups are spatially displaced.
When a moving stimulus is presented, the two groups see the
same input, except for a temporal shift[Figs. 6(a) and 6(b)].

Half of the synapses in each group are nondepressing,
whereas the other half are depressing. In response to a pr-
esynaptic spike, a nondepressing synapse always releases a
vesicle with a fixed probabilityp0, and can release at arbi-
trarily high rates. In contrast, a depressing synapse enters a
refractory state after vesicle release, during which it cannot
release again. It recovers after a time that is exponentially
distributed with meantr. In response to a presynaptic spike,
a depressing synapse releases a vesicle with probabilityp0,
but only while nonrefractory. The synaptic activation vari-
able is calculated using Eq.(3), except that the right-hand
side of the equation consists of the release events, rather than
the whole spike train.

All neurons in the network fire Poisson spike trains. For
the input neurons, the instantaneous rates are specified by the

functions shown in Figs. 6(a) and 6(b). The rate of the output
neuron is determined by the total synaptic inputs using the
transfer function given in Fig. 1.

The synapses are all excitatory with the synaptic weights
randomly initialized. In each trial of training, both directions
are presented, with each held for 600 ms. One direction is
trained to be the preferred direction by administering a re-
ward of 1 if the output neuron fires a spike. The other direc-
tion is trained to be the nonpreferred direction by adminis-
tering a reward of −1 if the output neuron fires a spike. We
use the online learning rule Eq.(16) to update synaptic
weights.

The learned synaptic weights are shown in Fig. 5(c). At
the end of learning, only nondepressing synapses remain for
one group, and depressing synapses for the other group. The
synaptic weights of all other synapses decay to near zero.
The total reward is plotted in Fig. 5(d) as a function of the
training epoch number.

By using nondepressing synapses from one group and de-
pressing synapses from the other group, the postsynaptic
neuron is able to achieve direction selectivity[10]. The pre-
ferred direction stimulates the nondepressing synapses first,
and the depressing synapses second. Because the depressing
synapses introduce a phase shift forward in time, the
postsynaptic neuron is coactivated by the synaptic input from
both groups[Fig. 6(a), 6(c), and 6(e). On the other hand, the
nonpreferred direction stimulates the depressing synapses
first, and the nondepressing synapses second, which sepa-
rates the synaptic inputs from both groups in time, leading to
weak response in the postsynaptic neuron[Fig. 6(b), 6(d),
and 6(f)].

VII. NETWORKS OF INTEGRATE-AND-FIRE NEURONS

The learning rule is derived with the assumption of Pois-
son spike trains. The spike trains of biological neurons are

FIG. 3. Synaptic weights before and after learning. The top two
panels represent synaptic connections from two input neurons to 10
hidden neurons before[panel (a)] and after[panel (b)] learning.
Dark and gray bars represent synapses emanating from the two
input neurons separately. The bottom two panels plot the synaptic
weights from the hidden to the output neuron before[panel(c)] and
after [panel(d)] learning. To limit the firing rate of the output neu-
ron not being too high, we have bounded the synaptic strength from
the input neurons to the hidden neurons to be less than 50 and from
the hidden neurons to the output neuron to be less than 150.

FIG. 4. Diagram of the depressing synapse model for direction
selectivity. The postsynaptic neuron receives synaptic inputs from
two groups with 20 neurons in each. Firing rates of the neurons in
each group are the same, and are coded as the rectified sinusoidal
function with peak amplitude 200 Hz and period 300 ms. Between
groups, the firing rates are temporally shifted from each other with
a delay or advance of 60 ms in the second group(filled circles)
representing inputs in the preferred or nonpreferred directions, re-
spectively. The synapses are all excitatory. From each group, half
synapses are depressing synapses(solid lines) with the mean recov-
ery timetr =200 ms, and the other half are nondepressing synapses
(dashed lines). The stochastic release probabilityp0=0.8. The syn-
aptic weights are randomly initialized.
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not truly Poisson. However, the learning rule may still work
in the presence of deviations from Poisson behavior. In this
section, we test application of the algorithm to a network of
integrate-and-fire neurons. We inject white noise to those
neurons to emulate random inputs neurons receive. The
model neuron is described by

tm
dVi

dt
= − Vi + Vrest+ I istd + jistd, s18d

whereVi is the membrane potential for neuroni, tm is the
membrane time constant,Vrest is the resting potential, and
I istd is the total synaptic input.jistd is the white noise:

kjistdl = 0, kjistdj jst8dl = s2/tmdi jdst − t8d, s19d

for all i , j =1, ... ,n. When membrane potentialVi reaches a
thresholdVth, a spike is generated andVi is reset toVr.
The synaptic inputI istd=o j Wijhijstd, where hijstd is the
synaptic activation variable, which is modeled by Eq.s3d.

The firing rate vs current relationship can be calculated
explicitly when white noise is injected. The firing rate is
described by[20]

f isI id = †tmE
0

`

e−u2
se2ythu − e2yrud/udu‡−1, s20d

whereyth=sVth−Vrest− Id /s andyr =sVr −Vrest− I id /s.
We apply the learning rule Eq.(16) to learn the same

XOR problem described in Sec. VI A. The result is shown in
Fig. 7, which demonstrates that the learning rule could still

be used for learning XOR computation. The learning curve
and the resulting synaptic strength are also similar to those in
the preceding section with Poisson spiking neurons.

The learning rule Eq.(16) uses the correlation between
reward and variations in neural activities to direct the change
of synaptic strength. If spike trains are not Poisson, the learn-
ing rule may still, on average, perform hill-climbing on the
expected reward function, though not necessarily in the gra-
dient ascent direction.

VIII. DISCUSSION

We have proposed a synaptic update rule for learning in
networks of spiking neurons. We show that the learning rule
is on average performing gradient ascend on an expected
reward function. The algorithm itself does not compute gra-
dient information explicitly, but estimates the gradient using
the correlation between the global reward signal and the fluc-
tuations in neural activities.

The learning rule depends on the spiking of presynaptic
and postsynaptic neurons. Recent experiments have demon-
strated types of synaptic plasticity that depends on the tem-
poral ordering of presynaptic and postsynaptic spiking. At
cortical and hippocampal synapses, long-term potentiation is
induced by repeated pairing of a presynaptic spike and a

FIG. 5. Learning to be direction selective using synapses with
depression.(a) Initial synaptic weights from all input neurons.(b)
The depressing synapses from the input neurons are indicated by
bars. Neurons from 1 to 20 belong to the first group and neurons
from 21 to 40 belong to the second group, which is activated with a
delay after the first group when the stimulus is moving in the pre-
ferred direction.(c) The synaptic weights after training. Only non-
depressing synapses from the first group and the depressing syn-
apses from the second group are selected, whereas the strength of
the rest synapses decays to zero.(d) The total reward administered
during each trial as a function of the training epochs.

FIG. 6. Responses of the postsynaptic neuron to the preferred
(left three panels) and nonpreferred(right three panels) directions
after training.(a) and (b) show the input firing rates from the two
groups. The first group is indicated by the solid lines, and the sec-
ond group by the dotted lines.(c) and (d) plot the total synaptic
inputs from the two groups separately. The solid line indicates the
total input from the first group and the dotted line indicates the total
input from the second group. Because after training the synapses
from the first group are mostly nondepressing synapses, their total
synaptic input follows the input firing rate without significant phase
shift. However, the synapses from the second group are mostly
depressing synapses. Their total synaptic input is phase-shifted for-
ward, which leads to overlapping synaptic inputs in(c) and non-
overlapping synaptic inputs in(d). (e) and(f) show the spike trains
of the postsynaptic neuron corresponding to the preferred and non-
preferred directional inputs, respectively.
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succeeding postsynaptic spike, while long-term depression
results when the order is reversed[21,22]. To induce either
type of plasticity, the time difference between presynaptic
and postsynaptic spikes has to be within a short time win-
dow.

Relating our learning rule to such experiments is not rig-
orously possible, because spiking in vitro is far from Pois-
son. To properly make the connection, it is necessary to ex-
tend the learning rule to a model of spiking that is more
biophysically realistic than the Poisson model, a task that is
outside the scope of the present work. However, the follow-
ing heuristic arguments can be made. The eligibility trace is
determined by filteringfissi − f idhij , and therefore its sign is

governed by the term,sihij or f ihij , that dominates the differ-
ence. A lone presynaptic spike in neuronj sets up an expo-
nentially decaying trace inhij . If it is closely followed by a
postsynaptic spike, thensihij will dominate overf ihij . If it is
closely preceded by a postsynaptic spike, thensihij =0, but
f ihij could be nonzero(whether this is true depends on how
the learning rule is extended to the non-Poisson case). There-
fore it is possible for the eligibility trace to change sign,
depending on the temporal ordering of presynaptic and
postsynaptic spiking.

Experiments on spike-timing dependent plasticity have
not tried to control any reward signal. If any reward circuitry
exists, it is not clear whether it would be operative in vitro

FIG. 7. (Color) Learning XOR in a network of integrate-and-fire neurons. Panels(a) and(b) plot the membrane potentials of the output
neuron over four input patterns before and after learning, respectively. Each input pattern is held for 500 ms. Panel(c) plots the change on
the firing rates of the output neurons over different input patterns during training. Panel(d) plots the synaptic weight from the input to the
hidden neurons after training. Dark and gray bars represent synapses emanating from the two input neurons separately. The learned synaptic
weight from the hidden to the output neurons saturates at maximum value as in Fig. 3 and is not shown here.
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anyway. If we suppose that the reward signal is frozen at
some positive value in vitro, then the above argument about
the sign of the eligibility trace implies the form of spike-
timing-dependent plasticity observed by Bi and Poo, and
Markram et al. [21,22]. On the other hand, if the reward
signal is frozen at some negative value, the learning rule
would lead to potentiation for the opposite temporal order-
ing, as observed by Bellet al. [23]. According to this inter-
pretation, the time window for plasticity induced by presyn-
aptic followed by postsynaptic spiking is determined by the
time constant of the postsynaptic currents.

In this paper, we derived the algorithm from a simple
Poisson spiking model. We speculate that the idea of updat-
ing synaptic strength based on the correlation between local
neural activity fluctuation and a global reward signal could
be applicable to networks of biophysical neurons. However,
for the algorithm to work properly, each neuron should have
a mechanism for estimating its mean activity, that is,f istd in
the learning rule. If the input to a postsynaptic neuron is
slowly variant, the neuron could estimate its mean activity
based on previous spikes, for example by low-pass filtering.
However, this mechanism will fail to work if the input
changes rapidly. One possible way to solve this problem is to
do noise injection into neurons, and modify the learning rule
to depend on the correlation between injected noise and the
global reward signal. This way, each neuron only needs to
detect the statistics of injected noise, independent of its own
activity. If the injected noise is close to be stationary, esti-
mating its variance by the postsynaptic neuron becomes rela-
tively easy. Another possible way to solve the problem is to
use the temporal variance rather than statistical variance of
neural activities. For example, we can modify the algorithm
to update synaptic strength based on the correlation between
the temporal variance of neural activity and the temporal
variance of reward function.

The learning update is a noisy estimate of the gradient of
the expected reward function. The signal-to-noise ratio of
this estimate tends to deteriorate with increased network size,
because the correlation of reward with the fluctuations in
spiking of any single neuron becomes weaker. Therefore,
similar to other types of reinforcement learning[2,3,15], the
learning rule suffers from slow convergence in large net-
works. However, the learning rule proposed here should be
faster than algorithms that correlate reward with fluctuations
in synaptic efficacy[2,3]. One way to speed up reinforce-
ment learning is to dissolve a large learning problem into
smaller subproblems, each learned by a module trained by a

separate reward signal[24]. How to construct such a hierar-
chical organization is a challenging issue that needs to be
resolved.

The learning rule relies critically on the modulation of
reward signals. Investigating the existence of such reward
signals and manipulating them to change the course of syn-
aptic plasticity is an interesting topic for future experimental
studies.
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APPENDIX: METHODS
In simulation, we discretize the continuous dynamics us-

ing Euler’s method with a step size ofDt=0.1 ms. At each
time interval, a spike is generated with probabilitylistdDt for
neuroni, wherelistd is its firing rate at discretized timet.
The spike train generated this way would be an approxima-
tion to the Poisson statistics and is exact in the limit whenDt
goes to zero. The synaptic time constantts=10 ms, the time
constant for eligibility tracete=10 ms, and the transfer func-
tion used is shown in Fig. 1(b).

In the first example of learning XOR computation, we use
a three-layer feedforward network with two input neurons,
ten hidden neurons and one output neuron. Each one of the
four input patterns is presented for a fixed period of 500 ms
with random orders in each training epoch. When the output
neuron fires a spike, we give a positive reward of 2 if the
desired output is 1 and a negative reward of −1 if the desired
output is 0. In this example, to simplify the problem we use
static and deterministic synapses, therefore, every presynap-
tic spikes are faithfully transmitted to postsynaptic neurons.
In the second example of learning direction selectivity using
depressing synapses, the preferred and nonpreferred direc-
tion inputs are presented for 600 ms in alternation. For de-
pressing synapses, the refractory time after each release
event is modeled by an exponential distribution with mean
time tr =200 ms. In simulation, we model this distribution
using −tr lnsxd, wherex is a random variable uniformly dis-
tributed between 0 and 1. For both depressing and nonde-
pressing synapses, we choose the stochastic release probabil-
ity p0=0.8.

For the integrate-and-fire neuron model, the parameters
we use aretm=20 ms, Vth=−54 mV, Vr =−60 mV, Vrest=
−74 mV, ands=5.6.
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