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This paper gives an exposition of the use of the posterior likelihood ratio for testing point null
hypotheses in a fully Bayesian framework. Connections between the frequentist P-value and the
posterior distribution of the likelihood ratio are used to interpret and calibrate P-values in a Bayesian
context, and examples are given to show the use of simple posterior simulation methods to provide
Bayesian tests of common hypotheses.
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1. Introduction

Neyman-Pearson or frequentist inference and Bayes inference
are most clearly differentiated by their approaches to point null
hypothesis testing. With very large samples, the frequentist and
Bayesian conclusions from a classical test of significance for a
point null hypothesis can be contradictory, with a small frequen-
tist P-value casting serious doubt on the null hypothesis, but a
large Bayes factor or Bayesian Information Criterion (BIC) in
favour of the null hypothesis.

A Bayesian approach by Dempster (1974, 1997) through the
likelihood ratio between the null and alternative hypotheses, ex-
tended by Aitkin (1997), provides a different evaluation of the
point null hypothesis, one in which frequentist and Bayesian
conclusions are much closer. The discussion in Aitkin (1997) is
restricted, in both the computational approach and the range of
examples considered, and in this paper we extend both, by using
simple posterior simulation methods for intractable integrations,
and a range of examples of the standard frequentist hypothesis
testing kind, to illustrate the broad generality of the approach.
We also provide the usual Bayes factor comparisons where these
are possible, to illustrate the differences in conclusions.

Section 2 of the paper gives a simple binomial example with
no nuisance parameters to illustrate Dempster’s original ap-
proach, and Section 3 gives the general result from Aitkin (1997).
Section 4 illustrates the general approach with nuisance param-
eters using the two-parameter normal model, discussed analyti-
cally in Aitkin (1997) and by simulation methods in Chadwick
(2002), and illustrates the role of posterior simulation in pro-
viding very simple solutions to the sometimes complex distri-

butional problems of the likelihood ratio. Section 5 extends the
“nested model” approach to encompassing models, and Sec-
tion 6 shows that for the normal multiple regression model,
straightforward posterior simulation methods give Bayesian ana-
logues to backward elimination in frequentist theory. Section 7
illustrates the importance of parametrization with the binomial
(N , p) model which has been considered by many authors. Sec-
tion 8 discusses the Bayesian analysis of the 2 × 2 contingency
table with a well-known example from a randomized clinical
trial. Section 9 gives concluding discussion.

2. Simple null hypotheses

Consider the simple example due to Stone (1997) in the dis-
cussion of Aitkin (1997). A physicist runs a particle-counting
experiment to identify the proportion θ of a certain type of par-
ticle. He has a well-defined scientific (null) hypothesis H1 that
θ = 0.2(= θ1) precisely. There is no specific alternative hypoth-
esis, only the general H2, that θ �= θ1. He counts n = 527, 135
particles and finds r = 106, 298 of the specified type. What is
the strength of the evidence against H1?

The binomial likelihood function

L(θ ) =
(

n
r

)
θ r (1 − θ )n−r ≈ L(θ̂ ) exp

{
− (θ − θ̂ )2

2SE(θ̂ )2

}

is maximized at θ = θ̂ = 0.201652 with standard error SE(θ̂ ) =
0.0005526. The standardized departure from the null hypothesis
is

Z1 = |θ1 − θ̂ |/SE(θ̂ ) = 0.001652/0.0005526 = 2.9895,
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with a two-sided P-value of 0.0028, strong evidence against the
null hypothesis. The maximized likelihood ratio is L(θ1)/L(θ̂ ) =
0.01146.

The physicist uses the uniform prior π (θ ) = 1 on 0 < θ < 1
under the alternative hypothesis, and computes the Bayes factor

B = L(θ1)

/ ∫ 1

0
L(θ )π (θ ) dθ.

The denominator is

L B =
(

n
r

) ∫ 1

0
θ r (1 − θ )n−r dθ

=
(

n
r

)
B(r + 1, n − r + 1)

≈ L(θ̂ )
∫ 1

0
exp

{
− (θ − θ̂ )2

2SE(θ̂ )2

}
dθ

=
√

2π SE(θ̂ )L(θ̂ )

= L(θ̂ )/ f (θ̂ ),

where B(r +1, n−r +1) is the complete Beta function, and f (θ̂ )
is the normal posterior density N (θ̂ , SE(θ̂ )2) of θ evaluated at
the mean θ̂ ; since the sample size is so large the actual posterior
Beta density is very nearly normal.

The Bayes factor is thus

B = L(θ1)/L B

= f (θ̂ ) · L(θ1)/L(θ̂ ),

a simple multiple of the maximized likelihood ratio. In this ex-
ample the multiplier is

f (θ̂ ) = 1√
2π SE(θ̂ )

= 1

0.0013851
= 721.937,

giving the Bayes factor

B = 721.937 · 0.01146 = 8.27,

indicating evidence in favour of the null hypothesis. Thus the
P-value and Bayes factor are in clear conflict. However the pos-
terior distribution of θ is not in conflict with the P-value, since
the posterior probability that θ > 0.2 is

Pr[θ > 0.2 | y] = �(2.9895) = 0.9986 = 1 − P/2.

Any Bayesian using the uniform prior must have a very strong
posterior belief that the true value of θ is larger than 0.2. Equiv-
alently, the 99% equal-tailed Bayesian credible interval for θ

is

θ ∈ θ̂ ± 2.576SE(θ̂ ) = (0.20023, 0.20308)

which is numerically identical to the 99% frequentist confidence
interval, and excludes θ1.

This example illustrates one of the difficulties of Bayesian
analysis, that one may have to choose between “hypothesis test-
ing” and “estimation” approaches when these are in conflict.

Kass and Greenhouse (1989) and Kass and Raftery (1995) give
clear statements of the difference between these approaches.

In his 1974 conference paper, Dempster considered the likeli-
hood ratio between the null and alternative hypothesis models:

L R(θ ) = L(θ1)/L(θ ).

Since θ is unknown under the alternative, L(θ ) is also unknown,
but is a function of θ and so, given the data, it has a poste-
rior distribution π [L(θ ) | y] which can be derived from that of
θ, π (θ | y). Since L(θ1) is a known number, the likelihood ratio
also has a posterior distribution, π [L R(θ ) | y]. We may therefore
find its posterior percentiles, and so can find

Pr[L R(θ ) < 0.1 | y]

for example. A likelihood ratio of 0.1 between fully speci-
fied simple hypotheses would be quite strong sample evidence
against the “numerator” hypothesis; a posterior probability of
0.9 or more that the likelihood ratio was less than 0.1 would
similarly be quite strong evidence against this hypothesis, and
in general the posterior distribution of the likelihood ratio can be
used to assess the strength of the evidence against (or in favour
of ) the null hypothesis.

In the Stone example, approximating the binomial likelihoods
by the corresponding normal likelihoods gives the likelihood
ratio as

L R(θ | y) ≈ φ([θ1 − θ̂ ]/SE[θ̂ ])

φ([θ − θ̂ ]/SE[θ̂ ])
,

or in terms of the “deviance” D(θ ),

D(θ ) = −2 log L R(θ | y) = Z2
1 − Z2,

where

Z = θ − θ̂

SE(θ̂ )

Here Z has a posterior N (0, 1) distribution, and Z1 is Z with θ

replaced by θ1. Now Z1 = 2.9895 and so

Pr[L R(θ ) < 0.1 | y] = Pr[D(θ ) > 4.605 | y]

= Pr
[
Z2 < Z2

1 − 4.605 | y
]

= Pr
[
χ2

1 < 4.331
] = 0.9626,

while

Pr[L R(θ ) < 1 | y] = Pr[D(θ ) > 0 | y]

= Pr
[
Z2 < Z2

1

∣∣ y
]

= Pr
[
χ2

1 < 2.98952
] = 0.9972

= 1 − P

where P is the frequentist P-value from the likelihood ratio test.
This illustrates Dempster’s fundamental result (which he gave
for a p-parameter simple null hypothesis against a general alter-
native) that, with normal likelihoods and flat priors, the P-value
is equal to the posterior probability that the likelihood ratio is
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greater than 1, that is, that the data support the null hypothesis
more strongly than the alternative.

The above form of Bayesian analysis comes to the same con-
clusion as the frequentist analysis, that there is strong sample
evidence against the null hypothesis. Why does the Bayes factor
point in the opposite direction? One point which does not seem
to have been noticed is that we intended to compare the null bi-
nomial model with “some other” binomial model, unspecified.
But the binomial distribution integrated over the flat prior gives
a uniform distribution with mass 1/(n + 1) at the n + 1 possi-
ble values of r. The Bayes factor is comparing the null binomial
model with the uniform distribution for r. This was surely not our
intention, since no binomial distribution is uniform. The inte-
gration has taken us outside the family of binomial distributions
within which we wanted to compare the null model.

The general Bayesian opposition to the use of averaging over
the sample space in frequentist testing is weakened in this ap-
proach, since the P-value has a fully Bayesian interpretation,
though it might be argued that the P-value still overstates the
strength of evidence against the null hypothesis since it refers
only to a preference for the null hypothesis over the alternative.
However we may compute any percentiles of the posterior dis-
tribution of the likelihood ratio; in the example above, there is
strong posterior evidence that the likelihood ratio is less than
0.1, not just that it is less than 1. The information in the full
posterior distribution of the likelihood ratio provides a richer
analysis than just the frequentist P-value, and also calibrates the
P-value from a Bayesian perspective.

This approach was extended to models with nuisance param-
eters in Aitkin (1997).

3. General point null hypothesis testing
problems

We deal with a family of models M, determined by a proba-
bility model f (y | η) depending on a vector-valued parameter
ηT = (θT , φT ). It is helpful to consider the probability model
in the context of a large but finite population of N members, in
which θ and φ represent population properties like the mean and
variance, which could be determined exactly by a census of the
population, though we have only a sample of n values.

Some Bayesians (see for example Geisser 1993) deny the rel-
evance of parameters, insisting that only random variables have
a real existence, but most statisticians regard them as convenient
model components, and survey sampling statisticians take finite
population parameters as the essential feature for statistical in-
ference.

The likelihood for the given data y is

L(θ, φ) = f (y | θ, φ).

In our analysis there are true values of θ and φ; the prior dis-
tribution for these parameters represents our uncertainty about
these true values.

We consider a null hypothesis H1 which specifies the value
θ1 of θ , while φ is unspecified. An alternative hypothesis H2

specifies either that θ is completely unspecified, or that θ has a
different specified value θ2. In either case φ is unspecified.

The joint prior distribution for θ and φ is π (θ, φ). This may
be proper or improper; we make particular use of flat priors
to represent diffuse prior information, with the aim, following
Berger and Bernardo (1989), of developing a reference prior
analysis of these hypothesis testing problems.

The first class of testing problems with an unspecified alterna-
tive was considered by Aitkin (1997), and we review the results
briefly. If the true value of φ, and the true value of θ under the
alternative H2 were known, the likelihood ratio between the hy-
potheses would provide the data evidence for H1 against H2; we
write the likelihood ratio as

L R = L R(θ, φ) = L(θ1, φ)/L(θ, φ),

where the dependence of LR on the data y and the known value
θ1 are suppressed, and the values of θ and φ are understood to
be the true values.

In this approach the inferential function LR is the likelihood
ratio defined by a section through the likelihood at the true value
of the nuisance parameter φ, evaluated at the null hypothesis
value θ1 and at the true value of θ . Though the true values of φ

and θ are unknown, their posterior distribution is known:

π (θ, φ | y) = L(θ, φ) · π (θ, φ)∫
L(θ, φ) · π (θ, φ)dθdφ

and therefore so is the posterior distribution of LR. In particular,
we may evaluate the posterior probability

Pr[L R < k | y]

for any specified k, like 0.1 or 0.01. It will be convenient to
evaluate such probabilities through the posterior distribution of
the “true deviance” D = −2 log L R.

For normal likelihoods with flat priors, Aitkin (1997) showed
that the result due to Dempster, for a p-parameter simple null
hypothesis, with normal likelihoods and flat priors:

P[L R < k | y] = Fp

[
F−1

p (1 − P) + 2 ln k
]

applies also to nuisance-parameter models (where p is the di-
mension of θ, P is the frequentist P-value from the likelihood
ratio test, and Fp(x) is the cdf of the χ2

p distribution). In partic-
ular, for k = 1,

Pr[L R < 1 | y] = 1 − P,

so again the P-value is the posterior probability that the likeli-
hood ratio is greater than 1, that is that the null hypothesis is
better supported than the alternative.

In finite samples with non-normal likelihoods these are
asymptotic results and hence are insufficient. We now discuss
simulation approaches to obtaining the posterior distribution of
LR or D, in the context of the two-parameter normal model.
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4. Example—the two-parameter normal model

The model for data y is N (µ, σ 2) with σ unknown. A null hy-
pothesis H1 specifies µ = µ1 = 0; the alternative H2 is gen-
eral. A random sample of n = 25 observations gives ȳ = 0.4,
and unbiased variance estimate s2 = 1. What is the strength
of the evidence against H1 in favour of H2? The t-statistic is
t = √

25 · 0.4/1 = 2.0, with a two-sided P-value of 0.057 from
the t24 distribution.

The likelihood function is

L(µ, σ ) = 1

(2π )n/2σ n
exp

{
− 1

2σ 2
[(n − 1)s2 + n(ȳ − µ)2]

}
,

and given independent diffuse priors on µ and log σ , the con-
ditional posterior distribution of µ | σ is N (µ̂, σ 2/n), and the
marginal posterior distribution of s2/σ 2 is χ2

n−1/(n − 1). The
true deviance is

D = −2 log

{
L(µ1, σ )

L(µ, σ )

}
= n

σ 2
[(ȳ − µ1)2 − (ȳ − µ)2]

= n(ȳ − µ1)2

s2
· s2

σ 2
− n(ȳ − µ)2

σ 2

= t2 · W − Z2

where Z has a posterior N (0, 1) distribution independently of
W = s2/σ 2 which has the χ2

n−1/(n − 1) distribution. It follows
immediately that

Pr[L R < 1 | y] = Pr[D > 0 | y]

= Pr[Z2/W < t2 | y] = 1 − P,

where P is the P-value 0.057 from the tn−1 distribution.
For other values of k the distribution of D has no simple an-

alytic form, so we simulate it by generating N times a random
value of W and an independent random value of Z, and com-
puting the value of D = t2W − Z2 for the observed t. Figure 1
shows the posterior cdf of D from N = 10, 000 simulations.

The simulated probability that D > −2 log 1 = 0 is 0.945,
with simulation standard error 0.0023, in close agreement with
the known value of 1− P of 0.943, and the simulated probability
that D > −2 log 0.1 is 0.157, with standard error 0.0036.

The probability that the L R < 0.1 is quite low—there is
no convincing evidence against the null hypothesis. This is of
course to be expected since the P-value does not reach even
conventional levels.

The Bayes factor cannot be computed here due to the diffuse
prior on µ.

5. An encompassing model

We now extend these results to the comparison of two specified
values of θ , following Chadwick (2002). We illustrate with the
two-parameter normal model.

The model and data are as in the previous example, but there
are now two point hypotheses, H1 : µ = µ1 = 0 and H2 : µ =

Fig. 1. Posterior distribution of D

µ2 = 1. What is the strength of evidence against H1 in favour
of H2?

The t-statistic regarding H1 as the “null” hypothesis is t1 = 2.0
as before, while that regarding H2 as the null is t2 = 3.0. Clearly
H1 is better supported. The maximized likelihood ratio is

L Rmax = L(µ1, ̂σ1(µ1))

L(µ2, ̂σ2(µ2))

=
[(

1 + t2
2

n − 1

)/(
1 + t2

1

n − 1

)]−n/2

= 7.80,

where

̂σ 2
j (µ j ) = [(n − 1)s2 + n(ȳ − µ j )

2]/n, j = 1, 2.

The true deviance is now

D = −2 log

[
L(µ1, σ )

L(µ2, σ )

]

= n

σ 2
[(ȳ − µ1)2 − (ȳ − µ2)2]

= s2

σ 2

[
t2
1 − t2

2

]
.

The only nuisance parameter is σ , and as before s2/σ 2 has the
χ2

n−1/(n − 1) marginal posterior distribution. So for the upper
tail,

Pr[L R > k | y] = Pr[D < −2 log k | y]

= Pr
[
χ2

n−1 > −2(n − 1) log k
/(

t2
1 − t2

2

)]
.

We drop the conditioning on y for notational convenience. For
k = 1 we have immediately

Pr[L R > 1] = 1,
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Fig. 2. Posterior distribution of D

and for k = 10,

Pr[L R > 10] = Pr
[
χ2

24 > 24 · 4.605/5 = 22.10
] = 0.573.

So H1 is certainly better supported, but the evidence in favour
of H1 is not very strong—the chance that the true LR is greater
than 10 is not much over 50%.

The posterior distributions of D and of LR are graphed in
Figs. 2 and 3. It is of interest that

Pr[L R > 7.80] = Pr
[
χ2

24 > 19.72
] = 0.713,

Fig. 3. Posterior distribution of LR

so the maximized likelihood ratio is at the 29-th percentile of the
posterior distribution of the true LR; in this case the maximized
likelihood ratio appears to understate the strength of evidence.

Since the parameter space has the same dimension under both
models, the Bayes factor can be computed with the same diffuse
prior on log σ , assuming that the same (arbitrary) prior constant
is used. The integrated likelihood over σ is

L B(µ) = 1

2(2π )n/2
�(n/2)

[
2

(n − 1)s2 + n(ȳ − µ)2

]n/2

and hence

B F =
[

1 + t2
2

/
(n − 1)

1 + t2
1

/
(n − 1)

]−n/2

= L Rmax = 7.80.

Thus the Bayes factor gives the same understatement of strength
of evidence as the maximized likelihood ratio in this example.

We turn now to more complex examples.

6. Multiple regression

Consider the normal regression model with n observations on a
response Y and a p + 1-vector x of p explanatory variables and
1, with the model

Y | x ∼ N (µ, σ 2), µ = βT x.

Our aim is to assess the important variables through a series
of model comparisons expressed in terms of partitions β =
(β j , γ j ) and hypotheses Hj : γ j = 0 in model M j . Paralleling
backward elimination methods in frequentist theory, we examine
the strength of evidence for the various models in the backward
elimination sequence. The approach does not depend on the
choice of variables—any sub-model can be compared with the
full model in the same way.

We use a well-known data set—the gas consumption data of
Henderson and Velleman (1981), which has observations on the
fuel consumption, expressed in miles per (US) gallon, of 32 cars
with 10 design variables on the engine and transmission.

We follow the backward elimination analysis of Aitkin, et al.
(1989, p. 140), using log(mpg) as the response variable and the
explanatory variables, listed in order of backward elimation:
c, drat, s, t , log(disp), cb, g, and log(hp). The corresponding
backward elimination t-statistics for these variables are −0.082,
−0.320, −0.340, −0.461, −0.723, −1.070, 1.052 and −4.372.
Elimination ceases with a final model using log(wt) and log(hp).

In the backward elimination sequence the sums of squares of
eliminated variables are pooled with the error sum of squares
from the full model, so the degrees of freedom of the t-statistics
change at each step.

In the analysis below we maintain the posterior distribution
of β and σ from the full model, as this gives a more realistic
picture of the information about many parameters from the small
sample.
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The likelihood for the full model is

L(β, σ ) = 1

(2π )n/2σ n
exp

{
− 1

2σ 2
(y − Xβ)T (y − Xβ)

}

= 1

(2π )n/2σ n
exp

{
− 1

2σ 2
[RSS

+ (β − β̂)T X T X (β − β̂)]

}

where X is the n × (p + 1) design matrix,

β̂ = (X T X )−1 X T y, RSS = (y − X β̂)T (y − X β̂).

We take flat priors on β and log σ to give the usual joint posterior
distribution, with

β | y, σ ∼ N (β̂, σ 2(X T X )−1), RSS/σ 2 | y ∼ χ2
n−p−1.

Consider the null hypothesis Hj : βT = (βT
j , 0T ) for some

partition. The true likelihood ratio and deviance are

L R = L(β j , 0, σ )

L(β, σ )

D = 1

σ 2

[
RSSj − RSS + (β j − β̃ j )

T X T
j X j (β j − β̃ j )

− (β − β̂)T X T X (β − β̂)
]

where RSSj is the residual sum of squares from model M j , X j

is the partition of X corresponding to β j , and β̃ j is the MLE of
β j in model M j .

The posterior distribution of D or LR is easily simulated, by
generating a random σ from its marginal posterior distribution,
and a random β from its conditional posterior given the gener-
ated σ . The MLEs and residual sums of squares from the models
are known, and the quadratic forms in β are evaluated from the
MLEs and X matrices.

We show in Figs. 4–11 the posterior distributions of D, based
on 1000 simulations, for the successive omitted partitions corre-
sponding to the backward elimination t-statistics: {c}, {c, drat},
{c, drat, s}, {c, drat, s, t}, {c, drat, s, t , log(disp)}, {c, drat, s,
t , log(disp), cb}, {c, drat, s, t , log(disp), cb, g}, {c, drat, s, t ,
log(disp), cb, g, log(hp)}.

The distributions are all remarkably diffuse, with very large
variances, reflecting the very small degrees of freedom of the
residual sum of squares. The tail probabilities that D < 4.605,
that is that L R > 0.1 (weak evidence against the null hypothesis
of zero regression coefficients), are given in Table 1, together
with the P-values from the relevant t-distributions.

Despite this diffuseness the message is very clear: The early
distributions have large probabilities for D < 4.605, around 0.5
for the first four variables eliminated; this drops to around 0.16
at step 5 but increases again to around 0.2 in step 7. At step 8 the
distribution changes drastically, with a tail probability below
4.605 of only 0.036. These results are completely consistent
with the backward elimination t-statistics, though the latter are
not pooled tests of all the variables being eliminated.

Fig. 4. Step 1

Fig. 5. Step 2

7. The importance of parametrization

In his discussion of Aitkin (1997), Dempster expressed concern
about the extension of the approach proposed there, in the sense
of the dependence of the true LR on the parametrization of the
nuisance parameter.

The ideal parametrization would have fully orthogonal pa-
rameters θ and φ, with likelihood of the form

L(θ, φ) = L1(θ )L2(φ).
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Fig. 6. Step 3

Fig. 7. Step 4

Then the true likelihood ratio for a null hypothesis H1 : θ = θ1

is

L R = L(θ1, φ)

L(θ, φ)
= L1(θ1)

L1(θ )

for any φ, so the nuisance parameter is irrelevant—any
prior distribution for it gives the same likelihood ratio for
θ .

This parametrization does not generally exist; the next best
has orthogonality in the observed or expected information ma-
trix (Cox and Reid 1987); as the sample size increases and
if the likelihood approaches normality in the parameters this

Fig. 8. Step 5

Fig. 9. Step 6

will give approximately orthogonal parameters. For such a
parametrization, independent priors will be a natural choice
and their effect will dissipate rapidly with increasing sample
size.

The importance of orthogonality is clear from the following
example.

The binomial sample size

Given a sample y1, . . . , yn from a binomial distribution b(N , p)
with both parameters unknown, what can be said about N? The
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Fig. 10. Step 7

Fig. 11. Step 8

likelihood is

L(N , p) =
n∏

i=1

(
N
yi

)
pyi (1 − p)N−yi

=
[

n∏
i=1

(
N
yi

)]
pt (1 − p)Nn−t

where t = ∑n
1 yi .

This problem was originally considered by Olkin, Petkau and
Zidek (1981) in the framework of the “instability” of the MLE
N̂ from samples in the “near-Poisson” region where the sample
mean and variance were close.

Table 1. Pr[D < 4.605] and t P-value for subset elimination

Step Variable omitted Pr[D < 4.605] P-value

1 c 0.585 0.935
2 drat 0.473 0.752
3 s 0.458 0.737
4 t 0.420 0.649
5 log(disp) 0.159 0.476
6 cb 0.111 0.294
7 g 0.196 0.302
8 log(hp) 0.036 0.00014

A recent discussion from a Bayesian perspective, with some
references, was given by Berger, Liseo and Wolpert (1999) who
argued for the general use of integrated likelihoods for the elim-
ination of nuisance parameters, and gave this model and the
following data (considered by Olkin et al. and later authors) as
a persuasive example.

The data from a sample of n = 5 are 16, 18, 22, 25, 27. The
sample mean is ȳ = 21.6 and the (biased) variance estimate s2

is 17.04, giving moment estimates of p̃ = 1 − s2/ȳ = 0.211
and Ñ = ȳ/ p̃ = 102.3. These estimates are highly unstable,
as are the MLEs, in the sense that small changes in the largest
observation produce very large changes in Ñ : for example, if
the largest observation is changed to 28, then ȳ = 21.8, s2 =
19.36, p̃ = 0.112, Ñ = 194.8.

The profile likelihood in N is nearly flat, with a very poorly
defined maximum, and the conditional likelihood conditioned
on t has no internal maximum at all, approaching its maximum
as N → ∞. Berger et al. concluded that “These [likelihoods]
are nearly constant over a huge range of N and are clearly useless
for inference.” They proposed the uniform or Jeffreys priors for
this problem; these give well-defined modes in the integrated
likelihood for N.

Kahn (1987) had earlier considered general conjugate beta
priors

π (p) = pa−1(1 − p)b−1

B(a, b)
,

and had shown that the integrated likelihood in N,[
n∏

i=1

(
N
yi

)]
B(t + a, Nn − t + b),

in this example is extremely sensitive to the value of the first beta
parameter a, which controls the location of the mode and the
heaviness of the tail of the posterior distribution of N ; for a = 0
this tail is flat, giving an essentially uninformative posterior for
N, equivalent to the conditional likelihood.

A detailed comparison of profile likelihood and integrated
likelihood inference for this example was given in Aitkin and
Stasinopoulos (1989), who also showed the likelihood in N and
p, which has extremely concentrated banana-shaped contours
along the curve Np = ȳ (Fig. 12).
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Fig. 12. Likelihood in (N, p)

This very strong association between the parameters empha-
sises the difficulty of drawing marginal inferences about N, at
least in this parametrization.

Aitkin and Stasinopoulos derived the (expected) information-
orthogonal nuisance parameter transformation ψ = N p, by
solving a partial differential equation, following Cox and Reid
(1987). The joint likelihood in N and ψ , shown in Fig. 13, is al-
most orthogonal, and whether this joint likelihood is maximized
or integrated over ψ , the resulting likelihood is essentially the
profile likelihood (which is invariant over nuisance parameter
transformation).

The true likelihood ratio shows clearly the difficulty in the
N , p parametrization. Consider two candidate values of the
binomial index, N1 and N2. The true likelihood ratio is, as an
explicit function of p,

L R(p) = L(N1, p)

L(N2, p)

= (1 − p)(N1−N2)n
∏

i

[(
N1

yi

)/(
N2

yi

)]
.

Fig. 13. Likelihood in (N, ψ)

The ratio of products of binomial coefficients can be expressed
simply using Stirling’s formula (since all of N and the yi are
large) as

∏
i

[(
N1

yi

)/(
N2

yi

)]
≈

(
N1

N2

)t

.

For even moderate differences between N1 and N2 and even
small values of n, the term (1− p)(N1−N2)n depends very strongly
on the prior distribution for p.

In the N , ψ parametrization, the likelihood is

L(N , ψ) =
n∏

i=1

(
N
yi

)(
ψ

N

)t(
1 − ψ

N

)Nn−t

and the true LR becomes

L R(ψ) = L(N1, ψ)

L(N2, ψ)

→
(

N2

N1

)t ∏
i

[(
N1

yi

)/(
N2

yi

)]

→ 1

since for large N the last term in the likelihood tends to
exp(−nψ). Thus in the ψ parametrization the likelihood ratio
L R(ψ), based on the section through the L(N , ψ) likelihood at
ψ , does not depend on ψ , nor on the data, and approaches 1.
That is, the tail of the likelihood is flat in N for any given ψ .

This is in accord with the “near-Poisson” nature of the
sample—the maximized likelihood ratio for Poisson to “best bi-
nomial” is 0.935 (Aitkin and Stasinopoulos)—and with the pro-
file likelihood which exhibits this asymptotic behaviour. Since
ψ is bounded above by N, the parameter spaces for N and ψ

are not independent. However the likelihood in ψ goes to zero
rapidly with ψ when far from N, and so the upper bound on the
range for ψ has no practical consequences.

We note finally that independent flat priors on p and N trans-
form to a prior in N and ψ of the form π (N , ψ) = 1/N , and
it is this term in 1/N which “pulls down” the flat N tail of the
likelihood in the N , ψ parametrization, giving the well-defined
mode in N in the N, p parametrization with the uniform prior in
p.

Thus the “useless” profile or conditional likelihoods are in fact
conveying correctly the information in the data about N—the
well-defined modes in the integrated likelihoods for the uniform
and Jeffreys priors are direct consequences of these priors, and
give a misleading impression of the information in the data about
N. As we noted earlier, the use of independent flat priors may
have a strong effect on the marginal posteriors if the parameters
are strongly associated in the likelihood.

8. The 2 × 2 table for randomized clinical trials

In the 2×2 randomized clinical trial, subjects are randomized to
one of two treatment conditions, giving n1 patients in treatment
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Table 2. ECMO trial outcome

ECMO CMT Total

Recover 11 0 11
Died 0 1 1
Total 11 1 12

1 and n2 in treatment 2. The response to treatment is the binary
event of “success” or “failure”, suitably defined. The response
probability in treatment j is p j , and of the n j patients treated, r j

are successes, with r = r1 + r2, n = n1 + n2. What can be said,
in a Bayesian framework, about:

• the attributable risk � = p1 − p2;
• the relative risk ρ = p1/p2;
• the odds ratio ψ = p1/(1−p1)

p2/(1−p2) and
• the number needed to treat nnt = 1

p2
− 1

p1
?

The likelihood is

L(p1, p2) = pr1
1 (1 − p1)n1−r1 · pr2

2 (1 − p2)n2−r2 ,

and using independent conjugate Beta priors

π (p j ) = p
a j −1
j (1 − p j )

b j −1/B(a j , b j ),

the posterior distribution of p1, p2 is the product of independent
Beta posteriors

π (p j | y) = p
r j +a j −1
j (1−p j )

n j −r j +b j −1/B(r j + a j , n j−r j+b j ).

Exact results for the posterior distribution of the attributable
risk or any of the other measures of difference are complex
and involve sums of hypergeometric probabilities (Altham 1969,
Hashemi et al. 1997). However the marginal posterior distribu-
tion of any parametric function of p1 and p2 can be simulated
directly, by generating N realizations from the posterior distri-
butions of p1 and p2, and calculating the appropriate function
(Tanner 1996). This is an extremely simple calculation. We illus-
trate with the following table, from the ECMO study of Bartlett
et al. (1985). This study compared the ECMO (extra corporeal
membrane oxygenation—oxygenation of the blood outside the
body) treatment for respiratory failure in newborn babies with
CMT (conventional medical treatment—oxygen under pressure
in a respirator). The “play the winner” randomization method
used is discussed below; it led to the treatment of 11 babies
with ECMO, of whom all recovered, and 1 baby with CMT, who
died. We use uniform priors here initially; we show the effect of
non-uniform priors below, and comment on the general use of
uniform priors.

The posterior distribution of p1 (for ECMO) is

π (p1 | y) = 12p11
1 ,

and that of p2 for CMT is

π (p2 | y) = 2(1 − p2).

What is the posterior probability that p1 > p2? We have imme-
diately that

Pr[p1 > p2 | y] =
∫ 1

0
2(1 − p2)dp2

∫ 1

p2

12p11
1 dp1

= 2
∫ 1

0
(1 − p2) · (

1 − p12
2

)
dp2

= 0.989.

Thus there is strong evidence that ECMO is better. Altham
(1969) gave this probability calculation for the general 2 × 2
table in terms of hypergeometric probabilities; it is expressed
there in terms of the odds ratio being greater than 1. Altham
showed that the Fisher P-value exceeds the posterior probability
for all priors with common indices a j = b j = c for 0 ≤ c ≤ 1,
but this result need not hold for c > 1.

The superiority of ECMO holds for all the measures of dis-
crepancy above. However to determine the extent of its superi-
ority, we need the full posterior distribution of the discrepancy
measures.

We generate N = 10, 000 independent realizations p1 j , p2 j

of p1 and p2 from their posterior distributions with flat prior
distributions. For each pair j we compute the four discrepancy
measures above. The empirical cdfs of the four measures are
shown in Figs. 14–17, on log scales for the relative risk and
odds ratio.

The empirical probability that the attributable risk is posi-
tive is 0.9893, with simulation standard error 0.0010, in close
agreement with the theoretical value. The same probability ap-
plies to the relative risk and odds ratio being greater than 1, or
the nnt being positive. Equal-tailed 95% credible intervals for
the four measures are:

Fig. 14. Posterior distribution of attributable risk
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Fig. 15. Posterior distribution of log relative risk

Fig. 16. Posterior distribution of log odds ratio

• attributable risk—(0.069, 0.948);
• relative risk—(1.09, 69.9);
• odds ratio—(1.78, 4501);
• nnt—(0.095,72.9).

For the number needed to treat, the distribution is extremely
long-tailed, because of the posterior density of p2 having its
mode at zero. This is an inherent difficulty of this discrepancy
measure; if both probabilities can be small, and especially if they
can be equal, the nnt distribution will be extremely long-tailed
in both directions and will have appreciable mass at ±∞, which

Fig. 17. Posterior distribution of number needed to treat

will be unhelpful for interpretation. These and other deficiencies
of the nnt have recently been discussed by Hutton (2000).

The distributions of all the discrepancy measures are very
diffuse, not surprising from the sample of one CMT baby, though
they are all well away from the “null” value, as we saw above.

8.1. Fisher’s “exact” test

The standard test for the 2 × 2 table, especially with small sam-
ples, is Fisher’s “exact” test, based on the conditional hyperge-
ometric distribution of R1 given the marginal total R = r . This
is

Pr[R = r1 | R = r ] = Pr[R = r1, R2 = r2]/Pr[R = r ]

=
(

n1

r1

)(
n2

r2

)
ψr1

/u=u2∑
u=u1

(
n1

u

)(
n2

r − u

)
ψu,

where ψ is the odds ratio, and u1 = max(0, r − n2), u2 =
min(n1, r ). For the ECMO example, the conditional likelihood
from the hypergeometric distribution is

C L(ψ) = ψ11

11ψ10 + ψ11
= ψ

11 + ψ
.

At the null hypothesis value ψ = 1, C L(1) = 1/12 = 0.0833.
Since this table is the most extreme possible, the P-value of this
observed table is 0.0833, which does not reach conventional
levels of significance.

This lack of sensitivity of the “exact” test follows from the
loss of information in the conditioning statistic. Although Fisher
argued that the marginal total was ancillary, or at least should
be treated as such, Plackett (1977) showed that the marginal to-
tal R is informative about ψ , though it is difficult to make use
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of this information in a classical framework, and as the sam-
ple sizes tend to infinity, this information becomes negligible
relative to the information in the cells. However we are at the
opposite extreme, where the sample sizes are very small, and
here the information in the marginal total may be appreciable.
This is clear from comparing the maximized conditional like-
lihood ratio for the null hypothesis against the alternative, of
0.0833, with the unconditional maximized likelihood ratio of
(11/12)11 · (1/12)/1 = 0.032 which would provide strong evi-
dence against the null hypothesis, with a P-value of 0.0087 under
the asymptotic χ2

1 distribution, if this were valid.
The posterior distribution of the likelihood ratio requires a

choice of parameterization for the nuisance intercept parame-
ter in the regression model for the 2 × 2 table. For the nor-
mal regression model for a two-group structure with group
sample sizes n1 and n2, the dummy variable coding giving
information-orthogonal parameters is (−n2/n, n1/n). We adopt
this parametrization for the identity link probability model for
the attributable risk, though the resulting information matrix is
not quite orthogonal because of the iterative weights in the gen-
eralized linear model analysis. The parameters transform to

p1 = β0 − n2

n
β1, p2 = β0 + n1

n
β1,

with

β0 = (n1 p1 + n2 p2)/n = p̄.

Note that this form of the nuisance parameter is exactly
information-orthogonal to the log-odds ratio parameter, see Cox
in the discussion of Yates (1984). However there is no analytic
relation between these two parametrizations and so we use the
simpler linear model parametrization. The likelihood in the re-
gression parameters is

L(β0, β1) =
(

β0 − n2

n
β1

)r1
(

1 − β0 + n2

n
β1

)n1−r1

×
(

β0 + n1

n
β1

)r2
(

1 − β0 − n1

n
β1

)n2−r2

,

and under the null hypothesis,

L(β0, 0) = βr
0(1 − β0)n−r .

The likelihood ratio is, in the p1, p2 parametrization,

L R = p̄r (1 − p̄)n−r

pr1
1 (1 − p1)n1−r1 pr2

2 (1 − p2)n2−r2
.

Figures 18 and 19 show the empirical cdf of the likelihood ra-
tio and the corresponding deviance from the 10000 simulations
above.

The empirical probability that L R < 1 is 0.9893, the same
value as the posterior probability that the attributable risk is
positive; the simulated posterior probability that L R > 1 of
0.0107, with simulation standard error 0.0010, is substantially
below the Fisher P-value, but greater than the P-value from the
unconditional LR test using the asymptotic χ2

1 distribution.

Fig. 18. Posterior distribution of likelihood ratio

Fig. 19. Posterior distribution of deviance

The difficulty of calibrating the unconditional test, and the
dependence of its size on the true response probabilities, is re-
solved by the Bayes analysis.

This analysis also resolves the “reference set” difficulties of
the ECMO study, in which the play-the winner randomization
rule used different assignment probabilities of babies to the
ECMO and CMT conditions. The stopping rule for the study
was not well-defined, and this makes it very difficult to deter-
mine the reference set of tables against which this one should be
compared, leading to the six (at least) P-values which have been
proposed for this table, ranging from 0.001 to 0.62; see Ware
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Table 3. Second ECMO trial outcome

ECMO CMT Total

Recover 9 6 15
Died 0 4 4
Total 9 10 19

(1989) and Begg (1990) and their discussions for the range of
P-values, and the arguments for them.

A second randomized trial of ECMO, described in Ware, was
carried out because of the inconclusive P-value results from the
first trial due to the single death under CMT. The second trial
used a different stopping rule and resulted in the outcome shown
in Table 3. Using the same flat priors as for the first study, we
have

π (p1 | y) = 10p9
1,

π (p2 | y) = p6
2(1 − p2)4/B(7, 5)

and hence

Pr[p1 > p2 | y] =
∫ 1

0
p6

2(1 − p2)4dp2

∫ 1

p2

10p9
1dp1

= 2
∫ 1

0
p6

2(1 − p2)4
(
1 − p10

2

)
dp2/B(7, 5)

= [B(7, 5) − B(17, 5)]/B(7, 5)

= 1 − 22

969
= 0.977.

The larger study provided less persuasive evidence against the
null hypothesis, because of the better-defined and much higher
recovery rate under CMT.

8.2. Choice of priors

It may be argued that the Bayes analysis above has arbitrary as-
sumptions of its own, in the choice of priors. If a reference prior
is to be used, why not use the Jeffreys prior—why is the uniform
prior appropriate? Should we not in any case use informative
priors, based on previous experience with both treatments, es-
pecially when the sample sizes are so small? Since changes in
priors affect the conclusions, should we not report a sensitivity
analysis over a range of priors?

We argue that, in studies of this kind involving randomized tri-
als to establish the value of a new treatment, informative priors,
and the Jeffreys prior, should not be used without a reference
analysis with uniform priors. The uniform prior has a unique
position in binomial experiments, since for the (large but finite)
conceptual population of N individuals to whom the treatments
are to be applied, the population number of successes R is neces-
sarily an integer, and so the population proportion of successes
takes values on an equally-spaced grid of values R/N . In the
absence of experimental information, the possible values of this

proportion are equally well supported on this grid, and so p
should be given a uniform prior distribution.

Incorporating the information from previous non-randomized
studies in an informative prior affects the inferences from the
randomized trial—in such a trial it seems to us critical to “let
the data speak” through uniform priors before changing its in-
formation content by introducing informative priors.

We illustrate this point by a second analysis of the first ECMO
table with the Jeffreys prior

π j (p j ) = p−0.5
j (1 − p j )

−0.5/B(0.5, 0.5).

The empirical probability of a positive attributable risk now
changes to 0.9954, and the equal-tailed 95% credible intervals
become

• attributable risk—(0.097, 0.993);
• relative risk—(1.11, 2452);
• odds ratio—(3.27, 1.14 × 106);
• nnt—(0.120, 2540).

The apparent strength of evidence against the null hypothesis has
increased, while the credible intervals have become even more
diffuse. Both response probability posteriors have infinite spikes
at their former finite modes of 1 and 0, the priors accentuating
the information in the likelihood, which makes the Jeffreys prior
choice hard to justify.

9. Conclusion

The possible inconsistency between the conclusions from pos-
terior distributions of “null hypothesis” parameters and those
from Bayes factors for testing the hypotheses can be avoided by
retaining the full posterior distribution of the alternative model
parameters and transforming from this distribution to that of the
likelihood ratio between the models. The resulting inferences
are consistent between “hypothesis testing” and “estimation”, as
they are in frequentist theory, and are closely related to frequen-
tist P-value conclusions, though these need to be recalibrated.

Parametrization issues have to be considered carefully in this
approach, as they do in other Bayesian analyses and in fre-
quentist analyses of models with nuisance parameters. A par-
ticular strength of this analysis is the freedom to use flat, non-
informative or other reference priors in the comparisons of mod-
els in the same way they are used in posterior densities for indi-
vidual model parameters.
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