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The general framework of this paper deals with the nonparametric regression of a scalar response on a
functional variable (i.e. one observation can be a curve, surface, or any other object lying into an infinite-
dimensional space). This paper proposes to model local behaviour of the regression operator (i.e. the link
between a scalar response and an explanatory functional variable). To this end, one introduces a functional
approach in the same spirit as local linear ideas in nonparametric regression. The main advantage of this
functional local method is to propose an explicit expression of a kernel-type estimator which makes its
computation easy and fast while keeping good predictive performance. Asymptotic properties are stated,
and a functional data set illustrates the good behaviour of this functional locally modelled regression
method.

Keywords: functional data; locally modelled regression; functional nonparametric statistics; rates of
convergence; spectrometric curves

AMS Subject Classification: 62G05

Nonparametric statistical models have taken an important place in statistical science. At the same
time there are an increasing number of situations arising from different fields of applied sciences
in which the data are of a functional nature (i.e. one observation can be a curve, surface, etc.).
A lot of functional data sets have been studied in the recent literature, dealing with chemometrics
(Frank and Friedman 1993; Ferraty and Vieu 2002; Abraham, Cornillon, Matzner-Löber, and
Molinari 2003), radar waveforms (Hall, Poskitt, and Presnell 2001; Dabo-Niang, Ferraty, and
Vieu 2004), biometrics (Ramsay, Altman, and Bock 1994; Gasser, Hall, and Presnell 1998),
and physiology (Abramovitch, Antoniadis, Sapatinas, and Vidakovic 2004; Abramovitch and
Angelini 2006; Antoniadis and Sapatinas 2007). Many other examples can be found in the books
(Ramsay and Silverman 2002, 2005; Ferraty and Vieu 2006; Dabo-Niang and Ferraty 2008) and
in the special issues devoted to this topic by several statistical journals (Davidian, Lin, and Wang
2004; González Manteiga and Vieu 2007; Valderrama 2007). Such data are called functional
data in the sense that they come from observations of a functional variable. The combination
of the nonparametric models with the functional data leads us to the problem of the functional
nonparametric statistics, which is a very recent field of investigation (Ferraty and Vieu 2006).
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618 J. Barrientos-Marin et al.

This work deals with the functional regression setting when one wishes to predict a response
Y from an explanatory functional variable X . In addition, only regularity constraints will be
assumed with respect to the regression operator, leading naturally to nonparametric modelling.
So, the general problem of this work is the functional nonparametric regression. On the one hand,
some works dealing with nonparametric functional regression exist already in the recent literature
(see, for instance, Ferraty and Vieu (2002, 2006) for more recent and deeper developments). This
functional nonparametric regression method is essentially based on an extension of the well-known
Nadaraya–Watson kernel estimator of the regression (Nadaraya 1964; Watson 1964) to the case
of explanatory functional variables (see also the recent work of Burba, Ferraty and Vieu (2009)
which investigates the k-nearest-neighbours (kNN) estimator). On the other hand, local linear
ideas have been developed in the regression context for univariate or multivariate explanatory
variables (see Wand and Jones (1995) for an overview on this topic). Very recently, local linear
regression models have been investigated when the explanatory variable is a functional predictor
(see Aneiros-Pérez, Cao, and Vilar-Fernández (2008); Boj, Delicado, and Fortiana (2008); and
Baíllo and Grané (2009) for more details).This is a direct extension of the functional nonparametric
regression model (this latter can be viewed as a functional local constant method).

The aim of this work consists of proposing a new local modelling approach when one regresses a
scalar response on an explanatory functional variable. This local method is a trade-off between the
functional nonparametric regression and the functional local linear one. This new functional local
approach leads us to quite a simple kernel estimator; its fast computation and its good predictive
performance make this method very attractive (especially when one has to deal with a large
data set). Moreover, the simplicity of this locally modelled estimator allows us to get the almost
complete rate of convergence (whereas Baíllo and Grané (2009) states the rate of convergence
of the conditional mean squared error, in probability). Section 1 describes the position of the
problem. Section 2 introduces our functional locally modelled regression method. Its behaviour
in practice is illustrated in Section 3 by means of a standard spectrometric data set. Moreover, the
combination of this local approach with the functional nonparametric regression allows us to get
similar predictive performance to the one obtained with the functional local linear method (with
a much lower computational cost). Some asymptotic properties are given in Section 4. Finally,
the reader interested by the theoretical developments will find detailed proofs in the appendices.

1. Position of the problem

This paper focuses on the nonparametric estimation of the regression operator defined by

Y = m(X ) + ε, with E(ε|X ) = 0,

where the explanatory variable X is valued in some infinite-dimensional space H and Y is a scalar
response. To do that, one way (Ferraty and Vieu 2006) includes the use of a functional kernel
estimator which is an extension to this functional framework of the Nadaraya–Watson kernel
estimator. Based on n pairs (Xi , Yi)i=1,...,n identically and independently distributed as (X , Y ),
the functional kernel estimator is defined as follows:

mLCRE(χ) =
∑n

i=1 YiK(h−1|δ(χ, Xi )|)∑n
i=1 K(h−1|δ(χ, Xi )|) ,

where K is a standard univariate asymmetrical kernel function, δ(· · · ) locates one element of
H with respect to another one, and h is the so-called bandwidth which plays the role of a
smoothing parameter. This kernel estimator m̂(χ) can be seen as the solution of the minimisation
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Journal of Nonparametric Statistics 619

problem (P1):

min
a

Cχ(a) with Cχ(a) =
n∑

i=1

(Yi − a)2K(h−1|δ(χ, Xi )|),

since it is easy to check that the derivative of Cχ vanishes at a = mLCRE(χ). Actually, mLCRE(χ)

is a local weighted average of the Yi’s and can be seen as a local constant regression estimator
(LCRE) because it approximates locally the Yi’s with a constant. One way to increase the flexibility
of the functional nonparametric regression estimator is to use a local approximation which is more
accurate than a constant one. This leads to consider a more sophisticated minimisation problem
for which the solution is still a local weighted average (but with more complicated weights).

2. Functional locally modelled regression

2.1. Building of the estimator

One considers the following minimisation problem (P2):

min
(a,b)∈R2

n∑
i=1

(Yi − a − b β(Xi , χ))2K(h−1|δ(Xi , χ)|),

where β(· · · ) is a known operator from H × H into R such that, ∀ξ ∈ H, β(ξ, ξ) = 0. The
locally modelled regression estimator mLMRE of m is the solution for a of the Problem (P2) and
we have

mLMRE(χ) =t u1(
tQβKQβ)−1 tQβKY,

where

tQβ =
[

1 · · · 1
β(X1, χ) · · · β(Xn, χ)

]
,

K = diag(K(h−1|δ(X1, χ)|), . . . , K(h−1|δ(Xn, χ)|)), Y = t[Y1, . . . , Yn] and u1 =t [1, 0] ∈ R
2

(where t is the transpose symbol). One of the main advantages of this method is that one gets the
explicit solution:

mLMRE(χ) =
∑n

i=1

∑n
j=1 wijYj∑n

i=1

∑n
j=1 wij

,

with

wij = βi(βi − βj )KiKj ,

where Ki = K(h−1|δ(Xi , χ)|) and βi = β(Xi , χ). This kernel-type estimator appears as a local
weighted average since it can be rewritten as follows:

mLMRE(χ) =
n∑

j=1

WjYj , with ∀j = 1, . . . , n, Wj =
∑n

i=1 wij∑n
j=1

∑n
i=1 wij

.

This explicit expression of mLMRE(χ) is interesting for fast computational issues and also allows
us to state asymptotic properties. Before going on, it is worth discussing the role of the various
parameters introduced in the estimator.
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620 J. Barrientos-Marin et al.

2.2. Interpretation and comments

From a statistical point of view, our LMRE-approach assumes that a + b β(· · · χ) is a good
approximation of m(·) around χ . Because β(χ, χ) = 0, a is a good approximation of m(χ) and
hence, mLMRE should be a good estimator of m. In this sense, mLMRE is really a functional locally
non-constant regression estimator inspired by the local linear nonparametric approaches. The idea
of local linear regression has been developed by Muller (1989) and Fan and Gijbels (1992) and the
minimax properties of the corresponding smoother have been stated by Fan (1993). Multivariate
extension can be found in Ruppert and Wand (1994) and more recently in Lafferty and Wasserman
(2008). A good overview on this topic can be found in Wand and Jones (1995 and Fan and
Gijbels (1996), and we refer to other authors (Cheng and Hall 2002; Hengartner, Wegkamp, and
Matzner-Løber 2002; García-Soidán, González-Manteiga, and Febrero-Bande 2003) for more
recent advances.

Clearly, the behaviour of the estimate depends on δ(· · · ) and β(· · · ) whose choices will be
crucial. To fix ideas, one can give particular shapes for δ(· · · ) and β(· · · ). For instance, if the
functional data are ‘smooth’ curves, one can try to use the following family of locating functions:

loc(q)
a (χ1, χ2) =

∫
θ(t)(χ

(q)

1 (t) − χ
(q)

2 (t)) dt =< θ, χ
(q)

1 − χ
(q)

2 >H,

where θ is a given function which can be adapted to the data (see Section 3) (χ(q) denoting the
qth derivative of χ ). Choosing β(· · · ) in such a family is motivated by the fact that it corresponds
to the minimisation problem

min
(a,b)∈R2

n∑
i=1

(Yi − a − b < θ, X (q)

i − χ(q) >H)2K
(
h−1|δ(Xi , χ)|) ,

which can be viewed as a kind of ‘local linear’regression approach when one considers a functional
explanatory variable. Of course metrics, or more generally semi-metrics also based on derivatives,
could be good candidates for locating one curve with respect to another one. For instance, one
can define

loc(q)

b (χ1, χ2) =
(∫ (

χ
(q)

1 (t) − χ
(q)

2 (t)
)2

dt

)1/2

,

which is a semi-metric. This second family of locating functions is particularly well adapted for
δ(· · · ), which measures the proximity between two elements of H.

Finally, lots of locating functions can be defined. Indeed, one can build semi-metrics based on
the functional principal components analysis (Dauxois, Pousse, and Romain 1982) or inspired by
the partial least squares method (see, for instance, Martens and Naes (1989)). However, in order
to make our purpose clear we just introduce here the locating functions used later on for studying
the spectrometric functional data set.

As δ(· · · ), β(· · · ) locates also one element of H with respect to another one which means that
β(· · · ) can take also negative values. In other words, the locating functions δ(· · · ) and β(· · · )
allow to compute a ‘signed’ proximity between two curves. Let us remark that the theory allows
to take β(· · · ) = δ(· · · ). But, β and δ do not play similar roles. Indeed, β refers to the local
behaviour of the regression whereas δ concerns the local weighting. Therefore, as we will see in
Section 3, authorising two ways for locating one element with respect to another one (i.e. β �= δ)
can allow us to better fit the data from a practical point of view. In that sense, considering β �= δ

can lead us to a more adaptative (or flexible) method.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
a
n
a
d
i
a
n
 
R
e
s
e
a
r
c
h
 
K
n
o
w
l
e
d
g
e
 
N
e
t
w
o
r
k
]
 
A
t
:
 
0
6
:
5
0
 
2
2
 
F
e
b
r
u
a
r
y
 
2
0
1
1



Journal of Nonparametric Statistics 621

2.3. An intermediate flexible local regression

mLMRE is a trade-off between mLCRE and mLLRE, the latter being the functional local linear
regression estimator introduced in a more general way in Barrientos-Marin (2007, pp. 69–71),
investigated recently (see Boj et al. (2008) and Baíllo and Grané (2009) for independent obser-
vations, and Aneiros-Pérez et al. (2008) in the time-series setting), and defined as the solution of
the following functional minimisation problem (P3):

min
(a,ψ)∈R×H

n∑
i=1

(Yi − a− < ψ, Xi − χ >H)2K(h−1|δ(Xi , χ)|),

where < · · · >H is some inner product defined onto H. Clearly, if one replaces < ψ, Xi − χ >H
with bβ(Xi , χ), one gets exactly (P2), which leads us to the functional locally modelled regression
estimator. So, instead of considering the functional parameter ψ (needed for defining mLLRE), one
deals with the real parameter b and the fixed operator β(· · · ). In this sense, mLMRE is more
flexible than mLCRE but less flexible than mLLRE; mLMRE is really a compromise between mLCRE

and mLLRE. Moreover, one can enlarge the flexibility of mLMRE. For instance, one can select the
operator β(· · · ) over some class of operators throughout a cross-validation procedure. Finally, as
we will see later on (Section 3.4), the lack of flexibility of mLMRE can be balanced by combining
it with the local constant one (mLCRE).

3. LMRE regression in action

The aim of this section is to give an idea of the behaviour of the LMRE method from a practical
point of view. To do that, we have chosen some standard curves’ data sets coming from chemo-
metrics (Section 3.1). Indeed, we had a choice between many curves’ data sets but the following
one has been selected for pedagogical reasons, since it is one of the most popular functional data
sets commonly used in the functional statistician community to check the feasability and the per-
formances of any new method. The computational issues linked with the practical implementation
of the functional locally modelled approach developed in this paper are discussed in 3.2, and the
results obtained on the chemometrical data are reported in Section 3.4. One also compares our
local regression method with the functional local linear one.

3.1. A real curves’ data set example

One considers the functional data set (X i , Yi)i=1,...,215 where the vector X i = t(Xi (λ1), . . . ,

Xi (λ100)) is the ith discretised spectrometric curve presented in the introduction and Yi its
corresponding percentage of moisture.

Initially studied by Borggaard and Thodberg (1992), the following data set comes from a quality
control problem in the food industry and can be found at http://lib.stat.cmu.edu/datasets/tecator.
For n = 215 pieces of finely chopped meat, one observes a spectrometric curve by means of
a Tecator Infractec Food and Feed Analyser working in the wavelength range of 850–1050 nm
by the near-infrared transmission principle (Figure 1), and for each piece of meat, one also knows
the percentage of moisture (by means of some chemical process). The aim is clear: can we predict
the percentage of moisture in a piece of meat from its spectrometric curve? This is a regression
problem involving a functional covariate (namely, the spectrometric curve Xi’s) and a scalar
response (namely, the moisture measurement Yi).
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622 J. Barrientos-Marin et al.

Figure 1. The spectrometric curves.

3.2. Choosing the bandwidth and the locating functions

A first important practical aspect consists of fixing the local shape of the regression, that is, the
operator β(·, ·). Because of the smoothness of the spectrometric curves and according to the expe-
rience of chemometricians, one proposes to use the family of locating functions {loc(q)

a }q=0,1,2,...

defined in Section 2. In addition, the real-valued function θ is selected among the eigenfunc-
tions of the covariance operator E

(
(X (q) − EX (q)) < X (q), · >H

)
. From a practical point of

view, one gets a discretised version of these eigenfunctions by computing the eigenvectors of

the empirical covariance operator 1/|L|∑i∈L(X (q)

i − X (q)
) t(X (q)

i − X (q)
), where L is a subset

of {1, . . . , 215} (L will be called learning sample). The idea of choosing θ through the spec-
tral analysis of the covariance operator is driven by the functional principal component analysis
methodology (see, for instance, Dauxois et al. (1982); Castro, Lawton, and Sylvestre (1986);
Ramsay and Dalzell (1991); Locantore et al. (1999); and Boente and Fraiman (2000) for both
practical and theoretical aspects). Indeed, this is a useful tool for exhibing functional directions
which can reveal pertinent information. A second crucial point concerns the choice for the locat-
ing operator δ(·, ·). As previously, a well-adapted tool is the family of semi-metrics based on the
derivatives (i.e. loc(q)

b ).
The last point concerns the selection of the smoothing parameter (i.e. the bandwidth h), which is

a standard problem in nonparametric statistics. To this end, one uses a cross-validation procedure
over kNN-type bandwidths allowing the choice of a local bandwidth (i.e.h = h(χ) in the definition
of mLMRE(χ)). More precisely, let hk(χ) be a local bandwidth for which there are exactly k curves
Xi1 , . . . ,Xik such that |δ(Xil , χ)| < hk(χ) and let m

(−i,k)
LMRE(χ) be the kernel-type estimator using

hk(χ) and computed without the ith unit. Then, one defines an optimal number kopt of neighbours
as follows:

kopt = arg min
k

∑
i

(
Yi − m

(−i,k)
LMRE(Xi )

)2
.

This procedure allows us to evaluate mLMRE at any fixed curve χ by using the optimal local
bandwidth h(χ) := hkopt (χ).
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3.3. Presentation of the study

In order to illustrate the pertinence of the LMRE method, the initial sample is randomly split into
two subsamples. The first one, (Xi , Yi)i∈L, usually called the ‘learning sample’, allows to build
the estimator (i.e. mL

LMRE(·) with the optimal number of neighbours kopt). The second subsample,
(Xi , Yi)i∈T , usually called the ‘testing sample’, allows to predict percentages of moisture (i.e.
{mL

LMRE(Xi )}i∈T ). Of course, L and T are built such that L ∪ T = {1, . . . , 215} and L ∩ T = φ.
Now, one way to evaluate the performance of this method is to compute the mean square errors
(MSE) of prediction:

MSE(L, T ) = 1

|T |
∑
i∈T

(Yi − mL
LMRE(Xi ))

2,

which is a usual index for evaluating the quality of fitting to the data. In order to get more robust
results, one randomly builds 100 learning and testing samples

(L(s), T (s))s=1,...,100,

which allows us to get the 100 quantities MSE(L(s), T (s)), for s = 1, . . . , 100. Moreover, in our
study, we always take |L| = 165 (and hence |T | = 50). To show the good behaviour of the LMRE
method, we also implemented the functional local constant regression estimate mLCRE (Section 2)
with the same bandwidth choice procedure. At last, to give an idea on the predictive performance
of our method, one compares it with the functional local linear method (i.e. mLLRE) using a
B-splines expansion for the functional parameter ψ and also the same family of semi-metrics
({loc(q)

b }q=0,1,2,...).

3.4. Results and comments

Here, for the local behaviour β(·, ·), we have tried several parameters q and θ , and the best results
in terms of prediction are obtained for q = 1 and for the third eigenfunction (i.e. the eigenfunction
associated to the third largest eigenvalue). Concerning the weighting locating function, the best
results are obtained for the second derivative (i.e. δ(·, ·) = loc(2)

b (·, ·)), and the fixed asymmetrical
kernel function is the quadratic one (i.e. K(u) = (3/2)(1 − u2)1[0,1]). This confirms the idea that
allows an index of proximity δ to be different to the local shape β and makes this LMRE method
more flexible in the sense that the fit is better.

Figure 2 displays various box-and-whiskers which summarise the distribution of MSE com-
puted over 100 experiments: the left one corresponds to the LCRE regression, the middle one
gives an idea of the performance of the LMRE method, and the right one corresponds to the
‘AVERAGE’ method, which predicts the moisture by using 0.5 ∗ (mLCRE + mLMRE). In this situ-
ation, the locally modelled approach seems to globally fit the data better than the local constant
one. Actually, looking at the ‘AVERAGE’ method we see that, if we run both functional non-
parametric approaches, we improve the quality of fitting in terms of MSE. This means that for
some units, when mLCRE overestimates, mLMRE balances the prediction by underestimating and
similarly in reverse. In other words, the LMRE method has to be seen as a complementary non-
parametric tool of prediction, and not only as a competitive one with respect to existing functional
nonparametric methods. Now, if one compares mLMRE with the functional local linear regression
mLLRE, this last one is the best from a predictive point of view with δ(·, ·) = loc(2)

b (·, ·) (which
leads to the best predictions). As explained in (Aneiros-Pérez et al. 2008; Boj et al. 2008), δ(·, ·)
plays a major role also in the functional local linear approach (and considering only the standard
L2-norm could lead to bad predictions). This good behaviour of the local linear regression is not
surprising since mLLRE is a more flexible (i.e. adaptive) method than mLMRE. But, if one looks at
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624 J. Barrientos-Marin et al.

Figure 2. Distribution of the MSE’s for each method.

the combination of mLCRE with mLMRE (‘AVERAGE’), the predictive performance is very similar
to the one reached by the functional local linear regression mLLRE. Moreover, it is worth noting
that the computational cost for the method ‘AVERAGE’ is much smaller than the one needed for
implementing mLLRE. To give an idea, if one selects only the bandwidth by cross-validation (the
semi-metrics being fixed), the AVERAGE method takes about 6′′ whereas mLLRE needs about 1′
(10 times more). One can imagine easily that the computational gain is much more important
if one implements a cross-validation procedure for choosing semi-metrics. This is also the case
when one processes larger data sets.

4. Asymptotic properties

Our goal is to study the asymptotic behaviour of mLMRE(χ), the locally modelled estimator of the
regression operator E (Y |X = χ) = m (χ), χ being a fixed element of H. The results are stated
in terms of the almost complete convergence which implies the almost sure convergence. Before
giving the theorems, let us introduce some assumptions and terminologies. First of all, let us start
with a crucial hypothesis concerning the distribution of the functional r.v. X .

(H1) ϕχ(u1, u2) := P (u1 ≤ δ(X , χ) ≤ u2), and ∀u > 0, ϕχ(u) := ϕχ(0, u) > 0.

It is easy to see that

ϕχ(u) = P (X ∈ B(χ, u)) ,

where

B(χ, u) = {χ ′ ∈ H, |δ(χ, χ ′)| ≤ u}.
As soon as |δ(·, ·)| defines a metric or, more generally, a semi-metric, ϕχ(u) can be interpreted as
the probability of a ball of H centered at χ and of radius u. When u becomes small, the terminology
‘small ball probabilities’ is commonly used, which is a field of the probability theory intensively
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investigated (see Li and Shao (2001) for an overview on this topic in relation to gaussian processes).
Actually, the function ϕχ (which is a direct extension of the small ball probability notion) plays the
same role in the functional case as the density function in the finite-dimensional setting. Indeed, it
is usual in the multivariate nonparametric setting to estimate a quantity at a point for which one has
all around a number of observations large enough. A common way for assuming that is to assume
that the density function valued at this point is strictly positive. In the infinite-dimensional setting,
there is no reference measure such as the Lebesgue one in the finite-dimensional context, and one
has to make a similar assumption without the density notion. This is the goal of Hypothesis (H1)
which translates in the functional context the fact that we have enough observations around χ and
hence it makes sense to estimate the regression operator at this point χ .

As it is standard in nonparametric modelling, one has to consider regularity assumptions. The
first ones concern the unknown regression operator m which will be supposed to verify one of the
following constraints:

(H2C) m ∈
{
f : H → R, lim

|δ(χ,χ ′)|→0
f
(
χ ′) = f (χ)

}
,

or
(H2L) m ∈ {f : H → R, , ∀χ ′ ∈ H,

∣∣f (χ ′)− f (χ)
∣∣ < C|δ(χ, χ ′)|ν}, where C and ν are

fixed in R
+.

Clearly, the first hypothesis is a continuity-type constraint which will allow us to get pointwise
convergence. Moreover, as soon as one wishes to state the rate of convergence, one has to introduce
more restrictive constraints, which is the role played by the second Lipschitz-type hypothesis.

Another regularity-type constraint is also necessary in order to control the shape of the local
functional object β:

(H3) ∃0 < M1 < M2, ∀χ ′ ∈ H, M1 |δ(χ, χ ′)| ≤ |β(χ, χ ′)| ≤ M2 |δ(χ, χ ′)|.
Now, we focus on assumptions concerning the kernel estimator mLMRE. Let us first introduce

assumptions on the kernel function K:

(H4) K is a function from R into R+ differentiable on its support [0, 1].

These kinds of kernels contain the standard asymmetrical kernels used in the literature (uniform,
triangle, quadratic, Epanechnikov, etc.). Once this class of kernels are defined, one can propose
additional hypotheses acting on the estimator (and also on the distribution of the functional
r.v. X ):

(H5) h is a positive sequence such that lim
n→∞h = 0, and lim

n→∞log n/n ϕχ(h) = 0.

(H6) ∃n0, ∀n > n0, 1/ϕχ(h)
∫ 1

0 ϕχ(zh, h) d/dz(z2K(z))dz > C > 0.

(H7) h
∫
B(χ,h)

β(u, χ) dP(u) = o
(∫

B(χ,h)
β(u, χ)2 dP(u)

)
.

One ends the listing of hypotheses by focusing on the scalar response Y through its successive
conditional moments:

(H8) ∀k = 2, 3, . . ., σk : χ 
→ E
(
Y k|X = χ

)
is a continuous operator.

Hypotheses (H2)–(H5) and (H8) are standard in the nonparametric functional regression set-
ting and extend what is usually assumed in the classical p-dimensional nonparametric literature
(Ferraty and Vieu 2006). Hypothesis (H6) precises the behaviour of the bandwidth h in relation
with the small ball probabilities and the kernel function K . This hypothesis is not restrictive
because one can see easily that fractal processes satisfy it for a wide class of kernel functions
(see Appendix 1 for more details). The key new hypothesis is (H7) about the local behaviour of
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the operator β which models the local shape of the regression. For instance, in the special case
where β = δ, this assumption means that the local expectation of β is small enough with respect
to its moment of second order. If, in addition, the real r.v. β(X , χ) admits a differentiable density
(around 0) with respect to the Lebesgue measure then (H7) is satisfied.

Now, we are ready for giving the two main results. The first one states the pointwise almost
complete convergence, whereas the second one precises the rate of convergence.

Theorem 4.1 Under (H1), (H2C), (H3)–(H8), we have

mLMRE(χ) − m(χ) = oa.co.(1).

Theorem 4.2 Under (H1), (H2L), (H3)–(H8), we have

mLMRE(χ) − m(χ) = O (hν) + Oa.co.

(√
log n

n ϕχ (h)

)
.

The remainder of this section gives a sketch of the proof of both theorems (details are postponed
in Appendices 2 and 3). Let us first introduce the following quantities:

ml(χ) = 1

n(n − 1) Ew12

n∑
i=1

n∑
j=1

wijY
l
j , for l = 0, 1,

in such a way that we have mLMRE(χ) = m1(χ)/m0(χ) with Em0(χ) = 1. The proof of the
above-mentioned theorems is based on the decomposition:

mLMRE(χ) − m(χ) = 1

m0(χ)
[(m1(χ) − Em1(χ)) − (m(χ) − Em1(χ))]

− m(χ)

m0(χ)
(m0(χ) − 1) ,

and on the following lemmas:

Lemma 4.3 Assume that hypotheses (H1), (H3)–(H5) are satisfied.

(i) If (H2C) holds, one gets:

m(χ) − Em1(χ) = o(1),

(ii) If (H2L) holds, one gets

m(χ) − Em1(χ) = O(hν).

Lemma 4.4 Suppose that assumptions (H1), (H2C), (H3)–(H7) are satisfied.

(i) One has

m0(χ) − 1 = Oa.co.

(√
log n

n ϕχ(h)

)
,

(ii) In addition, if (H8) holds, one gets

m1(χ) − Em1(χ) = Oa.co.

(√
log n

n ϕχ(h)

)
.
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Lemmas 4.3-(i) and 4.4 lead to the statement of Theorem 4.1. Lemma 4.3-(ii) in addition with
Lemma 4.4 allows us to get Theorem 4.2. Detailed proofs of these lemmas can be found in the
appendix section.

5. Perspectives and conclusion

One can see the LMRE method as a good alternative to the LCRE approach. This good behaviour
is observed both for asymptotic point of view and for the spectrometric application, making this
functional locally modelled regression very attractive. As emphasised in the implementation,
LMRE is also a complementary functional prediction method in the sense that combined with
the LCRE, the obtained MSE overpasses those coming from each of LCRE or LMRE. This
combination of LCRE and LMRE reaches similar predictive performances than the ones obtained
with the functional local linear approach but with a much lower computational cost. That makes
this new methodology very attractive for practitioners.

In addition, this work offers very interesting perspectives of investigations.A first direction con-
cerns the statement of theoretical properties with respect to the bandwidth choice (see Benhenni,
Ferraty, Rachdi, and Vieu (2007) for theoretical properties of a cross-validated bandwidth in the
functional local constant regression or Antoniadis, Paparoditis, and Sapatinas (in press) for an
alternative selection procedure based on a risk minimisation criterion). A second track would
consist of looking for a more pertinent functional direction (i.e. θ ) by proposing an ‘optimal’
linear combination of eigenfunctions. Of course, this deserves deeper investigation, from both
practical and theoretical points of view.

Finally, this work is a step towards local statistical models taking into account functional
variables. This is also an encouragement to pursue further investigations in this topic.
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Appendix 1. Remark on (H6)

Let us investigate here the special case where the functional variable X is a fractal process of order δ (δ > 0) such that

lim
ε→0

sup
t∈[0,1]

∣∣∣∣ϕχ (tε)

tδεδ
− Cχ

∣∣∣∣ = 0,

where Cχ is a constant which does not depend on t and ε. This implies that, for any ε small enough, ϕχ (ε) ∼ Cχεδ . Then,
it is easy to state ∫ 1

0
ϕχ (uh, h)

d

du
(u2K(u)) du = Cχhδ

∫ 1

0
(1 − uδ)

d

du
(u2K(u)) du + o(hδ).

Now, one considers the family of kernels indexed by α > 0 and defined by Kα(u) = (α + 1/α)(1 − uα)1[0,1](u). This
family of kernels contain standard asymmetrical ones (triangle, quadratic). It comes with trivial calculus that∫ 1

0
ϕχ (uh, h)

d

du
(u2K(u)) du = (α + 1)δ

(δ + 2)(α + δ + 2)
Cχhδ + o(hδ),

which leads us to assumption (H6) as soon as h is small enough (i.e. as soon as n is large enough). In the same way, (H6)
holds when one considers the uniform kernel 1[0,1](· · · ).

In order to complete this section, one can mention that (H6) is satisfied for a much wider class of functional random
variables (i.e. Hilbertian squared integrable ones) as soon as one considers suitable semi-metrics δ (for more details, see
Lemma 13.6, (Ferraty and Vieu 2006, Lemma 13.6, p. 213)).

Appendix 2. Preliminary technical lemma

In the following C is a generic constant (0 < C < ∞).

Lemma A.1 Under (H1), (H3)–(H6), we have

(i) ∀(k, l) ∈ N
∗ × N, E

(
Kk

1 |β1|l
) ≤ C hl ϕχ (h),

(ii) E
(
K1 β2

1

)
> C h2 ϕχ (h).

Proof

(i) One starts by using (H3), which implies

Kk
1 |β1|l h−l ≤ C Kk

1 |δ(X1, χ)|l h−l ,

and because the kernel K is bounded on [0, 1], one gets

Kk
1 |β1|l h−l ≤ C |δ(X1, χ)|l h−l1[0,1]

(
h−1 |δ(X1, χ)|) ,

and thus, we have

E
(
Kk

1 |β1|l h−l
) ≤ C ϕχ (h),

which is the claimed result.
(ii) By using (H3), it is easy to see that

EK1 β2
1 > C Eδ(X1, χ)2 K1.

Moreover, one can write

E

(
K1

δ(χ, X1)
2

h2

)
=
∫ 1

0
t2K(t) dP |δ(χ,X)|/h(t),

=
∫ 1

0

(∫ t

0

(
d

du
(u2K(u))

)
du

)
dP |δ(χ,X)|/h(t),

=
∫ 1

0

(∫ 1

0
1[u,1](t) dP |δ(χ,X)|/h(t)

)
d

du
(u2K(u))du,
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the last equation coming from the Fubini’s theorem. In addition, it is easy to check that∫ 1

0
1[u,1](t) dP |δ(χ,X)|/h(t) = P (u h ≤ |δ(χ, X )| ≤ h) ,

in order to write

E

(
K1

δ(χ, X1)
2

h2

)
=
∫ 1

0
ϕχ (uh, h)

d

du
(u2K(u))du.

It suffices to use (H6) for obtaining the desired lower bound, which ends the proof of Lemma A.1-(ii).

�

Appendix 3. Proofs of main results

Proof of Lemma 4.3 On one side, we have

Eml(χ) = 1

Ew12
Ew12Y

l
2,

and on the other side, it holds

EE (m1(χ)|X2) = 1

Ew12
E (w12E (Y2|X2)) ,

which allows us to write:

|m(χ) − Em1(χ)| = 1

|Ew12| |E (w12(m(χ) − m(X2))| ,

≤ sup
χ ′∈B(χ,h)

|m(χ) − m(χ ′)|.

It suffices to consider (H2C) in order to get Lemma 4.3-(i). However, if one uses (H2L) instead of (H2C), it is clear that

sup
χ ′∈B(χ,h)

|m(χ) − m(χ ′)| = O(hν),

which leads us to Lemma 4.3-(ii). �

Proof of Lemma 4.4

(ii) Let us start the proof by remarking that

m1(χ) = n2 h2 ϕχ (h)2

n(n − 1) Ew12︸ ︷︷ ︸
Q

⎡⎢⎢⎢⎢⎢⎣
⎛⎝ 1

n

n∑
j=1

KjYj

ϕχ (h)

⎞⎠
︸ ︷︷ ︸

S1

(
1

n

n∑
i=1

Kiβ
2
i

h2 ϕχ (h)

)
︸ ︷︷ ︸

S2

−
⎛⎝ 1

n

n∑
j=1

KjβjYj

h ϕχ (h)

⎞⎠
︸ ︷︷ ︸

S3

(
1

n

n∑
i=1

Kiβi

h ϕχ (h)

)
︸ ︷︷ ︸

S4

⎤⎥⎥⎥⎥⎥⎦ , (A1)

which allows us to write

m1(χ) − Em1(χ) = Q [S1S2 − E(S1S2) − (S3S4 − E(S3S4))] .

At first, one has

S1S2 − E(S1S2) = (S1 − ES1)(S2 − ES2) + (S2 − ES2)ES1

+ (S1 − ES1)ES2 + ES1ES2 − ES1S2. (A2)

It remains to study each term of the decomposition (A2).
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(a) Let us write

S1 − ES1 = 1

n

n∑
j=1

KjYj − EKjYj

ϕχ (h)
= 1

n

n∑
j=1

Z1j .

In order to apply an exponential inequality, we focus on the absolute moments of the r.r.v. Z1i :

E|Zm
1i | = E

∣∣ϕχ (h)−m(KjYj − EKjYj )
m
∣∣ , (A3)

= ϕχ (h)−m
E

∣∣∣∣∣
m∑

k=0

ck,m(KjYj )
k(EKjYj )

m−k(−1)m−k

∣∣∣∣∣ ,
≤ ϕχ (h)−m

m∑
k=0

ck,mE(Kk
1 σk(X1)) |EK1 m(X1)|m−k , (A4)

the last inequality is obtained by conditioning on X1. In addition, (H2C) implies that m(X1) = m(χ) + o(1)

whereas one gets σk(X1) = σk(χ) + o(1) as soon as (H8) is checked. This, combined with (A4), allows us
to write:

E|Zm
1i | = O

(
ϕχ (h)−m

m∑
k=0

E(Kk
1 )(EK1)

m−k

)
,

= O

(
max

k∈{0,...,m} ϕχ (h)−k+1
)

,

= O
(
ϕχ (h)−m+1) , (A5)

knowing that EKk
1 = O(ϕχ (h)) (see Lemma A.1-(i) with l = 0). Finally, it suffices to apply Corollary A.8-(ii)

in (Ferraty and Vieu 2006) with a2
n = ϕχ (h)−1 to get

S1 − ES1 = Oa.co.

(√
log n

n ϕχ (h)

)
. (A6)

(b) In the same way, writing

S2 − ES2 = 1

n

n∑
i=1

Kiβ
2
i − E(K1β

2
1 )

h2 ϕχ (h)
= 1

n

n∑
i=1

Z2i ,

it easy to see that

E|Zm
2i | ≤ h−2mϕχ (h)−m

m∑
k=0

ck,mE(Kk
1 β2k

1 )
(
EK1 β2

1

)m−k
,

which, combined with Lemma A.8-(i) when l = 2 implies that

E|Zm
2i | = O

(
ϕχ (h)−m+1) .

Once again, one can apply Corollary A.8-(ii) in Ferraty and Vieu (2006) with a2
n = ϕχ (h)−1 to get

S2 − ES2 = Oa.co.

(√
log n

n ϕχ (h)

)
. (A7)

(c) It is easy to see that

ES1 = ϕχ (h)−1
EK1Y1,

= ϕχ (h)−1
EK1m(X1),

and because m(X1) = m(χ) + o(1), one gets ES1 = O(1). Similarly, one can state that ES2 = O(1). Now, it
remains to study the quantity ES1ES2 − ES1S2. To do that, let us remark that

ES1ES2 − ES1S2 =
(

1 − n(n − 1)

n2

)
h−2ϕχ (h)−2

E(K1β
2
1 )E(K1Y1) + O

((
n ϕχ (h)

)−1
)

.

Using similar arguments as previously, it is easy to see that

ES1ES2 − ES1S2 = O
((

n ϕχ (h)
)−1
)

,

which is negligible with respect to
√

log n/(n ϕχ (h)).
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Finally, items (a)–(c) states that

S1S2 − E(S1S2) = Oa.co.

(√
log n

n ϕχ (h)

)
. (A8)

By similar arguments, one can state

S3S4 − E(S3S4) = Oa.co.

(√
log n

n ϕχ (h)

)
. (A9)

Now, to achieve the proof, we have to study the upper bound of the quantity Q. Firstly, note that

h|EβK1| ≤ C h

∣∣∣∣∫
B(χ,h)

β(u, χ) dP(u)

∣∣∣∣ ,
and (H7) implies that

h|EβK1| = o

(∫
B(χ,h)

β(u, χ)2 dP(u)

)
.

By applying Lemma A.1-(i) with K = 1[0,1], k = 1, and l = 2, one gets
∫
B(χ,h)

β(u, χ)2 dP(u) ≤ C h2ϕχ (h), which
implies that

Eβ1K1 = o
(
h ϕχ (h)

)
.

Now, Lemma A.1-(ii) and the last result allow us to write

Ew12 = E(β2
1 K1)EK1 − (Eβ1K1)

2 > C h2 ϕχ (h)2.

As a direct consequence, one has

Q = O(1),

which ends the proof of Lemma 4.4-(ii).
(i) This result can be deduced directly from Lemma 4.4-(ii) by taking Yi ≡ 1. In this case, Hypothesis (H8) is not

necessary.
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