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Could Fisher, Jeffreys and Neyman Have 
Agreed on Testing? 
James 0.Berger 

Abstract. Ronald Fisher advocated testing using p-values, Harold Jeffreys 
proposed use of objective posterior probabilities of hypotheses and Jerzy 
Neyman recommended testing with fixed error probabilities. Each was quite 
critical of the other approaches. Most troubling for statistics and science is 
that the three approaches can lead to quite different practical conclusions. 

This article focuses on discussion of the conditional frequentist approach to 
testing, which is argued to provide the basis for a methodological unification 
of the approaches of Fisher, Jeffreys and Neyman. The idea is to follow Fisher 
in using p-values to define the "strength of evidence" in data and to follow 
his approach of conditioning on strength of evidence; then follow Neyman by 
computing Type I and Type I1 error probabilities, but do so conditional on the 
strength of evidence in the data. The resulting conditional frequentist error 
probabilities equal the objective posterior probabilities of the hypotheses 
advocated by Jeffreys. 

Key words and phrases: p-values, posterior probabilities of hypotheses, 
Type 1and Type I1 error probabilities, conditional testing. 

1. INTRODUCTION 

The situation in testing is quite different. For many 
types of testing, Fisher, Jeffreys and Neyman dis-
agreed as to the basic numbers to be reported and 

1.1 Disagreementsand Disagreements could report considerably different conclusions in ac-
tual practice. 

Ronald Fisher, Harold Jeffreys and Jerzy Neyman 
disagreed as to the correct foundations for statistics, EXAMPLE1. Suppose the data, X 1 , .. .,X,, are 

but often agreed on the actual statistical procedure from the N(6 ,a 2 )  distribution, with a2known, 
to use. For instance, all three supported use of the and n = 10, and that it is desired to test Ho : Q = 0 
same estimation and confidence procedures for the versus HI  :8 # 0. If z = &i/a =2.3 (or z = 2.9): 
elementary normal linear model, disagreeing only on 

a Fisher would report the p-values p =0.021 (or p = the interpretation to be given. As an example, Fisher, 
Jeffreys and Neyman agreed on ( i  - 1 . 9 6 L ,i + 0.0037). 

f i  a Jeffreys would report the posterior probabilities
1 . 9 6 L )  as the 95% confidence interval for a normalf i  of Ho, Pr(Holxl,.. . ,x,) = 0.28 [or Pr(Holxl,.. . , 
mean, but insisted on assigning it fiducial, objective x,) = 0.111, based on assigning the hypotheses
Bayesian and frequentist interpretations, respectively. equal prior probabilities of 112 and using a conven-
While the debate over interpretation can be strident, tional Cauchy(0, a )  prior on the alternative. 
statistical practice is little affected as long as the Neyman,had he prespecified Type I error probability
reported numbers are the same. a = 0.05, would report a = 0.05 in either case (and 

a Type I1 error probability B or power function).
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Fisher and Neyman are dramatic primarily in the sec-
ond case. Even if one goes past the raw numbers 
and considers the actual "scales of evidence" recom-
mended by the three, significant differences remain 
(see, e.g., Efron and Gous, 2001). 

The disagreement occurs primarily when testing a 
"precise" hypothesis as above. When testing a one-
sided hypothesis. such as Ho : 6'5 0, the numbers re-
ported by Fisher and Jeffreys would often be simi-
lar (see Casella and Berger, 1987, for discussion-but 
see Berger and Mortera, 1999, for an alternative per-
spective). Here precise hypothesis does not necessarily 
mean a point null hypothesis; the discussion applies 
equally well to a small interval null hypothesis (see 
Berger and Delampady, 1987). Also. the null hypoth-
esis can have nuisance parameters that are common to 
the alternative hypothesis. 

We begin, in Section 2, by reviewing the approaches 
to testing espoused by Fisher, Jeffreys and Neyman 
and the criticisms each had of the other approaches. 
The negative impact upon science that has resulted 
from the disagreement is also discussed. In Section 3, 
we describe the conditional frequentist testing para-
digm that is the basis of the unification of the three 
viewpoints. Section 4 discusses how this would have 
allowed Fisher, Jeffreys and Neyman to simply dis-
agree-that is, to report the same numbers, though as-
signing them differing interpretations. Section 5 dis-
cusses various generalizations of the unified approach. 

Before beginning, a few caveats are in order. The 
first is about the title of the article. Fisher, Jeffreys 
and Neyman all held very strong opinions as to the 
appropriateness of their particular views of statistics, 
and it is unlikely that they would have personally 
reached agreement on this issue. What we are really 
discussing, therefore, is the possibility of a unification 
being achieved in which the core principles of each of 
their three schools are accommodated. 

Another caveat is that this is not written as a his-
torical work and quotations justifying the stated posi-
tions of Fisher, Jeffreys and Neyman are not included. 
Key books and publications of the three that outline 
their positions and give their criticisms of the other 
approaches include Fisher (1925, 1935, 1955, 1973), 
Neyman and Pearson (1933), Neyman (1961, 1977) 
and Jeffreys (1961). Other references and much use-
ful historical discussion can be found, for instance, in 
Morrison and Henkel (1970), Spielman (1974, 1978), 
Carlson (1976), Savage (1976), Hall and Selinger 
(1986), Zabell (1992), Lehmann (1993), Johnstone 

(1997), Barnett (1999) and Hubbard (2000). Further-
more, Fisher, Jeffreys and Neyman were statisticians 
of great depth and complexity, and their actual view-
points toward statistics were considerably more subtle 
than described herein. Indeed, the names Fisher, Jef-
freys and Neyman will often be used more as a label for 
the schools they founded than as specific references to 
the individuals. It is also for this reason that we discuss 
Neyman testing rather than the more historically appro-
priate Neyman-Pearson testing; Egon Pearson seemed 
to have a somewhat eclectic view of statistics (see, e.g., 
Pearson, 1955, 1962) and is therefore less appropriate 
as a label for the "pure" frequentist philosophy of test-
ing. 

A final caveat is that we mostly avoid discussion of 
the very significant philosophical differences between 
the various schools (cf. Braithwaite, 1953; Hacking, 
1965; Kyburg, 1974; Seidenfeld, 1979). We focus less 
on "what is correct philosophically?" than on "what is 
correct methodologically?" In part, this is motivated 
by the view that professional agreement on statistical 
philosophy is not on the immediate horizon, but this 
should not stop us from agreeing on methodology, 
when possible, and, in part, this is motivated by the 
belief that optimal general statistical methodology 
must be simultaneously interpretable from the differing 
viewpoints of the major statistical paradigms. 

2. THE THREE APPROACHES AND 
CORRESPONDING CRITICISMS 

2.1 The Approaches of Fisher, Jeffreys 
and Neyman 

In part to set notation, we briefly review the three 
approaches to testing in the basic scenario of testing 
simple hypotheses. 

Fisher's signijicance testing. Suppose one observes 
data X - f (xlQ) and is interested in testing Ho : 
8=Qo.Fisher would proceed by: 

Choosing a test statistic T = t(X), large values of T 
reflecting evidence against Ho. 
Computing the p-value p = Po(t(X) 2 t(x)), re-
jecting Ho if p is small. (Here, and throughout the 
paper, we let X denote the data considered as a ran-
dom variable, with x denoting the actual observed 
data.) 

A typical justification that Fisher would give for this 
procedure is that the p-value can be viewed as an index 
of the "strength of evidence" against Ho, with small 
p indicating an unlikely event and, hence, an unlikely 
hypothesis. 
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Neyman-Pearson hypothesis testing. Neyman felt 
that one could only test a null hypothesis, Ho :8 =Bo, 
versus some alternative hypothesis, for instance, H1 : 
8 =Q1. He would then proceed by: 

a Rejecting Ho if T >_ c and accepting otherwise, 
where c is a pre-chosen critical value. 

a Computing Type I and Type I1 error probabilities, 
a = Po(rejecting Ho) and j3 =Pl(accepting Ho). 

Neyman's justification for this procedure was the fre- 
quentist principle, which we state here in the form that 
is actually of clear practical value. (See Neyman, 1977. 
Berger, 1985a and b contain discussions relating this 
practical version to more common textbook definitions 
of frequentism.) 

FREQUENTISTPRINCIPLE. In repeated practical 
use of a statistical procedure, the long-run average 
actual error should not be greater than (and ideally 
should equal) the long-run average reported error. 

The Jeffreys approach to testing. Jeffreys agreed 
with Neyman that one needed an alternative hypothesis 
to engage in testing and proceeded by: 

a Defining the Bayes factor (or likelihood ratio) 
B(x) = f (xleo>/f (~ lOl> .  

a Rejecting Ho (accepting Ho) as B(x) 5 1 [B(x) > I]. 
a Reporting the objective posterior error probabilities 

(i.e., the posterior probabilities of the hypotheses) 

based on assigning equal prior probabilities of 1 / 2 to 
the two hypotheses and applying the Bayes theorem. 

Note that we are using "objective" here as a label to 
distinguish the Jeffreys approach to Bayesian analysis 
from the subjective approach. Whether any approach to 
statistics can really claim to be objective is an issue we 
avoid here; see Berger and Berry (1988) for discussion. 

2.2 Criticisms of the Three Approaches 

The discussion here will be very limited: Fisher, 
Jeffreys and Neyman each had a lot to say about the 
other approaches, but space precludes more than a 
rather superficial discussion of their more popularized 
criticisms. 

Criticisms of the Bayesian approach. Fisher and 
Neyman felt that it is difficult andlor inappropriate to 
choose a prior distribution for Bayesian testing. Some- 
times criticism would be couched in the language of 
objectivity versus subjectivity; sometimes phrased in 
terms of the inadequacy of the older inverse probabil- 
ity version of Bayesianism that had been central to sta- 
tistical inference since Laplace (1812); and sometimes 
phrased in terms of a preference for the frequency 
meaning of probability. 

The comments by Fisher and Neyman against the 
Bayesian approach were typically quite general, as op- 
posed to focusing on the specifics of the developments 
of Jeffreys. For instance, the fact that the methodology 
proposed by Jeffreys can lead to Bayesian confidence 
intervals that are also asymptotically optimal frequen- 
tist confidence intervals (Welch and Peers, 1963) did 
not seem to enter the debate. What could be viewed as 
an analogue of this result for testing will be central to 
our argument. 

Criticisms of Neyman-Pearson testing. Both Fisher 
and Jeffreys criticized (unconditional) Type I and 
Type I1 errors for not reflecting the variation in evi- 
dence as the data range over the rejection or accep- 
tance regions. Thus, reporting a prespecified a =0.05 
in Example 1, regardless of whether z = 2 or z = 10, 
seemed highly unscientific to both. Fisher also criti- 
cized Neyman-Pearson testing because of its need for 
an alternative hypothesis and for the associated diffi- 
culty of having to deal with a power function depend- 
ing on (typically unknown) parameters. 

Criticisms of p-values. Neyman criticized p-values 
for violating the frequentist principle, while Jeffreys 
felt that the logic of basing p-values on a tail area 
(as opposed to the actual data) was silly [". . . a hy- 
pothesis that may be true may be rejected because it 
has not predicted observable results that have not oc- 
curred" (Jeffreys, 196 1 )]. More recently-and related 
to both these criticisms-there has been great concern 
that the too-common misinterpretation of p-values as 
error probabilities very often results in considerable 
overstatement of the evidence against Ho; compare Ed- 
wards, Lindman and Savage (1963), Gibbons and Pratt 
(1975), Berger and Sellke (1987), Berger and Delam- 
pady (1987), Delampady and Berger (1990) and even 
the popular press (Matthews, 1998). 

Dramatic illustration of the nonfrequentist nature 
of p-values can be seen from the applet available at 
www.stat.duke.edu/-berger. The applet assumes one 
faces a series of situations involving normal data with 



4 J. 0.BERGER 

unknown mean 0 and known variance, and tests of 
the form Ho : 8 = 0 versus H1 : 0 # 0. The applet 
simulates a long series of such tests and records how 
often Ho is true for p-values in given ranges. 

Use of the applet demonstrates results such as if, in 
this long series of tests, half of the null hypotheses are 
initially true, then, among the subset of tests for which 
the p-value is near 0.05, at least 22%-and typically. -

over 50%--of the corresponding null hypotheses will 
be true. As another illustration, Sterne and Davey 
Smith (2001) estimated that roughly 90% of the null 
hypotheses in the epidemiology literature are initially 
true; the applet shows that, among the subset of such 
tests for which the p-value is near 0.05, at least 72%- 
and typically over 90%-of the corresponding null 
hypotheses will be true. The harm from the common 
misinterpretation of p = 0.05 as an error probability is 
apparent. 

2.3 Impact on Science of the Disagreement-

We do not address here the effect on statistics of 
having three (actually more) warring factions, except 
to say the obvious: it has not been good for our 
professional image. Our focus, instead, is on the effect 
that the disagreement concerning testing has had on 
the scientific community. 

Goodman (1999a, b) and Hubbard (2000), elaborat- 
ing on earlier work such as Goodman (1992, 1993) 
and Royal1 (1997), made a convincing case that the 
disagreement between Fisher and Neyman has had a 
significantly deleterious effect upon the practice of 
statistics in science, essentially because it has led to 
widespread confusion and inappropriate use of test- 
ing methodology in the scientific community. The ar- 
gument is that testers-in applications-virtually al-
ways utilize p-values, but then typically interpret the 
p-values as error probabilities and act accordingly. The 
dangers in this are apparent from the discussion at the 
end of the last section. Note that this confusion is dif- 
ferent from the confusion between a p-value and the 
posterior probability of the null hypothesis; while the 
latter confusion is also widespread, it is less common 
in serious uses of statistics. 

Fisher and Neyman cannot be blamed for this sit- 
uation: Neyman was extremely clear that one should 
use preexperimentally chosen error probabilities if fre- 
quentist validity is desired, while Fisher was very care- 
ful in distinguishing p-values from error probabilities. 

Concerns about this (and other aspects of the inap- 
propriate use of p-values) have repeatedly been raised 
in many scientific writings. To access at least some of 

the literature, see the following web pages devoted to 
the topic in various sciences: 

Environmental sciences: www.indiana.edu/-stigtsts 
Social sciences: www.coe.tamu.edu/-bthompson 
Wildlife science: 
www.npwrc.usgs.gov/penn/hypotest 

www.cnr.colostate.edu/-anderson/null.html. 


It is natural (and common) in these sciences to fault 
the statistics profession for the situation, pointing out 
that common textbooks teach frequentist testing and 
then p-values, without sufficient warning that these 
are completely different methodologies (e.g., without 
showing that a p-value of 0.05 often corresponds 
to a frequentist error probability of 0.5, as indicated 
by the mentioned applet and conditional frequentist 
developments). 

In contrast, the statistics profession mostly holds 
itself blameless for this state of affairs, observing that 
the statistical literature (and good textbooks) does have 
appropriate warnings. But we are not blameless in 
one sense: we have not made a concerted professional 
effort to provide the scientific world with a unified 
testing methodology (a few noble individual efforts- 
such as Lehmann, 1993-aside) and so we are tacit 
accomplices in the unfortunate situation. With a unified 
testing methodology now available, it is time to mount 
this effort and provide nonstatisticians with testing 
tools that they can effectively use and understand. 

3. CONDITIONAL FREQUENTIST TESTING 

3.1 Introduction to Conditioning 

Conditional inference is one of the most impor-
tant concepts in statistics, but often it is not taught 
in statistics courses or even graduate programs. In 
part this is because conditioning is automatic in the 
Bayesian paradigm-and hence not a subject of par- 
ticular methodological interest to Bayesians-while, in 
the frequentist paradigm, there is no established gen- 
eral theory as to how to condition. Frequentists do con- 
dition automatically in various circumstances. For in- 
stance, consider a version of the famous Cox (1958) 
example, in which, say, an assay is sometimes run with 
a sample of size tz = 10 and other times with a sample 
of size n = 20. If the choice of sample size does not 
depend on the unknowns under consideration in the as- 
say (e.g., if it depends only on whether an employee is 
home sick or not), then virtually everyone would con- 
dition on the sample size, rather than, say, report an 
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error probability that is the average of the error proba- 
bilities one would obtain for the two sample sizes. 

To be precise as to the type of conditioning we will 
discuss, it is useful to begin with a simple example, 
taken from Berger and Wolpert (1988) (which also 
discusses conditioning in general; see also Reid, 1995; 
Bjgmstad, 1996). 

EXAMPLE2. Two observations, X1 and X2, are to 
be taken, where 

0 + 1, with probability 112, 
X; = 

0 - 1, with probability 112. 

Consider the confidence set for the unknown 8:  

[ the point {;(XI + XZ)}, 

The (unconditional) frequentist coverage of this confi- 
dence set can easily be shown to be 

Pe (C(X1, X2) contains 0) =0.75. 

This is not at all a sensible report, once the data are 
at hand. To see this, observe that, if xl # x2, then we 
know for sure that their average is equal to 8 ,  so that the 
confidence set is then actually 100% accurate. On the 
other hand, if x l  =x2, we do not know if 0 is the data's 
common value plus 1 or their common value minus 1, 
and each of these possibilities is equally likely to have 
occurred. 

To obtain sensible frequentist answers here, one can 
define the conditioning statistic S = 1x1- X21, which 
can be thought of as measuring the strength of evidence 
in the data (S =2 reflecting data with maximal eviden- 
tial content and S =0 being data of minimal evidential 
content). Then one defines frequentist coverage condi- 
tional on the strength of evidence S. For the example, 
an easy computation shows that this conditional confi- 
dence equals, for the two distinct cases, 

Pe(C(X1, X2) contains 0 I S = 2 )  = 1, 

Pe(C(Xl,  X2) contains 0 1 S = 0) = $. 

It is important to realize that conditional frequentist 
measures are fully frequentist and (to most people) 
clearly better than unconditional frequentist measures. 
They have the same unconditional property (e.g., in the 
above example one will report 100% confidence half 
the time and 50% confidence half the time, resulting 

in an "average" of 75% confidence, as must be the 
case for a frequentist measure), yet give much better 
indications of the accuracy for the type of data that one 
has actually encountered. 

Exactly the same idea applies to testing. In the 
case of testing simple hypotheses Ho : 0 = 00 versus 
H1 : 0 = Q1, one determines a statistic Six), the 
magnitude of which indicates the strength of evidence 
in x .  Then one computes conditional frequentist error 
probabilities of Type I and Type 11, respectively, as 

a(s)  = Poireject HolS(x) = s )  and 
(2) 

B(s) = P1(accept Hal S(x) = s) .  

A notational comment: a variety of other names are 
often given to conditioning quantities in the literature. 
Fisher often used the term "relevant subsets" to refer 
to subsets of the sample space upon which one should 
condition. In Example 2, these would be {(xl ,  x2) : 
xl = x2} and {(xl, x2) : x1 # x2}. Another common 
term (as in Lehmann, 1993) is "frame of reference," 
referring to the sample space (or subset thereof) that is 
actually to be used for the frequentist computation. 

3.2 Brief History of Conditional 
Frequentist Testing 

Fisher often used conditioning arguments in testing, 
as in the development of the Fisher exact test, wherein 
he chose S to be the marginal totals in a contingency 
table and then computed p-values conditional on 
these marginal totals. In addition, Fisher recommended 
that statisticians routinely condition on an ancillary 
statistic S (a statistic that has a distribution that does 
not depend on 8), when available. Fisher's arguments 
for conditioning were a mix of theory and pragmatism 
(cf. Savage, 1976; Basu, 1975, 1977), and led to a wide 
variety of conditioning arguments being developed in 
the likelihood school of statistics (see, e.g., Cox, 1958; 
Kalbfleish and Sprott, 1973; Reid, 1995). 

The use of conditioning in the pure frequentist 
school was comparatively sporadic, perhaps because 
Neyman rarely addressed the issue (in spite of frequent 
criticism by Fisher concerning the supposed lack 
of conditioning in the frequentist school). The first 
extensive discussions of conditional frequentist testing 
were in Kiefer (1976, 1977) and Brown (1978). Among 
the many observations they made was that, from a 
frequentist perspective, any conditioning statistic- 
not just an ancillary statistic+ould be employed. 
However, usual frequentist criteria did not seem to be 
useful in suggesting the conditioning statistic to use, so 
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the theory did not immediately lead to the development 
of statistical methodology. As late as 1993, Lehmann 
(1993) asserted, "This leaves the combined theory 
[of testing] with its most difficult issue: What is the 
relevant frame of reference?" 

Berger, Brown and Wolpert (1994) approached the 
issue of choice of the conditioning statistic from the 
perspective of seeking a unification between condi-
tional frequentist testing and Bayesian testing, and it is 
a version of the test proposed therein (as reformulated 
in Wolpert, 1996) that we will be discussing. That this 
test also provides a potential unification with Fisherian 
testing was only recently realized, however. 

3.3 Recommended Conditioning Statistic and Test 

Fisher argued that p-values are good measures 
of the strength of evidence against a hypothesis. 
A natural thought is thus to use p-values to define 
the conditioning statistic for testing. Thus, for i =0, 1 ,  
let pi be the p-value in testing Hi against the other 
hypothesis and define the conditioning statistic 

The use of this conditioning statistic is equivalent to 
deciding that data (in either the rejection or acceptance 
region) that have the same p-value have the same 
strength of evidence. Note that p-values are only 
being used in an ordinal sense; any strictly monotonic 
function of p ,  applied to both hypotheses, would lead 
to the same conditioning statistic. 

The natural corresponding conditional test proceeds 
by: 

Rejecting Ho when po 5 P I ,  and accepting other-
wise. 
Computing the Type I and Type I1 conditional error 
probabilities (CEPs) as in (2). 

Using the results in Berger, Brown and Wolpert (19941, 
this can be shown to result in the test T C ,defined by 

Iif PO IP1> 
reject Ho and report Type I CEP 

I accept Ho and report Type I1 CEP 

where B(x) is the likelihood ratio (or Bayes factor). 

EXAMPLE3 (Taken from Sellke, Bayarri and Berger, 
2001). It is desired to test 

Ho :X -- Uniform(0, 1) versus H1 : X -Beta(ll2, 1) .  

The Bayes factor (or likelihood ratio) is then B(x) = 
1/(2&)-I = 2&. Computation yields po = Po 
(X ~ x )= x  and pl = P1(X 3 x) = 1 - &.Thus 
the conditioning statistic is S =max{po,p l }  =max{x, 
1 - f i }(so it is declared that, say, x = in the ac-
ceptance region has the same strength of evidence as 

1x = in the rejection region, since they would lead to 
the same p-value in tests of Ho and H I ,respectively). 

The recommended conditional frequentist test is thus 

( if x 50.382, 

I reject Ho and report Type I CEP 

I accept Ho and report Type I1 CEP 

B(x) = (1 +~ x " ~ ) - I .  

Note that the CEPs both vary with the strength of 
evidence in the data, as was one of the basic goals. 

4. THE POTENTIAL AGREEMENT 

We consider Neyman, Fisher and Jeffreys in turn, 
and discuss why T C  might-and might not-have 
appealed to them as a unifying test. 

4.1 Neyman 

The potential appeal of the test to Neyman is 
straightforward: it is fully compatible with the frequen-
tist principle and hence is allowed within the frequen-
tist paradigm. Neyman rarely discussed conditioning, 
in spite of considerable criticisms from Fisher in this 
regard, as noted above, and so it is difficult to specu-
late as to his reaction to use of the conditioning sta-
tistic in (3). The result-having a true frequentist test 
with error probabilities fully varying with the data-
would have certainly had some appeal, if for no other 
reason than that it eliminates the major criticism of the 
Neyman-Pearson frequentist approach. Also, Neyman 
did use conditioning as a technical tool, for instance, in 
developments relating to similar tests (see, e.g., Ney-
man and Pearson, 1933),but in these developments the 
conditional Type I error always equalled the uncondi-
tional Type I error, so the fundamental issues involving 
conditioning were not at issue. 

Neyman might well have been critical of condition-
ing that affected optimality properties, such as power. 
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This can occur if conditioning is used to alter the deci- 
sion rule. The classic example of Cox (1958) is a good 
vehicle for discussing this possibility. 

EXAMPLE4. Suppose X is normally distributed 
as N ( Q ,  1) or N(Q,  4), depending on whether the 
outcome, Y,  of flipping a fair coin is heads (y = 1) 
or tails (y = 0). It is desired to test Ho : 8= -1 
versus H1 : 0 = 1 .  The most powerful (unconditional) 
level a = 0.05 test can then be seen to be the test 
with rejection region given by x > 0.598 if y = 1 and 
x > 2.392 if y =0. 

Instead, it seems natural to condition upon the 
outcome of the coin flip in the construction of the tests. 
Given y = 1, the resulting most powerful a = 0.05 
level test would reject if x 30.645, while, given y =0, 
the rejection region would be x > 2.290. This is still a 
valid frequentist test, but it is no longer unconditionally 
optimal in terms of power and Neyman might well have 
disapproved of the test for this reason. Lehmann (1993) 
provided an excellent discussion of the tradeoffs here. 

Note, however, that the concern over power arises, 
not because of conditioning per se, but rather because 
the decision rule (rejection region) is allowed to change 
with the conditioning. One could, instead, keep the 
most powerful unconditional rejection region (so that 
the power remains unchanged), but report error prob- 
abilities conditional on Y.  The resulting Type I error 
probabilities, conditional on y = 1 and y = 0, would 
be a(1) = 0.055 and a(0) = 0.045, respectively. The 
situation is then exactly the same as in Example 2, and 
there is no justification for reporting the unconditional 
a = 0.05 in lieu of the more informative a(1)  =0.055 
or a(0)  = 0.045. (One can, of course, also report the 
unconditional a = 0.05, since it reflects the chosen de- 
sign for the experiment, and some people might be in- 
terested in the design, but it should be clearly stated 
that the conditional error probability is the operational 
error probability, once the data are at hand.) 

We are not arguing that the unconditional most 
powerful rejection region is better; indeed, we agree 
with Lehmann's (1993) conclusion that conditioning 
should usually take precedence over power when 
making decisions. However, we are focusing here 
only on the inferential report of conditional error 
probabilities, in which case concerns over power do not 
arise. 

Of course, we actually advocate conditioning in this 
article on (3) and not just on y. Furthermore, as we are 
following Fisher in defining the strength of evidence 
in the data based on p-values, we must define S 

separately for y = 1 and y = 0, so that we do condition 
on Y as well as S. The resulting conditional frequentist 
test is still defined by (4) and is easily seen to be 

- if x >_ 0, 
reject Ho and report Type I CEP 

T c = +  
a(x ,  y) = (1 + e ~ ~ { 2 ( ~ ' - ~ ) x } ) - ~ ,  

i f x  ( 0 ,  

accept Ho and report Type I1 CEP 
. B(x, y) = (1 + e~~(--2(~J ' - ' )x})- ' .  

Note that the answers using this fully conditional 
frequentist test can be quite different from the answers 
obtained by conditioning on Y alone. For instance, 
at the boundary of the unconditional most powerful 
rejection region (x = 0.598 if y = 1 and x = 2.392 
if y = O), the CEPs are a(0.598, 1) = a(2.392,O) = 
0.232. At, say, x = 4.0, the CEPs are a(4.0, 1) = 
0.00034 and a(4.0,O) = 0.119, respectively. Clearly 
these results convey a dramatically different message 
than the error probabilities conditioned only on Y (or 
the completely unconditional a = 0.05). 

Another feature of T' that Neyman might have 
taken issue with is the specification of the rejection 
region in (4). We delay discussion of this issue until 
Section 5.1. 

4.2 Fisher 

Several aspects of T' would likely have appealed to 
Fisher. First, the test is utilizing p-values to measure 
strength of evidence in data, as he recommended, and 
conditioning upon strength of evidence is employed. 
The resulting test yields error probabilities that fully 
vary with the strength of evidence in the data, a 
property that he felt was essential (and which caused 
him to reject Neyman-Pearson testing). In a sense, 
one can think of T' as converting p-values into error 
probabilities, while retaining the best features of both. 

One could imagine that Fisher would have ques- 
tioned the use of (3) as a conditioning statistic, since 
it will typically not be ancillary, but Fisher was quite 
pragmatic about conditioning and would use nonan- 
cillary conditioning whenever it was convenient (e.g., 
to eliminate nuisance parameters, as in the Fisher ex- 
act test, or in fiducial arguments: see Basu, 1977, for 
discussion). The use of max rather than the more nat- 
ural min in (3) might have been a source of concern 
to Fisher; we delay discussion of this issue until Sec- 
tion 5.2. 

Fisher would have clearly disliked the fact that 
an alternative hypothesis is necessary to define the 
test T'. We return to this issue in Section 5.3. 
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4.3 Jeffreys on the stopping rule in sequential analysis so that 

The most crucial fact about the CEPs in (4) is 
that they precisely equal the objective Bayesian error 
probabilities, as defined in (1). Thus the conditional 
frequentist and objective Bayesian end up reporting 
the same error probabilities, although they would 
imbue them with different meanings. Hence we have 
agreement as to the reported numbers, which was the 
original goal. Jeffreys might have slightly disagreed 
with the rejection region specified in (4); we again 
delay discussion until Section 5.1. 

Some statisticians (the author among them) feel 
that a statistical procedure is only on strong grounds 
when it can be justified and interpreted from at least 
the frequentist and Bayesian perspectives. That T C  
achieves this unification is a powerful argument in its 
favor. 

4.4 Other Attractions of T' 

The new conditional frequentist test has additional 
properties that might well have appealed to Fisher, 
Jeffreys and Neyman. A few of these are listed here. 

4.4.1 Pedagogical attractions. Conditional frequen- 
tist testing might appear difficult, because of the need 
to introduce the conditioning statistic S. Note, how- 
ever, that the test T C  is presented from a fully oper- 
ational viewpoint in (4), and there is no mention what- 
soever of the conditioning statistic. In other words, the 
test can be presented methodologically without ever re- 
fening to S; the conditioning statistic simply becomes 
part of the background theory that is often suppressed. 

Another item of pedagogical interest is that teaching 
statistics suddenly becomes easier, for three reasons. 
First, it is considerably less important to disabuse stu- 
dents of the notion that a frequentist error probability 
is the probability that the hypothesis is true, given the 
data, since a CEP actually has that interpretation. Like- 
wise, one need not worry to such an extent about clar- 
ifying the difference between p-values and frequentist 
error probabilities. Finally, in teaching testing, there is 
only one test-that given in (4). Moving from one sta- 
tistical scenario to another requires only changing the 
expression for B(x) (and this is even true when testing 
composite hypotheses). 

4.4.2 Simplijications that ensue. The recommended 
conditional frequentist test results in very significant 
simplifications in testing methodology. One of the 
most significant, as discussed in Berger, Boukai and 
Wang (1997, 1999), is that the CEPs do not depend 

(i) their computation is much easier (the same as 
fixed sample size computations) and (ii) there is no 
need to "spend a" to look at the data. This last point 
removes the perceived major conflict between ethical 
considerations and discriminatory power in clinical 
trials; one sacrifices nothing in discriminatory power 
by evaluating (and acting upon) the evidence after each 
observation has been obtained. 

A second simplification is that the error probabili- 
ties are computable in small sample situations, without 
requiring simulation over the sample space or asymp- 
totic analysis. One only needs to be able to compute 
B(x) in (4). An example of this will be seen later, in a 
situation involving composite hypotheses. 

5. EXTENSIONS 

5.1 Alternative Rejection Regions 

A feature of T' that is, at first, disconcerting is 
that the rejection region need not be specified in ad- 
vance: it is predetermined as {x : po(x) 5 pl(x)) .  
This is, in fact, the minimax rejection region, that 
is, that which has unconditional error probabilities 
a = p .  The disconcerting aspect is that, classically, 
one is used to controlling the Type I error probabil- 
ity through choice of the rejection region, and here 
there seems to be no control. Note. however, that 
the unconditional a and /3 are not used as the re-
ported error probabilities; the conditional a ( x )  and 
#3(x) in (4) are used instead. In Example 3, for in- 
stance, when x = 0.25, one rejects and reports Type I 
CEP a(0.25) = (1 + 4(0.25)-'I?)-' = 0.5. While Ho 
has formally been refected, the fact that the reported 
conditional error probability is so high conveys the 
clear message that this is a very uncertain conclusion. 

For those uncomfortable with this mode of oper- 
ation, note that it is possible to, instead, specify an 
ordinary rejection region (say, at the unconditional 
a = 0.05 level), find the "matching" acceptance region 
(which would essentially be the 0.05 level rejection re- 
gion if H1 were the null hypothesis), and name the re- 
gion in the middle the no-decision region. The condi- 
tional test would be the same as before, except that one 
would now state "no decision" when the data are in the 
middle region. The CEPs would not be affected by this 
change, so that it is primarily a matter of preferred style 
of presentation (whether to give a decision with a high 
CEP or simply state no decision in that case). 

A final comment here relates to a minor dissatisfac- 
tion that an objective Bayesian might have with T ~ .  
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An objective Bayesian would typically use, as the 
rejection region, the set of potential data for which 
P(Ho 1 x )  5 112, rather than the region given in (4) .  
In Berger, Brown and Wolpert (1994), this concern 
was accommodated by introducing a no-decision re- 
gion consisting of the potential data that would lead to 
this conflict. Again, however, this is of little importance 
statistically (the data in the resulting no-decision region 
would be very inconclusive in any case), so simplicity 
argues for sticking with T ~ .  

5.2 	Other Types of Conditioning 

One could consider a wide variety of conditioning 
statistics other than that defined in (3) .Sellke, Bayarri 
and Berger (2001) explored, in the context of Exam- 
ple 3, other conditioning statistics that have been sug- 
gested. A brief summary of the results they found fol- 
lows. 

Ancillary conditioning statistics rarely exist in test- 
ing and, when they exist, can result in unnatural condi- 
tional error probabilities. For instance, in Example 3, if 
one conditions on the ancillary statistic (which happens 
to exist in this example), the result is that B ( x )= 112 
as the likelihood ratio, B ( x ) ,varies from 1 to 2. This 
violates the desire for error probabilities that vary with 
the strength of evidence in the data. 

Birnbaum (1961)suggested "intrinsic significance," 
based on a type of conditioning defined through like- 
lihood concepts. Unfortunately, he found that it rarely 
works. Indeed, in Example 3, use of the corresponding 
conditioning statistic yields a ( x )- 1 as B ( x )  varies 
between 0 and 112. 

Kiefer (1977) suggested "equal probability contin- 
uum" conditioning, which yields the unnatural result, 
in Example 3, that p ( x )  -+0 as B ( x )+ 2; to most sta- 
tisticians, a likelihood ratio of 2 would not seem equiv- 
alent to an error probability of 0. 

In classical testing using p-values, the focus is usu- 
ally on small p-values. It thus might seem more nat- 
ural to condition on S = min{po, p l}  rather than S = 
max{po,pl } when defining the conditional frequentist 
test. The motivation would be that instead of equating 
evidence in favor of the two hypotheses, one would 
equate evidence against them. In Example 3, how-
ever, this yields answers that are clearly unsatisfactory. 
For instance, the resulting conditional error probabil- 
ities are such that a ( x )-+ as B ( x )  O' 
B ( x )-+ 0 as B ( x )+ 2, neither of which is at all sen- 
sible. 

Of course, one example is hardly compelling evi- 
dence, but the example does show that conditioning 

statistics can easily lead to error probabilities that are 
counterintuitive. This is perhaps another reason that 
conditional frequentist testing has not been common 
in the statistical community, in spite of its consid- 
erable potential advantages. A chief attraction of the 
conditioning statistic in (3 ) is that it yields CEPs that 
can never be counterintuitive, since the resulting error 
probabilities must coincide with objective Bayesian er- 
ror probabilities. 

5.3 	Calibrating p-Values When There Is No 
Alternative Hypothesis 

Fisher often argued that it is important to be able to 
test a null hypothesis, even if no alternative hypothesis 
has been determined. The wisdom in doing so has been 
extensively debated: many statisticians have strong 
opinions pro and con. Rather than engaging this debate 
here, we stick to methodology and simply discuss how 
conditional frequentist testing can be done when there 
is no specified alternative. 

The obvious solution to the lack of a specified alter- 
native is to create a generic nonparametric alternative. 
We first illustrate this with the example of testing of fit 
to normality. 

EXAMPLE5. Berger and Guglielmi (2001) con-
sidered testing Ho : X - N ( p ,  a )  versus H1 : X -
F ( p ,  a ) ,  where F is an unknown location-scale dis- 
tribution that will be centered at the normal dist.b-
ution. As mentioned above, the key to developing a 
conditional frequentist test is first to develop an objec- 
tive Bayes factor, B ( x ) .This was done by choosing a 
Polya tree prior for F, centered at the 8 ( p ,  a )  distri-
bution, and choosing the right-Haar prior, n(1,a )  = 
1 / a ,  for the location-scale parameters in each model. 
Berger and Guglielmi (2001) showed how to com-
pute B ( x ) .  

The recommended conditional frequentist test is 
then given automatically by (4) .  Because the null 
hypothesis has a suitable group invariance structure, 
the analysis in Dass and Berger (2003)can be used to 
show that the conditional Type I error is indeed a ( x )  
in (4) , while p ( x )  is an average Type I1 error (see 
Section 5.4). It is interesting to note that this is an exact 
frequentist test, even for small sample sizes. This is in 
contrast to unconditional frequentist tests of fit, which 
typically require extensive simulation or asymptotic 
arguments for the determination of error probabilities. 

Developing specific nonparametric alternatives for 
important null hypotheses, as above, can be arduous, 
and it is appealing to seek a generic version that 
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TABLE 1 
Calibration of p-values as lower bounds on 

conditional error probabilities 

applies widely. To do so, it is useful to again follow 
Fisher and begin with a p-value for testing Ho. If 
it is a proper p-value, then it has the well-known 
property of being uniformly distributed under the null 
hypothesis. (See Bayarri and Berger, 2000, Robins, van 
der Vaart and Ventura, 2000, and the references therein 
for discussion and generalizations.) In other words, we 
can reduce the original hypothesis to the generic null 
hypothesis that Ho : p(X) -Uniform(0, 1). 

For this p-value null, Sellke, Bayarri and Berger 
(2001) developed a variety of plausible nonparametric 
alternatives and showed that they yield a lower bound 
on the Bayes factor of B(p) 2 -e p log(p). Although 
each such alternative would result in a different test (4), 
it is clear that all such tests have 

This is thus a lower bound on the conditional Type I 
error (or on the objective posterior probability of Ho) 
and can be used as a "quick and dirty" calibration of a 
p-value when only Ho is available. 

Table 1, from Sellke, Bayani and Berger (2001), 
presents various p-values and their associated calibra- 
tions. Thus p =0.05 corresponds to a frequentist error 
probability of at least a(0.05) =0.289 in rejecting Ho. 

While simple and revealing, the calibration in (5) is 
often a too-small lower bound on the conditional Type I 
error. Alternative calibrations have been suggested in, 
for example, Good (1958, 1992). 

5.4 Other Testing Scenarios 

For pedagogical reasons, we have only discussed 
tests of simple hypotheses here, but a wide variety of 
generalizations exist. Berger, Boukai and Wang (1997, 
1999) considered tests of simple versus composite 
hypotheses, including testing in sequential settings. For 
composite alternatives, conditional Type I1 error is now 
(typically) a function of the unknown parameter (as 
is the unconditional Type I1 error or power function) 
so that it cannot directly equal the corresponding 
Bayesian error probability. Interestingly, however, a 
posterior average of the conditional Type I1 error 
function does equal the corresponding Bayesian error 
probability, so that one has the option of reporting the 

average Type I1 error or the average power instead 
of the entire function. This goes a long way toward 
answering Fisher's criticisms concerning the difficulty 
of dealing with power functions. 

Dass (2001) considered testing in discrete settings 
and was able to construct the conditional frequentist 
tests in such a way that very little randomization is nec- 
essary (considerably less than for unconditional tests 
in discrete settings). Dass and Berger (2003) consid- 
ered composite null hypotheses that satisfy an appro- 
priate invariance structure and showed that essentially 
the same theory applies. This covers a huge variety of 
classical testing scenarios. Paulo (2002a, b) considered 
several problems that arise in sequential experimenta- 
tion, including comparison of exponential populations 
and detecting the drift of a Brownian motion. 

The program of developing conditional frequentist 
tests for the myriad of testing scenarios that are 
considered in practice today will involve collaboration 
of frequentists and objective Bayesians. This is because 
the most direct route to determination of a suitable 
conditional frequentist test, in a given scenario, is the 
Bayesian route, thus first requiring determination of a 
suitable objective Bayesian procedure for the scenario. 
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Comment 
Ronald Christensen 

I feel privileged to congratulate Jim Berger on his 
exemplary career leading to the Fisher lectureship, 
as well as this interesting work with his colleagues. 
I totally agree with the premise that there is vast 
confusion about the practical use of testing and I hope 
that this article puts one more nail into the coffin that 
Neyman-Pearson testing so richly deserves. However, 
in my view, except for the incorporation of p-values, 
this article has little to do with Fisherian testing. 
Ultimately, the key issue is to get the philosophical 
ideas down and to use methods that are appropriate to 
the problems being addressed. 

In retrospect I believe that Neyman and Pearson per- 
formed a disservice by making traditional testing into a 
parametric decision problem. Frequentist testing is ill- 
suited for deciding between alternative parameter val- 
ues. I think Berger and Wolpert (1984) ably demon- 
strated that in their wonderful book. For example, when 
deciding between two hypotheses, why would you re- 
ject a hypothesis that is 10 times more likely than the 
alternative just to obtain some preordained a level? It 
is a crazy thing to do unless you have prior knowl- 
edge that the probability of the alternative occurring 
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is at least nearly 10 times larger. As to picking priors 
for scientific purposes, if you do not have enough data 
so that any "reasonable" prior gives the same answers 
in practice, you obviously cannot construct a scientific 
consensus and should admit that your results are your 
opinions. 

Outside of Neyman-Pearson theory, testing is prop- 
erly viewed as model validation. Either the model 
works reasonably or it does not. There is no paramet- 
ric alternative hypothesis! To perform either Neyman- 
Pearson or Bayesian testing, you must have, or con- 
struct, a parametric alternative. If you are willing 
to construct an alternative, you should use one of 
those theories. (Nonparametric problems are properly 
thought of as having huge parameter sets.) But at some 
point we all have to stop dreaming up alternatives 
and either go on to other problems, retire or die. In 
model validation, there is a series of assumptions that 
constitutes the model. Data are obtained and a one- 
dimensional test statistic is chosen. Either the data, as 
summarized by the test statistic, appear to be consis- 
tent with the model or they do not. If they appear to 
be inconsistent, obviously it suggests something may 
be wrong with the model. (Proof by contradiction.) If 
they appear to be consistent, big deal! (No contradic- 
tion, no proof.) The model came from somewhere; one 
hopes from scientific experience. But we eventually 
show that all models are wrong. The important ques- 
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Rejoinder 
James 0.Berger 

I enjoyed reading the discussions and am grateful 
to the discussants for illuminating the problem from 
interestingly different perspectives. Surprisingly, there 
was little overlap in the comments of the discussants, 
and so I will simply respond to their discussions in 
order. As usual, I will primarily restrict my comments 
to issues of disagreement or where elaboration would 
be useful. 

RESPONSE TO PROFESSOR CHRISTENSEN 

Christensen argues for the Bayesian and likelihood 
approaches to testing when one has an alternative 
hypothesis, and I do not disagree with what he says. 
Indeed, one of the purposes of this article was to show 
that frequentists, through the conditional approach, can 
also enjoy some of the benefits of better interpretability 
to which Christensen refers. 

Christensen mostly discusses the interesting issue of 
model validation when a parametric alternative hypoth- 
esis is not available. In Section 5 of the article, I dis- 
cussed two ways to approach this problem, designed 
to overcome the difficulty of seemingly having to de- 
pend on p-values in such situations. Christensen also 
notes the difficulty in choosing a test statistic for model 
validation; see Bayarri and Berger (2000) for relevant 
discussion on this point. 

RESPONSE TO PROFESSOR JOHNSON 

Johnson reminds us that, in many problems such 
as screening tests, it is not uncommon for nulls to be 
true--even when their p-values are small-because of 
the magnitude of the prior probabilities of hypotheses 
that are typically encountered in the area. This is 
indeed important to keep in mind, but the misleading 
nature of p-values is apparent even if hypotheses have 
equal prior probabilities. 

Johnson next mentions an interesting problem in 
risk analysis in which the null hypothesis is composite 
and the alternative is simple. As briefly mentioned in 
Section 5.4, handling this within the testing framework 
of the article would require use of a prior distribution 
on the composite model and would result in the 

posterior probability of the null being equal to an 
"average conditional Type I error." Use of an average 
Type I error is not common frequentist practice, so 
adoption of the suggested procedure by frequentists, 
in this situation, would likely be problematical. Of 
course, reporting Type I error as a function of the 
parameter is not common either and is not practically 
appealing. (Johnson's example is one in which taking 
the sup of the Type I error over the null parameter space 
would also not be practically appealing.) If one did so, 
it would seem necessary to indicate which parameter 
values were deemed to be of particular interest, and it 
is then a not-so-big step to write down a distribution 
(call it a prior or a weighting function) to reflect 
the parameters of interest, implement the conditional 
frequentist test and report the average Type I error. 

Johnson also raises the important issue that the mis- 
leading nature of p-values, from a Bayesian perspec- 
tive, becomes more serious as the sample size in- 
creases. One nice feature of the conditional frequentist 
approach is its demonstration of this fact purely from 
the frequentist perspective (since the conditional fre- 
quentist Type I error probability equals the Bayesian 
posterior probability). Johnson wonders if this can also 
be applied to a regression model with large sample size 
and 20 covariates. The answer is, unfortunately, no, in 
that efforts to develop an analog of the conditional fre- 
quentist testing methodology for multiple hypotheses 
have not been successful. Indeed, Gonen, Westfall and 
Johnson (2003) indicated one of the problems in at- 
tempting to do this, namely, the crucial and delicate 
way that the prior probabilities of the multiple hypothe- 
ses can enter into the analysis. 

Johnson reminds us that, while objective statistical 
methodology certainly can have its uses, we would of- 
ten be better off to embrace the subjective Bayesian 
approach in practice. I agree, although my own prac- 
tical experience is that a mixed approach is typically 
needed; it is often important to introduce some subjec- 
tive information about key unknowns in a problem, but 
other unknowns have to be treated in a default or ob- 
jective fashion. 
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RESPONSE TO PROFESSOR LAVINE numbers are quite different. As a general point this 

Lavine presents several interesting examples related 
to the incoherence of objective Bayesian testing, when 
"objective" is defined to mean, for instance, that each 
hypothesis is given equal prior probability. Incoheren- 
cies can then arise when one of the hypotheses is a 
union of other hypotheses, and these hypotheses are 
subsequently tested separately, without the prior mass 
for the original hypothesis being divided among the 
subhypotheses. 

Within objective Bayesian testing, this is not a seri- 
ous practical problem, in that it is understood that ob- 
jective Bayesians may need to be more sophisticated 
than using the naive "equal prior probability of hy- 
potheses" assumption (in much the same way that it is 
well understood that always using a constant prior den- 
sity for parameters is not good objective Bayesian prac- 
tice). Alas, the "cure for incoherency" for conditional 
frequentist testing is not so simple and, indeed, may not 
be possible. This is because the frequentist-Bayesian 
unification for testing two hypotheses seems to work 
well only with equal prior probabilities of hypotheses 
(see Berger, Brown and Wolpert, 1994) and, as men- 
tioned earlier, effectively dealing with more than two 
hypotheses in the conditional frequentist testing para- 
digm has proven to be elusive. My current view on this 
issue is that the conditional frequentist approach elim- 
inates the greatest source of incoherency in frequentist 
testing and hence is much better in practice, but does 
not eliminate all incoherency. 

Lavine asks, "Is methodological unification a good 
thing?", and suggests that it is not. However, he is refer- 
ring to the issue that there can be a variety of concep- 
tually quite different testing goals and that each sepa- 
rate goal might require a different analysis. This is very 
different from saying that, for testing with a particu- 
lar goal in mind, it is okay to have methodologies that 
yield very different answers; this last, I argue, is highly 
undesirable for statistics. Now it could be that each of 
the different testing methodologies is the right answer 
for one of the particular testing goals, but I do not think 
so. Thus, even accepting Lavine's thesis that there are 
four distinct testing scenarios, I would argue that each 
should ideally have its own unified testing methodol- 

ogy. 

RESPONSE TO PROFESSOR LELE 

Lele suggests that the unification of having different 
statistical approaches produce the same numbers is 
not satisfactory, when the interpretations of these 

might be true, but let us focus on the unified testing 
situation: The conditional frequentist will choose to 
interpret an error probability of 0.04 in terms of 
a long-run frequency and the Bayesian, in terms 
of posterior probability. Producing the same number 
simply means that either interpretation is valid for the 
given test. My view is that inferential statements that 
have two (or more) powerful supporting interpretations 
are considerably stronger than inferences that can be 
justified only from one perspective. 

Lele is concerned with the use of p-values to mea- 
sure the "strength of evidence in the data" and refers to 
some of the many arguments in the literature which in- 
dicate that p-values are poor measures of evidence. In- 
deed, perhaps the primary motivation for this article is 
precisely that p-values are poor measures of evidence 
about the comparative truth of hypotheses, which is 
what is addressed in the literature to which Lele refers. 
In this article, p-values are used in a quite differ- 
ent fashion, however-not to compare hypotheses, but 
rather to measure the strength of the generic informa- 
tion content in the data within a specific test: Saying 
that data for which po = 0.04 has the same generic 
strength of evidence as the data for which p l  =0.04, in 
a specific test under consideration, is a comparatively 
mild evidential statement. (This is like saying, in esti- 
mation of a normal mean p, that the strength of evi- 
dence in the data is measured by S/&; it says nothing 
directly about p, the quantity of interest.) In response 
to another of Lele's questions, the ratio of p-values has 
no role in the analysis. 

Of course, Lele is correct that other measures of 
strength of evidence in the data, such as likelihood ra- 
tio, could be used to develop conditioning statistics. 
Indeed, I mentioned a variety of these possibilities in 
Section 5.2. I specifically did mention Birnbaum's at- 
tempt to use likelihood ratio to define a conditioning 
statistic and I pointed out that it often fails to give sat- 
isfactory answers, as Birnbaum himself noted. (Likeli- 
hood ratio is a great measure of the comparative sup- 
port that the data has for hypotheses, but fails to pro- 
vide adequate conditioning statistics in the conditional 
frequentist paradigm.) Lele further asks how to choose 
from among the myriad possible conditioning statis- 
tics. The main point of the article is that one should 
use the p-value conditioning statistic, because it is the 
only choice that achieves the unification of viewpoints. 

Here are answers to a number of Lele's other 
questions. 
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The development of conditional error probabilities 
implicitly assumes that one of the hypotheses is cor-
rect. Bayesian testing can be given an interpretation 
in terms of which hypothesis is closest to the true 
hypothesis, but I do not know of any such interpre-
tation for conditional frequentist testing. 
Dass and Berger (2003) indicated how sample size 
and design questions should be addressed in the con-
ditional frequentist framework. Central is the notion 
that one should design so as to achieve conditional 
frequentist (or Bayesian) inferential goals. 
There is already a vast literature on unification 
of frequentist and Bayesian confidence sets, as 
mentioned in the discussions by Pericchi and Reid, 
so there was no reason to look at this problem first, 
as Lele proposes. 

a The use of the alternative hypothesis, in our defini-
tion of p-values, is limited to utilization of the like-
lihood ratio test statistic to define the p-values. 
Since the proposed conditional frequentist error 
probabilities equal the objective Bayesian posterior 
probabilities of hypotheses, they clearly are compat-
ible with the likelihood principle. However, there is 
a slight violation of the likelihood principle in that 
the critical value for the test will depend on the full 
sampling models under consideration. This has very 
little practical import, however, in that the CEPs for 
data near the critical value will be large, leading to 
the clear conclusion that there is no substantial ev-
idence in favor of either of the hypotheses for such 
data. 
Lele suggests that the unification achieved here is 
simply an attempt to modify frequentist theory so 
that it agrees with Bayesian theory. That is not 
an accurate characterization, in that unification of 
conditional frequentist and Bayesian methodology 
is always essentially unique, and the goal of this 
line of research (also mentioned by Pericchi and 
Reid) is to discover an essentially unique unified 
methodology (if it exists at all). It is interesting 
that, until Berger, Brown and Wolpert (1994), it was 
felt that unification in the testing domain was not 
possible. 

RESPONSE TO PROFESSOR MAY0 

I like Mayo's phrase "innocence by association." 
Alas, her discussion reflects the more standard "guilt 
by association." I have, in the past, often written 
about difficulties with p-values and unconditional error 
probabilities, and instead advocated use of posterior 

probabilities of hypotheses or Bayes factors. It is 
perhaps because of this history that Mayo begins the 
substantive part of her discussion with the statement 
that, "In contrast [to frequentist error probabilities], 
Berger's CEPs refer to the posterior probabilties of 
hypotheses under test . . . ." 

In actuality, all the CEPs in the article are found by 
a purely frequentist computation. involving only the 
sampling distribution. It is noted in the article that these 
fully frequentist error probabilities happen to equal 
the objective Bayesian posterior probabilities, but this 
does not change their frequentist nature in any respect. 
(Likewise, it would not be reasonable to reject all 
standard frequentist confidence sets in the linear model 
just because they happen to coincide with objective 
Bayesian credible sets.) As another way of saying this, 
note that one could remove every reference to Bayesian 
analysis in the article and what would be left is simply 
the pure frequentist development of CEPs. Indeed. 
I originally toyed with writing the article this way-
bringing in the relationship to Bayesian analysis only 
at the end-to try to reduce what I feared would be 
guilt by association. 

Mayo's discussion then turns to a critique of Bayes-
ian testing. Were this a Bayesian article, rather than 
an article primarily about a frequentist procedure, 
I would happily defend Bayesian analysis from these 
criticisms. I will refrain from doing so here, however. 
since such a defense would inevitably distract from 
the message that pure frequentist reasoning should 
result in adoption of the recommended CEPs. Many 
of Mayo's other comments also reflect this confusion 
about the frequentist nature of CEPs, and it would be 
repetitive if I responded to each. Hence I will confine 
myself to responding to a few other comments that 
Mayo makes. 

Why should the frequentist school have exclusive 
right to the term "error probability?" It is not 
difficult to simply add the designation "frequentist" 
(or Type I or Type 11) or "Bayesian" to the term to 
differentiate between the schools. 

a The applet is mentioned mainly as a reference for 
those who seek to improve their intuition concerning 
the behavior of p-values. (To paraphrase Neyman. 
can it be wrong to study how a concept works 
in repeated use?) In particular. none of the logic 
leading to CEPs is based on the applet. 

a Mayo finds the stated frequentist principle to be 
vaguely worded and indeed it is. It does, however, 
convey what I believe to be the essence of the princi-
ple; see. for instance. Section 10 of Neyman (1977) 
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which gives a considerably expanded discussion of 
this version of the principle. I neglected to say that 
the frequentist principle can be applied separately to 
Type I errors and Type I1 errors, which is precisely 
what is done by CEPs. 
Mayo asserts that Neyman, Pearson and Fisher all 
thought that p-values are "legitimate error proba-
bilities" (which, because of my first listed comment 
above, presumably means "frequentist error proba-
bilities"). My reading of the literature is quite the 
opposite-that this was perhaps the most central el-
ement of the Neyman-Fisher debate, with Neyman 
opposing p-values because they are not predesig-
nated (and hence cannot have a long-run frequency 
interpretation in actual use) and Fisher asserting 
that insistence on predesignated error probabilities 
is misguided in science. 
Mayo finishes with an introduction to "severity and a 
postdata interpretation of N-P tests," a development 
apparently aimed at bringing postdata assessment 
into N-P testing. Since CEPs provide postdata 
frequentist error probabilities based on essentially 
standard concepts (e.g., Type I and Type I1 error and 
conditioning), I do not see a need for anything more 
elaborate. 

RESPONSETO PROFESSOR PERlCCHl 

I certainly agree with Pericchi's historical perspec-
tive and elaborations on the need for unification in test-
ing. I also agree with his assessment that a complete 
overhaul of statistical testing is necessary, with uncon-
ditional tests (andlor p-values) being replaced by con-
ditional tests. It would be nice if the conditional fre-
quentist paradigm would itself be sufficient for this 
retooling of testing, in that the task would then not 
be diverted by ideology. Unfortunately, the conditional 
frequentist testing theory is hard to extend in many 
ways (e.g., to the case of multiple hypotheses). 

Pericchi does point out two scenarios where there is 
real potential for progress on the conditional frequen-
tist side: sequential testing (Paulo, 2002b, is relevant 
here) and use of approximations such as BIC. However, 
in general, I suspect that the main use of conditional 
frequentist arguments will be to demonstrate that ob-
jective Bayesian testing does have a type of frequentist 
validity, thus making it also attractive to frequentists 
who recognize the centrality of conditioning. 

RESPONSE TO PROFESSOR REID 

Reid also emphasizes the value in a Bayesian-
frequentist unification, and properly observes the im-
portance of p-values as a technical tool for a wide 

variety of statistically important calculations. I quite 
agree; indeed, the article demonstrates another impor-
tant technical use of p-values, in defining the condi-
tioning statistic for the proposed conditional frequen-
tist tests. 

It is interesting that Reid has not observed frequent 
misinterpretation of p-values as Type I error probabil-
ities, but rather has observed their frequent misinter-
pretation as posterior probabilities. Individuals' expe-
riences are quite different in this regard; for instance, 
Hubbard (2000) recounts that the main problem in the 
management science literature is the misinterpretation 
of p-values as Type I error probabilities. 

Reid mentions the issue of extending the analysis to 
composite null hypotheses, and worries that it requires 
essentially a full Bayesian analysis. Luckily, most 
classical composite null hypotheses have an invariance 
structure that allows reduction to a point null for 
conditional frequentist testing, as shown in Dass and 
Berger (2003). 
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