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The processing of sensory information is fundamental to the basic operation of the
nervous system. Our nervous system uses this sensory information to gain knowl-
edge of our bodies and the world around us. This knowledge is of great importance
as it provides the coherent and accurate information necessary for successful
motor control. Yet, all this knowledge is of an uncertain nature because we obtain
information only through our noisy sensors. We are thus faced with the problem
of integrating many uncertain pieces of information into estimates of the proper-
ties of our bodies and the surrounding world. Bayesian approaches to estimation
formalize the problem of how this uncertain information should be integrated. Uti-
lizing this approach, many studies make predictions that faithfully predict human
sensorimotor behavior.  2011 John Wiley & Sons, Ltd. WIREs Cogn Sci 2011 DOI: 10.1002/wcs.125

INTRODUCTION

Acentral objective of the nervous system is to sense
the state of the world around us and to affect this

state such that it is more favorable to us. To achieve
this, our senses provide us with information about our
bodies and our immediate environment. All this noisy
information must be integrated into a cohesive whole
before we can act rationally. Because of its importance,
the integration of sensory information has been
studied frequently both in the realm of perception and
in the realm of sensorimotor integration. Sensorimotor
integration in particular has been widely studied under
the banner of motor control. Indeed, it is through our
motor actions that we can most readily bring about
changes in the state of the world.

Motor control refers to nervous system’s role in
planning, executing, and stabilizing the movements
of the body. Studies of motor control generally ask
how the nervous system uses sensory information
to achieve its goals. This requires knowledge about
our motor apparatus, the world around us, and how
the two interact. The motor control problem is then
how to use our sensory information to best elicit a
desired outcome. A crucial first step for motor control
is therefore to integrate sensory information reliably
and accurately.
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Below we describe how the problem of inte-
grating sensory information is central to the motor
control problem and how its mathematical description
necessitates a statistical framework for examination:
Bayesian statistics. We start by describing the general
motor control problem and the need for a statistical
framework. This will set the stage for the various
experimental approaches that have been taken to
examine if subjects perform similar statistical infer-
ences under a wide variety of circumstances. Once
these inferences have been made, computational meth-
ods, covered in this review, can be employed to find
appropriate motor commands. In this article, how-
ever, we focus on how Bayesian statistics can be used
to formalize the process of estimation, the necessary
first step before efficient motor commands can be
produced.

THE MOTOR CONTROL PROBLEM

Humans and other animals typically produce move-
ments in a stereotyped fashion. This implies that the
nervous system has some notion that certain com-
mands and movements are better than others—even
when the commands and movements in question pro-
duce the same outcome. Within the framework of
decision theory and optimal control, the notion that
certain commands are better than others is formal-
ized by a cost function: a function that quantitatively
evaluates the merit of a command and its resulting
outcome. Given this very general, although somewhat
abstract description, we can mathematically formulate
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the problem of motor control as a minimization. For
illustrative purposes, we first present this in an overly
simplified manner to motivate the general approach.
Then we add the necessary further details to introduce
the statistical nature of the problem. First, though, we
can state the problem in simple terms: which command
u∗ results in the minimum cost?

u∗ = arg min
u

{cost(outcome(u), u)} (1)

For instance, suppose we are throwing darts. The ‘cost’
associated with the dart’s position on the board should
decrease with increasing scores; that is, we achieve the
lowest cost when we get the highest score. Therefore,
the best command would be that which delivers the
dart to the triple 20 (60 points, better than the bull’s
eye) and minimizes the cost (and maximizes our score).

The above example assumes that we can deter-
ministically choose a command and be sure of its
outcome. Yet, most motor control problems are
stochastic in nature, and motor outcomes are affected
by uncertainty. Under more realistic conditions our
minimization problem is no longer equivalent to
Eq. (1), but must take into account the statistics of
the task. To continue the example, if we aim at the
center of the dartboard we are not certain to hit the
bull’s eye with the dart (even if we are a seasoned
champion). If we continue to aim at the center and
throw many times we end up with a distribution
of dart positions. This distribution, p(outcome = x|u)
characterizes the likelihood of each outcome, the dart
landing at position x given that we chose the command
u. This distribution helps to define our new minimiza-
tion problem: what command minimizes the likely
cost?

u∗ = arg min
u{ ∑

possible outcomes

cost(outcome(u), u)p(outcome|u)
}
.

(2)

The optimal command thus defined minimizes the
so-called expected cost, the sum of possible costs
weighted by their corresponding probabilities. In the
example of playing darts, the best aiming point is
a point where we receive high scores on average,
even if we make large mistakes. This best aiming
point will change from player to player depending
on their likelihood of landing on any particular tar-
get. Indeed, both amateur and world-class players are
known to adopt a strategy that is well predicted by this
approach.

p(x)p(o|x)

p(x|o) = p(o|x)p(x) / p(o)
posterior:

prior:likelihood:

p(o2|x)p(o1|x)

p(x|o1,o2) = p(o1|x)p(o2|x)p(x) / p(o1,o2)
posterior:
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FIGURE 1 | (a) Possible sources of noise in the motor system. Motor
commands possess noise and result in uncertain movements. Visual and
proprioceptive senses too, contain inherent uncertainties. (b) Bayesian
integration of a prior and likelihood. The prior, denoted with the green
curve, represents the probability of a state, x. The likelihood, denoted
with the red curve, represents the probability of observing the data,
o, given x. The posterior is the probability that x is the state, given our
observation, o. (c) Bayes’ rule applied to cue combinations is the
mathematical analog, only instead of using a prior and likelihood, we
integrate two likelihoods. Here, for simplicity we assume the two
observations are conditionally independent given the state, and a flat
prior distribution over x.

While playing darts, our uncertainty in the dart’s
location arises largely from motor noise (Figure 1(a)).
However, there are many sensory sources of uncer-
tainty as well. For example, our visual system is noisy
and our sense of the location of the dartboard rela-
tive to our body is uncertain (Figure 1(a)). Moreover,
our proprioceptive system is noisy as well; the orien-
tation of our hand and arm as we release the dart
are uncertain (Figure 1(a)). These and many other
sources of uncertainty1 combine to produce vari-
ability in the motor outcome, given our command
decision.

Continuing our example, we can examine more
sophisticated and realistic motor control problems.
For instance, a more sensible description of dart
throwing recognizes that the task is dynamic. The
dart’s final position on the board depends on the
ballistic trajectory it takes once it has been released
from our hand. The motion of the dart up until
the moment we release it is dictated by the iner-
tial mechanics of our limb and the force generating
properties of our muscles. Clearly, our description of
the dart-throwing problem can take on greater and
greater levels of detail and physical accuracy. Never-
theless, the motor control problem is still to solve for
a command, u, although one that varies in time due to
the dynamic nature of the problem. The minimization

 2011 John Wiley & Sons, L td.



WIREs Cognitive Science Bayesian approaches to sensory integration for motor control

to be performed at each instant is a sum over both
the statistics of the possible outcomes at the current
time, and the statistics of future possible outcomes
that unfold as a result of the current choice of u.

For dynamical tasks such as these, we need to
know the state of the system and the world to compute
the optimal motor command. For the dart-throwing
task the state could be the orientation and velocity
of our hand. To measure the state we use sensory
feedback, but just as with motor outcomes, any mea-
surement of the state is corrupted by noise. Therefore
motor controllers must cope with the further uncer-
tainty of the state as well as how this influences motor
outcomes.

Despite the complexity of the above examples,
we can formulate the dynamical motor control prob-
lem in an expanded version of Eq. (2). We must solve a
statistical problem concerning likely motor outcomes
conditioned on our choice of commands. The diffi-
culty with this problem, and motor control in general,
is that computing the probability of an outcome given
a motor command is difficult. Doing so demands the
specification of many variables that are uncertain and
subject to their own statistics. This includes informa-
tion about our body, the world, and how they interact.
Integrating all this uncertain information requires a
statistical approach: Bayesian statistics. Bayesian inte-
gration is the mathematical framework that calculates
how uncertain information from multiple sources can
be optimally combined. It results in a coherent and
maximally accurate estimate of a set of observations.
Using Bayes’ rule we can integrate multiple measure-
ments, or multiple pieces of distinct information about
a variable, into a new probability. We can also update
the probability of a variable over time as we continue
to gain new information about it. Finally, we can
also use our observations and Bayesian integration to
update our beliefs about the structure of the world;
that is, what processes are responsible for shaping our
observations.

Given the fundamental implications for how
estimated properties of our bodies and the world
impact our ability to make optimal motor decisions,
exactly how human subjects integrate their noisy and
uncertain sensory information is of great interest. The
issue of computing an optimal control signal based on
such information can also be examined in a Bayesian
framework. A number of recent psychophysics studies
analyze how people and animals integrate multiple
sources of uncertain information to make sensorimo-
tor decisions. Below we discuss some of these findings.
We focus on circumstances that are sufficiently simple
that coherent statistical models can be used to predict
human behavior.

BAYESIAN INTEGRATION

Combining Prior Knowledge with New
Evidence
Combining uncertain information to produce a
coherent and accurate estimate of our body and the
world is a central problem in motor control. As an
example, consider the task of descending a staircase.
Based on our familiarity with walking downstairs, we
have strong assumptions for things like the distance
between steps, their height, and their general shape.
These assumptions form a prior over stairs, a belief in
their typical properties. Often these priors are strong
enough that we feel comfortable taking stairs without
even observing them, as when we descend stairs
without looking at our feet, or in the dark. Normally
though, we will first observe how far down we will
need to step. However, vision does not provide perfect
information. The visual system provides us with a
likelihood of the step’s height. This likelihood is the
probability of having a particular sensory observation
for each possible stair height. Bayes’ rule defines how
to combine the prior and the likelihood to make an
optimal estimate of the step’s height.

Bayes’ rule states that the probability of the step’s
height being value x, given our observation, o, is the
product of the prior probability of the stair height and
the likelihood, normalized by the probability of the
observation. Mathematically, this is expressed as:

p(x|o) = p(x)p(o|x)/p(o). (3)

The distribution produced by Eq. (3) is known as
the posterior probability (this is shown graphically in
Figure 1(b)). We can also interpret Bayes’ rule as the
‘optimal’ means of combining a prior and a likelihood,
as it results in a distribution with minimal uncertainty.

Several studies, using many sensory modalities,
have shown that when subjects combine preceding
knowledge with new information their behavior
reflects the integration of a prior and likelihood in
a manner prescribed by Bayes’ rule. A typical study2

will have people indicate their estimate of a target’s
location through a motor task. In each trial, the
target’s location is drawn from a Gaussian probability
distribution (the prior). The distribution can be fixed,
or vary across subjects as an experimental condition.
Noisy feedback of the target’s location is provided
(the likelihood). This distribution too, can be used as
an experimental condition. Bayesian statistics predicts
how subjects should combine the likelihood and the
prior. These predictions are then compared to human
performance.

These paradigms have been applied to a wide
range of topics spanning sensorimotor integration,
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force estimations, timing estimations, speed estima-
tions, stance regulation, the interpretation of visual
scenes, and even cognitive estimates.3–11 Together
these studies demonstrate that people are adept at
combining prior knowledge with new evidence in a
manner predicted by Bayesian statistics.

Combining Multiple Pieces of Information
In many cases it is not prior knowledge that is com-
bined with the likelihood, but rather two different
pieces of information that are combined. For example,
we may see and feel an object at the same time.12 We
can then use what we saw and what we felt to estimate
a common property of the object, for instance, its size
or its texture. This type of task is what is commonly
referred to as cue combination; two or more sensory
cues are combined to form a common, or joint, esti-
mate. Only by accurately combining these sensory cues
can we optimally complete the task. Just as before,
Bayesian statistics prescribes how we should combine
the likelihoods to compute an optimal estimate from
the posterior distribution (Figure 1(c)).

Recent studies have found that when combining
information this way, people are also similar to opti-
mal. As an example study, we consider how people
combine visual and auditory information to estimate
the position of a target. First the precision of visual
and auditory perceptions are separately measured for
each subject.13 This is done to characterize the sub-
ject’s likelihood for the two sensory modalities. Then
the precision and accuracy of perception is measured
when subjects use both senses. Their performance in
these cue-combination trials can be predicted using
the rules of Bayesian integration, further evidenc-
ing people’s ability to optimally cope with uncertain
information.

In addition to auditory and visual cues, the com-
bination of cues from different modalities has been
analyzed in a good number of studies.7,12,14–27 In
typical cases cues are combined by the subjects in a
fashion that is close to the optimum prescribed by
Bayesian statistics.

Credit Assignment
The rules of Bayesian statistics reviewed above
describe how we can bring new information to bear
upon our beliefs. As in the examples above, some-
times we are concerned only with estimating a single
property. However, under some cases we are con-
cerned with estimating many properties. For instance,
suppose we hold two blocks in our hand, one sitting
atop the other, and we want to estimate their indi-
vidual weights. Our observation of their combined

weight upon our hand is indicative of their individual
weights, namely the magnitude of their sum. How-
ever, this information is not sufficient to accurately
establish their individual weights. To estimate them,
we need to solve a credit assignment problem; that is,
how does each property (individual weight) contribute
to our observation (overall weight). Bayesian statistics
also prescribes an optimal solution to this problem.

Our observation of their combined weight forms
a likelihood, a probability of having a particular
sensory observation of their combined weight, for each
value of their individual weights. By combining this
with a prior over the object’s weight, perhaps based on
their size,28 we can compute a posterior distribution
of their individual weights. Again, this distribution
will provide an optimal estimate of their individual
weights, simultaneously solving the credit assignment
problem: how much does each block contribute to the
total weight I feel? Recent research29 addresses this
kind of problem by integrating the information over
time.

BAYESIAN INTEGRATION OVER TIME

In our discussion above we were concerned with esti-
mating what we assume are static properties such as
the weight of a block or the location of an auditory
cue. However, the world is dynamic, and as such its
properties and our perception of them are continually
changing. Thus we constantly need to integrate this
information with our current beliefs to inform new
estimates of the world if we are to behave optimally.
This implies that Bayesian integration should take
place in a continuous manner.

This approach is taken extensively in mod-
ern applications of control theory through the use
of a Kalman filter. Kalman filtering is a procedure
for using a model and our observations to continu-
ously update our beliefs (Figure 2(a)). This technique,
though not usually described as such, is equivalent
to an application of Bayesian integration. At each
instant the Kalman filter combines the model’s esti-
mate of the world’s state (the prior) with a measured
observation (the likelihood) to update a prediction of
the world’s current state, represented by a posterior
(Figure 2(b)). At any point of time, the posterior from
the past is combined with the model’s dynamics and
the motor command to define the prior for the future.
This formalism is well developed and used in a wide
range of applications from aeronautics to humanoid
robotics.30,31 Indeed, even the motor control prob-
lems of two applications as disparate as controlling a
jet and controlling our bodies, share many computa-
tional analogies. In both cases continuously incoming

 2011 John Wiley & Sons, L td.



WIREs Cognitive Science Bayesian approaches to sensory integration for motor control

Model
Bayesian 
update

Observation 
(likelihood)

Motor 
command

(a) (b)

Predicted 
observation 

(prior)

Updated 
prediction 
(posterior)

∆t

S
ta

te Ti
m

e

State

∆t

Prior
Likelihood
Posterior

(c)

PriorError

Target

St
re

ng
th

Likelihood

Posterior

FIGURE 2 | (a) Typical procedure for optimally estimating the world’s state in modern control theory. A model of the world, combined with a
motor command is used to estimate a predicted state (and its observation), through a prior distribution (labeled in green). Observations of the world
dictate the likelihood of a particular observation given the current world state (labeled in red). A Kalman filter is used to make a Bayesian update of
our belief in the world’s current state (labeled in blue). (b) This process of Bayesian inference repeats itself at each time step, using the posterior from
one time step, as the prior for the following time step. (c) Motor adaptation can be framed as an analogous update procedure. Our prior belief in
muscle properties (e.g., muscle strength, labeled in green) is integrated with our observed motor errors (labeled in red) to update estimates in our
muscle properties.

information needs to be assessed to move precisely
(albeit on different time scales). Only recently has
the methodology of Kalman filtering been applied to
make quantitative predictions of human movement
behavior.

As an example of this problem we consider a
recent theory of motor adaptation.29 The properties
of our bodies change continuously throughout our
lives. For instance, our muscles can fatigue over the
course of minutes, and grow or shrink in strength over
the course of weeks. This means that we must estimate
the strength of our muscles if we are to move precisely.
Errors in the estimated strength of our muscles will
translate into movement errors. We can use this error
to obtain a likelihood function characterizing how
strong the muscles are. According to Bayesian statistics
we need to combine newly obtained information, our
motor error, with our prior belief.32,33 We can thus
infer a new and improved estimate of our muscles
(Figure 2(c)).

It has been found that motor adaptation over
time can be well understood from the predictions of
Kalman filtering. For instance, evidence suggests how
people estimate the position of their hand,34 adapt to
robot-rendered force fields,29 and even balance a pole
upon their hand35 can all be explained using this strat-
egy. Taken together, these studies highlight that when
people integrate information over time, they seem to
do so in a fashion that is consistent with the optimal
Bayesian solution. These findings have important con-
sequences for optimal control, where computing the
optimal command relies on accurate estimates of the
world’s state.

BAYESIAN INFERENCE
OF STRUCTURE

Above we discussed how people appear to combine
two cues into a joint estimate using Bayes’ rule. This is
a necessary initial step in any sensorimotor task. The
analyses of these tasks implicitly assume that subjects
are certain that both cues have a common source: if
we hear a tone while seeing a flash of light, we assume
that both of these cues originate at the same location
and have a common cause. This idea has been very
successful at describing human behavior in a variety
of cue-combination experiments. Yet intuitively, we
recognize that before we can form estimates from our
perceptions, we must infer the underlying structure of
our sensory stimuli, only then can we make informed
motor decisions.

Based on common experience and experimental
studies we know that if two cues are very dissimilar,
our perception of a common source breaks down. If we
see a flash far to our right while perceiving a tone far to
our left, we may perceive two independent events. We
estimate if two events have a common cause or if they
just randomly co-occur; that is, we infer the structure
of events. One result of this inference is the so-called
ventriloquist effect.36–39 A commonly experienced
example is found while watching television: we
experience the illusion that the characters voices
emanate from their mouths (and not your television
speakers). However, the illusion quickly breaks down
if the timing of the program’s sound track is off. This
implies that if two events are perceived as having a
common cause they should influence the perception of
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each other. On the other hand, if they are perceived
as not having a common cause the perception of each
should be independent of the other.40,41

Traditional Bayesian analyses of psychophysi-
cal behavior used tasks where the experimental cues
were close to coincident. For example, the positions
of visual and auditory stimuli were usually closely
located.13 Examining a richer statistical problem, new
studies have tested subject performance in situations
where two cues are dissimilar from one another. A typ-
ical study will present a visual stimulus at a random
position within the visual field and simultaneously
present an auditory stimulus at a different random
position. Subsequently subjects are asked where they
perceive the stimuli. These studies have found that
when two stimuli are near coincident, people tend
to infer a common cause and use each cue to guide
the estimation of the other (just as in the traditional
cue-combination experiments). With increasing dis-
parity between the cues subjects’ belief in a common
cause decreases (Figure 3). Traditional Bayesian mod-
els, relying on an assumption of a common cause,
predict that the value of one observed cue should be
linearly influenced by the value of the other cue (when

assuming Gaussian likelihoods). In sharp contrast to
these predictions, new experiments have found non-
linear cue interactions. However, these interactions
are clearly explained if we assume that on each trial
the subjects infer a common or distinct cause for both
cues.40,41

These effects are found in a wide range of exper-
imental situations. They have been found in position
estimation using visual and auditory stimuli,40 in the
estimation of depth from several cues,20 in visuomotor
adaptation,42 and also in experiments where subjects
have to estimate the number of events, for example,
of visual, tactile, and auditory stimuli.43 The evidence
suggests that not only do subjects integrate priors and
likelihoods but also the causal structure underlying a
set of sensory stimuli.

The statistical problem that subjects solve in cue
combination implicitly involves an inference about the
causal structure of the stimuli. In these studies peo-
ple are uncertain about the identity and number of
relevant variables, for example, did the flash of light
causally give rise to the auditory tone, did the tone
causally give rise to the flash of light, was there an
unknown event that caused them both, or were they

FIGURE 3 | (a) Two structural beliefs of the world.
If two cues are adequately coincident, subject’s
perceive them as having a common cause (the green
box), a phenomenon typified through ventriloquism. If
the cues are disparate in time or space, subjects
perceive them as having independent causes (the red
box). (b) Subject’s belief of a common cause. As the
spatial disparity of two cues, a light flash and a tone,
is experimentally controlled the belief in a common
cause can be manipulated.
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simply coincidental? The problem faced by the ner-
vous system is thus similar to cognitive problems that
occur in the context of causal induction.44–51 Many
experiments demonstrate that people interpret events
in terms of cause and effect. The results presented here
show that sensorimotor integration exhibits some of
the same factors found in human cognition; only
after interpreting two cues as having the same cause
would they be integrated to estimate a single location.
Carefully studying and analyzing seemingly simple
problems such as cue combination may provide a fas-
cinating way of studying the human cognitive system
in a quantitative fashion.

LOOKING AHEAD: MAKING OPTIMAL
DECISIONS

We have surveyed a great amount of evidence on
how people gauge, judge, and generally make sense
of, the world. We have shown that human subjects
estimate the structure of the world, using models to
predict how its properties evolve over time, and com-
bine multiple sensory cues or their prior experience, to
form a best estimate. These are valuable processes for
our accurate perception of the world. Furthermore, as
we have described, these estimations are also critical
for motor control. Conceptually, however, this is only
the first step in motor control. We still need to choose
a motor command as shown in Eq. (2). Once we have
estimated the state of the world, we need to compute
the distribution over possible outcomes of any given
action. Only then can we choose the command that
will minimize the expected cost. This formalism of
choosing optimal commands by combining the statis-
tics of our actions and the resulting costs falls under
the field of decision theory and optimal control. In
all but the simplest cases, computing these optimal
commands is very difficult. Despite this hindrance,
many researchers have examined simple motor tasks
to compare people’s motor decisions with optimal
decisions.

Part of the difficulty in examining these prob-
lems is in knowing beforehand what people try to
optimize. Therefore, researchers have designed exper-
iments where the cost of the task is relatively explicit
such as the dartboard example. In a set of reaching
studies not unlike throwing a dart, it was observed
that people are remarkably close to making the opti-
mal choices prescribed by the decision theory.52–54 In
other experiments the objective is rather implicit in the
task description55–57 and force producing tasks.58 This
further demonstrates people’s abilities to integrate sta-
tistical information in a Bayes’ optimal manner not
only just for estimation but also for control.

DISCUSSION

The Bayesian studies we have reviewed predict the
results from many experimental studies on sensory
integration, cue combination, and motor control. In
theory, Bayesian statistics make predictions of opti-
mal behavior in any situation. However, there may
be limitations; human subjects do not optimally spec-
ulate on, for example, the stock market.59 Despite
this, in many circumstances our motor performance
in uncertain conditions appears superior to our deci-
sion making under similar conditions.60 It may be
argued that the low-level behaviors we have surveyed
here, are of the kind that were evolutionarily impor-
tant, or simply easy enough, that humans are good
at it. Bayesian and other normative approaches (see
below) are primarily of predictive value when we have
reasons to assume that behavior needs to be good.

In large part, the studies that we have presented
attempted to estimate the parameter values necessary
for our motor tasks. This process often falls under the
banner of motor adaptation. In addition, we have dis-
cussed how Bayesian analysis can be used to infer the
causal structure of our motor tasks. These processes
are often thought to be distinct from that of motor
learning, which takes place on a longer time scale
and requires more intense training. However, this dis-
tinction need not mean that Bayesian ideas are not
applicable. Future analyses of motor learning could
incorporate sophisticated Bayesian models that infer
both structure and model parameters for a task. Such
approaches would, by their very nature, require more
evidence to converge on solutions, and be consistent
with the longer time scales of motor learning.

Most Bayesian models discussed above assumed
that noise sources are Gaussian and that the interac-
tions between the subject and the world are linear. A
set of recent approaches in Bayesian statistics allows
the application of powerful frameworks well beyond
these simple assumptions. For instance, the structure
inference problem is a simple case of non-Gaussian
probability distributions. The techniques that may
be applied to such problems range from lineariza-
tion techniques such as extended Kalman filters that
represent probability distributions as Gaussians, to
variational techniques that represent them as arbi-
trary functions, to particle filtering methods that can
represent any probability distribution.61,62 It may be
hoped that more realistic models of the motor system
will benefit from further advances in machine learning.

The evidence reviewed for Bayesian methods
has been based on psychophysical experiments where
human behavior is measured and the underlying neu-
ral processes are unobserved. The Bayesian models
proposed are often interpreted as archetypes for the
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neural computations responsible for the motor behav-
iors. Recent studies though are looking for evidence
of these computations at the neuronal level. Purely
computational studies now show how neurons might
easily solve some of the needed computations.63,64

Other studies are looking for direct electrophysio-
logical evidence of multimodal cue combination in
the context of uncertainty.65 Further modeling stud-
ies ask about the distributed nature of computations
that might underlie the computation with uncertainty.
Future studies might focus on imaging or electrophys-
iological studies to find more evidence for the neural
substrates of these computations.

There are two broad approaches to modeling
the behavior of the nervous system. In one approach,
researchers start by making assumptions about the
problem which the nervous system is solving. For
instance, they may assume accuracy and efficiency
are the goals when trying to reach a target.66,67 Then
computational techniques are employed to predict the
resulting optimal behaviors. This manner of exam-
ination may be called normative or prescriptive: a
formulation of the task being solved is translated
into prescriptions for how the nervous system should
behave in order to solve the task. In contrast to this
approach, many studies begin by modeling known
properties of the nervous system. For instance, elec-
trophysiology studies of the visual cortex may measure
the firing properties of neurons in response to stimuli.
These models are then used to describe how they
give rise to properties such as Gabor-like receptive
fields.68 This approach may be called descriptive:
measured properties are used to describe how the
nervous system does behave when it solves tasks.

There are advantages and disadvantages to both
approaches. Prescriptive models explain why the ner-
vous system behaves as it does, but not how the behav-
iors are produced. Because prescriptive models are

constructed to optimally solve the problems, they may
not yield insight into how the nervous system’s mecha-
nisms produce behavior. However, descriptive models
explain how mechanisms are responsible for the ner-
vous system’s behavior, but not why these mechanisms
behave as they do. Moreover, relying on accurate
knowledge of many measured parameters may render
the predictions of descriptive models vulnerable to
imprecision; in large, complex systems small devia-
tions in parameters can result in gross and qualitative
differences. Not surprisingly, the two methods are
complementary and can inform each other. A prescrip-
tive model of limb movements might, for instance,
propose unreasonably large reflex gains certain to
induce instability in a real limb. A descriptive study
of spinal reflex pathways, however, would reveal the
time delays a realistic model is saddled with. Thus, the
two approaches help us to ask better, more informed
questions in future motor control experiments.

CONCLUSION

Recognizing the inherent uncertainty in sensory infor-
mation, many sensorimotor problems have been suc-
cessfully described by applying the rules of Bayesian
statistics to analyze their solutions. This same method
holds promise for many of the outstanding problems
in cue combination, motor control, cognitive science,
and neuroscience in general. Bayesian statistics and
normative modeling are complementary to descriptive
studies of the nervous system. As such, combining the
two approaches will provide models that not only pre-
dict, but also explain how the nervous system solves
the problems it is confronted with. This insight into
the purpose, and detail of structure, will provide a
deeper understanding of the nervous system.
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