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Abstract

Successful adaptation relies on the ability to learn the consequence of our actions in different environments. However, understanding
the neural bases of this ability still represents one of the great challenges of system neuroscience. In fact, the neuronal plasticity changes
occurring during learning cannot be fully controlled experimentally and their evolution is hidden. Our approach is to provide hypotheses
about the structure and dynamics of the hidden plasticity changes using behavioral learning theory. In fact, behavioral models of animal
learning provide testable predictions about the hidden learning representations by formalizing their relation with the observables of the
experiment (stimuli, actions and outcomes). Thus, we can understand whether and how the predicted learning processes are represented
at the neural level by estimating their evolution and correlating them with neural data. Here, we present a bayesian model approach to
estimate the evolution of the internal learning representations from the observations of the experiment (state estimation), and to identify
the set of models’ parameters (parameter estimation) and the class of behavioral model (model selection) that are most likely to have
generated a given sequence of actions and outcomes. More precisely, we use Sequential Monte Carlo methods for state estimation
and the maximum likelihood principle (MLP) for model selection and parameter estimation. We show that the method recovers simu-
lated trajectories of learning sessions on a single-trial basis and provides predictions about the activity of different categories of neurons
that should participate in the learning process. By correlating the estimated evolutions of the learning variables, we will be able to test the
validity of different models of instrumental learning and possibly identify the neural bases of learning.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Learning and remembering the consequences of our
actions is one of the most fundamental forms of intelligent
behavior, because it allows us, as well as other animals, to
anticipate relevant events and adapt to changing environ-
ments. This ability can be studied within the framework
of instrumental learning, where an animal learns by trial-
and-error the contingency arranged by a given stimulus,
or context, between an action and its outcome (Rescorla,
1991; Dickinson, 1994).
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In monkey neurophysiology, research on the neural
bases of instrumental learning has relied on two comple-
mentary approaches. One searched for co-variations of
the firing rate of single neurons with the improvement of
performance, measured by the probability of correct
response. Using this approach, three classes of neurons,
whose activity changes correlate positively or negatively
with the probability of correct response or with its rate of
change, have been found in the dorsal premotor and pre-
frontal cortex, striatum and hippocampus (Wise and Mur-
ray, 2000; Brasted and Wise, 2005; Suzuki and Brown,
2005). A complementary approach searched for changes
in the selectivity of neuronal activity for the rewarded
motor response in the average firing rate of neuronal pop-
ulations (Asaad et al., 1998; Pasupathy and Miller, 2005).
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These authors found that the selectivity strength of neurons
in the prefrontal cortex and in the striatum increases and its
latency decreases (occurs earlier in the trial) as learning
takes place.

Overall, these studies showed how the neural activity in
the frontal cortex, basal ganglia and hippocampus evolves
during arbitrary visuomotor learning. However, it is not
clear which hidden learning representations (e.g., the sub-
jective ‘‘value’’ of a given action) are coded by these learn-
ing-related neural activities. Our approach is to provide
hypotheses about the structure and dynamics of the hidden
learning representations through behavioral learning mod-
els. In fact, behavioral models of animal learning provide
testable predictions about the hidden learning representa-
tions by formalizing their relation with the observables of
the experiment (stimuli, actions and outcomes). Thereafter,
we can understand whether and how the predicted learning
processes are represented at the neural level by estimating
their evolution and correlating them with neural data.

This paper focuses on the first part of this approach.
More precisely, our objective is to provide a general math-
ematical method to estimate the evolution of the internal
learning representations from the observations of the
experiment (state estimation), together with the set of mod-
els’ parameters (parameter estimation) and the class of
behavioral model (model selection) that are most likely to
have generated a given sequence of actions and outcomes.
To do so, we use a bayesian methodology for state estima-
tion and the maximum likelihood principle (MLP) for
model selection and parameter estimation. To estimate
the posterior probabilities arising in the estimation of the
state and in the evaluation of the likelihood, we used
sequential Monte Carlo methods (SMC) (for a review see
Doucet and Godsill, 2000; Doucet et al., 2001), because
they are able to cope with learning models containing
non-linear terms and non-Gaussian distributions. We
tested this method on simulated sequences of behavioral
events according to two of the most plausible models of
instrumental learning, and studied its accuracy in model
selection, parameter and state estimation. The models pro-
vide diverging predictions about the evolution of the inter-
nal representations of the learning process. These
predictions qualitatively fit the electrophysiological results
available in the literature and provide a theoretical frame-
work for interpreting the changes occurring at neural level
during learning.
2. Methods

2.1. Behavioral models of instrumental learning

Since our goal is to provide a method for model selection, parameter
and hidden state estimation, we considered two behavioral models. Each
model provides a different account of the internal learning processes,
through specific learning rules and free parameters. The first is based on
animal associative learning theory (Dickinson, 1997; Pearce and Bouton,
2001; Schultz and Dickinson, 2000), whereas the second is a non-associa-
tive model based on the Matching law (Herrnstein, 1961; Herrnstein,
1970) and previously used to model discrete-choice decision-making tasks
(Sugrue et al., 2004; Sugrue et al., 2005). Our implementation also con-
tains formalisms classically used in reinforcement learning algorithms
(Sutton and Barto, 1998).
2.1.1. The associative model

Associative learning theory postulates that the ability to learn the con-
sequence of a particular behavior in a given environment resides in the for-
mation of stimulus–response–outcome associations whose strength varies
according to the contingency and contiguity of the events, as well as the
current goals and motivational state of the animal (Rescorla, 1991; Dick-
inson, 1994; Balleine and Dickinson, 1998). If only one stimulus s is
needed to set the contingency (as in the following simulations), the behav-
ioral change (e.g., the probability to perform a given joystick movement to
obtain reward) is assumed to reflect a gradual strengthening of the internal
representation of the action–outcome association brought about by each
pairing (Dickinson, 1997). This means that on a given trial during learn-
ing, only the associative value for the chosen action is updated. If more
than stimulus is present in the learning session and if each sets specific
response–outcome contingencies, only the associative value for the pre-
sented stimulus and chosen action is updated. Since the associative model
does not formalize the interactions between separate stimulus–response–
outcome associations, we will simulate learning sessions when only one
stimulus s is needed to set the response–outcome contingencies. The fol-
lowing mathematical description in Section 2.2 will however let the stimuli
vary over time, for generality reasons.

In order to quantify the evolution of the associative values, several
associative models have been developed (Rescorla and Wagner, 1972;
Macintosh, 1975; Pearce and Hall, 1980). One of the most influential
learning model is the one developed by Rescorla and Wagner Rescorla
and Wagner (1972), where the evolution of the associative strengths for
each action is given by

V a
tþ1 ¼ V a

t þ gðrðtÞ � V a
t Þ þ �; ð1Þ

where t is trial number, a 2 {1, . . . ,n} is the action (where n is the number
of possible actions), g is the learning rate for a given stimulus and � is
gaussian noise N(0,r). The asymptotic value of the association strength
r(t) is 1 for a correct response, 0 if incorrect. Thus, the change in associa-
tive strength on a particular trial (i.e., the amount of learning on each trial)
is equal to the learning rate g times the error term ðrðtÞ � V a

t Þ, which is re-
ferred to as the prediction-error signal (Schultz, 2006). This value is the
difference between the maximum associative strength and the current pre-
diction of the associative strength. In other words, it represents the dis-
crepancy between the obtained and expected outcome. The subjective
representation of the expected outcome prior to learning is formalized in
the associative model as the initial value of the associative strengths
V a

t¼1. These values can be set to zero, meaning that the subjects do not
have prior expectancies about a correct outcome after a given movement.
However, since the number of possible actions is n and given that only one
of the actions was considered as correct in the following simulations, we
set the prior subjective probability of correct response to 1/n.

Associative learning theory does not state how the associative
strengths are ‘‘translated’’ into behavior. However, we expect some degree
of stochasticity in the action selection process, where the probability to
perform a given action is proportional to its associative value. To model
such an action selection process, we transformed the association values
V a

t into probabilities according to the softmax equation, which is a stan-
dard method in reinforcement learning theory (Sutton and Barto, 1998)

Pðat; V
a
t Þ ,

ebV a
tP

aebV a
t
: ð2Þ

The coefficient b is the inverse ‘‘temperature’’: low b values cause the
actions to be all (nearly) equiprobable, whereas high b amplify the differ-
ences in association values. As b tends to infinity the softmax equation
reduces to a winner-take-all function assigning a probability equal 1 to
the action with the highest association value. Therefore, we can modulate
the degree of stochasticity in action selection by varying the value of this
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model parameter. In reinforcement learning theory (Sutton and Barto,
1998), this model is also referred to as the Q-learning algorithm (Watkins
and Dayan, 1992), in which action values are updated through the Resc-
orla–Wagner learning rule. Overall, the internal learning representations
(state process) hypothesized by the associative model are the associative
values and the prediction-error signals.

2.1.2. The total-income model

Instrumental learning can also be described according to a non-asso-
ciative model based on the operant matching law, which states that an
organism allocates its behavior over various activities in exact proportion
to the value derived from each activity (Herrnstein, 1961; Herrnstein,
1970). In fact, the matching law can also be applied to produce a simple
learning model (Seung, 2004), where an animal selects actions to match
the total rewards earned (total income) from each action in discrete-choice
decision-making tasks (Sugrue et al., 2004; Sugrue et al., 2005). Since the
action selection process is determined by the reward history, we modeled
the evolution of the total income Ia

t during learning as

Ia
tþ1 ¼ Ia

t þ grðtÞ þ �; ð3Þ

where a 2 {1, . . . ,n} is the action (where n is the number of possible ac-
tions), g determines the slope of the increase (learning rate). The value
of the reward r(t) is equal to 1 when the reinforcement is present and 0
when the reinforcement is absent. The total income prior to learning is
zero and it is formalized in the present model as the initial values of total
income Ia

t¼1. During learning, the total income Ia
t for the rewarded action

approximates a linearly increasing function of the number of rewards ob-
tained. The action selection process computes the probability to perform
the actions proportionally to the income values as in the previous model
according to Eq. (2).

2.2. A mathematical methodology for estimation in behavioral

sequential learning tasks

2.2.1. Mathematical structure of sequential learning experiments

We suppose that we can observe a sequence of stimulus–action-reward
from time 1 to time T: (st,at, rt)t2{1. . .,T}. Note that the following simula-
tions contain one 1 stimulus; here we present the generalized situation when
more than one stimulus is present by letting st vary over time. We want to
recover the sequence of the subjective learning state (Xt)t2{1. . .,T} that has
been used by the learner to act during this experiment. For example, in
the case of the Rescola–Wagner model Xt = Vt (see Eq. (1)) and in the case
of the total income model Xt = It (see Eq. (3)). The learning rule (e.g., Eq.
(1) or Eq. (3)) and the action rule (e.g., Eq. (2)) provide a full probabilistic
structure to the learning experiment which is represented in Fig. 1.
Fig. 1. Probabilistic structure of the learning process. st is the stimulus
presented at time t, at is the action made at time t, rt is the reward received
at time t and xt is the internal learning state of the animal at time t.
2.2.2. Estimation of the (hidden) internal learning state

Under the probabilistic structure depicted in Fig. 1, the knowledge of
the (hidden) value of internal learning state at time t is summarized in the
posterior probability distribution pt of the learning state value Xt given the
observations up to time t

ptðX a
t Þ , PðX a

t jðst; at; rtÞt2f1...;TgÞ:

Note that Xt is a vector whose coordinates are X a
t for a 2 {1, . . . ,n}. Esti-

mating pt analytically is in general impossible. However, Sequential Monte
Carlo methods (SMC) (see Doucet et al., 2001; Doucet and Godsill, 2000
for a good introduction to SMC) approximate pt by an empirical distribu-
tion of ‘‘particles’’

pN
t ,

1

N

X
i

dxi
t
;

where the particles xi
t are obtained using Algorithm 1, and dx denote the

Dirac mass at the point x. From this approximation one can deduce a
pointwise approximation of Xt by evaluating its mean

x̂t ¼
1

N

X
i

xi
t:

One can also estimate confidence interval by evaluating its covariance ma-
trix, for 1 6 a, a 0 6 n define

raa0

t ¼
1

N 2

X
i

ðxi;a
t � x̂a

t Þðxi;a0

t � x̂a0

t Þ:
Algorithm 1. Interacting Particles for Associative Learning (IPAL)

for t = 1 to T do
For all i 2 {1, . . . ,N}, sample independently ~xi
t from xi

t�1 using
the learning equation (e.g. Eq. (1) or Eq. (3))
For all i 2 {1, . . . ,N}, associate to the ith particle a weight wt

i

proportional to the probability of doing the action at in the
internal learning state xi

t normalized with respect to the sum

over particles: wi
t ,

P at
xi
tPN

j¼1
P at

xj
t

For all i 2 {1, . . . ,N}, sample the i-selection index ji from the
multinomial distribution defined as Pðji ¼ jÞ ¼ wj

t

For all i 2 {1, . . . ,N}, select the particles using xt
i , ~xji

t

end for
2.2.3. Model selection and parameter estimation

To achieve model selection and parameter estimation we propose to
use the maximum likelihood principle (MLP) (see Myung, 2003 for a tuto-
rial about the use of MLP). Indeed, denoting by h the vector of parameters
associated to the learning model (e.g., h = (g,b)), the log-likelihood func-
tion evaluated at the parameter value h is defined by

lðhÞ , log Phððst; at; rtÞt2f1...;TgÞ: ð4Þ

The maximum likelihood principle consists in estimating the unknown
parameter h* used by the learner by maximizing the log-likelihood

ĥ� , argmax
h2H

lðhÞ;

where H is the domain of possible parameter value and it depends on the
specific learning model that is used. The log-likelihood using a Sequential
Monte Carlo methods is given by Doucet and Godsill (2000)

lðhÞ ¼
XT

t¼1

log
1

N

XN

i¼1

wi
t

 !
;

where wi
t is obtained by applying Algorithm 1 with the parameter value h.

To maximize the log-likelihood one can use any usual stochastic optimiza-
tion algorithm (e.g. annealed simulated, genetic algorithms, Nelder-Mead
simplex, grid based approach, etc.; see Spall, 2003 for a review). In the case
of large dimensional parameter space, on can use a gradient-based method
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(Coquelin et al., 2007). For model selection, we compute the optimal
parameter h�k for each model k, and the more accurate model k* is the
one with the highest log-likelihood at the optimal parameter value. In
the present paper we simply used 2 models (i.e., k = 2) and a grid based
approach described in the next section.
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Fig. 2. Joint probability distribution pðĝ; b̂Þ, where ĝ and b̂ are the
estimated learning rate and inverse ‘‘temperature’’, respectively. Each
panel shows the joint probabilities for a given set of true model’s
parameters, which is indicated by the gray share. For example, the
probabilities in the top-left panel were calculated from 100 learning
sessions generated using g = 0.1 and b = 3; the probability of correctly
estimating both model parameters was 0.68.
2.3. Numerical simulations

We simulated the behavioral choices of an animal learning by trial-and-
error the correct association between an action (e.g., joystick movements)
and its outcome (e.g., reward). Three actions are possible and only one is
rewarded. We generated the behavioral choices according to either the
associative or the total-income model. Since, for a given model, the evolu-
tion of the learning variables (e.g., the associative strengths) depends on the
values of the models’ parameters g and b, we varied g = 0.1! 0.3
(step = 0.1) and b = 1! 3 (step = 1). The outcome value r(t) was either
1 or 0 for correct and incorrect actions. The gaussian noise � added to
the state process was drawn from a normal distribution N(0,r), where
r = 0.005. For a given behavioral model and parameter set h(g,b), we gen-
erated 100 learning sessions, each lasting 150 trials. Even though the ranges
of parameters’ values do not need to be identical for the two models, we
chose them identical so to produce similar learning curves, defined as the
probability of correct response. More precisely, we wished to simulate
learning sessions that reached the asymptotic probability of correct
response at approximately the same trial both for the associative and the
total-income model. This effect can be seen in Fig. 6 (left panel): the prob-
ability of correct response (averaged over parameter and sessions) for the
associative (Fig. 6A) and total-income (Fig. 6B) model reaches the asymp-
totic value at approximately the same trial number for both models. We
tested the accuracy of the proposed methodology in model selection,
parameter identification and state estimation for each learning session.
3. Results

3.1. Model selection

We first quantified the ability of the present methodol-
ogy to correctly identify which model generated a given
sequence of observations. Given 100 action–outcome
sequences generated using a given model with fixed param-
eters, we computed the number of sessions where the
method successfully identified the true model, by compar-
ing the log-likelihood computed from both models. The
selected model was the one corresponding to the highest
value of the log-likelihood. The results showed that for
all sessions and parameter’s sets, the method always
selected the true model as the generator.
3.2. Parameter identification

We then analyzed the accuracy in identifying the correct
values of models’ parameters g and b. Fig. 2 shows the
joint probability of estimating the true values of both g
and b for the associative model. Each panel corresponds
to the joint probabilities computed on 100 sessions gener-
ated using a fixed set of parameters, indicated by the grey
shade. For example, the top left panel shows the joint prob-
abilities for sessions generated using g = 0.1 and b = 3; the
correct estimation of both g and b occurred in 68 sessions
out of 100 (grey shade). The probability of correctly iden-
tifying g independently of b can be computed by summing
the joint probabilities horizontally, and vertically for cor-
rect b estimation. Overall, the results show that the true
b was more probable to be correctly estimated than the true
g. The largest error in the parameter’s estimation occured
when the learning rate was equal to 0.2. This phenomenon
is more evident when the stochasticity in the associative
model increases, that is when the b values are equal to 1.
To understand whether this is due to the limited range of
g values (0.1, 0.2 and 0.3) or by a systematic estimation
problem for the associative model, we simulated learning
sessions with a fixed value for b = 1 and we varied g
between 0.05 and 0.4 in steps of 0.05. The results showed
that the parameter’s estimation is more accurate for low
(from 0.05 to 0.15) and high (from 0.3 to 0.4) values of
the learning rate, whereas the error reaches a maximum
when g takes intermediate values. Finally, we analyzed
the accuracy in identifying the correct values of models’
parameters g and b for the total-income model (full data
not shown). The most reliable estimation (94% of the ses-
sions) occurred for g = 0.1 and b = 1. Overall, the simula-
tions allowed us to determine the probability of correct
parameter identification as a function of parameters’ val-
ues. These results have to be taken into account when ana-
lyzing real behavioral data.

3.3. Dependence of model and parameter estimation on noise

level

To quantify the dependence of model selection and
parameter estimation on the noise level �, we simulated
100 learning sessions using the associative model with fixed
parameters (g = 0.1 and b = 3), and we varied the standard
deviation of the noise distribution r (N(0,r)) from 0.005 to
0.25 in steps of 0.005. The results are shown in Fig. 3: even
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though the model selection is relatively accurate (above
90%) for r < 0.125 (Fig. 3A), the parameter selection
quickly drops to 40% for values of r > 0.025 (Fig. 3B).
These results are exemplar, because the degrading effect
due to noise depends on the choice of models parameters:
for example, if the stochasticity in the action selection pro-
cess is high (e.g., b = 1), the effect of noise on model and
parameter estimation will be stronger than for less stochas-
tic models (e.g., b = 3). However, our simulations allow us
to estimate the effect of noise level on model selection and
parameter estimation.

3.4. State estimation

We then studied how the proposed method performs in
the state estimation. The Sequential Monte Carlo method
estimates the true learning representation (e.g., the associa-
tive strengths) only if the true parameters are identified.
Fig. 4A shows the evolution of the simulated and estimated
associative values for a representative learning session, in
which the correct parameters were estimated. Fig. 4B
shows a session where the true parameters were not identi-
fied; the distance between the simulated and estimated
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curves is stronger early during learning, where the variance
in the state process is highest. Fig. 5 shows the evolution of
the simulated and estimated total-income values for a rep-
resentative learning session; the difference between the sim-
ulated and estimated curves does not attenuate during
learning if the model’s parameters are not estimated cor-
rectly (Fig. 5B). On the other hand, the present method
qualitatively retrieves the true learning representations on
a single-trial basis, even though the correct parameters
are not exactly identified.

Finally, in order to quantify the mean evolution of the
learning representations for the two models, we averaged
the evolution of the state processes across all parameter
sets and learning sessions. Fig. 6A shows the probability
of correct response (first panel from the left), the mean evo-
lution of the associative strengths for the performed action
(second panel), the mean evolution of the associative
strengths for the unplayed action (third panel), and the pre-
diction-error for the performed action (fourth panel).
Fig. 6B, shows the corresponding state processes for the
total-income model. Therefore, the two models provide
diverging predictions about the evolution of the learning
representations.These curves provide predictions about
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the average evolution of the learning representations
according to either models; we will discuss the relevance
of these results in the next section.

4. Discussion

In the present paper, we described and tested a method
based on a Bayesian approach to estimate the evolution of
the internal learning representations from the observations
of the experiment (state estimation), to identify the set of
models’ parameters (parameter estimation) and the class
of behavioral model (model selection) that are most likely
to have generated a given sequence of actions and out-
comes. More precisely, we used sequential Monte Carlo
methods for state estimation and the maximum likelihood
principle (MLP) for model selection and parameter estima-
tion. Our simulation study allowed us to quantify the accu-
racy and ability in model selection, parameter estimation
and state identification. The model selection was errorless,
meaning that the method identified the correct model as the
true generator of a behavioral sequence of actions and out-
comes. The reliability depends on how similar the consid-
ered models are; in the present case, the evolution of the
learning representations according to the associative model
and total-income model diverge rapidly during learning.
That is why the method accurately identified the true model
in all sessions. For what concerns the parameters’ estima-
tion, we quantified the range of g and b for which the true
parameters were identified and computed the probability of
identifying both g and b (Fig. 2). This information is help-
ful for studies analyzing the behavioral responses measured
during electrophysiological and/or neuroimaging studies,
because it can be used to provide error bounds on esti-
mated model’s parameters. Even though the method does
not retrieve the true model’s parameters in all learning ses-
sions, the estimation of the learning representations (state
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processes) qualitatively fits the simulated trajectories (e.g.,
Figs. 3 and 4). This is crucial if we want to understand
whether a given behavioral model provides an accurate
description of the neural plasticity changes mediating
learning.

Sequential Monte Carlo methods have been previously
used to estimate the hidden value of the association
strengths (Samejima et al., 2004). However, the authors
did not consider the problem of model selection, and tested
the accuracy of the method on a single behavioral model. In
addition, since the authors considered g and b as time-vary-
ing hyperparameters, their initial estimates were inevitable
inaccurate, and attained good estimates after about 200
observations. This produced large deviations from the sim-
ulated data especially in the first 50 trials of the learning ses-
sions. In the present paper, we showed that accurate
estimation of the state process can be attained on a shorter
time scale and we stressed the importance of model selection
as a fundamental step in analyzing behavioral data.

The two models provide diverging predictions about the
internal processes of learning. The associative Rescorla–
Wagner model predicts the existence of a neural substrate
coding for the fast increase and decrease in associative
strengths and for prediction-error signals (Fig. 5A). The
total-income model predicts neurons coding for the
quasi-linear increase of the total income (Fig. 5B). We will
here review the literature about the neural correlates of
conditional visuomotor arbitrary learning and show how
our results can provide a better interpretation of the elec-
trophysiological results.

A first set of electrophysiological results suggests that
the evolution of the associative strengths could be coded
by modulations in firing rate of single neurons. In fact,
two classes of neurons showing either a monotonic increase
or decrease in firing rate that correlates (either positively or
negatively) with the learning curve (i.e., the probability of
correct response curve) have been found in the hippocam-
pus (Cahusac et al., 1993; Wirth et al., 2003), striatum
(Tremblay et al., 1998; Hadj-Bouziane and Boussaoud,
2003; Brasted and Wise, 2004; Williams and Eskandar,
2006), frontal and eye field (Chen and Wise, 1995a; Chen
and Wise, 1995b), dorsal premotor cortex Brasted and
Wise, 2004 and orbitofrontal cortex (Tremblay and
Schultz, 2000). Since the curve representing the probability
of correct response is correlated with the evolution of the
association values (Fig. 4A, first and second panel), these
two classes of neurons could code for the formation and
dissolution of associations. A third category of neurons
displaying a modulation in firing rate during learning have
been found in the hippocampus (Cahusac et al., 1993), stri-
atum (Hadj-Bouziane and Boussaoud, 2003; Williams and
Eskandar, 2006) frontal and supplementary eye field (Chen
and Wise, 1995b) and dorsal premotor cortex (Brasted and
Wise, 2004). The changes in their firing rate are character-
ized by an initial increase followed by a decrease to virtu-
ally inactivity, with the maximal discharge around the
time of learning (i.e., when the rate of change of learning
is highest); in addition, these neurons do not typically dis-
charge during the execution of well-known associations. A
recent study described a population of striatal neurons
whose activity during the feedback sound and reward peri-
ods correlates with the rate of learning (estimated from the
first of correct response) (Williams and Eskandar, 2006),
which resembles the prediction-error curves of the present
study (Fig. 5A, fourth study, fourth panel). Therefore,
our results together with those present in the literature sug-
gest this third class of neurons might code for prediction-
error signals at the cortical level, probably under the influ-
ence of neurons from the dopaminergic system (for reviews
Schultz, 2006; Schultz and Dickinson, 2000). In other
words, we suggest that this third class of neurons is the
local responsible for the changes in the activity observed
in the first two classes of neurons.

The neural correlates of the total-income model as
applied to arbitrary visuomotor learning have not been
studied extensively. However, there exists electrophysiolog-
ical evidence suggesting that the total income accumulating
with accumulating rewards could be coded by populations
of neurons of the prefrontal cortex. For example, a recent
study from (Pasupathy and Miller, 2005), originating from
an earlier study by the same group (Asaad et al., 1998),
showed that the average strength of direction selectivity
during a peri-saccade epoch in a population of prefrontal
neurons undergoes a linear increase as a function of correct
trials (Pasupathy and Miller, 2005). This evolution cannot
be accounted for by the associative model, because the
increase in associative strength always follows a negatively
accelerating curve. However, the evolution of the popula-
tion direction selectivity nicely fits the predictions made
by the total-income model where the income increases
quasi-linearly with subsequent rewards (Fig. 5B, second
panel). Our results together with the limited electrophysio-
logical data reported in literature suggest that the total
income might be coded in the directional selectivity
strength of prefrontal cortex neurons, where reward-selec-
tive neurons produce the linear increment in selectivity.
Further work is needed to quantify the correlation between
the selectively strength and the total income of the match-
ing behavior model.

To conclude, we put forward two hypotheses about the
neural representations of the two behavioral models we
considered here. First, we suggest that the three classes of
neurons found using the first approach mentioned in the
introduction (Wise and Murray, 2000; Brasted and Wise,
2005; Suzuki and Brown, 2005) actually code for the crea-
tion and dissolution of response–outcome associations and
for error-prediction signals. In other words, the monotonic
increases and decreases in neural firing rate correlating
with the probability of correct response of the first two
classes of neurons are brought about by the third popula-
tion of neurons coding for error-prediction signals. Sec-
ondly, we suggest that the linear increase in direction
selectivity found in Miller’s lab (Asaad et al., 1998; Pasupa-
thy and Miller, 2005) is a neural correlate of the total
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income gained by the animal during learning, whose
increase is produced by a population of neurons coding
for the type of reward. The computations predicted by
the two models could be implemented at different levels
in the fronto-striatal loop: at the single neuron level (asso-
ciative strengths) and the population level (total income).
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