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Abstract—This paper presents a hybrid of soft computing
or control technique of adaptive neuro-fuzzy inference system
(ANFIS) and hard computing or control technique of finite-time
linear quadratic optimal control for the 14 degrees of freedom
(DOFs), five-fingered smart prosthetic hand. In particular,
ANFIS is used for inverse kinematics, and the optimal control
is used for feedback linearized dynamics to minimize tracking
error. The simulations of this hybrid controller, when com-
pared with the proportional-integral-derivative (PID) controller
showed enhanced performance.

Index Terms—Prosthetic Hand, Optimal Control, PID Con-
trol, Adaptive Neuro-Fuzzy Inference System, Hybrid Control

I. INTRODUCTION

Over the last several yeas, attempts have been made to

build a prosthetic hand to replace human hand that fully sim-

ulate the various natural/human-like operations of moving,

grasping, lifting, twisting and so on. Replicating the human

hand in all its various functions is still a challenging task

due to the extreme complexity of human hand, which has

27 bones, controlled by about 38 muscles to provide the

hand with 22 degrees of freedom (DOFs), and incorporates

about 17,000 tactile units of 4 different units [1]. Artificial

hands have been around for the last several years developed

by various researchers in the field [1]–[4]. However, about

35% of the amputees [5] do not use their prosthetic hand

regularly due to various reasons such as poor functionality

of the presently available prosthetic hands and psychological

problems. To overcome these problems, one has to design

and develop an artificial hand which “mimics the human

hand as closely as possible,” both in functionality and

appearance.

Soft computing/control (SC) or computational intelligence

(CI) [6] is an emerging field based on synergy and seamless

integration of neural networks (NN), fuzzy logic (FL) and

genetic algorithms (GA) [7]. Arslan et al. [8] developed the

biomechanical model with a tendon configuration of the 3
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DOFs index finger of the human hand and the fuzzy sliding

mode controller in which a fuzzy logic unit tuned the slope

of the sliding surface was introduced to generate the required

tendon forces during closing and opening motion. Onozato

and Maeda [9] utilized two neural networks learning inverse

kinematic and inverse dynamic to control the positions of

2 DOFs SCARA robot. Aggarwal et al. [10] obtained the

neural recordings from rhesus monkeys with three different

movements, the flexion/extension of each finger, the rotation

of wrist and dexterous grasps and designed separate decoding

filters for each movement by using multilayer feedforward

artificial neural network (ANN) in order to be implemented

in real-time MATLAB/Simulink. An online decentralized

neural network control design without deriving the dynamic

model for a class of large-scale uncertain robot manipulator

systems was proposed by Tan et al. [11]. Kato et al. [12]

expressed the reaction of brains to the adaptable prosthetic

system for a 13 DOFs EMG signal controlled prosthetic hand

with an EMG pattern recognition learning by artificial neural

networks. In addition, functional magnetic resonance imag-

ing (f-MRI) was used to analyze the reciprocal adaptation

between the human brain and the prosthetic hand by the

plasticity of the motor and sensory cortex area in brains

based on the variations in the phantom upper limb. Marcos

et al. [13] proposed the closed-loop pseudo-inverse method

with genetic algorithms (CLGA) to minimize the largest

joint displacement between two adjacent configurations, the

total level of joint velocities, the joint accelerations, the total

joint torque, and the total joint power consumption for the

trajectory planning of 3 DOFs redundant robots. Kamikawa

and Maeno [14] used genetic algorithm to optimize locations

of pivots and grasping force and designed one ultrasonic

motor to move 15 compliant joints for an underactuated five-

finger prosthetic hand.

Hard computing/control (HC) techniques comprise pro-

portional integral derivative (PID) control [15]–[18], optimal

control [19], [20] and so on with specific applications to

prosthetics. SC can be used at upper levels of the overall

mission where human involvement and decision making is

of primary importance. HC can be used at lower levels

for accuracy, precision, stability and robustness. Therefore,

the integration of SC and HC methodologies could solve

problems that cannot be solved satisfactorily by using either

methodology alone and lead to high performance, robust,

autonomous and cost-effective systems.

Our previous works [17], [18] for a two-fingered (thumb

and index finger) smart prosthetic hand showed that PID con-

troller results in the overshooting and oscillation, which were
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also demonstrated by Subudhi and Morris [15] and Liu et

al. [16]. To overcome the problem, fusion of soft computing

technique of adaptive neuro-fuzzy inference system (ANFIS)

and finite-time linear quadratic optimal control strategy for

14 DOFs prosthetic hand is precisely the main goal of this

work.

In this paper, we first consider briefly the trajectory

planning problem, human hand anatomy and the inverse

kinematics for two-link thumb and the remaining three-

link fingers (index, middle, ring, and little) using ANFIS.

Next, the dynamics of the hand is derived and feedback

linearization technique is used to obtain linear tracking

error dynamics. Then the finite-time linear quadratic optimal

controller is designed to minimize the tracking error. The

resulting overall hybrid system incorporating both soft and

hard control techniques is simulated with practical data for

the hand and found to be better than the previous works. The

last section provides conclusions and future work.

II. MODELING

A. Trajectory Planning and Inverse Kinematics

The trajectory planning using cubic polynomial was dis-

cussed in our previous work [17], [18], [21]–[23] for a two-

fingered (thumb and index finger) smart prosthetic hand. As

shown in Figure 1, index finger, middle finer, ring finer, and

Fig. 1. The Joints of Five-Finger Prosthetic Hand Reaching a Rectangular

Rod

little finger include three revolute joints in order to do the

angular movements. Metacarpal-phalangeal (MCP) joint is

located between metacarpal and proximal phalange bone;

proximal and distal interphalangeal (PIP and DIP) joints

separate the phalangeal bones. Thumb contains metacarpal-

phalangeal (MCP) and interphalangeal (IP) joints [24]. In

this work, q
j
1
, q

j
2

and q
j
3

represent the angular positions (or

joint angles) of the first joint MCP j, the second joint PIP j

and the third joint DIP j of index finger (j = i), middle

finger (j = m), ring finger (j = r) and little finger (j = l),

respectively; qt
1

and qt
2

are the angular positions of the first

joint MCP t and the second joint IP t of thumb (t).

A desired trajectory is usually specified in Cartesian

space and the trajectory controller is easily performed in

the joint space. Hence, it is necessary to convert Cartesian

trajectory planning to the joint space [25]–[27]. Using inverse

kinematics, the joint angles of each finger need to be obtained

from the known fingertip positions (joint space). Then the

angular velocities and angular accelerations of each finger

can be obtained from the velocities and accelerations of

fingertips by Jocobian. Figure 2 shows that XG , Y G, and

Fig. 2. The Definition of Global Coordinate and Local Coordinates

ZG are the three axes of the global coordinate. The local

coordinate xt-yt-zt of the thumb can be reached by rotating

through angles α and β to XG and Y G of the global

coordinate, subsequently. The local coordinate xi-yi-zi of

index finger can be obtained by rotating through angle α

to XG and then translating the vector di of the global

coordinate; similarly, the local coordinate xj-yj -zj of middle

finger (j = m), ring finger (j = r), and little finger (j = l)

can be obtained by rotating through angle α to XG and then

translating the vector dj (j = m, r and l) of the global

coordinate. The inverse kinematics of two-link thumb and

three-link fingers was discussed in our previous publications

[17], [18], [21]–[23] for a two-fingered (thumb and index

finger) smart prosthetic hand.

B. Dynamics of Hand

The dynamic equations of hand motion are derived via

Lagrangian approach using kinetic energy and potential

energy as [25]–[28]

d

dt

(

∂L

∂q̇

)

−
∂L

∂q
= τ , (1)

where L is Lagrangian; q̇ and q represent the angular

velocity and angle vectors of joints, respectively; τ is the

given torque vector at joints. The Lagrangian L can be

expressed as

L = T − V, (2)

where T and V denote kinetic and potential energies, respec-

tively. Substituting (2) into (1) gives the relation as

M(q)q̈ + C(q, q̇) + G(q) = τ , (3)
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where M(q) is the inertia matrix; C(q, q̇) is the Corio-

lis/centripetal vector and G(q) is the gravity vector. (3) can

be also written as

M(q)q̈ + N(q, q̇) = τ , (4)

where N(q, q̇) = C(q, q̇)+G(q) represents nonlinear terms.

The dynamic relations for the two-link thumb and the three-

link fingers are quite lengthy and omitted here due to lack

of space [8], [21], [29].

III. CONTROL TECHNIQUES

A. Feedback Linearization

The nonlinear dynamics represented by (4) is to be

converted into a linear state-variable system by finding a

transformation using feedback linearization technique [28],

[30]. Alternative state-space equations of the dynamics can

be obtained by defining the position/velocity state x(t) of

the joints as

x(t) = [q(t)′ q̇(t)′]
′

. (5)

Let us repeat the dynamical model and rewrite (4) as

d

dt
q̇(t) = −M(q(t))

−1
[N(q(t), q̇(t)) − τ (t)] . (6)

Thus, from (5) and (6), we can derive a linear state-variable

equation in Brunovsky canonical form as

ẋ(t) =

[

0 I

0 0

]

x(t) +

[

0

I

]

u(t) (7)

with its control input vector given by

u(t) = −M(q(t))
−1

[N(q(t), q̇(t)) − τ (t)] . (8)

Let us suppose the prosthetic hand is required to track the

desired trajectory qd(t) described under path generation or

tracking. Then, the tracking error e(t) is defined as

e(t) = qd(t) − q(t). (9)

Here, qd(t) is the desired angle vector of joints and can be

obtained by trajectory planning [17], [18], [21]–[23]; q(t) is

the actual angle vector of joints. Differentiating (9) twice, to

get

ė(t) = q̇d(t) − q̇(t), ë(t) = q̈d(t) − q̈(t). (10)

Substituting (6) into (10) yields

ë(t) = q̈d(t) + M(q(t))
−1

[N(q(t), q̇(t)) − τ (t)] (11)

from which the control function can be defined as

u(t) = q̈d(t) + M(q(t))−1 [N(q(t), q̇(t)) − τ (t)] . (12)

This is often called the feedback linearization control law,

which can also be inverted to express it as

τ (t) = M(q(t)) [q̈d(t) − u(t)) + N(q(t), q̇(t)] . (13)

Using the relations (10) and (12), and defining state vector

x(t) = [e(t)′ ė(t)′]′, the tracking error dynamics can be

written as

ẋ(t) =

[

0 I

0 0

]

x(t) +

[

0

I

]

u(t). (14)

Note that this is in the form of a linear system such as

ẋ(t) = Ax(t) + Bu(t). (15)

B. Hybrid PID Controller

Figure 3 shows the block diagram of a hybrid PID con-

troller for five-fingered prosthetic hand with control signal

as

u(t) = −KPe(t) −KI

∫

e(t)dt − KDė(t) (16)

with the proportional KP, integral gain matrix KI, and

derivative KD diagonal gain matrices. We then rewrite (13)

as

τ (t) = M(q(t))[q̈d(t) + KPe(t) + KI

∫

e(t)dt

+KD ė(t)) + N(q(t), q̇(t)]. (17)

Fig. 3. Block Diagram of a Hybrid PID Controller for Prosthetic Hand

C. Hybrid Finite-Time Linear Quadratic Optimal Control

For the linear system (15), we can formulate the finite-
time linear quadratic optimal control problem (as shown in
Figure 4) by defining a performance index J [20] such as

J =
1

2
x′(tf )F(tf)x(tf )

+
1

2

Z tf

t0

ˆ

x′(t)Q(t)x(t) + u′(t)R(t)u(t)
˜

dt (18)

where the terminal cost matrix F(tf ) and the error

weighted matrix Q(t) are positive semidefinite matrices,

respectively; the control weighted matrix R(t) is a positive

definite matrix. The optimal control u∗(t) is given by

u∗(t) = −R−1(t)B′P(t)x∗(t) = −K(t)x∗(t). (19)
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Fig. 4. Block Diagram of Hybrid Optimal Controller for Prosthetic Hand

Here, K(t) = R−1(t)B′P(t) is called Kalman gain and
P(t), the symmetric positive definite matrix (for all t ∈

[t0, tf ]), is the solution of the matrix differential Riccati
equation (DRE)

Ṗ(t) = −P(t)A −A
′

P(t) − Q(t) + P(t)BR
−1(t)B′

P(t) (20)

satisfying the final condition

P(t = tf) = F(tf ). (21)

The optimal state x∗ is the solution of

ẋ∗(t) =
[

A− BR−1(t)B′P(t)
]

x∗(t). (22)

Therefore, the required torque τ
∗(t) can be calculated by the

optimal control u∗(t).

τ
∗(t) = M(q(t)) [q̈d(t) − u∗(t)) + N(q(t), q̇(t)] . (23)

We also intend to use infinite-time optimal regulator to avoid

backward integration of the DRE, especially for on-line (real-

time) design and implementation.

IV. SIMULATION RESULTS AND DISCUSSION

When thumb and the other four fingers are doing ex-

tension/flexion movements, the workspace of fingertips is

restricted to the maximum angles of joints. Referring to

inverse kinematics, Figure 5 explains that the workspace of

the thumb fingertip, in which the first and second joint angles

are constrained in the ranges of [0,90] and [-80,0] (degrees).

The first, second, and third joint angles of the other four

fingers are constrained in the ranges of [0,90], [0,110] and

[0,80] (degrees), respectively [31]. Thus, the green, red, blue,

orange, and yellow regions respectively show the reachable

fingertip positions of thumb and the other four fingers. Note

that the XG axis is of different scale to show more clearly

the individual three-dimensional regions of reach.

Next, we present simulations with a PID controller and

a finite-time linear quadratic optimal controller for the 14

DOFs five-fingered smart prosthetic hand.

Fig. 5. Workspace of the Five-Fingered Prosthetic Hand with a Rectangular

Rod

A. Hybrid PID Controller

The parameters of the two-link thumb/three-link index

finger [32] were related to desired trajectory. All parameters

of the smart prosthetic hand selected for the simulations are

given in Table I and the side length and length of the target

rectangular rod are 0.010 and 0.100 (m), respectively. The

relating parameters between the global coordinate and the

local coordinates are defined in Table II. In addition, all links

are assumed as circular cylinder with the radius (R) 0.010

(m), so the inertia I
j
zzk of each link k of each finger j (j =

t, i, m, r, and l) can be calculated as

I
j

zzk =
1

4
m

j

kR2 +
1

3
m

j

kL
j

k

2

. (24)

All initial actual angles are zero and all PID diagonal

coefficients, KP, KI and KD, are 100.

B. Hybrid Optimal Controller

As for optimal control coefficients, A, B, F(tf ), R(t) and
Q(t) of all fingers are chosen as

A =

»

0 I
0 0

–

, B =

»

0
I

–

, F(tf) = 0, R(t) =
1

30
I,

Q(t)t =

»

Q11 Q12

Q12 Q22

–

, Q(t)j =

2

4

Q11 Q12 Q13

Q12 Q22 Q23

Q13 Q23 Q33

3

5 ,

Q11 =

»

10 2
2 10

–

, Q22 =

»

30 0
0 30

–

, Q33 =

»

20 1
1 20

–

,

Q12 =

»

−4 4
3 −6

–

,Q13 =

»

−4 4
3 −6

–

, Q23 =

»

−4 3
4 −6

–

.

Here j = i, m, r, and l.

Figures 6 to 10 show the simulations with hybrid PID

controller and hybrid optimal controller. It is clearly seen

the superiority of the hybrid optimal controller in suppressing

the overshoots and transients associated with the hybrid PID

controller.

V. CONCLUSIONS AND FUTURE WORK

This paper focussed on hybrid of soft computing or

control technique of adaptive neuro-fuzzy inference system

(ANFIS) and hard computing or control technique of finite-

time linear quadratic optimal control for the 14 DOFs,

five-fingered smart prosthetic hand. The ANFIS is a fuzzy

inference system which is implemented in the framework
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TABLE I

PARAMETER SELECTION OF THE SMART HAND

Parameters Values

Thumb

Time (t0 ,tf )∗ 0, 20 (sec)

Desired Initial Position (Xt
0

,Y t
0

)∗∗ 0.035, 0.060 (m)

Desired Final Position (Xt
f

,Y t
f

)∗∗ 0.0495, 0.060 (m)

Desired Initial Velocity (Ẋt
0

,Ẏ t
0

)∗ 0, 0 (m/s)

Desired Final Velocity (Ẋt
f

,Ẏ t
f

)∗ 0, 0 (m/s)

Length (Lt
1

,Lt
2

) 0.040, 0.040 (m)

Mass (mt
1

,mt
2

) 0.043, 0.031 (kg)

Index Finger

Desired Initial Position (Xi
0

,Y i
0

)∗∗ 0.065, 0.080 (m)

Desired Final Position (Xi
f ,Y i

f )∗∗ 0.010, 0.060 (m)

Length (Li
1

,Li
2

,Li
3

) 0.040, 0.040, 0.030 (m)

Mass (mi
1

,mi
2

,mi
3

) 0.045, 0.025, 0.017 (kg)

Middle Finger
Desired Initial Position (Xm

0
,Y m

0
)∗∗ 0.065, 0.080 (m)

Desired Final Position (Xm
f ,Y m

f )∗∗ 0.005, 0.060 (m)

Length (Lm
1

,Lm
2

,Lm
3

) 0.044, 0.044, 0.033 (m)
Mass (mm

1
,mm

2
,mm

3
) 0.050, 0.028, 0.017 (kg)

Ring Finger

Desired Initial Position (Xr
0

,Y r
0

)∗∗ 0.065, 0.080 (m)
Desired Final Position (Xr

f
,Y r

f
)∗∗ 0.010, 0.060 (m)

Length (Lr
1

,Lr
2

,Lr
3

) 0.040, 0.040, 0.030 (m)
Mass (mr

1
,mr

2
,mr

3
) 0.041, 0.023, 0.014 (kg)

Little Finger

Desired Initial Position (Xl
0

,Y l
0

)∗∗ 0.055, 0.080 (m)

Desired Final Position (Xl
f ,Y l

f )∗∗ 0.020, 0.060 (m)

Length (Ll
1

,Ll
2

,Ll
3

) 0.036, 0.036, 0.027 (m)

Mass (ml
1

,ml
2

,ml
3

) 0.041, 0.023, 0.014 (kg)
∗All fingers use the same parameters.
∗∗All parameters are in local coordinates.

TABLE II

PARAMETER SELECTION OF THE RELATION BETWEEN GLOBAL AND

LOCAL COORDINATES

Parameters Values

α 90 (degrees)
β 45 (degrees)

di (0.035, 0, 0) (m)
dm (0.040, 0, -0.020) (m)
dr (0.035, 0, -0.040) (m)

dl (0.025, 0, -0.060) (m)

of adaptive networks which provides the best optimization

tool to find parameters that best fits the data. In particular,

ANFIS was used for inverse kinematics, and the optimal

control was used to minimize tracking error using feed-

back linearized dynamics . The simulations of this hybrid

controller, when compared with the proportional-integral-

derivative (PID) controller showed enhanced performance.

Work is underway to extend this methodology to 22 DOFs,

five-fingered, three-dimensional smart prosthetic hand.
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