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ABSTRACT 

Results are developed concerning the asymptotic behaviour of the Bayes classification rule as the 
number of unclassified observations grows without bound. It is shown that unclassified observations 
serve only to estimate the individual population parameters in an unlabeled sense and do not provide 
information about the labels that are attached to the populations. Prior construction is approached 
through investigation of prior odds over regions of the joint parameter space (across all populations) 
deemed likely to contain the true joint parameter vector. It is shown that consideration of these 
prior odds can lead to more robust a posteriori classification of individual observations. 

RESUME 

Les auteurs s’inttressent au comportement de la rkgle de classification baytsienne ?i mesure 
qu’augmente le nombre d’observations non classifites. 11s dtmontrent que ces observations peuvent 
servir a estimer certains des parametres propres aux classes, mais qu’elles ne fournissent pas 
d’information permettant d’identifier ces classes. Pour construire la loi a priori, les auteurs proposent 
d’tvaluer la probabilitt relative que le vecteur de paramittres caracttrisant les classes appartienne 
a telle ou telle rtgion de I’espace paramttrique conjoint. 11s expliquent pourquoi cette faqon de 
procider permet d’accroitre la robustesse de la rkgle de classification a posteriori des observations. 

1. INTRODUCTION 

Consider the multigroup classification problem in which it is desired to classify an 
object as belonging to one of K populations or classes based upon observed values of d 
predictors, X E Rd. Under 0-1 loss, the Bayes rule classifies the object into the popu- 
lation with largest posterior probability, traditionally calculated using parametric models 
for each population and a training set consisting of class membership and predictors 
for N objects. Under mild regularity conditions, as the size of the training set from 
each population increases without bound, the Bayes rule collapses to the optimal rule 
in which the parameters of the model for each population are completely known. How- 
ever, it is often the case that the cost of classifying with certainty is high while the 
cost of data collection is low, resulting in a wealth of unclassified data and a scarcity of 

10” 14 June 1996, after this paper had been submitted, Craig A. Cooley was killed by a hit-and-run driver. 
Craig was planning to defend his doctoral dissertation in August 1996 and had accepted a faculty position 
at Carleton College in Minnesota. Craig was an outstanding student, a researcher with a promising future, an 
excellent teacher, and a wonderful colleague. This work is but one portion of Craig’s Ph.D. dissertation. It is 
respectfully dedicated to his memory. 
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classified data. In such a situation, it seems unwise to ignore the information contained 
in the unclassified data. McLachlan (1975, 1977) and O'Neill (1978) explore the utility 
of unclassified data in a classical setting; Lavine and West (1992) present a Bayesian 
classification method that incorporates information from unclassified data. 

In this paper, we develop results concerning the asymptotic behaviour of the Bayes 
rule as the size of the unclassified sample increases without bound. Our results can be 
seen to be direct consequences of the asymptotic theory developed by Berk (1966) and 
hold under extremely mild regularity conditions. We apply the results to the task of prior 
elicitation, where the prior is based on asymptotic considerations. 

In Section 2, we introduce notation and regularity conditions and state Berk's result. We 
also develop asymptotic results concerning unclassified samples and provide an example 
of a prior distribution that results in a lack of convergence of the Bayes rule. Section 3 
provides a Bayesian classification analysis through the use of Monte Carlo Markov-chain 
methods, with attention given to prior elicitation. Conclusions are drawn in Section 4. 

2. NOTATION AND THEORETICAL RESULTS 

We adopt the following notation for use throughout this paper. Let {G,,(.),q E 0) 
be a family of distribution functions indexed by the finite-dimensional parameter q, 
each distribution having density g(.lq) with respect to some dominating a-finite measure 
p(.). Let the density of observations from the ith population, the ith class conditional 
densiry, be given by g(.lq;), and let the true value of q; be denoted qo; E 0. Let 
Gq, denote the corresponding distribution. Denote the joint parameter vector space by 
OK = {(q I , .  . . .q~)lq; E 0, i = 1 , .  . . , K } ,  and denote the true joint parameter value by 
80 = ( q o l , .  . . .q()~). Let al,. . . , a ~ ,  a; = 1, be the a priori probabilities of group 
membership, so that an unclassified observation has mixture density 

Let Fe, denote the true distribution function of an unclassified observation, and let Po, 
denote the corresponding probability measure. Let 

where p is an arbitrary integer. Here and throughout, we adopt the usual notation in 
which X denotes a random variable and x its realization. Finally, let n(.) denote the prior 
probability measure on O K .  We assume all classified data have been absorbed into the 
prior, so that unclassified observations form the totality of the data. 

Berk (1966) shows that, under mild regularity conditions on the mixture likelihood 
f ( . l 8 )  and the prior distribution n(.), the posterior distribution for 8 given an unclassified 
sample concentrates, almost surely FB,,, in any open set U such that A0 C U .  
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RESULT 1. (Berk). Suppose f (XI8 ) satisfies the conditions 

(B 1) f ( x p )  isjointly measurable in ( x ,  O ) ,  and f ( x p )  is continuous in 8 at all 8 E 0 

(B2) For any r* E R, there exists an integer p and a cocompact subset D of OK (i.e., 
( a .  S. Fee). 

OK - D is compact) such that 

E sup H, , (O)  5 r* .  
B E D  

Then, for  any open set U E OK such that A0 C U, 

where n(.lX,, . . . , X,) is the posterior probability measure for 8 given an unclassiJed 
sample of size N .  

Note that condition (B2) differs slightly in statement from the corresponding condition 
found in Berk. The additional conditions stated by Berk are necessary only for the case 
of an incorrectly specified model. Condition (B2) can be difficult to check for mixture 
likelihoods. We shall show that it is sufficient to check a similar set of conditions on the 
individual components of the mixture. 

For the moment, we assume that the a priori probabilities a;, i = I , .  . . , K, are known 
and fixed. If no two of the a priori probabilities are equal, and if EL, a;Cqo, cannot 
be expressed as a;Gq, for any set qi, i = 1,. . . , K, other than q o l , .  . . , ~ o K ,  then 
f ( x l 0 )  = f ( x l O o )  (as. Fee) if and only if 8 = O0. [If 8 # O0, there is a set of positive 
probability for whichf(x18) # f ( x l O 0 ) . ]  If a; = 1/K for all i = 1,. . . , K, then 

K 

That is, the posterior distribution concentrates in the union of any K! open balls sur- 
rounding the K! permutations of 80. The intuitively reasonable implication for practical 
problems is that, in general, an infinite amount of unclassified data serves to pin down, 
in an unordered sense, the locations of the K true parameter values q01,. . . , q O K ,  but 
does not aid in determining to which population each of these true parameter values are 
attached. This kind of “labelling” knowledge is provided by the prior distribution, which 
might include information obtained from preclassified data. 

Alternatively, suppose that the a priori probabilities are unknown and are regarded as 
parameters in the model. Then the generalized parameter space is OK x [0, = Q. 
Since 

it is easy to see that 

where B is the set of permutations of (1,. . . , K). Then A0 is the asymptotic carrier set 
provided the prior distribution places positive mass in each of the K! neighbourhoods of 
Q containing the various permutations of (80, a ) .  
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The following results are proved through applications of Berk’s result to the mixture 
likelihoods ( I )  that arise when the data are unclassified. Throughout, i t  is assumed that 
the a priori probabilities of group membership are fixed and equal. To facilitate checking 
conditions ( B l )  and (B2) for a mixture density, we show that i t  is enough to check similar 
conditions on the components of the mixture. A proof is given in the Appendix. 

LEMMA 1 .  Suppose: 

(Al)  For each i = 1 , .  . . , K ,  g(x1-q) is jointly measurable in ( x , q ) ,  and g ( x l q )  is 

(A2) For euch i = 1 , .  . . , K ,  for every r E R, there exists an integer p ,  and ( I  

continuous in q at all q E 0 (as . ,  Gql,,). 

cocompact subset D,  of 0 (i.e., D: = 0 - D, is compact) such that 

(A3) There exists M such that 

Then conditions (BI) and ( B 2 )  of Result I are satisJied for the mixture density f ( x l0 ) .  

Result 2 shows that, if the prior distribution on the joint parameter space OK has a 
density that is continuous and positive at one or more points in 00 [given in ( 2 ) ] ,  then 
the posterior mass at each 8’ E 00 converges to the prior mass at 8’  relative to the prior 
mass of 00. In the result, N , ( 8 )  represents an t-neighbourhood of 8 .  A proof is provided 
in the Appendix. 

RESULT 2. Assume the a priori probabilities of class membership are equal, and suppose 
the class conditional densities satisfi conditions (A] )  through (A3) of Lemma 1. Suppose 
the prior probubiliry measure n on OK is dominated by Lebesgue measure and has 
continuous density nf .) such that n(8 ) > 0 f . r  sume 0 f 00. Then, for  any 0 ’ E 0” und 
f > 0 such that n,,, N ,  (8  ) = 8, 

If the prior places positive mass on at least one member of 00, then Berk’s result can 
be strengthened with the addition of an extra regularity condition governing the behaviour 
of the log likelihood ratio: 

(A4) The log likelihood ratio 

is uniformly bounded in probability. That is, for any c > 0, there exists M > 0 and an 
integer N such that 
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Specifically, it can be shown that, under (Al )  through (A4), the posterior mass assigned 
to 00 tends to 1 (as.  Fe,); see Lemma 2 in the Appendix. As a direct consequence of 
this asymptotic concentration of the posterior on a finite subset of 0, we obtain a result 
for “nice” discrete priors that is analogous to Result 2. A proof of this result is contained 
in Cooley (1996). 

RESULT 3. Assume the a priori probabilities of class membership are equal, and suppose 
the class conditional densities satisfy conditions (A 1)  through (A4). Denote the prior 
probability measure by n(.), and suppose n(0o) > 0. Then, for every 8’ E 00. 

It is important to note that, despite Results 2 and 3, priors do exist for which the 
posterior probability of any one neighbourhood corresponding to a particular permutation 
of OO never converges, but continues to fluctuate, even as n + 00. We outline one such 
example below. 

We consider the two-population, unidimensional problem with equal a priori proba- 
bilities, so that the mixture likelihood for an unclassified observation is 

We assume that this mixture satisfies conditions necessary for asymptotic normality of 
the MLE for 8 (see, for example, Lehmann 1983). We take 8 0  E 0; = {(0l,02)101 < 02) 
(the upper half plane), and we distinguish between a point 8 ’ and its reflection by writing 
8’ = (01,02) and O L  = (02,el). The likelihoods of the points 8’ and e L  are equal. 

We place a prior distribution on 0 that assigns mass to the countable set of points 
8; + 2-2k1r* and 8; +2-2k+11r*,  k = 1,2, ..., where 1 = (1, l)T. The discrete prior 
distribution assigns mass 2-2k and 2-2k+1, respectively, to each of these points. This 
prior distribution, in the neighbourhood of 00, admits a rescaling. If the point furthest 
from 00 is removed, the remainder of the prior follows the above description with r* 
replaced by c*/2, and with the upper and lower half planes reversed. 

For large n, the likelihood is locally approximately normal. The likelihood based on 
4n observations is also locally approximately normal, but with half the scale. We note 
that the rescaling of the likelihood matches the rescaling of the prior, so that the change 
from a sample of size n to a sample of size 4n results in an effective reversal of the prior 
labeling. As a consequence, the posterior probability assigned to N,(8:),  with r small, 
does not converge as n + 00. Technical details for this example appear in Cooley and 
MacEachern ( 1996). 

The point of the example is to disprove the notion that the posterior distribution 
“stabilizes” as the sample size grows, regardless of the prior distribution. In this example, 
the fluctuations arise from the instability of n(8 ‘ ) /n (eL)  near OO. The fluctuations are 
not purely random, but are governed by the prior distribution, 80 and the sample size. 

This example shows that, in the case of unclassified data, some care in the choice of 
prior distribution on OK must be exercised to avoid asymptotic instability in the classifi- 
cation rule. On the other hand, “standard” priors that are known to yield asymptotically 
stable posteriors do not necessarily reflect prior information. In Section 3, we investi- 
gate an alternative method of prior construction that is based upon the asymptotic results 
given above. Throughout the section, we rely on the connection between probabilities and 
odds, noting that in this setting asymptotic stability of the posterior odds is equivalent to 
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TABLE I : Group means and standard errors for crab data. 

Mean (SE) 
~~ ~~ 

Group FL RW BD 

Blue males 14.8 (0.453) 11.7 (0.299) 13.4 (0.453) 
Blue females 13.3 (0.372) 12.1 (0.345) 11.8 (0.389) 
Orange males 16.6 (0.497) 12.3 (0.31 I )  15.3 (0.499) 
Orange females 17.6 (0.421) 14.8 (0.332) 15.6 (0.389) 

Blues combined 14.05 (0.328) 11.9 (0.261) 12.6 (0.315) 
Orange combined 17.1 (0.301) 13.55 (0.228) 15.45 (0.307) 

asymptotic stability of the posterior probabilities. We present an analysis of a nontrivial 
example in which the standard elicitation methods result in implausible solutions. 

3. EXAMPLE OF PRIOR CONSTRUCTION 

The standard approach to prior specification in the classification problem is to take 
independent noninformative priors for each of the classes (Titterington et ul. 1985). 
However, when the classified data contain relatively little information about one of the 
classes or when previously collected data hold a tenuous connection with the current 
unclassified observations, modeling of prior information plays an essential role. The 
previous section’s results highlight a key feature of even well behaved prior distributions: 
since the posterior odds of various labelings are asymptotically equal to the prior odds 
of the labelings, the prior must assign plausible odds in regions of the parameter space 
that receive large prior probability. In this section we synthesize standard techniques 
of prior construction with the additional concern that the prior odds remain relatively 
stable where the prior assigns the bulk of its mass. We illustrate prior construction on 
the well-known Leptagrupsus crab data. For a general discussion of robustness concerns 
in Bayesian settings, see Berger (1994). 

Campbell and Mahon (1974) performed a classical linear discriminant analysis on data 
collected on blue and orange forms of the rock crab Leprogrupsus vuriegutus in an attempt 
to categorize a given crab into one of the two color groups based on five carapace charac- 
teristics. Linear discriminant analysis on the five characteristics very effectively discrimi- 
nates between the four gender x color groups, and so, to make discrimination more chal- 
lenging, we focus only on three of the characteristics: width of carapace frontal lip (FL), 
carapace rear width (RW), and body depth (BD). The complete data set is currently avail- 
able by anonymous ftp at markov. stats.ox.ac.uk:pub/neural/ASI .Ripley 
(1994) presents some nonlinear approaches to analysis of these data. 

A total of 200 observations were collected, 50 from each of the four gender x color 
subgroups. To study the issue of prior construction when the data consist of unclassified 
observations, we alter the data set. We split the data by gender into two parts, imagining 
that the male crabs constitute classified data collected some time previously and that 
the female data are unclassified. The problem is then to classify female crabs as either 
blue or orange, based upon the inexpensive carapace measurements. Means and standard 
errors for the four groups as well as for orange and blue crabs combined across gender 
groups are given in Table I .  Scatterplots of the data are shown in Figure I ,  where the 1 ’s  
correspond to blue crabs. The plots reveal traces of heteroscedasticity; the log transform 
was applied to the original data with minimal effect on the results of this section. We 
therefore present the analysis on the original scale. 
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FIGURE 1: Scatterplots of crab data. 

where Z indicates class membership and group 1 corresponds to the blue crabs. A plot 
of the data in the first two linear discriminant directions reveals a modest amount of 
separation. 

We construct our initial prior distribution for the means and covariances of the female 
crabs by examining the male crab data and assuming the male crabs are similar in size 
and shape to the female crabs. We assume independence between the joint mean vector 
p = (CL:,P;)~ and the joint covariance matrix 2 = (Z1,Z2). 

As the prior for 2, we specify independent Wishart distributions for z;', 
Z:' - W ( f   SF',^), i = 1,2, 

where Si is the sample covariance matrix for the ith color group within the male crabs. 
Under this prior, E 2;' = S;', and v = 3 is the smallest integral choice for the degree- 
of-freedom parameter that gives a proper prior density for &. It is important to have 
a proper prior distribution because use of an improper prior would lead to the usual 
troubles when comparing models of differing dimension: With only unclassified data at 
our disposal, we would end up classifying all female crabs to one color group. 

For the means, we begin with the assumption of total independence between the color 
groups and take 

~-N(( : : ) . . . )E![~ '  k 0 s2 '1). (3) 

where ?Il and 32 are the sample means from blue and orange male crabs, respectively. 
We take k = 3, claiming an equal amount (or lack) of information to that regarding 
the covariance structure, to prevent the prior from swamping the relevant information 
contained in the female crab data; information from the female data is useful only 
for estimation of (p;, 2;,&, X;), the unordered version of (pl,Z~,pz, &), while the 
information from the male crab data is useful for determining to which color group 
(p;, ZC;) corresponds. 

As a second stage of the prior construction, we consider the possibility of a difference 
in carapace size between male and female crabs. Since the current prior is centered at 
the blue and orange male crab sample means, we must specify a prior distribution for the 
possible male-to-female location shift. Relying on intuition, it seems reasonable that the 



306 COOLEY AND MacEACHERN Vol. 27, No. 2 

amount of shift in one characteristic should be positively correlated with the amount of 
shift in another, and that the differences between blue male and female crabs should be 
similar to the differences between orange male and female crabs. Assuming no a priori 
knowledge of which gender should be larger, we use a normal distribution centered at 0 
to model the location shift. 

The new model for the means is 

where 

corresponds to the previous choice of prior that assumed total independence between 
color groups, and where A S ,  are terms that model the location shift from male crab 
means to female crab means as follows: 

6 P N ( O . [  v v  1 ) .  
v v  

where 

v =  [ 
represents a location shift that is perfectly correlated within and between color groups. 

( i i )  

where 

represents a location shift that is perfectly correlated between color groups, but indepen- 
dent between characteristics. 

(iii) 
b-N(O. [  v o  I), 

o v  
where V is as in (i), represents a location shift that is perfectly correlated 
characteristics, but independent between color groups. 

Thus we have that 

between 

1 ) .  
Since the covariance matrices in (i) and (ii) are singular, (i), ( i i )  and (iii) are regarded 

only as a heuristic means to obtain a model for the location shift. The parameters V I  , v2 

and v3 reflect the amount of variation in the location shift from males to females and must 
be elicited. We constrain CI + ~ 2  +c3 to equal I ,  so that C I ,  c2 and c.3 can be interpreted as 
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the proportions of contribution of each kind of shift to the overall shift in location. These 
quantities must also be elicited. Alternatively, hyperpriors may be placed on the v;’s and 
c;’s. We choose cT = (0.6,O. 1,0.3) to reflect our belief that there is a small degree of 
independence between the male-to-female location shifts for the different characteristics 
and color groups. We rely on an empirical approach to estimate the variances of the shifts 
in the three components by assuming that they are roughly the same as the variances 
of the carapace characteristics, which we estimate by the diagonal of the pooled sample 
covariance matrix obtained from the male crab data: vT = (1  1.995,4.668,12.210). This 
completes the second stage of our prior specification. 

The third stage of our prior specification consists of adjustment of the prior through in- 
vestigation of the prior odds discussed in Section 2. Since the results of Section 2 suggest 
that with a large number of unclassified training data, the posterior for (PI, XI ,p2, &) 
will place most of its mass within a small neighbourhood of the two reflections of the 
truth, where the amount of mass given at each reflection depends upon prior odds at 
the truth. We therefore propose to check the reasonableness of the prior by checking the 
prior odds over a region of the parameter space that seems likely to contain the truth. If 
the odds over this region are unreasonable or do not coincide with a priori beliefs, then 
adjustments to the prior are necessary. 

Considering, for the moment, the case of general covariance matrix (X) for the mean 
parameter p in the prior given by (3), we have 

where p’ = (p2 T ,pl T T  ) . 
We can obtain a heuristic estimate of the amount of the contribution to the prior odds 

of each of p and (XI,&) by setting each of them in turn equal to some value that lies 
along the general hyperplane {ql(q I ,  q2) = ( q 2 . q  I)}. Thus, to gain some insight into 
the relative importance of each parameter in the prior odds, we compute the odds at the 
three e2-space points 

(i) 

(ii) 

where S is the pooled sample covariance matrix of the male crabs, and 
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(iii) 

TABLE 2: Prior odds for three parameter points 

Mean Covariances Prior odds 

x 11 = s,. J, = s2 12.642 

x II=Z,=s 3,666 
$ ( X I  + X 2 )  

ZI = s,, 1, = s, 3.449 0 $(XI + R2)  

x &=12=S 3,666 
$ ( X I  + X 2 )  

ZI = s,, 1, = s, 0 $(XI + R2)  
3.449 

TABLE 3: Minimum and maximum prior odds for three choices of I 

I 0.7532 1.2468 219.9481 7.27 E + 05 
4 0.5063 I .4937 3.8268 4.18 E + 07 
9 0.2595 1.7405 0.0666 2.40 E + 09 

for the prior p - N(X,Z(b)). To compute the prior odds, we use the expression (4) and 
set = x(b). The prior odds are given in Table 2. The table shows that the vast majority 
of the contribution to the prior odds comes from the mean parameter. We therefore 
concentrate on this portion of the parameter space and set (Z1,Zz) equal to (S1,Sz) for 
the remainder of the prior odds analysis. 

We also see from Table 2 that the prior odds at the prior mean for p is inordinately 
large, even when the covariance parameters are chosen to be equal. I t  is of considerable 
concern that the prior odds might show large fluctuations over relatively small regions 
of the parameter space. For this reason, we consider minimization and maximization of 
the prior odds over a portion of the parameter space considered likely to contain the true 
value of p. We focus attention on the most recent version of the prior [p - N(X,Z(b))] 
and consider the region 

rr  = { ~ , z ~ , z ~ I ( ~  ~ X ) T ~ c h ) - t ( p  - X) 5 t ,  zt  = sI ,  z2 = s2}. 
That is, we consider all points in the “mean portion” of the parameter space that lie 
within J? standard deviations of the prior mean 8. I t  can be shown that the minimum 
and maximum prior odds over T, lie at the two intersections of the region Tf  and the 
hyperplane p = ax + ( 1  - a)%’, u E (-m, oo), where X’ = (Xl,X;)’. Solving for a 
under three choices of t (t E { 1,4,9}) and computing the prior odds at those points gives 
Table 3. 

It is clear from the table that the current version of the prior results in excessive, 
erratic behaviour of the prior odds, even for points within 1 standard deviation of the 
prior mean. Therefore, the final stage of prior construction is tojutten the prior so as to 
force the prior odds at each point in r f  to lie within an acceptable range. 

A standard flattening method replaces the multinonnal prior for p with a multivariate- 
T prior with location parameter X, scale matrix Z(’) and some number of degrees of 
freedom. For T priors with degrees-of-freedom parameter ranging from 1 to 5, the 
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FIGURE 2: Contours of a prior with unstable prior odds ratio. 

maximum prior odds over the ellipsoid corresponding to t = I ranges from 1120 to 
2308. As the degrees of freedom increase, the T prior tends toward the normal prior with 
the prior odds reflecting this trend. Hence, replacing the normal prior with a multivariate-T 
does not solve the problem of erratic odds. 

As an alternative, we return to the normal prior and consider reducing the degree of 
correlation between components of the mean by injecting a small amount of additional 
variability into the prior. Specifically, we specify a new covariance matrix for p, 

We then find limits on y that guarantee T I  < minr, R ( 6 )  < maxr, R(8) < r2 where rl and 
1-2 are specified bounds. It can be shown that 

for some yI and y2. As y -+ 00, the prior odds converges to that of the case where the 
two color-group mean vectors are taken to be equal (row 3 of Table 2). In our case, since 
3.449 seems a quite reasonable value for the prior odds, y2 is taken to be 00. Obtaining 
the lower bound y~ requires numerical methods; the size of y1 depends upon the bounds 
rl and r2 and upon the size of the region over which we wish to stabilize the prior odds. 
For the choices rl = 0.01 and r2 = 100, the numerical solutions for y~ corresponding 
to t = 1, 4 and 9 are y~ = 0.0381, 0.061 1 and 0.0883, respectively. Figures 2 and 3 
display two-dimensional contours of the prior for p before and after the addition of the 
extra variation. The points labelled BM, OM, BF and OF are the respective means of 
the blue males, orange males, blue females and orange females. Figure 3 was produced 
using y = 0.061 1. The contours displayed in the plots correspond to regions including 
points within 

The end goal of the analysis is to estimate P {Zi = 1 IXi = x i } ,  where X i  is the feature 
vector for the ith female crab. The prior distribution for Zi is Bernoulli(a), with a = i. 
Since the integrals necessary to compute the predictive densities cannot be expressed in 
closed form, a Gibbs sampler (Gelfand and Smith 1990) was applied to obtain a sample 
of the relevant probabilities. The Gibbs sampler had a burn-in phase of lo00 iterations 
and subsequently sampled I0,OOO a posteriori blue crab membership probabilities for 
each of the 100 female observations. Each female observation was then classified to blue 
population if the mean of the generated membership probabilities exceeded 0.5. If the 

standard deviation of the blue and orange male sample means. 
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FIGURE 3: Contours of a prior with stable prior odds ratio. 

TABLE 4: Error rates for two choices of prior. 

Prior Color No. incorrect No. of clear No. of incorrect 
covariance group (proportion) classifications clear classifications 

x ( h )  Both 75 (0.75) 54 46 
Blue 36 (0.72) 22 20 
Orange 39 (0.78) 32 26 

2") Both 23 (0.23) 0 
Blue 10 (0.20) 0 
Orange 13 (0.26) 0 

- 

- 

- 

mean of the generated membership probabilities did not exceed 0.5, the observation was 
classified to the orange population. The program was written in C, used IMSL random 
variate generation and matrix manipulation routines, and was run on an HP 715/64 
workstation, timing out at approximately 2 min 37 s. 

Overall error rates and error rates by color group appear in Table 4 for both choices of 
prior covariance matrix, Z(') and 2'"'. The number of incorrect classifications is much 
smaller under the robust prior. The fourth column of the table gives the number of 
observations for which the a posteriori probability of blue crab membership was either 
at least 0.8 or at most 0.2; we refer to these observations as clear cfassifcurions. The 
fifth column gives the number of misclassified clear classifications. Note the dramatic 
difference in the number of clear classifications for the two priors. Extreme a posteriori 
group membership probabilities contradict our uncertainty about the labelling scheme; 
the "robust" prior serves to stabilize these u posteriori probabilities, forcing them to 
agree more closely with our lack of labeling information. Under the robust prior, the 
minimum and maximum a posteriori probabilities of blue crab membership were 0.37 
and 0.61, respectively. The number of clear classifications allocated incorrectly under the 

prior is particularly disturbing and illustrates the need for a more robust prior. 

4. CONCLUSION 

We advocate, as a key step in prior elicitation, consideration of the asymptotic be- 
haviour of the posterior distribution under various parameter values. In the classification 
problem, an important asymptotic allows the size of the unclassified sample to grow 
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while keeping the size of the classified sample fixed. This asymptotic highlights the fea- 
tures of the posterior for which the unclassified sample conveys little or no information: 
namely, the labelling of the K classes. Since no amount of unclassified data will fully de- 
termine the class labels, the analyst must take special care to create a prior that provides 
acceptable large-sample inference for these class labels. 

The analytical results of Section 2 describe conditions under which a prior distribution 
will produce a posterior distribution, with convergent odds as n + 00, of the various 
class labelings. Roughly, the prior distribution should have locally stable odds of the 
various class labellings. The example of Section 3 shows how these results can influence 
the elicitation of a prior distribution. In the example, we develop a methodology for 
evaluation of the prior distribution when working with normal likelihoods, and also 
show how the prior distribution can be modified to produce acceptable large sample 
inference. The final choice of a prior distribution, in this instance, leads to a much 
superior classification rule. 

APPENDIX 

Proof of Lemma 1. (BI)  is obvious from (Al) .  For (B2), let r*  be arbitrary, and begin 
by noting that, for any integer p ,  

where the second inequality follows from condition (A3). 

be the cocompact sets given by (A2). Let 
Choose r < min(0, r*  - KM + log a;} with M given by (A3), and let D I ,  . . . , DK 

and B = {all permutations of (1,2,. . . , K)}. Clearly, D is cocompact. Choose p > Kp*, 
where p* = maxi(p;}, with the pi's given by (A2). We now write 

,zp) P{ZI, .  . . 

where ZI, . . . , Z p  are the class membership indicators (Zi = j if X; originates from 
population j), and S is the collection of all possible values of Z = ( Z l ,  . . . , Zp).  Let 
T; = (j14 = i, j = 1,. . . , p }  and ti = #T; (so that 7'; indexes the observations from 
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population i and t ,  = p ) .  Then 

Go sup f i , ( @ )  
D 

K 

- c Waf 1 
1 = I  

Now, since C, t ,  = p > K max, {pi}. at least one of the t ,  must be greater than max,{p,}. 
Since r < 0, we therefore have that, for p ,  D and r as chosen above, 

K 

z@, sup H J O )  5 r + KM - C l o g  a, < r*. 
r = l  D 

Proof of Result 2. Let t be small enough that n,,, N,(8) = 8. Denoting n,,(.) = 
n(. lX, ,  . . . ,X,),f,(xlO) z f ( x l , .  . . ,xplO), and N Y ( 8 0 )  s UO,) N , ( 8 ) ,  Berk's result gives 

where 0 0  is given in (2) and where o(1) p= 0 (as .  Fo,,). Since n(.) is continuous, for 
every 8 E 0 and 6 > 0 there exists a(€) such that 

4 8 ' )  E (n(8) -6(r ) ,n(8)+8(~))  for all 8"  E N f ( 8 ) .  

Therefore, since the likelihood is symmetric in neighbourhoods around the various 
reflections of 80, 
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Similarly, 

Hence, for any y > 0, there is a small enough f such that 

The result now follows from 

LEMMA 2.  Assume the a priori probabilities of class membership are equal, and suppose 
the class conditional densities satisfir conditions (A 1 )  through (A4). Denote the prior 
probability measure by n(.), and suppose n(@,,) > 0. Then 

n(oolx,,. ..,xJ -+ I (a .s .  F ~ , ) ,  

where 0, is given in (2) .  
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