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Abstract We propose a procedure to test complicated ANOVA designs for func-
tional data. The procedure is effective, flexible, easy to compute and does not require
a heavy computational effort. It is based on the analysis of randomly chosen one-
dimensional projections. The paper contains some theoretical results as well as some
simulations and the analysis of some real data sets. Functional data include multidi-
mensional data, so the paper contains a comparison between the proposed procedure
and some usual MANOVA tests.

Keywords ANOVA · Functional data · Random projections · Testing · Two-way
ANOVA

Mathematics Subject Classification (2000) 62H15 · 62J10

1 Introduction

The popularization of computers has allowed many processes to be continuously
monitored, thus providing data which are functions, the so-called functional data.
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Those include the changes in value of a particular share or index on the stock market,
the temperatures in a given location, etc., but it is also possible to include, in this
setting, data which are not functions but rather highly multidimensional like those
handled in genomics. Usual references on functional data are Ramsay and Silverman
(2002, 2005), Ferraty and Vieu (2006), and references therein.

A natural statistical problem is to decide on the existence or not of differences
in the process of interest when some conditions which may affect it vary. We refer,
for example, to the existence of differences between the temperatures in different
locations, between the values of the stocks in American, European, and Japanese
markets, . . . .

This problem is usually handled by employing a model which assumes the exis-
tence of an underlying function describing the typical evolution of the process under
consideration, assuming that the data we have at hand have been obtained by adding
random fluctuations to this typical function. Thus, the problem becomes a kind of
functional ANOVA problem.

Let us state the problem more precisely. Assume that we have a real-valued ran-
dom process X = {X(t), t ∈ [a, b]}, measured along the closed and bounded interval
[a, b]. Assume that there are R different conditions which may affect the process and
that X have been measured nr times under each of those conditions, giving the sam-
ple Xr

i (t), i = 1, . . . , nr , r = 1, . . . ,R. Assume also that for every r = 1, . . . ,R, there
exists a (nonrandom) function f r : [a, b] → R such that

Xr
i (t) = m(t) + f r(t) + εr

i (t), t ∈ [a, b], i = 1, . . . , nr , (1)

where εr
i are random functions centered in mean (i.e., E[εr

i (t)] = 0 for every t). Our
aim is to test the hypothesis f 1 = f 2 = · · · = f r = 0.

In Ramsay and Silverman (2005), as well as in many other papers on the subject,
advantage is taken of the fact that the measurements are usually made in a finite set
of values {t1, . . . , tm} ⊂ [a, b]. The idea is to apply a real ANOVA analysis for every
value tj . Thus, we obtain m values for the F -test, one for each tj . However, even
in the case that R = 1 and that the distribution of (ε1

i (t1), . . . , ε
1
i (tm)) is standard

Gaussian, it is shown in Fan (1996) that if we want to test the null hypothesis f 1 = 0,
then the powers of the likelihood ratio test converge to the level of the test if m → ∞,
and ‖(f 1(t1), . . . , f

1(tm))‖ → ∞ with ‖(f 1(t1), . . . , f
1(tm))‖ = o(m1/2). To solve

those problems, a kind of bootstrap procedure is proposed in Ramsay and Silverman
(2005), and, in Fan and Lin (1998), the authors suggest a criterion to select a finite
subset of tj ’s.

Other approaches are based on the application of a dimension-reduction and/or
smoothing technique (see, for instance, Abramovich et al. 2004; Abramovich and
Angelini 2005; Angelini and Vidakovic 2002; Antoniadis and Sapatinas 2007;
Brumback and Rice 1998; Faraway 1997; Ferraty et al. 2007; Gu 2002; Guo 2002).
Different points of view are handled in Cuevas et al. (2004), Fujikoshi et al. (2004),
and Schott (2007). In Cuevas et al. (2004), an F -test based on the squares of the
norms of the between samples and within samples differences is proposed. In Fu-
jikoshi et al. (2004) and Schott (2007), the authors analyze the behavior of the traces
of the between and within covariance matrices. A common drawback of those solu-
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tions (excepting Brumback and Rice 1998; Gu 2002, and Guo 2002) is that they are
intended to solve only one-way problems.

The proposals in Brumback and Rice (1998), Gu (2002), and Guo (2002) are based
on the use of the so-called smoothing splines (SS-ANOVA). Initially, the SS-ANOVA
had the strong limitation that the time was considered as an additional factor, which
implies that the values εr

i (t) and εr
i (s) are independent if t �= s. This requirement is

somewhat unreasonable because this independence would imply that the functions
Xr

i are discontinuous in every point, while, in practice, the continuity of the observed
functions seems to be customary (this limitation remains in the available version of
the gss R-package (R Development Core Team 2007), which is a practical imple-
mentation of the SS-ANOVA).

Later, in Brumback and Rice (1998) and Gu (2002), this restriction was removed
(we consider Brumback and Rice 1998 particularly interesting because it includes
a discussion in which the authors apply several methods to analyze the same data).
However, the technique underlying those papers is quite complicated because it relies
on the so-called Reproductive Kernel Hilbert Spaces and the involved computations
are quite demanding.

We can summarize the situation by saying that there exist several methods to han-
dle ANOVA problems. Some of them only allow one-way designs. Some others admit
complicated designs, but the computations are rather involved. There are also meth-
ods based on pointwise one-dimensional comparisons which could be blind against
some alternatives even in simple situations. An additional limitation is that many of
the previous methods are based on the normality assumption.

The goal of this paper is to propose an effective, flexible, and easy to compute
technique able to deal with complicated ANOVA designs requiring no normality and
as few additional hypotheses as possible. The key idea here is to use random projec-
tions to transform functional data into univariate data, solve the ANOVA problem in
this simple situation, and obtain conclusions for the functional data by collecting the
information from several projections.

The technique is based on Theorem 4.1 in Cuesta-Albertos et al. (2007c), which
requires that the measurements belong to a separable Hilbert space. This result was
generalized in Cuevas and Fraiman (2009) to general spaces without a Hilbert space
structure. Thus, our technique also works (with some obvious modifications) in those
general spaces. In spite of this, we have chosen in this paper the Hilbert framework in
order to keep the exposition as simple as possible because we consider that this setting
is general enough as to include many real-world problems: if the functions t → Xr

i (t)

are measured on a bounded interval [a, b] and
∫ b

a
(Xr

i (t))
2 dt do exist and are finite

(which, obviously, happens if the functions are continuous), then the functions belong
to the separable Hilbert space of the square-integrable functions.

Theorem 4.1 in Cuesta-Albertos et al. (2007c), roughly speaking, states that if
we have two different distributions, one of them determined by their moments (see
Shohat and Tamarkin 1963), and we randomly choose a marginal of them, those
marginals are almost surely different. We state this result here for further reference.

Theorem 1.1 Let H be a separable Hilbert space with norm ‖ · ‖. Let μ be a
Gaussian distribution on H such that each of its one-dimensional projections is non-
degenerate.
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Let P and Q be two probability distributions on H such that P is determined by
their moments. If P �= Q, then

μ
{
v ∈ H : P ◦ Π−1

v = Q ◦ Π−1
v

} = 0,

where Πv is the orthogonal projection onto the one-dimensional subspace generated
by v.

Several conditions have been proposed to assure that a distribution P is determined
by their moments like, for instance, the so-called Carleman condition:

∑
k m

−1/k
k =

∞, where mk := ∫ ‖x‖k dP (x) are assumed to be finite (see Shohat and Tamarkin
1963). This condition is satisfied for compact-supported or Gaussian distributions
and, more generally, for distributions with light tails.

According to Theorem 1.1, if we want to test the null hypothesis

H0 : f 1 = · · · = f R = 0

in (1), we only need to randomly take a one-dimensional subspace, project onto this
subspace the functions f 1, . . . , f R , and test whether those one-dimensional projec-
tions coincide.

We have presented this reasoning in the one-way ANOVA merely to simplify the
exposition, but the procedure can be extended to cover more complicated linear mod-
els. Roughly speaking, it so happens that our procedure covers every functional de-
sign which can be handled in the one-dimensional case.

The test that we propose here is conditional on the obtained one-dimensional pro-
jection which has to be chosen independently of the sample at hand. Conditional tests
are not new in statistics. In fact, most bootstrap procedures are conditional (on the ob-
tained sample), but we can trace conditional procedures, at least, to the exact Fisher
test for contingency tables.

We also want to remark that since Theorem 1.1 holds if we take H = R
d , the

proposed procedure can be used as a simple alternative to the usual MANOVA. In this
setting, there exist procedures to handle complicated designs, some of them enjoying
optimality properties. The comparison between the proposed procedure and some
available standard alternatives is interesting in order to see the existence or not of
differences in power.

The paper follows the following scheme: In Sect. 2 we develop the procedure.
In Sect. 3 we present some simulations. In Sect. 4 we analyze three real data sets.
The first one contains the results of a two-way physiological experiment. The second
one is related to the temperatures in different locations in Spain; this is a two-way
ANOVA plus a continuous covariable. The third one is a nested two-factor model
on the progesterone levels in some women; it is the example analyzed in Brumback
and Rice (1998). Section 5 is devoted to comparing the proposed procedure with
usual MANOVA tests; in order to make this comparison more interesting, we have
chosen a very unfavorable situation: since our procedure is intended for functional
data, it seems that the lower the dimension, the worse for the procedure; thus, we
have chosen a three-dimensional example to make the comparison. The paper ends
with a Discussion.
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2 The procedure

In this section H will denote a separable Hilbert space endowed with scalar product
〈·, ·〉. Without loss of generality we will assume that the closed interval in which we
measure the process is [0,1].
2.1 The model. Assumptions

We begin generalizing the model (1) to a two-way ANOVA model with a covariable.
Obviously, other models can be treated similarly.

Let R,S ∈ N and assume that for all r = 1, . . . ,R and s = 1, . . . , S, there exist
Xr,s

i , i = 1, . . . , nr,s ∈ N, random functions in H, such that

Xr,s
i (t) = m(t) + f r(t) + gs(t) + hr,s(t) + γ (t)Y

r,s
i + ε

r,s
i (t), t ∈ [0,1], (2)

where:

1. The function m is nonrandom and describes the overall shape of the process.
2. The (nonrandom) functions f r, gs, hr,s belong to H and account, respectively, for

the main effect of the first and second factors and for the interaction between them.
In order to make the model identifiable, we will assume, as usual, that, for all

t ∈ [0,1], r0 = 1, . . . ,R, and s0 = 1, . . . , S,
∑

r

f r (t) =
∑

s

gs(t) =
∑

r

hr,s0(t) =
∑

s

hr0,s(t) = 0.

3. The Y
r,s
i ∈ R are both random and known quantities that influence the process

according to the weights given by the (nonrandom and unknown) function γ ∈ H.
They play the same role as the covariables in the one-dimensional case.

4. The random trajectories ε
r,s
i are assumed to be H-valued, independent, and cen-

tered in mean. Moreover, for each r, s fixed, ε
r,s
i , i = 1, . . . , nr,s , are identically

distributed.

We are interested in testing the following null hypotheses:

HA
0 : f 1 = · · · = f R = 0 (the first factor has no influence),

HB
0 : g1 = · · · = gS = 0 (the second factor has no influence),

HI
0 : h1,1 = · · · = hR,S = 0 (there is no interaction between factors),

HC
0 : γ = 0 (the covariable has no influence),

against the alternatives that their negations hold.

2.2 The procedure

The procedure that we propose is a direct application of the following result.

Theorem 2.1 Let us assume the model and assumptions stated in Sect. 2.1. Let μ

be a Gaussian distribution on H such that each of its one-dimensional projections is
nondegenerate. Then
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1. If there exist r1, r2 such that f r1 �= f r2 , then

μ
{
v ∈ H : such that

〈
v,f 1〉 = · · · = 〈

v,f R
〉} = 0.

2. If there exist s1, s2 such that gs1 �= gs2 , then

μ
{
v ∈ H : such that

〈
v,g1〉 = · · · = 〈

v,gS
〉} = 0.

3. If there exist (r1, s1), (r2, s2) such that hr1,s1 �= hr2,s2 , then

μ
{
v ∈ H : such that

〈
v,h1,1〉 = · · · = 〈

v,hR,S
〉} = 0.

4. If γ �= 0, then μ{v ∈ H : such that 〈v, γ 〉 = 0〉} = 0.

Proof Given r = 1, . . . ,R, let P r be the probability distribution on H concentrated
on f r (i.e., P r satisfies that P r [f r ] = 1). Obviously, every probability distribution
concentrated on a single point satisfies Carleman’s condition. Thus, we can apply
Theorem 1.1 to every pair of probability distributions P r1 and P r2 , and the result in
item 1 follows.

The proofs of the remaining statements are identical. �

To explain the procedure, let us focus our attention on the testing of hypothe-
sis HA

0 . Let v ∈ H be a vector chosen at random employing the distribution μ. If HA
0

holds, then for every v ∈ H, the (conditional on v) null hypothesis

H
A,v
0 : 〈v,f 1〉 = · · · = 〈

v,f R
〉 = 0

also holds. Also, according to 1 in Theorem 2.1, if HA
0 fails, then for μ-almost every

v ∈ H, H
A,v
0 also fails. Thus, a statistical test at level α to test H

A,v
0 is a statistical

test at the same level to test HA
0 .

Therefore, if Φ is a statistical test at level α to test the null hypothesis HA
0 under

the model (2) if the data are real, it is then possible to test HA
0 in the H-valued case

by applying Φ to test H
A,v
0 .

The same can be said with respect the null hypotheses HB
0 , HI

0 , and HC
0 and the

corresponding (random) counterparts H
A,v
0 , H

B,v
0 , and H

C,v
0 .

Let us present a toy example of application of the method. With this example, it is
not our aim to show all of its possibilities as neither is it to carry out a full analysis
of the example. In fact, to be perfectly honest, it has to be said that this example was
selected as the most suitable in a series of 15 trials.

Example 2.2 Let us assume that we have two samples (see left graph in Fig. 1) of
size 15 each, X1, . . . ,X15 (in blue) and Y1, . . . , Y15 (in green) of functions measured
on the interval [0,1].

Assume that we know that there exist two functions m1 and m2 such that

Xi(t) = m1(t) + ε1
i (t), i = 1, . . . ,15,

Yj (t) = m2(t) + ε2
j (t), j = 1, . . . ,15,
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Fig. 1 Left-hand graph: Samples of trajectories (gray and dashed black curves) and randomly chosen
vector (solid black curve). Right-hand graph: Means of the samples

where, for every t , E[Xi(t)] = m1(t) and E[Yj (t)] = m2(t), and the random func-
tions ε1

1 , . . . , ε1
15 (respectively ε2

1 , . . . , ε2
15) are identically distributed. Assume that we

are interested in testing the null hypothesis

H0 : m1 = m2.

The sample means of both samples appear in the right-hand graph in Fig. 1. There
are many procedures in the literature to test H0 in this functional setting, but, perhaps
it is not too evident which one is more suitable for this particular problem. In partic-
ular, some of the available procedures require that the data be Gaussian, and it is not
easy either to decide whether this assumption holds or not.

On the other hand, the involved functions are continuous, so,
∫ 1

0 X2
i (t) dt and

∫ 1
0 Y 2

j (t) dt are finite, and we can apply the previous theory. To do this, we need to
choose, with a Gaussian distribution, a vector v in the space of the square-integrable
functions. In this case, we use the distribution of a standard Brownian motion. To se-
lect the precise v, we take advantage of the fact that the curves in both samples were
only measured in the points 0, .01, .02, . . . , .99,1. Therefore, we only need to know
the values of v in those points. For this, we can employ the usual approximation of
the Brownian motion by a sequence of partial sums of independent normal variables
as follows:

1. Let Z1, . . . ,Z100 be independent, identically distributed standard normal vari-
ables.

2. Take v(0) = 0 and for every h = 1, . . . ,100, let th = .01 × h and

v(th) = v(th−1) + .01 × Zh.

The trajectory v is represented in red in Fig. 1. To apply Theorem 2.1, let us consider
the integrals

mv
i =

∫ 1

0
mi(t)v(t) dt, i = 1,2. (3)
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If H0 holds, obviously, mv
1 = mv

2. On the other hand, the real numbers

mv
1

(
∫ 1

0 v2(t) dt)1/2
and

mv
2

(
∫ 1

0 v2(t) dt)1/2

are, respectively, the projections of the functions m1 and m2 onto the one-dimensional
subspace generated by v. Therefore, according to Theorem 2.1, if, in fact, m1 �= m2,
then it is almost surely impossible that mv

1 = mv
2, and, in consequence, it is equivalent

either directly testing H0 or the (conditional on v) null hypothesis

Hv
0 : mv

1 = mv
2.

Notice that mv
1 and mv

2 are real numbers and that they are the means of the (also

real) random variables
∫ 1

0 Xi(t)v(t) dt and
∫ 1

0 Yj (t)v(t) dt , respectively. Therefore,
to test Hv

0 , we only need to compute those integrals for all the members in both
samples (obtaining two samples of integrals) and, then, apply a test to check if it
is reasonable to assume that the mean of the distributions which generated those
samples was the same or not. The integrals in (3) can be approximated by the sums

p1
i = .01

101∑

h=1

Xi(th)v(th) and p2
j = .01

101∑

h=1

Yj (th)v(th), i, j = 1, . . . ,15. (4)

Now, we can employ the (real) samples p1
i and p2

j to test Hv
0 . Here the situation

is more clearer because we are dealing with real data. For instance, Fig. 2 shows the
box-plot of those values.

We can even apply the Kolmogorov–Smirnov test to check their fit to the normal
family. This test rejects the normality of the p1

i ’s at the usual .05 level (p-value equals
.0255) but not that of the p2

j ’s (p-value equals .3038). Under those circumstances,
the t-test does not seem appropriate to test Hv

0 and, the Wilcoxon–Mann–Whitney
test may be preferable. Anyway, the p-value obtained with the t-test is .0392 (thus
leading to the rejection of Hv

0 (and then to that of H0) at the .05 level, while the

Fig. 2 Box-plot of the
quantities computed in (4)
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second test gives p = .1057, which is not enough to reject Hv
0 . In conclusion, we

should reject the normality hypothesis, declare the t-test inappropriate, and conclude
that there is not enough evidence to reject H0.

An interesting conclusion of the Kolmogorov–Smirnov test is that the func-
tional data are not Gaussian (if they were Gaussian, then every projection would be
Gaussian, and we have one which is not). Therefore, if we had chosen to analyze the
functional data using a method requiring Gaussianity, then, the analysis would have
been flawed.

In this case, the null hypothesis holds with m1 = m2 = 0. The distribution of ε1
i is

a mixture of a non-Gaussian distribution plus a 10% of outliers, while the distribution
of ε2

j is that of the standard Brownian motion plus a random fixed quantity chosen in
the interval [−1,1].

2.2.1 Model assumptions

It is well known that, in classical ANOVA, hypotheses like the homoscedasticity or
the Gaussianity are crucial. Thus, it is worth paying some attention to the question of
which hypotheses are required in our procedure.

The key here is that the problem is split into two: First project and, then, ap-
ply ANOVA. Thus, it is possible to decide which is the right ANOVA to be applied
looking at the projections. Take, for instance, Example 2.2. After computing the pro-
jections, we saw that the t-test was not appropriate, and, then, we selected a nonpara-
metric test.

The same happens with the ANOVA: after computing the projections, we can se-
lect the right (one-dimensional) ANOVA technique to be applied, depending on when
the data are Gaussian, homoscedastic, . . . or not. In particular, in random functions,
homoscedasticity does not look reasonable because, very often, the oscillation of a
process strongly depends on their values.

Therefore, it is good to have at hand a one-dimensional ANOVA test which works
under heteroscedastic and/or non-Gaussian conditions. There are several available
procedures in the literature which fulfil those requirements. Here, we have chosen
the one proposed in Brunner et al. (1997) which will be the procedure used unless
otherwise stated.

2.2.2 Stability of the procedure

According to the previous reasoning, the exposed procedure is consistent in the sense
that the rejection of any null hypothesis H ·,v is almost surely equivalent to rejecting
the corresponding null hypothesis H ·

0. However, it is obvious that this procedure has
two main drawbacks.

On one hand, we are losing some information because we are replacing a function
by just one real number and this should bring some loss of power. On the other hand,
when employing a randomly chosen projection, we are accepting some random in-
stability in the problem because what may happen is that if we repeat the procedure
twice, a null hypothesis could first be rejected and later accepted.

In order to reduce these inconveniences, it has been proposed (for instance, in
Cuesta-Albertos et al. 2007a, 2007b) to take k > 1 random projections, test the null
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hypothesis for each projection, and, then, adjust the obtained p-values by bootstrap.
Bonferroni’s method is the selection in Cuesta-Albertos et al. (2008). Alternatively, in
descriptive studies where the goal is to provide an idea about how far from acceptable
the null hypothesis under consideration is, reporting, for instance, the mean value of
the obtained p-values could be enough.

It is very well known that Bonferroni’s correction is quite conservative. On the
other hand, the bootstrap is quite time consuming, and the proofs to show that it
works in specific problems are quite involved. Therefore, our advice here is to employ
a correction directed at controlling the False Discovery Rate (FDR). If k different
statistical hypotheses are tested, then the FDR is the expected proportion of wrongly
rejected hypotheses. Since in our situation all the hypotheses that we are testing are
equivalent, the FDR coincides with the level of the procedure.

The FDR was introduced in Benjamini and Hochberg (1995) for independent tests.
Here, we will employ the improvement proposed in Benjamini and Yekutieli (2001).

Given a set D ⊂ R
k , we say that D is increasing if x ∈ D and y ≥ x implies

that y ∈ D (here we handle the coordinate-wise order). Now, let Z = (Z1, . . . ,Zk)
′

be a random k-dimensional vector. We say that Z is positively regression dependent
(PRD) if, for every increasing set D and i = 1, . . . , k, the map x → P [Z ∈ D|Zi = x]
is increasing in x. Notice that we can safely assume that the tests that we are going
to apply are PRD because they are based on the same initial data set.

Proposition 2.3 (Benjamini and Yekutieli 2001) Let us assume that we apply k PRD
tests to check the same null hypothesis. Assume that the ordered p-values that we
obtain are p(1), . . . , p(k) where p(1) ≤ · · · ≤ p(k). Let α ∈ (0,1). The level of the test
which rejects if the set

{

i : p(i) ≤ i

k
α

}

is not empty is, at most, α.

This result gives us a procedure to compute corrected p-values as follows: given
the ordered p-values p(1), . . . , p(k), Proposition 2.3 allows us to reject the null hy-
pothesis for every level α ≥ inf{ k

i
p(i), i = 1, . . . , k}. Therefore, we will take as a

corrected p-value the quantity inf{ k
i
p(i), i = 1, . . . , k}.

If Bonferroni’s correction leads to rejection at a given level α (which happens
when p(1) ≤ α/k), this procedure also rejects. On the other hand, the correction based
on the FDR remains conservative because the test is at most at the desired level; but
the experience shows that it is far less conservative than Bonferroni’s correction. We
will return to this question in the next subsection.

The only remaining problem is the selection of the number k of random projec-
tions, which according to Theorem 4.1 in Cuesta-Albertos et al. (2007c), must be
independent with respect to the data. For this, we refer the interested reader to Cuesta-
Albertos and Nieto-Reyes (2007, 2008) where this problem is studied. In Sect. 3 in
Cuesta-Albertos and Nieto-Reyes (2008) some quite conservative upper bounds for
k are given. This conservatism is shown in Cuesta-Albertos and Nieto-Reyes (2008),
where a not so large value for k is taken when analyzing practical problems. The
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functional case is analyzed in Sect. 4.1 in Cuesta-Albertos and Nieto-Reyes (2007)
in connection with a classification by sex problem. Here the authors handle k ∈ {1,2}
(in Sect. 4.1.1) and k ∈ {10,20} (in Sect. 4.1.2). This leads us to use in this paper up
to k = 30 which is considerably above the number of projections effectively handled
in those papers.

2.2.3 Finite-dimensional case

It is obvious that finite-dimensional Euclidean spaces can be considered as particular
cases of Hilbert spaces. Then, in principle, there is no need for modifications to apply
the procedure in those spaces. However, there are some practical points worth consid-
ering. The first one is related to the distribution to be employed to select the random
directions. Stationarity is often a reasonable assumption in random processes, and,
consequently, there is no need to distinguish between values of t . However, in the
finite-dimensional case there is no reason to assume that the marginals of the under-
lying distribution are the same. Thus, it may not be particularly wise to select μ in
Theorem 2.1, for instance, as the standard Gaussian distribution.

The second problem is related to the fact that if the dimension of the space is low
as compared with k, then excessive dependencies between marginals may damage the
FDR correction, which becomes a little conservative. We have sometimes observed
this phenomenon, mostly in the low-dimensional applications (see Sect. 5). Our pro-
posal is to choose k not greater than the dimension of the data being analyzed.

Concerning the first question, our proposal is, first, to apply an affine transforma-
tion to the data in order to make them centered in mean and its covariance matrix
the identity. Then, we choose as μ the standard Gaussian distribution. The proposed
affine transformation can be seen as a way to easily choose the random projections by
taking into account the marginal distributions and their dependences. In other words,
this transformation plus μ equal to the standard Gaussian distribution is equivalent to
no transformation on the data and to μ being a Gaussian distribution with a covari-
ance matrix depending on the marginal distributions and their dependences.

Moreover, from the point of view of the comparisons that we carry out in Sect. 5,
since the affine transformations do not affect the usual MANOVA tests, this transfor-
mation has no influence on them.

3 Simulations

A Monte Carlo study has been carried out in order to evaluate the performance of
the procedure proposed in Sect. 2. To this end, we have simulated several examples
following the model (2). We have taken R = S = 2 and nr,s = 100, r, s = 1,2, in all
of them. The underlying distributions depend on two parameters α,β as follows:

• m(t) := 30(1 − t)t .
• f r(t) := α(−1)r | sin(4πt)|, r ∈ {1,2}, α ∈ {0, .025, .05, .075, .10, .15, .25,

.35, .50}.
• gs(t) := β(−1)sI{t>0.5}, s ∈ {1,2}, β ∈ {0, .025, .05, .075, .10, .15, .25, .35, .50}.
• hr,s(t) := −f r(t)gs(t)I{α≥0.25}.
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• ε
r,s
i (t) is a Gaussian process with mean zero and covariance function

Cov
(
ε
r,s
i (t1), ε

r,s
i (t2)

) := σ 2
r,s exp

(−|t1 − t2|/.3
)
, σ 2

r,s = .2 + r × s × .1,

where t ∈ [0,1] was discretized in N = 101 points, i.e., the processes were observed
at the points tl = l/100, l = 0, . . . ,100. We wish to remark that we are in a het-
eroscedastic setting with σ 2

r,s ∈ {.3, .4, .5} depending on the particular cell we are
considering.

The parameter α (resp. β) controls the strength of the factor f r(t) (resp. gs(t)).
In fact, depending on α, the interaction is present or not.

We have done K = 500 replications for every possible combination of the values
of α and β whose results appear in Tables 1, 2, and 3. In order to save space, when
some cases are statistically identical, we have summarized all the results in a single
cell. For instance, when analyzing the null hypothesis HA

0 (resp. HB
0 ), the values of

β (resp. α) have no influence. Then, since we have 9 different values for α and β ,
every cell in Tables 1 and 2 summarizes the result of 4500 replications.

We have taken k = 1,5,15,30 random projections, and each cell shows the pro-
portion of rejections at level .05 after correcting the p-values with the procedure
described following Proposition 2.3.

The results are quite satisfactory. The first column in Table 1 corresponds to the
situation of no effect of the factor A, and the behavior is nice. The same can be said
about Table 2 for factor B . As α is growing in Table 1 (resp. β in Table 2), the
proportion of rejections quickly increases.

Table 3 has the information about interaction which is only present for α ≥ .25.
Here, the first four rows are the summary for α ∈ {0, .025, .05, .075, .10, .15}, where
no interaction is present, and so, every cell is the result of K = 3000 replications. The
following rows correspond to those values of α when interaction is present, and here,
the number of replications is K = 500. Since the amount of interaction depends on

Table 1 Proportion of rejections for HA
0 at the level p = .05

RP α = .00 α = .025 α = .05 α = .075 α = .10 α = .15 α = .25 α = .35 α = .50

1 .051 .089 .175 .303 .438 .605 .766 .827 .886

5 .049 .093 .268 .544 .769 .955 .999 1 1

15 .044 .099 .320 .671 .902 .998 1 1 1

30 .037 .094 .351 .745 .944 1 1 1 1

Table 2 Proportion of rejections for HB
0 at the level p = .05

RP β = .00 β = .025 β = .05 β = .075 β = .10 β = .15 β = .25 β = .35 β = .50

1 .048 .077 .182 .330 .432 .620 .787 .835 .889

5 .049 .082 .266 .545 .786 .969 .998 1 1

15 .039 .089 .306 .659 .905 .998 1 1 1

30 .036 .091 .322 .697 .932 1 1 1 1
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Table 3 Proportion of rejections for HI
0 at the level p = .05

α RP β = .00 β = .025 β = .05 β = .075 β = .10 β = .15 β = .25 β = .35 β = .50

≤.15 1 .052 .057 .049 .059 .050 .054 .049 .051 .049

5 .048 .043 .047 .051 .046 .044 .043 .045 .050

15 .043 .042 .045 .046 .045 .040 .039 .043 .042

30 .040 .040 .048 .045 .038 .039 .037 .036 .043

.25 1 .042 .066 .048 .052 .052 .060 .110 .176 .300

5 .054 .070 .068 .038 .052 .066 .136 .240 .510

15 .032 .062 .056 .040 .046 .086 .190 .328 .632

30 .024 .052 .042 .034 .042 .080 .200 .350 .732

.35 1 .048 .050 .062 .072 .072 .102 .178 .282 .454

5 .048 .042 .046 .060 .062 .114 .280 .454 .754

15 .050 .048 .052 .050 .082 .130 .322 .614 .896

30 .056 .036 .042 .064 .086 .118 .342 .666 .954

.50 1 .042 .066 .060 .066 .104 .158 .266 .424 .584

5 .046 .060 .076 .072 .130 .248 .554 .770 .926

15 .030 .048 .080 .082 .148 .272 .658 .918 .994

30 .032 .038 .062 .084 .134 .294 .730 .956 1

the product α ×β , the proportion of rejections increases when we approach the lower
right corner and goes near one only when both α and β are large.

Concerning the effect of the number of projections we wish to mention that the
conservative character of the procedure proposed in Proposition 2.3 clearly appears
under the null: in the three tables, in practically every cell corresponding to the null,
the proportions decrease with k. Interestingly, the opposite happens under the alter-
native, excluding some cells in Table 3 for low values of α and β . The reason for this
could be that, as k increases, the chance of finding a direction in which the alternative
appears more strongly increases, and this increment overcomes the conservativeness
of the procedure. However, this chance becomes smaller when k is great in compari-
son with the real dimension of the data. This is what led us to limit k being, as most,
equal to the dimension of the data (see Sect. 5).

In this Monte Carlo study, the hypothesis HC
0 cannot be checked because under a

heteroscedastic setting, as far as we know, there is no univariate method that provides
a good approximation of p-values with continuous covariates. In order to check the
hypothesis HC

0 , we simulated examples of model (2) with a functional covariate in a
homoscedastic setting, as follows:

• α,β, r, s, t,m(t), f r(t), gs(t), hr,s(t) as above.
• γ (t) := (t − 0.5), and the distribution of the real random variable Y is U [−.5, .5].
• ε

r,s
i (t) is a Gaussian process with mean zero and covariance function

Cov
(
ε
r,s
i (t1), ε

r,s
i (t2)

) := σ 2 exp
(−|t1 − t2|/.3

)
, σ 2 = .3.
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The results for this model are quite similar to those shown above for the princi-
pal factors and the interaction. With respect to the hypothesis HC

0 , the proportion
of rejections is, not surprisingly, near one for every cell. Obviously, under the as-
sumed hypotheses, we have that the one-dimensional projections are Gaussian and
homoscedastic. Thus, we have handled the unidimensional projections with a stan-
dard ANOVA.

4 Three real data sets

In this section we illustrate the proposed procedure by using three real datasets. On
each problem, the number of random projections is the minimum between 30 and the
dimension of the data.

4.1 Orthosis data

Those data have been previously studied in Abramovich et al. (2004), Abramovich
and Angelini (2005), and Antoniadis and Sapatinas (2007). We want to thank Prof.
Anestis Antoniadis who kindly provided us the data that, according to Antoniadis and
Sapatinas (2007), were obtained at the Laboratoire Sport et Performance Motrice,
Grenoble University, France.

The goal of the study was to analyze how muscle copes with an external pertur-
bation. For this, seven male volunteers where measured while stepping on the spot
using a spring-loaded orthosis under four conditions: without orthosis (Control), with
the orthosis only (Orthosis), and two conditions (Spring1, Spring2) in which a spring-
loaded orthosis was fitted onto the right knee joint. All subjects tried all conditions
10 times for 20 seconds each; but only the central 10 seconds were used in the study
in order to avoid possible perturbations in the initial and final parts of the exercise.
The resultant moment at the knee was derived by means of body segment kinematics
recorded with a sampling frequency of 200 Hz. For each replication, 64 measure-
ments, equally spaced, were taken and scaled so that a time interval corresponds to
an individual gait cycle.

Therefore, the dataset consists of 280 separate runs and involves the seven subjects
over four described experimental conditions, replicated 10 times for each subject. The
graphical representation of the data appears in Fig. 3(a) in Antoniadis and Sapatinas
(2007).

We have a two-way functional ANOVA (subjects and treatments being the quali-
tative factors) with 10 observations per cell. The associated problem does not seem
particularly easy. In fact, in the analysis carried out in Abramovich et al. (2004)
and Abramovich and Angelini (2005), the authors found significative differences be-
tween treatments, but not between Control and Orthosis, and not between Spring1
and Spring2 either. Then, in Antoniadis and Sapatinas (2007), they treated subjects
as random effects that allowed them to carry out a more powerful analysis that led
them to find significant differences in the analyses Spring1 + Spring2 vs. Control
+ Orthosis conditions (p-value = 0), Control vs. Orthosis (p-value = .001), and
Spring1 vs. Spring2 (p-value = .020).
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Table 4 p-values for the considered null hypothesis. Spr1&2 vs. Co&Or refers to (Spring1 + Spring2)
vs. (Control + Orthosis)

Null hypothesis being tested

Subject Treatm. Interact. Spr1&2 vs. Co&Or Cont vs. Orth Spr1 vs. Spr2

0 0 0 0 .0007 .0280

Here, we will consider that both factors are fixed-effects. This allows us to an-
alyze the existence of interactions between them which is an aspect not previously
considered. We have applied our test choosing 30 random directions. Table 4 shows
the p-values obtained.

The results in Table 4 show a strong evidence on the influence of both factors
and on the existence of interaction. The data also very strongly support the exis-
tence of differences between wearing some kind of spring against not and between
Control and Orthosis measurements. The evidence favoring differences between the
springs is less. In fact, the test fails to find them if we take only 5 random projections
(p-value equals .6208), but we obtain p-values similar to the one obtained in
Antoniadis and Sapatinas (2007) when we increase this number. Therefore, the ran-
dom ANOVA procedure allows all considered null hypotheses to be rejected in ac-
cordance with the results in Antoniadis and Sapatinas (2007) and overcoming the
difficulties found in Abramovich et al. (2004) and Abramovich and Angelini (2005).

4.2 Spanish temperature data

Those data were downloaded from http://clima.meteored.com in September, 2007.
This site contains climatological data from many meteorological stations. We con-
sider the daily mean temperature as the functional datum for certain locations in Spain
and certain months in the latest annual cycle. More precisely, we have downloaded the
daily mean temperature in A Coruña, Avilés, Bilbao, San Sebastián, Santander, Vigo,
Burgos, León, Madrid, Salamanca, Segovia, Soria, Valladolid, Vitoria, and Zamora.
The last nine locations are in the interior of Spain and have cold winters and hot
summers, whereas the first six locations are situated on the North Coast of Spain (At-
lantic Ocean) and have temperatures that are less extreme. Also, in order to take into
account the variability of seasons, we have selected the most representative available
months in the considered period: October 2006, January 2007, May 2007, and July
2007.

Indeed, we have also taken into account the Monthly Total Amount of Rainfall as
a covariate that can influence the temperature. Thus, this is the real known random
variable Y in (2) which multiplies the unknown and nonrandom function γ , which
measures the influence of this quantity each day in the month. It seems to us that in
this particular example, Y should be constant, but this is not important in our model.

In Fig. 3 we have represented the curves of the mean temperatures in each month
and zone. The influence of the seasonal factor becomes obvious from those graphs.
But, in our opinion, the differences between the corresponding curves are not so great
as to make the influence of the location factor so obvious. The same happens with the

http://clima.meteored.com
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Fig. 3 Mean temperatures in coastal (thick line) and inland (dotted) locations by months

Table 5 p-values obtained with
the random ANOVA Location Month Interaction Monthly Rainfall

p-value 2.98 · 10−5 0.00 7.8 · 10−10 .089

existence of the interaction, in spite of the graphs suggesting its existence, since the
mean temperature in the interior is lower than in the coastal area in winter and greater
in summer.

Table 5 contains the p-values obtained for each null hypothesis with the proposed
test using 30 random projections. The proposed procedure detects the existence of
influence of both factors and, also, the existence of interaction between them. The
influence of the monthly rainfall is rejected at the usual .05 level but not at the .10
level.

4.3 Urinary progesterone data

In this study the levels of urinary progesterone of several women with a healthy re-
productive function enrolled in an artificial insemination program were measured.
They had undergone insemination attempts in every menstrual cycle. The objective
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was to determine the existence or not of differences in the daily progesterone levels
depending on when a woman is in a conceptive or nonconceptive menstrual cycle.
The duration of those cycles is 24 days aligned by the day of ovulation, and thus data
outside days [−8,15] were excluded. A second question of interest is the existence
or not of differences in the levels between those groups in days 2 to 8.

The levels of urinary progesterone were measured in 22 conceptive and 69 non-
conceptive menstrual cycles. An interesting characteristic of this data set is that there
were 22 women in the conceptive group and 29 in the nonconceptive because there
were some cycles in this group measured on the same woman. Therefore, we have a
two-way nested ANOVA.

The paper (Brumback and Rice 1998) focuses on the analysis of those data.
A graphical representation of some data appears there. This paper contains a discus-
sion, and, then, the data are analyzed using a linear mixed-effects model for curved
data employing the SS structure (Brumback and Rice), a pointwise ANOVA followed
by a smoothing step (Fan and Zhang), and a pointwise ANOVA (Ramsay and Silver-
man, RS). Globally speaking, the conclusions of those studies are similar.

There are some problems in this data set. First, there are some missing data. In
particular, only 36 cycles contain the measurement of the last day, and only 56 contain
that of the penultimate day (the other days are more complete). In order to handle this
problem, we have followed the suggestion given by RS, and we have deleted the last
day from the computations. Therefore, our data are 23-dimensional. Concerning the
other missing data, we again follow RS using a cubic spline smoother with 9 degrees
of freedom to assign absent data.

The results of our analysis appear in Table 6. To analyze the 8-day period starting
on day 2, we have considered the sample restricted to this period. In other words, we
have applied two independent analyses to the same sample: the first one to a set of
23-dimensional data and a second one to the 7-dimensional data obtained by restrict-
ing the sample to the shorter period.

The results in this table are quite similar to those in Brumback and Rice (1998):
they show strong evidence of differences in the levels along the cycle, and they do
not find any evidence of differences in the period between days 2 and 8.

However, there is an important difference between all the analyses in Brumback
and Rice (1998) and our analyses. The analyses carried out in Brumback and Rice
(1998) are based on the Gaussianity hypotheses. We have applied the Kolmogorov–
Smirnov test to the 23 projections of the full data, and, on applying the FDR cor-
rection, we find that we can reject the null hypotheses stating that the initial sample
was produced by a Gaussian distribution (the obtained p-value was 14 · 10−13). This
suggests that the analyses in Brumback and Rice (1998) could be flawed.

Table 6 p-values obtained with
the random ANOVA for urinary
progesterone data

Interval Projections group group: subj

days −8 to 14 k = 23 2.96 · 10−6 2.3 · 10−6

days 2 to 8 k = 7 .5820 .0003
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5 A comparison with MANOVA

In this section we compare our procedure to some usual MANOVA tests. We make
the comparison by analyzing one of the examples proposed in R (R Development
Core Team 2007), as an illustration of the manova procedure. The results are similar
to those of the other proposed example.

As stated, this example was selected to illustrate the manova procedure which is
based on Gaussianity assumptions. Thus, we have decided to assume this hypothesis
too and employ the usual one-dimensional ANOVA test to analyze the projections.

The data appear in Krzanowski (1988, p. 81) and are related to the production
of plastic film. These data are three-dimensional. They served to analyze how some
characteristics of the plastic film (“tear”, “gloss”, and “opacity”) vary depending on
two factors (“rate” and “additive”), each with two levels (“Low” and “High”). Five
measurements were taken under each set of production conditions.

Thus, we are in a three-dimensional, two-way MANOVA problem with two levels
in each factor and five observations in each cell. Therefore, we will assume the model
(2) with Y

r,s
i = 0, with t restricted to belonging to the finite set {1,2,3}, and H being

the Euclidean space R
3 with the usual norm and scalar product.

In this example we have tried k = 3,5,15,30 random directions to see the effect
of this number in this very low-dimensional problem. Table 7 contains the p-values
obtained with the application of the random ANOVA and with the Pillai test. We see
that both factors (especially the rate) are found to be significant and also that there
is no statistical evidence on the existence of interaction between them. Moreover, the
p-values obtained with the random ANOVA when k = 3 are similar to those provided
by the Pillai test.

The role of k here looks similar to the one we found in Sect. 3: if we are in a
situation with low p-values (as when testing the factor rate), the power of the test
increases with k. However, if we are in a situation with large or, even moderate
p-values (as when testing the interaction or the rate), then, the power decreases
with k. Obviously, we are interested in detecting those situations in which the p-
value is moderate, and we are not particularly interested into lowering the p-value as
much as possible in those situations in which the p-value is already low. This is the
reason for advising that k be taken lower or equal to the dimension of the analyzed
data.

Table 7 p-values obtained with
the random ANOVA and usual
MANOVA for Krzanowski’s
data

Number of projections Pillai

k = 3 k = 5 k = 15 k = 30 test

Rate .0039 .0029 .0011 .0013 .0030

Additive .0271 .0301 .0391 .0520 .0247

Interaction .2561 .2846 .4869 .5160 .3018
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6 Discussion

In this paper a procedure to test complicated linear designs in the functional setting is
proposed. The procedure is random since it is based on the replacement of the given
functional data by randomly chosen one-dimensional projections.

The consideration of a number of projections is proposed as a way to stabilize the
results, using the False Discovery Rate to correct the obtained p-values.

The results obtained in the simulations carried out in Sect. 3 and the analysis of
the real data sets in Sect. 4 cause us to be optimistic about its capability to discover
the existence of influence of factors, interactions, covariables, . . . , the only limitation
being the existence or not of one-dimensional methods able to handle the model under
consideration.

It is also noticeable that the method proposed produces similar results to those
obtained with usual MANOVA tests. We also wish to stress the fact that the flexibil-
ity of the procedure makes it easy to deal with those situations in which the usual
assumptions are not fulfilled because, through the projections, it is possible to apply
a one-dimensional ANOVA test (like that proposed in Brunner et al. 1997) in which
the assumptions are less stringent.

An important possibility (not analyzed in this paper) is that, in those cases in
which a null hypothesis is rejected, the one-dimensional projections can be useful
to determine the way in which the means depart from the null hypotheses, because
usual one-dimensional ANOVA-related procedures allow us to identify, for instance,
the subpopulations responsible for the null hypothesis failing. Also, those procedures
can be applied to estimate the value of the departure in each random direction.

Moreover, the proposed method can be applied to every random process in which
we have a Hilbert space that the trajectories belong to. Thus, it is not required that
the random functions be defined on an interval or even on a one-dimensional subset.
However, as stated in the introduction, the results in Cuevas and Fraiman (2009) also
allow us to eliminate the assumption that the process belongs to a separable Hilbert
space in our results.

Concerning the practical issues to apply our method, there are some questions that
we would like to mention here:

1. According to Theorem 2.1, the random vectors can be chosen with any Gaussian
distribution with nondegenerate one-dimensional marginals. In our simulations we
have used Brownian motions and Ornstein–Uhlenbeck processes with no notice-
able differences between them. However, an interesting open problem is the exis-
tence or not of an optimal distribution to chose the random projections depending
on some particular alternatives which the researcher could have in mind.

2. With respect to the exact number of random projections to be used, our trials have
shown that k = 30 is high enough in general and the gain in power obtained when,
for example, k = 60 is used is negligible. So, our recommendation is to select
k = 30 and just in those few cases where the practitioner is in doubt, select a
higher number of projections.

3. An usual practical problem is to decide what to do when we have trajectories
with some missing observations. We propose two possibilities: The first one is to
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employ some smoothing procedure to fill in the gaps and, then, to compute the
random projections of the filled observations.

The second possibility is to take advantage of the fact that the data we have at
hand are, in every case, discrete approximations of continuous observations. For
instance, let us assume that we have some observations Xi (t

i
h), h = 1, . . . ,Hi and

i = 1, . . . , n, where t ih ∈ [0, T ]. Let v ∈ L2[0, T ] be a randomly chosen vector
with unit norm. Theoretically, we should compute

〈Xi , v〉 =
∫ T

0
Xi (t)v(t) dt, i = 1, . . . , n,

which, in practice, is impossible. Therefore, we can make the approximations

〈Xi , v〉 ≈
Hi∑

h=1

Xi

(
t ih

)
v
(
t ih

)(
t ih − t ih−1

)
, i = 1, . . . , n,

where we take t i0 = 0. Notice that the procedure will work as long as those ap-
proximations are good; this does not require that the sets {t ih, h = 1, . . . ,Hi} be
identical. In fact, they may be even disjoint.
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