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Introduction 
Lifelike 3D character models play an increasingly important role in many computer 
games. Organic models, such as people, are more complex to render than rigid bodies 
because the mesh that defines the shape of the model constantly changes as the model 
animates. This animating mesh is referred to as a ‘skin’ since it’s influenced by the 
underlying structure of the object; ‘skinning’ is the process of animating this mesh. 
Traditionally done on the CPU, as model complexity increased, skinning has been 
done on the video card using vertex shader class hardware. However, there are 
advantages to performing skinning on the CPU, which this paper highlights. It also 
details an optimal way of CPU-based skinning using the floating point Streaming 
SIMD Extensions (SSE) instructions found on the Intel® Pentium® III processors and 
above. This optimized solution offers greater than double the performance of the 
initial C implementation, as well as a flexible and efficient alternative to vertex shader 
skinning. In addition, we will discuss how the addition of multi-threading support 
improves this optimized CPU skinning solution, as well as the nuances involved with 
multi-threading the skinning algorithm. 
 
Background 
Traditionally two methods are used to animate a skinned character mesh in a 
computer game. The first, called key-frame animation, involves saving the character 
in multiple poses, which are blended together as the model animates between the 
different positions. Key-frame animation is suitable for low polygon models and 
allows very fine control of the animation, however, on high-detail models it can be 
very memory intensive. The second method, palette matrix skinning, involves 
weighting the individual points of the character mesh to the bones of an underlying 
hierarchical skeleton. The advantage: just the skeletal animation needs to be saved, 
rather than the whole model in multiple positions.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 – Wire frame skinned character showing bone orientation.
 
 
 



Following are the properties of palette matrix skinning:  
 

• For each pose a palette of matrices is created that represents the bone 
transformations. 

• Each vertex in a skinned mesh is affected by one or more bones, depending 
upon a weight value. 

• Usually weight values range between 0.0f and 1.0f. Depending on the distance 
from bone centre, this value denotes the amount of influence the bone’s 
position t has on the final transformed vertex. 

• Typically vertices have between 1 and 4 weights. 
 
The two systems of animation are not mutually exclusive; frequently games will use a 
combination of both systems, with fine detail such as the face and hands animated 
using key-frames, and the remaining animations using matrix palette skinning. The 
remainder of this paper focuses on palette matrix skinning, given its advantages when 
dealing with the complex high polygon models of today’s games. 
  
Matrix Palette Skinning 
Two main types of matrix palette skinning algorithms are used in computer games.  
 
The first type stores the vertices to be used in the final mesh in bone-space; its 
properties include: 

• Vertices those are stored relative to the bone that influences them. If the vertex 
is influenced by more than one bone it is stored multiple times, once per bone 
along with its weighting. 
 
Skinned Vertex = Pos1 * W1 * M1 + Pos2 * W2 * M2; 

M1   == World space transformation matrix for first bone of influence. 
Pos1 == Position of the vertex relative to the first bone. 
W1   == % weighting this bone has on the final position. 
M2   == World space transformation matrix for second bone of influence. 
Pos2 == Position of the vertex relative to the second bone. 
W2   == % weighting the second bone has on the final position. 

 
• The animation hierarchy describes the orientation on the bones in world space. 
• The CPU then transforms points by the animation hierarchy. 
• The CPU then combines multiple weighted vertices back into a single vertex 

in world space. 
• The model, which is now in world space, is submitted to DirectX or OpenGL 

in the same format as a static non-animating model. This enables use of 
hardware transformation and lighting when available. 

 
System advantages include: 

• Intuitive layout of data. 
• A natural progression from un-skinned segmented animating models. 

 
Disadvantages include: 

• Data requirements grow rapidly as the envelope of the bones’ influence grows 
and vertices become influenced by more bones. 

• Cache usage is poor. 
• This system is difficult to accelerate, as each vertex in the model’s mesh is 

made up of several vertices, each stored in its own coordinate space. 



 
The second system stores the vertices of the model in object space instead of world 
space, so that the points influenced by multiple bones need only to be stored once. 
The properties of this system include: 

• The models vertices are exported in a default pose.  
• An animation matrix hierarchy for this pose is exported. 
• When the model is animated, the animation hierarchy describing the 

orientation on the bones in world space is multiplied by the inverse of 
animation matrix hierarchy for bind pose. 
 
Skinned Vertex = Default Pos * W1 * M1 + Default Pos * W2 * M2; 

Default Pos == Position of the vertex in object space. 
M1 == Object space to world space transformation matrix for first bone of 
influence. 
W1   == % weighting this bone has on the final position. 
M2   == Object space to world space transformation matrix for second bone of 
influence. 
W2   == % weighting the second bone has on the final position. 
 

The advantages of this system include: 
• Reduced memory footprint on models that have vertices weighted to 

numerous bones. 
• Better cache usage when points are weighted to multiple bones. 
• The data is stored in a format that allows acceleration on vertex shader-

based video cards. 
Disadvantages include: 

• The animation stack that is generated in the game needs to be 
premultiplied by the inverse of the default pose. 

• The matrix hierarchy used to transform the character no longer represents 
the bone positions and orientations making attachment of additional 
objects to the mesh more complex. 

 
Why Do Skinning in Software? 
With the second system suitable for hardware acceleration and the high theoretical 
vertex throughput of cutting edge GPUs, some may ask, “Why do skinning on the 
CPU?” Several compelling reasons exist: 

• CPU skinning increases compatibility across a wide range of systems. 
• The original hardware vertex shader specification used in DirectX* referred to 

as VS1.1 has a fixed limit of 96 instructions and can easily be exceeded when 
performing complex vertex operations. 

• To utilize hardware in an efficient manner, the number of vertices that is 
processed in any one call needs to be maximised on current hardware (ATI 
9800*, NVidia FX*). The batch sizes need to be between several hundred and 
several thousands; when skinning this can be hard to achieve due to the 
following: 

o The number of bones processed in any one call is restricted by vertex 
shader constant space. This means models that use more bones than 
can be stored in a single call require splitting into smaller batch sizes, 
reducing efficiency and increasing duplicate points. 

o The number of bones that influence each vertex must be static with 
each draw call; this can lead to wasted transformations on the GPU, as 
it needs to work to the worst-case scenario. 



• Load balance: even where the GPU can transform the vertices faster than the 
CPU if the GPU is doing too much work while the CPU is sitting idle, moving 
work over the CPU can produce a performance increase. 

• Many games require access to the post-transformed data for collision detection 
and shadow casting. Currently GPUs don’t allow the data to be retrieved from 
the video card after it has been processed; therefore, allowing the CPU to do 
the first stage of the skinning can allow easy access to this data, while 
allowing the GPU to do the lighting and clipping calculations. 

• The typical data formats for object space skinning allow the skinning to be 
optimized using SSE with very little work, giving surprisingly fast results. 
This allows models with 10,000+ polygons to be drawn at 60fps on a wide 
range of systems. 

• A CPU skinned model can potentially benefit from GPU-accelerated lighting 
and clipping, using the fixed function transform and lighting  hardware on 
many pre-vertex shader GPUs, which are still found on many systems. 

 
 
Palette Skinning Algorithm 
Following is a typical algorithm and data structure used to transform the vertices into 
world space on the CPU.  

 
Figure 2 – Typical data structure used to store the mesh. 
 
For simplicity, assume that the number of weights affecting each point in the mesh is 
constant. Assuming a constant weight distribution allows for a direct comparison with 
hardware vertex shaders that inherently have this requirement, unless the model is 
drawn using multiple draw calls to split its vertices into groups organised around the 
number of number weights that affect the points. This is one area where skinning on 
the CPU has direct benefits compared with hardware systems, as there are much 
smaller overheads for processing the mesh in smaller batches that have been sorted to 
better reflect the properties of the individual points. 
 
 
 
 
 
 
 

Class Mesh 
{ 
 DWORD m_WeightsPerVertex; 
 DWORD  m_NumIndices; 
 WORD*  m_Indices; 
 DWORD m_NumVertices; 
 D3DXVector3*  m_pPositions; 
 D3DXVector3*  m_pNormals; 
 DWORD* m_Diffuse; 
 BYTE*  m_pBoneIndices; 
 Float  m_pWeights; 
} 



Below is the pseudo algorithm that uses the above data structure to transform the data. 
The algorithm is typical of those used in DirectX sample code and is efficient when 
m_WeightsPerVertex is a small value. 
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for(i=0;i<m_NumVertices;i++) 
{ 
 Position.x = Position.y = Position.z = 0.0f; 
 Normal.x = Normal.y = Normal.z = 0.0f; 
 
 for(j=0;j<m_WeightsPerVertex;j++) 
 { 
  // Get weight and bone index. 
        float Weight = m_pWeights[i*m_WeightsPerVertex+j]; 
        BYTE BoneIndex = m_pBoneIndices[i*m_WeightsPerVertex+j];
  
        // Multiply position by bone matrix, then weight and sum.
igure 3 – Standard matrix palette skinning algorithm 

he majority of the work done is the transform vertex position and transform vertex 
ormal. These calculations are carried out once per bone, which influences the final 
oint, therefore the amount of work done scales linearly with the increase in bones 
hat affect the final vertex. Many modern lighting algorithms require that additional 
ectors need to be stored and transformed on a per-vertex basis, for effects such as 
angent space per vertex bump mapping. The effect of this is per pixel lighting effects, 
hich can become very expensive on animating skinned players and difficult to fit 

nto the instruction space on first-generation GPU hardware. 

 General Optimization for Complex Meshes 
ptimizations should start at a high level, gradually working down to an instruction 

evel when needed. The first optimization to the traditional skinning algorithm is to 
educe the amount of work to be carried out on a per vertex basis, 

 
sing a little algebra demonstrates that… 

igure 4 

omputationally it is more efficient to perform the scalar matrix multiply and the 
atrix adds than to perform the original additional vector matrix multiply. Using the 

bove algebra the original algorithm to transform a mesh can be rewritten as follows: 

Skinned Vertex = Pos * W1 * M1 + Pos * W2 * M2; 
Skinned Vertex = Pos * (W1 * M1 + W2 * M2); 
Skinned Vertex = Pos * Collapsed Matrix; 



 
Figure 5 – Matrix palette skinning algorithm using collapsed matrices  
 
In the second algorithm the vertex position and normal need only be transformed once 
regardless of how many bones influence the final position. While this algorithm is 
computationally more expensive when only a single weight effects the final position, 
for greater than 2 weights per vertex this algorithm shows a significant reduction in 
the number of instructions compared to the original scheme. This general optimization 
for collapsing the matrices can be applied to both CPU skinning and GPU vertex 
shader skinning; this can be particularly important on GPU vertex shading with a 
limited number of instructions available in the shader. The advantages of collapsing 
the matrices increase as more weights effect the final position; in addition, any extra 
per-vertex calculations such as tangent space lighting calculations become much more 
efficient as their cost is no longer related to how many weights are affecting the point. 
In addition to the increased simplicity for complex meshes and lighting calculations, 
the second scheme benefits from its suitability for processing using the SIMD (Single 
Instruction Multiple Data) instruction set found on Intel Pentium III and above 
processors, as well as in vertex shaders. 
 
 
Optimizing on the CPU Using SSE 
SIMD instructions, introduced on the Intel Pentium III processor, are referred to as 
SSE. Additional instructions were made with subsequent architectures. Processors 
with Intel SSE support have 8 128-bit registers, and these registers can be used to 
store 4 single precision floating point numbers. SSE allows arithmetic, logical and 
load/store operations to be carried out on these 128-bit registers, which also allow all 
4 floating point values to be processed using a single instruction. For maximum 
efficiency the data should be 16-byte aligned. One may program SSE instructions 
using inline Assembly or SSE Intrinsic, which allows the use of SSE Instructions 
directly from within C++ code.  Intrinsic is supported by Visual Studio .Net and the 
Intel compiler.  
 
When optimizing a skinning algorithm using SIMD, we use SSE’s ability to process 
up to 4 single precision floating point values, and rearrange the earlier algorithm to 
look like this. 
 

for(i=0;i<m_NumVertices;i++) 
{ 
 Position.x = Position.y = Position.z = 0.0f; 
 Normal.x = Normal.y = Normal.z = 0.0f; 
 
 Memset(&MatrixPalette,0,sizeof(Matrix)); 
 for(j=0;j<m_WeightsPerVertex;j++) 
 { 
  // Get weight and bone index. 
        float Weight = m_pWeights[i*m_WeightsPerVertex+j]; 
        BYTE BoneIndex = m_pBoneIndices[i*m_WeightsPerVertex+j]; 
  



 
Figure 6 – Matrix palette skinning algorithm ordered for SSE. 
 
SSE Attempt Number One 
The first optimization attempt assumes an unfriendly SSE data layout. The structures 
used in the previous samples used an unaligned array of structures (AoS); we shall 
leave the data in this format and use a technique called “Gather & Scatter.” Its 
purpose:  to pack the unaligned data into a 128-byte data type called __m128 which 
can be used by the intrinsic instructions. An example follows of how the gather 
function works: 
 
This is calculation requires only six SSE instructions. 
 

 
 
Figure 7 – LoadFourFloats used to convert data into SSE-friendly formats. 
 
A similar function called StoreFourFloats can be used to reverse the process and copy 
data from the SSE __m128 data type back into to unaligned data structures. 
 
 
The first use of SSE is to collapse the matrices into a single 3x4 column major matrix; 
the translation into Column major is useful for the later vertex multiplication. 
 

void LoadFourFloats(float* pIn0, float* pIn1, float* pIn2, float* pIn3, __m128* pOut) 
{ 
 __m128 xmm0 = _mm_load_ss(pIn1); // 0 0 0 pIn0 
 __m128 xmm1 = _mm_load_ss(pIn2); // 0 0 0 pIn1 
 __m128 xmm2 = _mm_load_ss(pIn3); // 0 0 0 pIn2 
 __m128 xmm3 = _mm_load_ss(pIn4); // 0 0 0 pIn3 
 
 xmm0 = _mm_movelh_ps(xmm0, xmm2); // 0 pIn2 0 pIn0 
 xmm1 = _mm_shuffle_ps(xmm1, xmm3, _MM_SHUFFLE(0,1,0,1)); // pIn3 0 pIn1 0 
 
 *pOut = _mm_or_ps(xmm0, xmm1); // pIn3 pIn2 pIn1 pIn0 
} 

for(i=0;i<m_NumVertices;i+=4) 
{ 

Collapse Matrix i; 
Collapse Matrix i+1; 
Collapse Matrix i+2; 
Collapse Matrix i+3; 

 
       Rotate 4 Positions 
 Rotate 4 Normals 
 Normalise 4 Normals 
  
 // Write the vertex out 4 vertices to the vertex buffer…
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void CollapseMat(float* pM1, float* pM2, float W1, float W2,__m128* pR) 
{ 
 __m128 xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6; 
 
 // Load and propagate the matrix weight 1. 
 xmm0 = _mm_load_ss(&W1); 
 xmm0 = _mm_shuffle_ps(xmm0,xmm0,0); 
  
 // Load matrix 1, this loads an unaligned row major matrix 
 LoadFourFloats(&pM1[0],&pM1[4],&pM1[8],&pM1[12],&xmm1); 
 LoadFourFloats(&pM1[1],&pM1[5],&pM1[9],&pM1[13],&xmm2); 
 LoadFourFloats(&pM1[2],&pM1[6],&pM1[10],&pM1[14],&xmm3);
igure 8 – SSE instructions needed to collapse matrices 

s we traverse the array of vertices four at a time, we use the LoadFourFloats 
unction to  rearrange the data so that batches of 4 X positions and 4 Y Positions are 
oaded into a single 128Bit SSE register. The Reshuffle function gathers data from the 
ollapsed matrices, allowing the following calculation: 

 

igure 9 – Desired format for fast transformation of four vertices by the collapsed 
atrices. 

 

 
 
R1.x = M1.00 * P1.x + M1.10 * P1.y + M1.20 * P1.z + M1.30; 
R2.x = M2.00 * P2.x + M2.10 * P2.y + M2.20 * P2.z + M2.30; 
R3.x = M3.00 * P3.x + M3.10 * P3.y + M3.20 * P3.z + M3.30; 
R4.x = M4.00 * P4.x + M4.10 * P4.y + M4.20 * P4.z + M4.30; 
 Void HD_4Vec4Mat(__m128* pM, float* pP1, float* pP2, float* pP3,  float* pP4,)
{ 
  
 // Load the input position components [POSITION]. 
 LoadFourFloats(&pP1[0],&pP2[0],&pP3[0],&pP4[0],&xmm0); 
 LoadFourFloats(&pP1[1],&pP2[1],&pP3[1],&pP4[1],&xmm1); 
 LoadFourFloats(&pP1[2],&pP2[2],&pP3[2],&pP4[2],&xmm2); 
   
 /////////////////////////////////////////////////////////////////////////// 
 // Do the X's. 
 
 // Load 1st column of each bone matrix.
igure 10 – Transformation of four packed vertices by the collapsed matrix stack. 



Using the reshuffled matrix data, the same is done for the vertex normals but without 
adding the transitional component. The final stage of re-normalizing the world space 
vertex works easily; with the X’s, Y’s and Z’s already grouped, normalising four 
vertex normals requires just nine instructions. 
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xmm3 = _mm_mul_ps(xmm0, xmm0); // X*X 
xmm4 = _mm_mul_ps(xmm1, xmm1);  // Y*Y 
xmm5 = _mm_mul_ps(xmm2, xmm2);  // Z*Z 
xmm3 = _mm_add_ps(xmm3, xmm4);  // X*X + Y*Y 
xmm3 = _mm_add_ps(xmm3, xmm5);  // X*X + Y*Y + Z*Z 
xmm3 = _mm_rsqrt_ps(xmm3);   // 1 / sqrt(X*X + Y*Y +
Z*Z) 
xmm0 = _mm_mul_ps(xmm0, xmm3);  // RecipLength * X 
xmm1 = _mm_mul_ps(xmm1, xmm3);  // RecipLength * Y 
xmm2 = mm mul ps(xmm2, xmm3); // RecipLength * Z 
1 – Normalization routine for four packed normals. 

mpt number one increased speed 80% compared to the C implementation.  
15 shows the exact frame rates and the configuration of the machine used for 
.) 

tempt Number Two 
second attempt, rather than start with the data in an AoS and convert on the fly 
E-friendly structure,we pre-process the data into a format referred to as a 
e of Arrays (SoA). This provides the following benefits: 
ata is guaranteed to be 16-byte aligned, allowing faster load and stores. 
ata is sequential in memory, therefore the Intel® Pentium® 4 processor 
ardware prefetch can begin streaming the vertex data into the caches. 
he SSE routines need not gather four X’s from four separate structures, 

emoving the need for “Gather” functions. 
cks to the system include: 

ata arranged in this way is slightly counter-intuitive, and less programmer 
riendly 
re-processing is required if data was loaded in a traditional AoS format. 

l SSE-friendly data layout is 16-byte aligned sequential data. From the 
 sample, we process X’s separately to Y’s and Z’s, so an array of pre-
 X’s is perfect. Therefore we store the position and normal information in the 
g structure: 

 

typedef struct _SSEVertexData 
{ 
 __m128* pX;  
 __m128* pY; 
 __m128* pZ; 
 __m128* pNX; 

__m128* pNY;
 __m128* pNZ; 
}SSEVertexData;
2 – SSE-friendly mesh structure 



In addition to the mesh information we also convert the matrix palette into a more 
SSE-friendly format: 
 

 
Figure 13 – SSE-friendly matrix data type. 
 
Each matrix in the palette is converted to this format once per frame using the same 
reordering of data that was used in the original CollapseMat function. This provides 
significant saving over the approach in SSE 1 which converted between one and four 
matrices per vertex. SSE attempt number two increased speed by approximately 20% 
compared to the previous version, using unfriendly data. (Figure 15 shows details of 
this test.) 
  
Demonstration Application 
Based on the DirectX 9 API, the application shown in Figure 2 is based on the 
standard framework, and can compare the original algorithm along with the two SSE 
attempts. It also allows the data to be transformed using a DirectX vertex shader that 
runs in both Software and Hardware accelerated modes. The application creates 64 
cylinders, each containing over 2000 vertices that have been weighted to 30 
individual bones. The amount of weighing assigned to the vertices can be adjusted. 
With each cylinder drawn in a single DrawIndexedPrimitive call,  the application is 
not limiting DirectX due to sub-optimal batch sizes. The application was compiled 
using the Intel Compiler V8.0.  

Figure 14 –Skinning Comparison Application 
 
 
 
 
 

typedef struct _SSEMatrixData 
{ 
 __m128 M[3]; 
}SSEMatrixData; 



Controls while running the demo include: 
• Arrow keys to control object rotation 
• “Page Up” and “Page Down” keys allow the user to zone in and out. 
• The F2 key configures the display properties. 
• The menu allows the user to enable/disable the following: 

o Wire Frame mode, which can greatly affect  frame rate on some 
hardware. 

o Display Bones, which again can affect frame rate as the bones are 
drawn using wireframe. 

o Select the amount of weighting used on the cylinders. 
o Select the current skinning mode. 
o Modify the type of animation performed on the cylinders. 
o Enable multi-threading of the animation update (discussed later in this 

paper.) 
 
Figure 15 shows the results obtained from this application during a sample run. 
  

  SW 
vertex 
shader 

C SSE SSE (Friendly 
Data) 

HW vertex 
shader 

Frames Per Second 41 45 82 98 146 

miliseconds 23 21 12 10 67 

 
Figure 15 – Results of Skinning Comparison Application 
 
System Config 3.0Ghz Intel® Pentium® 4 processor with Hyper-Threading 
Technology; 512MB RAM; ATI Radeon 9800 Pro*; Processor Config BIOS 
switchable (SP, HT) 
Performance tests and ratings are measured using specific computer systems and/or 
components and reflect the approximate performance of Intel products as measured 
by those tests. Any difference in system hardware or software design or configuration 
may affect actual performance.  
 
 
Hyper-Threading Technology 
Hyper-Threading Technology (HT Technology) was introduced to the Intel Pentium 4 
processor. A HT Technology enabled PC exposes a second "logical" CPU within a 
single processor. Multiple processing tasks are completed more quickly on a system 
with HT Technology by executing two or more threads at the same time. From the 
point of view of both the operating system and the user, multiple tasks can be 
processed as if two actual processors were at work. To achieve maximum 
performance gains through Hyper-Threading, one must understand how HT 
Technology works. 
 



 
 
Figure 16:  How Hyper-Threading Technology Works 
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Figure 16 highlights one of the biggest bottlenecks in a traditional system without HT 
Technology: at any one time the total throughput of the system is limited by 
dependencies between the different resources. On a system with HT Technology the 
total throughput is increased by allowing multiple threads to access the processor 
resources.   
 
To increase the performance of the skinning application, we need to split the 
character-drawing work across multiple threads. We could create the multiple threads 
using win32 but OpenMP* is also an alternative. 
 
 
What is OpenMP? 
The OpenMP Application Program Interface (API) supports multi-platform shared-
memory parallel programming in C/C++ and FORTRAN on a variety of architectures. 
OpenMP is jointly defined by a group of computer hardware and software vendors, 
andin the consumer games arena it is currently supported by Intel compiler.  OpenMP 
allows easy multithreading, ideally WITHOUT changing the original C/C++ code. 
(See www.OpenMP.org for samples and details of the OpenMP specification.)   
 
There are three components of the OpenMP complier extension: 

– #pragma’s (compiler directives), the– most important  
– API and Runtime Library 
– Environment Variables 

Benefits include the provision of: 
– An easy way to use HT Technology 
– A portable and standardized method 
– Dedicated profiling tools 

 
OpenMP works on a Fork-Join model. At startup the main thread creates a team of 
additional threads. Whenever the application enters a parallel region declared using 
#pragma omp the statements that are enclosed by the parallel region construct are 
then executed in parallel among the various team threads. They synchronize at the end 
of the parallel region construct, leaving only the master thread active. 

PPhhyyssiiccaall  pprroocceessssoorr  
rreessoouurrccee  aallllooccaattiioonn  



 
 

 

 
 
Figure 17:  Fork-Join Parallelism 

 
 
Data Level Parallelism 
OpenMP is designed to allow two types of parallel programming: the first, data level 
parallelism, splits the work being done on a set of data (in our case the vertices of the 
model between the available processors). A sample of how this would work follows. 
 
 
 
 
 
 
 
 
Unfortunately, this technique did not improve performance, because: 
 

 When tested on a dual processor system only a minimal performance increase 
occurred.  This, when combined with the Intel VTune™ Performance 
Analyzer profile of the application, showed that level 2 cache misses are high,  
a good indication that the application is limited by memory bandwidth. 

 SSE units are well utilized. Referring back to Figure 16, if one resource is 
already nearly fully utilized, then threading code that requires similar 
resources will not increase the total throughput of the system. 

 
Task Level Parallelism 
The second type is task level parallelism, used in the skinning application. Rather than 
splitting the work done on the vertices across the available processors, we perform 
different tasks in parallel. For the skinning demo, calculations for the next frame’s 
animation were processed in parallel while calculating the current frames vertices.  
 
 
 
 
 
 

parallel regions 

team of 
threads 

main 
thread 

#pragma omp parallel for 
 for(i=0;i<m_NumVertices;i++) 
 { 
  // Skin the vertices. 
 } 



 
 
The pragma to do this is shown below: 

 
 
When splitting the work across multiple threads, one important rule is that the data 
being modified by one thread should not be used by the other thread unless 
synchronization pragmas are used to protect from race conditions. For the matrix 
palette skinning sample, the matrix palettes were double buffered to allow task level 
parallelism to take place. 
 
Figure 18 shows the results obtained from this application during a sample run:   
 

 Sine Wave Perlin Noise 10 
Octaves 

Perlin Noise 
20 Octaves 

Single Threaded 98.6 80.6 66.7 

Multi- Threaded 
 
 

103.2 95.26 87 

Percentage Increase 4.6% 18.1% 30.4% 

 
Figure 18 – Results of Skinning comparison Application, where the application was 
performing SSE friendly skinning during all of the tests. 
 
The skin update overlaps the following frames animation update. Generating the next 
animation frame using simple sine waves to animate the matrices produces a slight 
performance increase. If we change to using a more mathematically complex 
operation, just as Perlin noise, to animate the matrices we start to see much improved 
performance. In a real-world application the additional work performed to generate 
the animation might be the result of decompressing packed animation data, or 
blending multiple animation frames or even applying inverse kinematics to the 
animation hierarchy. The reason for the improved threading performance in the more 
complex animation system is the load balance between the two parallel tasks. The 
largest performance increases occur in multi-threading when performing two tasks, in 
parallel, that take a similar amount of time to complete. 
 

#pragma omp parallel sections 
{ 
 #pragma omp section 
  m_pCylinder->UpdateAnim(m_fTime + m_fElapsedTime); 
 #pragma omp section 
  m_pCylinder->UpdateSkin(); 
} 



 
Thread Profiler 
Greater multi-threading performance gains can be achieved when the tasks running in 
parallel are well balanced (Figure 18). To see if this applies in an application, a new 
type of profiling tool is needed. The Intel thread profiler is an application that plugs 
into the Intel® VTune™ Performance Analyzer and can profile the effects of 
threading on a program. The thread profiler shows the amount of parallelism an 
application is achieving, and any potential threading overheads. Version 2.0 of the 
profiler added the ability to profile win32 threads in addition to applications written 
using OpenMP. The thread profile allows the user to obtain information on the load 
balance of the parallel regions, and any overheads associated with running the code in 
parallel. 
 
Figure 19 shows the output of the multi-threaded sine wave animation run, with the 
transformation done using SSE-friendly data. Figure 20 shows similar data from a run 
conducted with animation generated using 20 Octaves of Perlin noise. 
 

 
 
Figure 19, Thread Profile output for sine wave-generated animation 
 

 
 
Figure 20, Thread Profile output for Perlin noise-generated animation 
 
With the red area in the image denoting the load imbalance, Figure 19 clearly shows 
that when a sine wave is used to generate the animation, the work load imbalance 
between the two parallel regions in the code is much greater than in the second 
example, using the Perlin noise. 
 



Conclusion 
The hardware vertex shaders offer the fastest method of performing matrix palette 
skinning, but the data-friendly SSE version offers a significant improvement over 
standard C implementations of skinning algorithms. In the case where hardware T&L 
is available (such as Geforce2* and Geforce4MX* class hardware), the second SSE 
version is more than twice as fast as a software vertex shader,  because the application 
uses  the hardware lighting and clipping provided by the GPU. Even on the high-end 
GPU with vertex processing, a good case may exist for using a SSE skinning 
technique if one requires access to the transformed data, for silhouette generation for 
stencil shadow casting.  
 
While SSE provided a way to optimize the existing palette skinning algorithm using 
data level parallelism, Hyper-Threading Technology is best suited to a higher-level, 
task level parallelism. Multi-threading load imbalance and resource contention can 
give unexpected results, and one must try different combinations of load-balancing to 
find the best solution. You should seriously consider threading objects in a game, as 
the potential gains will continue to increase on future hardware. 
Taking a coarse-grained approach to threading is frequently the key to getting the 
biggest improvement from Hyper-Threading Technology, as it reduces resource 
contention and allows for a greater degree of parallelism with the application. 
 
Download source code 
 
Future Work 
 
DirectX 9c supports an additional extension to the Vertex Shader model referred to as 
VS3.0, removing the need for the output of the vertex shader to be tied to a FVF 
vertex format and possibly providing an alternative to writing SSE routines in order to 
maximise utilisation of the CPU.  
 
Although the skinned cylinders used in the demo application demonstrate well the 
principles of matrix palette skinning, they differ from typical real world data in one 
area: they have even weight distribution over all their points. Expanding the 
application to allow the distribution of weights to vary within a single model would be 
more realistic, allowing the CPU skinning systems to make use of their greater ability 
to dynamically change how they process the data based on its properties within a 
single model. 
 
The CPU skinning algorithms use only the basic SSE instruction set. Further research 
into using the addition instructions available under SSE3, such as horizontal add 
within a 128-bit register, might provide additional improvements to the CPU skinning 
algorithm. 
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