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Abstract

Reaching movements require the brain to generate motor com-
mands that rely on an internal model of the task’s dynamics. Here
we consider the errors that subjects make early in their reaching
trajectories to various targets as they learn an internal model. Us-
ing a framework from function approximation, we argue that the
sequence of errors should reflect the process of gradient descent. If
so, then the sequence of errors should obey hidden state transitions
of a simple dynamical system. Fitting the system to human data,
we find a surprisingly good fit accounting for 98% of the variance.
This allows us to draw tentative conclusions about the basis ele-
ments used by the brain in transforming sensory space to motor
commands. To test the robustness of the results, we estimate the
shape of the basis elements under two conditions: in a traditional
learning paradigm with a consistent force field, and in a random
sequence of force fields where learning is not possible. Remarkably,
we find that the basis remains invariant.
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1 Introduction

It appears that in constructing the motor commands to guide the arm toward a
target, the brain relies on an internal model (IM) of the dynamics of the task that
it learns through practice [1]. The IM is presumably a system that transforms
a desired limb trajectory in sensory coordinates to motor commands. The motor
commands in turn create the complex activation of muscles necessary to cause
action. A major issue in motor control is to infer characteristics of the IM from the
actions of subjects.

Recently, we took a first step toward mathematically characterizing the IM’s rep-
resentation in the brain [2]. We analyzed the sequence of errors made by subjects
on successive movements as they reached to targets while holding a robotic arm.
The robot produced a force field and subjects learned to compensate for the field
(presumably by constructing an IM) and eventually produced straight movements
within the field. Our analysis sought to draw conclusions about the structure of
the IM from the sequence of errors generated by the subjects. For instance, in a



velocity-dependent force field (such as the fields we use), the IM must be able to
encode velocity in order to anticipate the upcoming force. We hoped that the effect
of errors in one direction on subsequent movements in other directions would give
information about the width of the elements which the IM used in encoding velocity.
For example, if the basis elements were narrow, then movements in a given direction
would result in little or no change in performance in neighboring directions. Wide
basis elements would mean appropriately larger effects.

We hypothesized that an estimate of the width of the basis elements could be cal-
culated by fitting the time sequence of errors to a set of equations representing
a dynamical system. The dynamical system assumed that error in a movement
resulted from a difference between the IM’s approximation and the actual environ-
ment, an assumption that has recently been corroborated [3]. The error in turn
changed the IM, affecting subsequent movements:{

y(n) = Dk(n)F (n) − z
(n)

k(n)

z
(n+1)
l = z

(n)
l + Bl,k(n)y(n) l = 1, · · · , 8

(1)

Here y(n) is the error on the nth movement, made in direction k(n) (8 possible
directions); F (n) is the actual force experienced in the movement, and it is scaled
by an arm compliance D which is direction dependent; and z

(n)
k is the current output

of the IM in the direction k. The difference between this output and reality results
in movement errors. B is a matrix characterizing the effect of errors in one direction
on other directions. That is, B can provide the generalization function we sought.
By comparing the B produced by a fit to human data to the Bs produced from
simulated data (generated using a dynamical simulation of arm movements), we
found that the time sequence of the subjects’ errors was similar to that generated
by a simulation that represented the IM with gaussian basis elements that encoded
velocity with a σ = 0.08 m/sec.

But why might this dynamical system be a good model of trial-to-trial behavior in a
learning paradigm? Here we demonstrate that, under reasonable assumptions, be-
havior in accordance with Eq. 1 can be derived within the framework of functional
approximation, and that B is closely related to the basis functions in the approx-
imation process. We find that this model gives accurate fits to human data, even
when the number of parameters in the model is drastically reduced. Finally, we
test the prediction of Eq. 1 that learning involves simple movement-by-movement
corrections to the IM, and that these variations depend only on the shape of the
basis which the IM uses for representation. Remarkably, when subjects perform
movements in a force field that changes randomly from one movement to the next,
the pattern of errors predicts a generalization function, and therefore a set of basis
elements, indistinguishable from the condition where the force field does not change.
That is, “an unlearnable task is learned in exactly the same way as a learnable task.”

2 Approach

2.1 The Learning Process

In the current task, subjects grip the handle of a robot and make 10cm reaching
movements to targets presented visually. The robot produces a force field F(ẋ) pro-
portional and perpendicular to the velocity of the hand, such as F = (0 13;−13 0)·ẋ
(with F in Newtons and ẋ in m/s). To simulate the process of learning an IM,
we assume that the IM uses scalar valued basis functions that encode velocity
g = [g1(ẋ), . . . , gn(ẋ)]T so that the IM’s expectation of force at a desired veloc-
ity is: F̂(ẋ) = Wg(ẋ), where W is a 2 × n matrix [4]. To move the hand to a



target at direction k, a desired trajectory ẋk(t) is given as input to the IM, which
in turn produces as output F̂(ẋk) [5]. As a result, forces are experienced F(t) so
that a force error can be calculated as F̃(t) = F(t) − F̂(ẋk(t)). We adjust W in
the direction that minimizes a cost function e which is simply the magnitude of the
force error integrated over the entire movement:

e =
1
2

∫ T

0

F̃(t)T F̃(t) dt =
1
2

∫ T

0

(F(t)−Wg(t))T (F(t)−Wg(t)) dt

Changing W to minimize this value requires that we calculate the gradient of e with
respect to the weights and move W in the direction opposite to the gradient:

(5e)
Wij

=
∂e

∂Wij
= −

∫ T

0

gj(t)F̃i(t) dt

W (n+1) = W (n) + η

∫ T

t=0

F̃(n)(t)g(ẋk(n)(t))T dt (2)

where W (n) means the W matrix on the nth movement.

2.2 Deriving the Dynamical System

Our next step is to represent learning not in terms of weight changes, but in terms
of changes in IM output, F̂. We do this for an arbitrary point in velocity space ẋ0

by multiplying both sides of the Eq. 2 by g(ẋ0) with the result that:

F̂(n+1)(ẋ0) = F̂(n)(ẋ0) + η

∫ T

t=0

[
g(ẋk(n))T g(ẋ0)

]
F̃(n) dt (3)

Further simplification will require approximation. Because we are considering a case
where the actual force, F(ẋ), is directly proportional to velocity, it is reasonable to
make the approximation that, along a reasonably straight desired trajectory, the
force error, F̃(t), is simply proportional to the velocity, F̃(ẋk(n)) = F̃ · ẋk(n) . This
means that the integral of Eq. 3 is actually of the form

F̃
∫ T

t=0

ẋk(n)(t)g(ẋk(n))T g(ẋ0) dt (4)

One more assumption is required to make this tractable. If we approximate the
desired trajectory with a triangular function of time, and integrate only over the
raising phase of the velocity curve (because the values are the same going up and
going down) we can simplify the integral to an integral over speed, drawing out a
constant (2K

∫ ẋ=ẋk(250ms)

ẋ=0
G(ẋ, ẋ0) dẋ). The integral has become a function of the

values of ẋk(n)(250ms) and ẋ0. Calling this function B, Eq. 4 becomes

F̂(n+1)(ẋ0) = F̂(n)(ẋ0) + B(ẋk(n) , ẋ0)F̃(n) (5)

ẋ0 is arbitrary. We restrict our attention to only ẋ0 that equals the peak velocity of
the desired trajectory associated with a movement direction l. Since we have only
eight different points in velocity space to consider, F̂ can be considered an eight-
valued vector, F̂l rather than a function F̂(ẋ). Similarly, B(ẋl, ẋk) will become an
8x8 matrix, Bl,k. The simpler notation allows us to write Eq. 5 as

F̂(m+1)
l = F̂(n)

l + Bl,k(n)F̃(n) l = 1, . . . , 8 (6)
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Figure 1: We performed simulations
to test the approximation that displace-
ment in arm motion at 250 msec toward
a target at 10 cm is proportional to er-
ror in the force estimate made by the IM.
A system of equations describing a con-
troller, dynamics of a typical human arm,
and robot dynamics [6] were simulated for
a 500 msec min jerk motion to 8 targets.
The simulated robot produced one of 8
force fields scaled to 3 different magni-
tudes, while the controller remained näıve
to the field. The errors in hand motion at
250 msec were fitted to the robot forces
using a single compliance matrix. Lighter
dashed lines are the displacement pre-
dictions of the model, darker solid lines
are the actual displacement in the simu-
lations’ movement.

One more approximation is to assume that force error F̃ in a given movement will
be proportional to position error in that movement when both are evaluated at
250ms. This approximation is justified by the data presented in Fig. 1 which shows
that the linear relationship holds for a wide range of movements and force errors.
Finally, because the forces are perpendicular to the movement, we will disregard
the error parallel to the direction of movement, reducing Eq. 6 to a scalar equation.
We are now in a position to write our system of equations in its final form:{

y(n) = Dk(n)(F (n) − F̂
(n)

k(n))
F̂

(m+1)
l = F̂

(n)
l + Bl,k(n) F̃ (n) l = 1, . . . , 8

(7)

Note that this is a system of nine equations: a single movement causes a change in
all 8 directions for which the IM has an expectation. Let us now introduce a new
variable z

(n)

k(n) ≡ Dk(n) F̂
(n)

k(n) , which represents the error (perpendicular displacement)
that would have been experienced during this movement if we had not compensated
for the expected field. With this substitution, Eq. 7 reduces to Eq. 1.

2.3 The shape of the generalization function B

Our task now is to give subjects a sequence of targets, observe the errors in their
movements, and ask whether there are parameters for which the system of Eq. 7
gives a good fit. Given a sequence of N movement directions, forces imposed on each
movement, and the resulting errors ({k, F, y}(n), j=1, . . . , N), we search for values
of Bl,k, Dk and initial conditions (F̂ (0)

m , m=1, . . . , 8) that minimize the squared
difference, summed over the movements, between the y calculated in Eq. 7 and the
measured errors. One concern is that, in fitting a model with 80 parameters (64
from the B matrix, 8 from D, and 8 from F̂ (0)), we are likely to be overfitting our
data. We address this concern by making the assumption that the B matrix has a
special shape: Bl,k = b(6 ẋlẋk). That is, each entry in the B matrix is determined
according to the difference in angle between the two directions represented. This
assumption implies that g(ẋk)T g(ẋl) depends only on 6 ẋkẋl. This reduces the B
matrix to 8 parameters, and reduces the number of parameters in the model to 24.
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Figure 2: We simulated a system of equations representing dynamics of robot, human
arm, and adaptive controller for movements to a total of 192 targets spanning 8 directions
of movement. The adaptive controller learned by applying gradient descent (η = 0.002)
to learn a gaussian basis encoding arm velocity with a σ of 0.04, 0.08, 0.12, or 0.20 m/s.
Errors, computed as displacement perpendicular to direction of target were measured at
250 msec and are plotted for one direction of movement (45 deg) (a - d). Simulated data
is the solid line and the fit is shown as a dashed line. Circles indicate error on no field
trials and triangles indicate error on fielded trials. The data for all 192 targets were then
fit to Eq. 7 and the generalization matrix B was estimated (f). Data was also collected
from 76 subjects, and fit with the model (e), and it gave a generalization function that is
nearly identicals to the generalization function of a controller using gaussians with a width
of 0.08 m/s (g).

3 Results

We first tested the validity of our approach in an artificial learning system that
used a simulation of human arm and robot dynamics to learn an IM of the imposed
force field with gaussian basis elements. The result was a sequence of errors to a
series of targets. We fit Eq. 7 to the sequence of errors and found an estimate for
the generalization function (Fig. 2). As expected, when narrow basis elements are
used, the generalization function is narrow. We next fit the same model to data
that had been collected from 76 subjects and again found an excellent fit.

Plots f and g in Fig. 2 show the generalization function, B, as a function of the angle
between ẋk and ẋl. The demonstrate that errors in one direction affect movements
in other directions both in simulations errors and in the subjects’ errors. The
greatest effect of error is in the direction in which the movement was made. The
immediately neighboring directions are also significantly affected but the effect drops
off with increasing distance. The generalization function which matched the human
data was nearly identical to the one matching data produced by the simulation
whose gaussians had σ = 0.08 m/sec.

The most interesting aspect of the success we had using the simple system in equa-
tion 7 to explain human behavior is that the global learning process is being charac-
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Figure 3: Fitting the model in Eq. 7 to a learning situation (a and c, 76 subjects) or
a situation where subjects are presented with a random sequence of fields (b and d, 6
subjects) produce nearly identical models. a and b show errors (binned to 5 movements
per data point), measured as perpendicular distance from a straight line trajectory at
250ms into the movement. Triangles are field A (F = [0 13;−13 0] · ẋ) movements , wedges
are field B (F = [0 −13; 13 0] · ẋ), and filled circles are no field. The data is split into three
sets of 192 movements. It can be seen that subjects in the learning paradigm learn to
counteract the field, and show after affects. Subjects in the random field do not improve
on either field, and do not show after affects. c and d show that the model fit both the
learning paradigm and the random field paradigm. The fit is plotted for movements made
to 90◦ during the first 192 movements following first exposure to the field (movements 193
through 384 in a and b). r2 for the fits is 0.96 and 0.97 respectively. Fits to the last 192
movements in each paradigm gave r2 of 0.96 and 0.98. Finally, in the bottom plot, we
compare the generalization function, B, given by each fit. The normalized generalization
function is nearly identical for the all four sets. The size of the central peak is 0.21 for
both sets of the consistent field and 0.19 and 0.14, respectively, for the two sets of the
random field.



terized as the accretion of small changes in the state of the controller accumulated
over a large number of movements. In order to challenge this surprising aspect of
the model, we decided to apply it to data in which human subjects performed move-
ments in fields that varied randomly from trial to trial. In this case, no cumulative
learning is possible. The important question is whether the model will still be able
to fit the data. If it does fit the data, then the question is whether the parameters
of the fit are similar to those derived from the learning paradigm.

Fig. 3 is a comparison of fitting a model to a consistent field and a random field.
As seen in a and b of the figure, subjects are able to improve their performance
through learning in a consistent field but they do not improve in the random field.
However, as shown in in c and d, the model is able to fit the performance in both
fields. Although the fits of each type of field were performed independently, we can
see in e that the B matrixes are nearly identical which indicates that trial-by-trial
learning was the same for both types of fields. In the second set of the random
paradigm, it seems as though the adjustment of state may slower. This raises
the possibility that the process of movement-by-movement adjustment of state is
gradually abandoned when it consistently fails to produce improvement. It is likely
that in this case subjects come to rely on a feedback driven controller which would
be unable to compensate for the errors generated early in the movement but would
allow them to more quickly adjust to those errors as information about the field
they are moving through is processed.

4 Conclusions

We hypothesized that the process of learning an internal model of the arm’s dy-
namics may be similar to mechanisms of gradient descent in the framework of ap-
proximation theory. If so, then errors experienced in a given movement should
affect subsequent movements in a meaningful way, and perhaps as simply as those
predicted by the dynamical system in Eq. 7. These equations appear to fit both
simulations and actual human data exceedingly well, making strong predictions
about the shape of the basis with which the IM is apparently learned. Here we find
that the shape of the basis remains invariant despite radical changes in pattern of
errors, as exhibited when subjects were exposed to a random field as compared to
a stationary field. We conclude that even when the task is unlearnable and errors
approximate a flat line, the brain is attempting to learn with the same characteristic
basis which is used when the task is simple and errors exponentially approach zero.
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