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Abstract
The human hand is a complex organ capable of both gross grasp and fine motor skills. Despite many successful
high-level skeletal control techniques, animating realistic hand motion remains tedious and challenging. This
paper presents research motivated by the complex finger positioning required to play musical instruments, such
as the guitar. We first describe a data driven algorithm to add sympathetic finger motion to arbitrarily animated
hands. We then present a procedural algorithm to generate the motion of the fretting hand playing a given musical
passage on a guitar. The work here is aimed as a tool for music education and analysis. The contributions of
this paper are a general architecture for the skeletal control of interdependent articulations performing multiple
concurrent reaching tasks, and a procedural tool for musicians and animators that captures the motion complexity
of guitar fingering.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Animation

1. Introduction

The human hand is an essential part of human form, func-
tion, and communication, capable of complex, expressive
articulation. Its complicated neuro-physiology makes it a
formidable challenge for animators to emulate. Most com-
puter graphics research on hand motion has focused on
grasping and gestures 27, 12 with application to areas of robot
planning, prosthetics, human computer interaction and sign
language.

There are also a number of pervasive applications such as
typing, the playing of musical instruments and many sports,
where fine motor control of the hand is used to accom-
plish multiple concurrent reaching tasks. The motor skills
for these applications are learned over time and the devel-
opment of form and technique is an important area of study
for educators 21. These applications are also a major source
of repetitive stress injuries and thus of great importance to
medical research 5, 20. From a computer graphics standpoint,
these applications are difficult to animate realistically and
are relatively unexplored.

Kinematics, dynamics and recent motion-capture based
techniques provide character animators with high-level
skeletal control. These approaches by themselves fail to cap-
ture the subtleties of hand motion performing concurrent

reaching tasks for two main reasons. The first is that typical
inverse kinematics (IK) algorithms are designed to deal with
constraints along a single chain, whereas a multi-appendage
limb like the human hand has constraints between joints of
different chains. The second shortcoming is that IK solu-
tions typically map a single end-effector to a single reaching
goal 28, 33. A sequence of reaching tasks must, therefore, be
performed in order by the same end-effector. There is an ex-
ponential increase, however, in the number of ways by which
a multi-appendage limb may satisfy a sequence of multi-
ple concurrent reaching tasks, such as playing a sequence of
chords on a guitar (Figure 10). This is further complicated
by the fact that sometimes an entire finger may be used as
a large end-effector to satisfy multiple reaching goals simul-
taneously (shown by the index finger playing a bar chord in
Figure 10(c)). Our research is motivated by music education
in general and the guitar in particular, where not only must
the player decide on a choice of fingering but also do so with
economy of effort and as little sympathetic finger motion as
possible.

An architecture that maps multiple-appendages to multi-
ple goals must make decisions on the choice of end-effectors
with which to satisfy a set of reaching goals. These decisions
are based on various appendage parameters and constraints,
the geometry and current position of the articulations with
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Figure 1: System architecture overview.

respect to each other, and the specified reaching goals. Once
end-effectors have been mapped to the given goals, the prob-
lem reduces to the traditional single chain scenario, where
we can apply a wealth of well-established kinematic, dy-
namic and even motion-capture based algorithms. The re-
sults of the single chain solutions then need to be integrated
to account for joint interdependencies across articulations.
This architecture is shown in Figure 1. Such a modular ab-
straction of joint interdependencies only works well on the
assumption that the incremental sympathetic joint motions
are small in comparison to overall reaching motion of the
multi-appendage limb. In section 3, we show that this can
be applied in the context of the human hand. The modular
design allows us to improve the quality of arbitrary hand an-
imations by adding any missing joint interdependencies.

The contributions of this work are broken up into two
main parts, the first is described in section 3 and the second
in section 5. We start by first showing a data-driven approach
for modeling the sympathetic motion between fingers of the
hand. We use a k-Nearest Neighbor search to map arbitrar-
ily specified hand configurations to realistic hand configura-
tions. The fretting hand playing guitar (Figure 9) is one of
the most complex applications in which the hand performs
a sequence of multiple concurrent reaching tasks. Section
5 develops a procedural algorithm to control the fretting-
hand for a given piece of music. The algorithm homoge-
neously addresses complex parameters such as the size of the
hand relative to the guitar, the number, geometry and relative
strength of different fingers and the music reading skill of the
player. The result is a system that can be used as a tool for
music education, comparison and analysis of various play-
ing styles. While the algorithm is designed and described
for guitar, the cost minimization approach generalizes to a
number of similar problems, such as typing and complex
grasps, where fingers choose multiple points of support. In
general many aspects of this work have a broader impact
on the skeletal control of structures with interdependent ap-
pendages performing multiple concurrent reaching tasks.

An overview of the rest of the paper is as follows: sec-
tion 2 discusses related work. Section 3 describes the design
of our hand model and the data-driven approach to modeling

sympathetic motion between fingers. Section 4 then provides
basic guitar terminology and a definition of the fretting-hand
problem, a procedural solution to which is presented in sec-
tion 5, followed by implementation details in section 6 and
a discussion of results in section 7. Section 8 concludes with
the scope for future work.

2. Previous Work

The human hand is a fertile area of research in many disci-
plines. We classify relevant work here in terms of broad area
of research.

Anatomy. Studies on the limitations and constraints of
the various joints of the hand are well understood. The inter-
dependency of the various joints, however, is largely based
on empirical observation 9. It is that interdependency that we
strive to capture in the hand model presented in this paper.
The currently accepted theory for the cause of sympathetic
movement in the hand is due to a combination of biomechan-
ical and neurological constraints. Biomechanical restrictions
are partially due to the muscle and tendon configuration.
Muscles, such as the Extensor Digitorum Communis in the
forearm have insertions in multiple joints (Figure 2). The ac-
tivation of such muscles thus results in the excursion of mul-
tiple tendons. The tendons also restrict each others motion
due to their configuration and close proximity. Neurological
constraints are also believed to contribute to the sympathetic
motion 30, 7. Understanding the neuro-physiology of the hu-
man hand is still an area of active research and not yet ma-
ture enough to construct an anatomically complete model for
sympathetic hand motion.

Robotics. Robotics researchers have studied the hand in
the context of grasping and manipulation planning 24. Koga
et al. 12 use pre-configured hand postures and choose from
among them to select the proper grasp. Much of the work in
this area treats the hand as a mitt that can grasp and manipu-
late objects, but generally does not deal with the fine motor
capabilities of the fingers.

Animation Industry. Animators today use a combina-
tion of IK and expressions to provide high-level control over
kinematics. The spread of the palm (adduction/abduction),
the clenching of the fist, and the curling of each finger are
examples of high-level forward kinematic control that are
usually blended together with inverse kinematics under user
control.

Graphics and Vision. Although others have considered
branched kinematic chains 32, we address the specific prob-
lem reaching of multiple goals by multiple interdependent
articulated chains. Vision researchers solve the inverse prob-
lem and have employed simplified hand models for image
based gesture recognition. Early work on grasping 27 rec-
ognized the importance of the interdependence of the hand
joints introducing the commonly used joint angle constraint
θDIP = 2

3 θPIP (see Figure 2). We used the data measured
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Figure 2: Bones and joints of the hand and the Extensor
Digitorum Communis.

Index Middle Ring Little

Average 2.91◦ 4.24◦ 0.80◦ 4.60◦

Stddev 19.82◦ 16.28◦ 10.80◦ 15.03◦

Table 1: Average and stddev of the measured value of
θDIP −

2
3 θPIP in degrees over approximately 20,000 sam-

ples.

from a real subject and found that the constraint is too rough
an approximation for intricate control of the hand. Further,
for applications such as the playing of musical instruments,
there is a marked difference in the finger interdependence of
players of different skill levels. The average difference be-
tween DIP and PIP and standard deviation are summarized
in Table 1 and an example of where the assumption falls
short is shown in Figure 3.

The hand posture reconstruction work of Lee and Kunii 15

proposed a model that included dependence constraints be-

Figure 3: Example of hand posture where the assumption
θDIP = 2

3 θPIP is inadequate.

tween the DIP and PIP joints of each finger and among MCP
joints of the rest of the fingers. This work, however, does not
capture the interdependencies that exist among the DIP and
PIP joints of different fingers.

Other work focuses on the skin deformations necessary
for realistic hand modeling 22, 11 built upon any arbitrary
skeletal control approach.

A lot of interest has recently been given to motion capture
techniques 16, 13, 2, 14, 25, 17. These works show how motion
capture data can be segmented and used to effectively syn-
thesize new motion. We also adopt a data-driven approach
to generate realistic hand motion. Pullen and Bregler 25 de-
scribe a method for using motion capture data to add realism
to existing keyframed animation. As in their work we do not
explicitly play back complete motion clips but rather use the
motion data to correct arbitrarily generated hand animation,
shown in section 3.

Music. Our procedural guitar player is a unique computer-
simulated aid to music education and analysis of playing
style. The marriage of music and computer graphics how-
ever is not new and has been applied effectively by many,
including Lytle 19, 18, Bargar 4 and Hänninen 10.

Sayegh 29 presents a dynamic programming algorithm for
a variant of the fingering problem for string instruments. Un-
like Sayegh’s solution to a sequence of notes, ours solves a
polyphonic problem and handles chords. Our approach also
employs various parameters that provide an animator or ed-
ucator with control over the resulting solution.

3. Hand Model

The human hand has 27 degrees of freedom: 4 in each fin-
ger, 3 for extension and flexion and one for abduction and
adduction; the thumb is more complicated and has 5 DOF,
leaving 6 DOF for the rotation and translation of the wrist 1.

To accurately model the hand, a complete model of the
muscles, tendons, bones and a neurological control struc-
ture is necessary. The dynamics of such a complex model are
still poorly understood, forcing the use of simplified models.
Current models 15, 23, 31 are too simplified for our purpose so
we turn to recent work from the medical community to moti-
vate assumptions used in a new model that we propose here.
We use a 27 DOF model of the hand with the following sim-
plifying assumptions:

1. The thumb is independent of the other fingers.
2. Adduction/abduction of the finger joints are independent.
3. Motion frequency does not affect joint interdependence.
4. Both hands have the same interdependence model.
5. The posture of the wrist and the rest of the arm do not

affect the underlying interdependence structure.

Assumption 1 can be verified by casual observation, but
is also quantifiably justified by Häger-Ross and Schieber 9.
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We thus do not include the 5 DOF thumb in the interdepen-
dence model. Abduction and adduction is the side-to-side
movement of fingers. That these motions are not affected by
interdependence constraints is a simplifying assumption that
seems reasonable but is not supported by research known to
us. Assumption 3 is known to be false. The independence
of the fingers is inversely correlated to their movement fre-
quency. The degree to which independence is affected is fur-
ther explored by Häger-Ross and Schieber, and may not have
a large practical impact for our purposes, however, a more
complete model would certainly include this factor. We leave
the removal of this assumption as future work. Assumption
4, supported by Häger-Ross and Schieber 9, allows us to
talk freely of the hand without having to specify whether
we mean the left hand or the right hand. Häger-Ross and
Schieber quote findings that finger dexterity is maximized
when the wrist is extended 10-20 degrees but in general the
effect of the arm and wrist posture on the interdependence of
fingers is not clearly understood. We make assumption 5 to
reduce the dimensionality of our interdependent DOFs. We
observe, though, that our data-driven model can be easily ex-
tended to include data for the wrist, arm or any other joints
as contributing to the interdependent DOFs.

The above five assumptions leave us with the task of mod-
eling the 12 most strongly interdependent joints of the hand
(MCP, PIP and DIP of the 4 fingers).

3.1. Posture Reconstruction

Motion capture of real hands was used to extract the space of
possible hand configurations. Two NDI Optotrak 3020 cam-
eras were connected and calibrated to capture the position of
24 IRED markers. Four markers were placed along each fin-
ger and three along the thumb, leaving five that were placed
along the wrist. The 3D position data of the markers was
filtered and converted to joint-angle configurations 6.

Our sample data is a general capture of hand motion drills
and finger wiggling, which is used to correct partially spec-
ified hand configurations. We specifically did not choose to
only include task specific motions so that we may be able
to apply the data to arbitrary hand animations. The differ-
ence between IK by example approaches (where complete
postures are strictly determined by sample data) 28 and our
posture correction is subtle but important for problem spaces
with requirements such as ours: (a) a complex motion space
with singularities; (b) many different ways of realizing the
same goals; (c) precise IK requirements with multiple hit
points on the same finger like with bar chords; (d) the abil-
ity to isolate motion resulting from joint interdependencies.
This model is applicable to any animation involving hands
and can be turned on/off seamlessly in current animation
workflows.

The joint angles resulting from the motion capture pro-
cess are points, Θi’s, in a 12 dimensional vector space. To-

gether they represent the physically possible finger joint con-
figuration space. Our problem is as follows: Given a desired
(sometimes only partially specified) hand configuration, find
a proximal posture in the space of physically attainable pos-
tures. Mathematically, we can model the problem as a func-
tion that maps a joint angle vector to another joint angle vec-
tor. The input to the function is two 12D vectors: a joint an-
gle vector Φ and a weight vector ω; the output is a joint
angle vector Ψ. The joint angle vector is a desired hand pos-
ture and the weights capture the relative importance of cor-
responding joint angles. The weight vector for Figure 8, for
example, would have the weight values for the joint angles
of the index finger (controlled by IK), higher than those for
the remaining unconstrained fingers. The output joint angle
vector Ψ is the resulting realistic configuration.

The hand model is designed to be a modular and inter-
active post-process to an arbitrary skeletal control system.
The weight vector provides the skeletal control system the
capability to specify a partial posture.

The model is implemented using a k-Nearest Neighbors
search in a 12D space to retrieve the plausible joint angles.
Firstly a choice for k must be made. If sufficient data exists,
a choice of k = 1 returns the nearest neighbor, which is guar-
anteed to be a valid configuration since it was captured from
a real hand. In the absence of sufficient data, we choose a
larger k and interpolate between the k nearest neighbors. In
practice, a value of k = 3 or k = 4 gives good results for a
database of ≈ 20,000 samples.

We use a weighted Euclidean distance metric given by

δi =

√

√

√

√

12

∑
j=1

ω j((Θi) j−Φ j)2 (1)

The interpolation weights for the k nearest neighbors are
defined by

wi =
e−βδi

∑k
j=1 e−βδ j

(2)

where δi is the distance of the ith nearest neighbor and β
is a decay parameter.

The output joint vector Ψ is an average of the joint vec-
tors of the k nearest neighbors, proportional to their inter-
polation weight. It is worthwhile noting that unless k = 1,
there is no guarantee that the interpolated configuration is
physically possible. However, unless the data is extremely
sparse, blending between a small number of k nearest neigh-
bors does not produce undesirable results. We also note that
since the hands configuration space is not necessarily con-
vex, it is possible, even with dense sampling, for the k near-
est neighbors of an input posture to have very different con-
figurations. This is especially true of partially specified input
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postures. We should thus take care to pick a single cluster of
spatially proximal neighbors for blending to be valid. The
algorithm bottleneck is the k-Nearest Neighbors search. We
found a k-D tree based scheme to give us interactive results
for 20,000 data points in a 12 dimensional space. For higher
dimensionality, approaches such as the approximate nearest
neighbor 3 may provide better results.

3.2. Joint Blending

A problem with modifying an IK solution is that the guar-
antee of reaching a given target is lost. A similar problem
exists when modifying a dynamic solution due to collision
response or constraint satisfaction. While the weight vec-
tor can strongly bias the hand model to preserve the an-
gles on joints controlled by the input skeletal controller (see
Figure 1), a precise solution may be desirable. This can be
solved by an iterative skeletal control and hand model loop,
converging to a desired accuracy. As there is no guarantee
of convergence, the loop can be made more efficient in prac-
tice by simply blending in the allowable corrections the hand
model can make to any given joint angle. This blend is based
on another weight vector provided by the skeletal controller,
and brings the computed hand posture closer to the desired
solution.

3.3. Joint Retargeting

The hand-data is stored as joint-angle vectors; no other con-
cept of space is required for our purposes. Retargeting the
data model to a hand of different size is thus straightforward,
so long as we are not concerned with space-constraints ex-
ternal to the hand. Detecting object grasps, and other spe-
cific fingertip constraints can be done in the way described
by Gleicher 8. Whether the sympathetic motion between fin-
gers is affected by the size of the hand itself remains to be
explored.

4. The Guitar

The guitar is among the most complex instruments to play
with respect to overall hand motion. The fretting-hand prob-
lem is the task of providing the skeletal control of the
fretting-hand (see Figure 9) needed to play a given piece of
tablature (see Figure 8). This problem, of great importance
to guitar players and teachers, inspires this research and il-
lustrates the complexity of hand motion required to perform
multiple concurrent reaching tasks. In this section we pro-
vide sufficient background and guitar terminology.

A guitar produces sound through the vibration of strings
(typically 6) that are stretched across its neck as shown in
Figure 4. The strings are numbered from 1 (highest pitch,
lightest gauge) to 6 (lowest pitch, heaviest gauge). The mu-
sician can play different notes by pressing down on the string
at calibrated locations along the neck, called frets. The frets
are numbered in increasing order from the nut (fret 0).

Figure 4: The anatomy of a guitar.

The two hands play different but equally important roles.
The dominant hand typically strums or plucks the strings.
The fretting hand controls the notes played by pressing the
string at a fret.

Tablature is a commonly used form of guitar notation
(Figure 7). Six horizontal lines each represent a string (1 to
6 from top to bottom) on a guitar. Notes are played in time
from left to right. Numbers are placed on lines to indicate
which fret on the corresponding string must be held down.
We use an augmented form of tab notation in which the spac-
ing between notes indicates the relative timing of the notes.
Note that tablature does not tell the player what finger to use
but rather provides a sequence of reaching goals that must
be met by some combination of fingers.

5. Procedural Guitar Player

This section contains a description of an algorithm that
solves the fretting-hand problem. The use of such an algo-
rithm as a music education tool drives our design objectives.

5.1. Design Objectives

Playing the guitar is an art that offers limitless expressive ca-
pabilities. We would, therefore, like to provide a wide range
of control over the guitarists fretting hand, while adhering to
basic playing principles and maintaining a level of realism
throughout. We would also like a system that can produce
the fretting hand of a novice as readily as that of an expert
player, allowing players to learn a given piece by adjusting
style and skill level. The following objectives help us meet
these requirements.

1. Minimize the amount of motion produced while play-
ing. The “economy of effort” 26 is recommended for the
fretting-hand.

2. Control over how far ahead a piece of music is read. This
is a skill level objective that helps model novice players
by restricting the ability to read ahead in the music.
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3. Maintain the natural posture of the fingers as much as
possible, keeping each finger over a different fret. Finger
motion should favor the natural arc of the fingers.

4. Capture the difference in dexterity and strength of differ-
ent fingers. For example, shorter and weaker fingers, like
the little finger, have a harder time playing the heavier
strings.

5. The fingertip must touch the guitar fretboard as close to
the desired fret as possible in the region behind it.

A cost-minimization approach allows us to frame these
objectives as cost functions. Economy of effort is achieved
by assigning a cost to the motion of the wrist and fingers.
Look-ahead in a passage is controlled by performing the op-
timization localized over a window of a size specified by the
user. Beginners will typically have a smaller window than
expert players. Controlling skill level is also achieved by al-
tering cost functions to produce higher costs for fingers with
which the player is unskilled. The cost functions are also
used to embody the structure of the hand and the relative
position, strength and dexterity of the fingers. The last ob-
jective is met by first assuming the ideal position behind a
fret followed by a simple geometric post-process to adjust
the fingers into a collision free configuration behind the fret.

5.2. Choosing the Cost Functions

The final fingering of the given musical score is largely de-
termined by the chosen cost functions. As an example, a low
cost for the wrist and index finger and high cost for the other
fingers would result in notes being played by the index finger
alone.

Multiple cost functions can be associated with each fin-
ger to reflect various attributes. The input to a geometric
cost function is the displacement between a target position
and the current position of the finger. This cost also captures
the reachability of a finger. The input to a dexterity func-
tion would include the time given to reach the target, which
would influence the cost due to acceleration constraints of
the finger. We use a constant dexterity function leaving the
extension to a more complete cost function model as future
work. The strength cost function, in our context, is controlled
by the gauge of the string to be played and the strength of
each finger. Other stylistic attributes such as finger prefer-
ence are also modeled as individual cost functions.

The geometric cost function is particularly important in
a kinematic setting. The functions are typically smooth,
convex and have a unique minimum for zero displace-
ment. Smoothness and convexity assure a reasonable place-
ment and that fingers do not teleport. The unique minimum
achieves economy of motion.

The description below is in a reference frame with the ori-
gin at the guitar nut, the x-direction along the guitar neck, the
y-direction parallel to the frets and the z-direction perpendic-
ular to the plane of the neck. We use the following function

fi(c) =

{

λiαi||d||mi if dx ≥ 0,
λiβi||d||mi if dx < 0

(3)

to calculate the cost of the moving the finger i by the dis-
placement vector d = c− pi, where c is the target position
and pi is the current position of the finger and c,pi,d ∈ <3.

The functions are split into two parts to capture the differ-
ent ability of fingers to move forwards and backwards a fret.
The natural arc of the hand makes it such that the index and
middle fingers can reach forwards easier than can the ring
and little finger. This property is captured by the constants
αi and βi. Setting α1 < β1 would thus indicate that the index
can move forwards easier than it can move backwards along
the neck of the guitar. The choice for αi’s and βi’s is usually
fixed by the system designer, and we recommend α1 < β1,
α2 < β2, α3 > β3 and α4 > β4.

The parameter λi can be set by the user to customize the
relative cost of moving particular fingers, biasing the algo-
rithm to produce different results. Setting λ1 < λ2 would in-
dicate that the index finger should, in general, be preferred
to the middle finger, for example.

The exponents mi simply adjust how fast the cost grows
with respect to ||d|| and thus control the cost incurred by
finger i to play at a fret distant from its natural position.

The cost function for the wrist, fwrist , is similar to that of
the fingers and reflects that moving the wrist incurs a cost.
Once the cost functions have been designed, we feed them
into the cost-minimizing algorithm described below.

5.3. Cost-Minimizing Algorithm

The algorithm described here is a greedy solution to a global
minimization problem. Instead of finding the overall mini-
mum cost fingering for an entire piece of music, we find the
minimum cost fingering within a moving window of a user
definable size.

The position, c, that minimizes:

χ(c) = fwrist(c)+
T+W

∑
t=T

resolveFingers(c, t) (4)

tells us where to move the wrist. We solve for this min-
imum at each timestep T . For our application, we solve a
simple discrete minimization problem since we need only
test at integral fret positions, a maximum of twenty-four on
a typical guitar. Only integral steps are considered because
guitar fretting technique requires that the fingertip be placed
as close as possible behind the fret for the best sound qual-
ity 26. We thus choose the best location for each fret. The
possibility of finger collision may modify this position as
described below.
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In the above Equation 4, W is the size of the window
and resolveFingers is the function defined by Algorithm 1,
which uses the cost functions as described earlier but with
the modification shown here:

gi =

{

L if finger i is used,
fi otherwise

(5)

where L is a prohibitively large cost. This modification
forces the algorithm to pick a finger that may not be optimal
if the optimal finger is already used, as is often found when
playing chords.

Algorithm 1 resolveFingers(c, t)
Initialize finger positions
totalcost← 0
for each string s from high to low do

n← fret played on string s at time t
if n > 0 then

cost← min(gi(c))
i← argmin(gi(c))
if i is not used then

play note at s with finger i
mark i as used
totalcost = totalcost + cost

end if
end if

end for
return totalcost

The first step, initializing the finger positions, is done by
placing fingers in line and flexed at about one third of their
range. This, although user-definable, seems to be the most
natural and ready position for the fingers 21.

Finally, we address two details that affect the believability
of the result: wrist posture and finger collisions. These issues
are handled after the finger positions are found.

Wrist extension and flexion are calculated using a heuris-
tic that the wrist will extend to play high strings and flex
to play low strings. The highest and lowest strings played
at each timestep, shi and slo are bookmarked when running
Algorithm 1. The minimum and maximum extension/flexion
angles of the wrist, θmin and θmax, are given by the user and
a blend factor, b = shi+slo

12 , between them is computed. Wrist
pronation/supination can be handled in a similar way.

To handle finger collision we assume each finger is a cir-
cle on the fretboard. Once the fingers have been placed,
circle-circle intersection tests are performed and if two cir-
cles are found to intersect the finger on the lower string is
pushed back along the fret in order to avoid the collision
(Figure 5).

Finally, the procedural guitar control algorithm supplies
the hand model the appropriate IK blend factors as discussed
in section 3.2.

x

r1

r2h

Figure 5: Finger collision on the fretboard: r1 and r2 are
the radii of two colliding fingers, h is the distance between
strings. We solve for x to determine how far back to move
finger 2.
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Figure 6: Detailed system architecture.

5.4. Controller Failure Feedback Loop

It is possible that the given cost functions and window size
cause the IK solver to fail reaching a desired target. A feed-
back loop is therefore desirable in order to modify the pa-
rameters so that the targets are reached. The hand model
would report back to the skeletal controller if it was unable
to achieve its targets. The controller would then adjust some
parameters and try again (see Figure 6. A straightforward
approach is to shrink the window size upon failure until only
one note or chord is considered (shown in the video on a
chromatic scale). We assume the cost functions and hand ge-
ometry is designed so that any note can be hit with at least
one finger by moving the wrist.
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6. Implementation

The tablature parser, procedural fretting algorithm and hand
model, as shown in Figure 6, are all implemented in Side
Effects Software’s Houdini animation platform.

The tablature parser feeds the procedural fretting algo-
rithm, which is implemented as a CHOP (channel-operator)
filter. The algorithm controls the motion of the end-effectors
or fingertips of the hand based on the input tablature. These
feed into the standard Houdini IK solver (a CHOP). The
solver produces finger configurations that are constrained by
predefined joint constraints. These finger configurations are
then fed along with weights that reflect which fingers are cur-
rently playing a note, to the hand model (also a CHOP). The
hand model filter then corrects the hand configurations to
conform to the captured hand motion data. The hand model
can be bypassed with a switch, to compare the results of the
hand model with that of the unmodified IK solution.

Part of a musician’s training is to minimize the sympa-
thetic motion between fingers 21 allowing maximum dexter-
ity and independence of the fingers. The modularity of our
architecture allows one to monitor progress by seeing the
magnitude and nature of the sympathetic motion of a stu-
dents hand. Such a separation also allows the hand model to
be used independently of the procedural guitar player.

7. Results

Figures 8, 9, 10 and the accompanying video show our re-
sults. We describe a few test cases below.

7.1. Hand Model

Figure 8 shows the difference between using a general IK
solution and using the augmented hand model. Both illus-
trations are the results of using the same reaching targets.
Figure 8 compares real hand data with a traditional IK so-
lution and the IK solution augmented with the hand model.
The subject was asked to flex only his index finger. The IK
solution and the hand model use the same target end-effector
positions. The IK solution ignores sympathetic motion be-
tween fingers producing unrealistic results. The hand model
augmented solution produces results close to the real hand
data, falling a little short due to the non-zero weights of the
fully extended fingers that are output by the IK solution.

7.2. C-Major Scale

Figure 9 shows eight frames from an animation playing a
C-Major scale on a guitar. Note that the first note is played
using the middle finger in order to avoid having to move
the wrist to play the entire scale. The accompanying video
shows how adding in the sympathetic motion from the hand
model results in a less mechanical appearance of the hand.
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Figure 7: Passage showcasing fingering for note continuity.

7.3. Chords

Unlike a musical scale, which can be played naively with
one finger, chords require multiple notes to be played simul-
taneously. Figure 10 shows a chord progression C-G-F#-G.
Note that the algorithm fingers the G chord following the C
differently from the way it fingers the same chord after the
F#. The reason for this is that the minimal movement needed
to change from a C to a G requires the use of the little finger.
Following the F# there is sufficient motion needed to change
to a G, that the general finger preference favors the index,
middle and ring finger over the little finger. Context depen-
dent fingerings like this are commonly used by guitarists.
Also noteworthy is the index finger forming a bar at the sec-
ond fret to play the F# chord. The chord requires all 6 strings
to be played with 4 fingers. The only way this is possible is
for fingers to reach multiple strings. Given the pervasiveness
of bar chords to guitar playing we implemented them as a
special case. The algorithm attempts to play more than four
concurrent notes by using the index finger at the lowest given
fret and using the other three fingers to resolve the remaining
notes.

7.4. Complex Passage

The passage in Figure 7 shows a mix of single notes and
chords. The C chord at the end is fingered with the index,
middle and ring fingers. A novice is likely to use the ring
finger to play the penultimate note on the third fret. As the
ring finger is moved to play the subsequent chord, an expert
would play the note with the unused little finger allowing the
note to linger for a better sound 21. Our procedural algorithm
captures this with a cost function for the movement of fingers
across strings.

8. Conclusion and Future Work

This paper presents an exploration in capturing the intricate
nature in which the fingers of the hand work together. Our
hand model is a simple interactive module that enhances the
realism of arbitrary hand animations. It also provides insight
into the complexity of joint interdependencies. We set up the
groundwork for a more complete anatomically based hand
model that can be fitted to and validated by human motion
data. The consideration of temporal coherence is important
to remove problems that may result in jerkiness of the anima-
tion, if the algorithm chooses particularly differing postures
between frames. Our requirement that postures be chosen
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based on geometric proximity does not guarantee temporal
coherence and is an important issue to address in the future.

Other improvements to the hand model include the addi-
tion of joint velocity and wrist and arm posture to the config-
uration space. Joint velocities would allow better handling of
dexterity constraints and provide better motion dynamics as
the fingers move from note to note.

The procedural algorithm to the fretting-hand problem,
though described in the context of guitar generalizes to sim-
ilar tasks such as typing and playing other instruments. As a
music education tool the algorithm allows a student to con-
trol and separate various elements of playing style and ex-
plore alternate tunings. While most important aspects of the
fretting hand are captured, elements of playing such as ham-
mers, pull-offs and bends are left as future work. The “Stair-
way to Heaven” tablature in Figure 6 and the video further
show the importance of generalizing the reaching area of a
finger beyond the fingertip, where the arpeggiated notes on
the 5th fret in the opening could all have been played with a
barred index finger. As an animator’s tool, this work greatly
simplifies the control of realistic animation of the human
hand.
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(a) (b) (c)

Figure 8: (a) Joint angle data of a person asked to flex his index finger; (b) the result of an IK only solution with the same target
end-effector for the index; (c) the result of our hand-model with the same target end-effector for the index.

Figure 9: Result of the algorithm running on a C-Major scale using the hand model.
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Figure 10: Here a progression of chords is played: C (a) – G (b) – F# (c) – G (d). The G is played in two different configurations
based on the preceding chord in order to minimize the movement of the hand.
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