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ABSTRACT

Motivation: Mutual information (MI) is a quantity that measures the
dependence between two arbitrary random variables and has been
repeatedly used to solve a wide variety of bioinformatic problems.
Recently, when attempting to quantify the effects of sampling
variance on computed values of MI in proteins, we encountered
striking differences among various novel estimates of MI. These
differences revealed that estimating the ‘true’ value of MI is not
a straightforward procedure, and minor variations of assumptions
yielded remarkably different estimates.
Results: We describe four formally equivalent estimates of MI, three
of which explicitly account for sampling variance, that yield non-
equal values of MI given exact frequencies. These MI estimates are
essentially non-predictive of each other, converging only in the limit of
implausibly large datasets. Lastly, we show that all four estimates are
biologically reasonable estimates of MI, despite their disparity, since
each is actually the Kullback–Leibler divergence between random
variables conditioned on equally plausible hypotheses.
Conclusions: For sparse contingency tables of the type universally
observed in protein coevolution studies, our results show that
estimates of MI, and hence inferences about physical phenomena
such as coevolution, are critically dependent on at least three prior
assumptions. These assumptions are: (i) how observation counts
relate to expected frequencies; (ii) the relationship between joint
and marginal frequencies; and (iii) how non-observed categories are
interpreted. In any biologically relevant data, these assumptions will
affect the MI estimate as much or more-so than observed data, and
are independent of uncertainty in frequency parameters.
Contact: andrew@fernandes.org
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 BACKGROUND
Mutual information (MI) is an information-theoretic quantity
measuring the dependence between two arbitrary random variables.
It is used in a vast array of bioinformatic disciplines such as
phylogenetics (Atchley et al., 2000; Korber et al., 1993), RNA
secondary structure prediction (Bindewald and Shapiro, 2006),
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transcription factor binding site analysis (Tomovic and Oakeley,
2007) and protein coevolution (Dunn et al., 2008; Wollenberg and
Atchley, 2000), among many other fields.

Given two discrete random variables X and Y , the MI I(X,Y )
shared by them is given by

I(X,Y )=
∑
y∈Y

∑
x∈X

Pr(x,y)log

(
Pr(x,y)

Pr(x)·Pr(y)

)
. (1)

Note that the summations in (1) can be replaced by abstract
integration, allowing MI to be defined for arbitrary probability
measures. However, for the remainder of this article we will
implicitly assume that X and Y are discrete and finite. Virtually all
bioinformatic applications of (1) involve multinomial likelihoods
for m×n, 2D contingency tables. A d-dimensional contingency
table is a representation of the number of observed occurrences of
d categorical variables, and when d =2 Kullback (1978) gives the
total estimated MI as

I(X,Y )=
∑

i

∑
j

pij log

(
pij

ri ·sj

)
, (2)

where pij is the joint probability that Pr(X =xi,Y =yj), ri the
marginal probability Pr(X =xi) and si the marginal probability
Pr(Y =yj). Of course, the probability parameters pij , ri and sj are
not observed. Instead, they must be inferred from the entries of
a contingency table of observed events, where nij represents the
number of observed events of joint class (i,j), ni+ the marginal counts
ni+ =∑

j nij and n+j the marginal counts n+j =
∑

i nij .
Virtually all applications of (2) make two fundamental

assumptions when estimating the frequency parameters from the
contingency counts. These assumptions are that: (i) pij �nij/n,
where n=∑

i
∑

j nij; and (ii) pi+ =∑
j pij and p+j =

∑
i pij , as per

the marginal counts. When assumed to hold, these conditions can be
used to map a given table of counts nij to a unique point-estimate of
MI, which we term Ip.Agraphical depiction of the overall procedure
for estimating Ip from nij is shown in Supplementary Figure A-1.

This point-estimate Ip is the most commonly used estimate
of MI reported in the literature. However, to mitigate the effect
of categories nij with small counts, pseudocounts (Durbin et al.,
1998) have been used for estimating motifs for both protein
domains (Buslje et al., 2009; Henikoff and Henikoff, 1996) and
transcription factor binding sites (Nishida et al., 2009). In essence,
pseudocounts estimate pij as proportional to nij +cij , where all
cij >0 denote small constants, resulting in a different point-estimate
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of MI. Since our work focuses on describing variability that is
intrinsic to the computation of MI from frequencies, rather than
the inference of frequencies from counts, we constrain cij to be zero
as this is the standard pseudocount value in comparable studies that
utilize MI or a variant to study substitution covariance in proteins.

A notable exception to the implicit estimate of pij �nij/n is the
work of Meyer et al. (2008), who detail several methods by which
frequencies can be inferred from counts for computing MI. As with
previous literature and in contrast to this work, however, Meyer et al.
(2008) only infer frequency point-estimates from the count data,
effectively discarding information regarding sampling variance, and
implicitly but incorrectly assume that Ia, defined below, is the only
correct estimate of MI.

2 METHODS

2.1 Estimate of sampling variance
Estimates of sampling variance for Ia, Im and Iu were computed using
standard Bayesian methods. Posterior estimates of pij were inferred from
observed nij via Dirichlet priors and multinomial likelihoods, resulting in
Dirichlet posteriors (Hutter and Zaffalon, 2005). All Dirichlet hyperparmeter
components were set to 1/2 following Berger and Bernardo (1992) as
this value formally minimizes the influence of the prior on the posterior
and is formally equivalent to using Jeffreys’ reparameterization-invariant
prior (Berger et al., 2009).

2.2 Multiplicatively constrained MI
The decomposition of log(pij)=sij +dij is based on the observation that
the pij parameters themselves comprise a probability density, and this
density can be viewed as a proportional composition. The analysis of
proportional compositions is best done via their logarithms (Aitchison, 1986)
because such log-compositions are isomorphic to standard Euclidean vector
spaces (Egozcue et al., 2003). In these spaces, vector addition and scalar
multiplication correspond to the physical amalgamation of compositional
mixtures. Therefore, rather than being a theoretical artifice, the use of log(pij)
has a simple, direct and physical interpretation. The mathematical theory
and a concrete example of computing Im from pij is fully detailed in
Supplementary Material B.

3 RESULTS
Our main results are 2-fold in that: (i) the two common assumptions
that pij �nij/n and that the joint frequencies sum to the marginal
frequencies are not required to estimate MI; and (ii) not using
or modifying these assumptions results in dramatically varying
estimates of MI especially for protein covariation data. The
implication is that these two assumptions provide far more a priori
information, and hence bias, to the estimate of MI than previously
believed.

Our conclusions are based on the behavior of four equally
valid, yet often dramatically different estimates of MI, described
below. Differences among the estimates are particularly acute for
the sparsely populated contingency tables commonly observed in
studies of covariant substitution between two protein alignment
sites. Note that although the natural base is used throughout, our
results are invariant to choice of logarithm base.

3.1 Four estimates of MI
A representative sample of our four different estimates of MI is
shown in Figure 1, with each being described below. Numerous other
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Fig. 1. Representative magnitudes and distributions for four estimates of
MI. The figure is described in detail in Section 2. All logarithms use the
natural base.

example plots with their associated contingency tables are given as
Supplementary Material E. Our dataset consists of a representative
structural alignment of 454 sequences of triose-phosphate isomerase
(TIM1) gathered from Genbank, restricted to a maximum of
90% identity. Site numbering follows the Escherichia coli Protein
Data Bank entry 1TRE and only utilizes ungapped sites exhibiting
clear homology (Dunn et al., 2008). The validity of using only
ungapped sites can be substantiated by the extensive analysis of
TIM1 functional covariance detailed by Merlo et al. (2007), with
the additional benefit that sample-size effects do not complicate our
analysis.

3.1.1 Point-estimate MI The first estimate of MI considered is
the point-estimate Ip described above, without pseudocounts. This
is the most common estimate of MI reported in the literature.

3.1.2 Additively constrained MI Rather than using pseudocounts,
we instead use Bayesian techniques to estimate the posterior
distribution of each component pij (see Section 4). We emphasize
that essentially any technique could be used to estimate the posterior
distribution of the pij without qualitative change in our findings. The
most important property of what we deem the additively constrained
estimate of MI, or Ia, is that estimates of pij given nij are given a
range rather than a single value. In this article, the range of pij is
given as a parameter posterior distribution. However, even simple
uniform-type error-estimates yield qualitatively similar findings.

Specifically, given a table of counts nij , a specific set of joint
probabilities pij is drawn from the posterior density of Pr(pij|nij).
The marginal probability parameters pi+ and p+j are computed
through the previously discussed additive constraints pi+ =∑

j pij
and p+j =

∑
i pij . The procedure is repeated to build a Monte Carlo

estimate of the posterior distribution of MI. This estimate of MI,
deemed Ia, is the one most commonly used whenever sampling
variance is accounted for (Hutter and Zaffalon, 2005).

3.1.3 Multiplicatively constrained MI The constraint that the
joint frequencies precisely sum to the marginal frequencies is
not the only mathematically or physically reasonable assumption,
however. For example, if log(pij) is used rather than pij for
parameterization, standard techniques from linear algebra can
be used to partition log(pij)=sij +dij as further elucidated in
Section 4. The components sij specifically quantify row/column
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independence and the components dij specifically quantify
row/column dependence. We deem the estimate of MI comparing
pij and sij to be Im.

Although the use of the log-frequencies may be unfamiliar, we
emphasize that their use is quite common in standard statistical
theory. Log-frequencies are the ‘natural’ parameter space for the
multinomial distribution on which (2) is based. As the multinomial
is an exponential-family distribution, many of its properties have
been elucidated and are best understood in the logarithmic natural
parameter space.

3.1.4 Independent, unconstrained MI Although perhaps counter-
intuitive, there is no a priori necessity to condition on the joint and
marginal frequencies being consistent. To understand why, consider
the following thought experiment. The table of joint counts nij is
given to Alice from which she is told to estimate the pij parameters
without assuming any particular structure in the data. Independently,
the table of counts is summed to the marginals ni+ and n+j which are
given to Bob in order to estimate pi+ and p+j , again without further
assumptions. Alice and Bob may each choose different, yet equally
valid, methods of inferring frequencies from counts, some of which
have been cataloged by Meyer et al. (2008). Alice’s frequencies
are inferred under the hypothesis of dependence whereas Bob’s are
inferred under the hypothesis of independence. Only after inferring
frequencies from counts do Alice and Bob need to compare their
respective joint frequencies using MI. Since Alice and Bob do
not share information before comparing frequencies, there is no
a priori requirement that joint frequencies sum to equal the marginal
frequencies, and in general pi+ �=∑

j pij and p+j �=
∑

i pij .
This thought experiment shows the plausibility of Pr(pij|nij)

being wholly unconstrained by either Pr(pi+|ni+) or Pr(p+j|n+j).
We deem such an unconstrained estimate of MI to be Iu. Of
course, given any reasonable dataset nij it is likely but not strictly
necessary that the inferred parameters be reasonably consistent with
pi+ ∼∑

j pij and p+j ∼
∑

i pij . Far from being a statistical artifice,
this thought-experiment informally yet precisely describes the
information-independence between the hypotheses of ‘dependence’
versus ‘independence’ in contingency table analysis: small ‘errors’
in the frequencies inferred by Alice are necessarily independent of
small ‘errors’ in the frequencies inferred by Bob.

3.2 Properties of the estimates
In examining the ∼24 000 pairs of alignment sites for TIM1, it
appears that both the central tendency and dispersion of the estimates
robustly follow the ordering Ip <Ia <Im <Iu as displayed in
Figure 1 and the Supplementary Material. In general, all three
distributions were distinct except when both alignment sites
were highly conserved (see sites 010 and 077 in Supplementary
Material E) in which case Ip ∼0 and Im ∼Iu were their largest.

This latter case was among the most intriguing since site-pair
conservation, which implies that one entry of the nij receives the
majority of observations, minimizes Ip while maximizing Im and
Iu. This discrepancy highlights how much ‘information’is implicitly
added by the assumption that nij =0⇒pij =0.

3.2.1 Point-estimate comparison The inability of Ip to
meaningfully predict any of the three distributional estimates is
shown by the left-hand panels of Figure 2. Although the relative
ordering of the estimates was almost always as shown, this ordering
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Fig. 2. Comparisons of Ip versus the expected value, denoted by ‘E[·]’,
of (A) Ia, (B) Im and (C) Iu. Left-hand panels show scatter plots of raw
values for all ∼24 000 ungapped site-pairs of TIM1. The slight negative
correlation for (C) is discussed in the text. Right-hand panels show the
relative difference between Ip and the distributional estimate given as
a standardized z-score. Note that distributional estimates such as shown
in Figure 1 are approximately Gaussian, implying that the z-score is a
reasonable measure of correspondence between point- and distributional-
estimate. Although mildly correlated, the large dispersion of each scatterplot
show that MIp is not a meaningful predictor of Ia, Im or Iu.

does not necessarily imply that Ip is a ‘closer’ estimate to Ia than
either Im or Iu. For example, if the ‘distance’ between the point
and distribution-mean estimates is taken to be the standardized
score z-score, then Ia is considerably less predictive of Ip than
either Im or Iu are.

The negative correlation seen in Figure 2C further highlights the
information inherent in the assumption that zero counts imply a
zero frequency. When both sites are highly conserved, implying
that the majority of counts occur in one nij category, Ip tends to
zero while Im and Iu tend to overlap and attain their largest values
(see sites 010 and 077 in Supplementary Material E). The point
estimate Ip assumes that non-observed categories contain precisely
zero information, whereas the distributional estimates assume that
each of the ∼400 categories contributes a ‘small amount’ of MI
to the total, as shown in a plot of

∑
i pi log(pi) in Supplementary

Figure A-2.
Among the distributional estimates, scatter plots of mean values

for Ia, Im and Iu (Supplementary Fig. A-3) show that values are
only mildly predictive of each other. The strongest agreement was
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seen between Im and Iu, with the weakest between Ia and Iu.
This observation can be interpreted to imply that joint-to-marginal
consistency is a less-stringent constraint in the multiplicative log(pij)
parameter space than the additive pij parameter space.

3.2.2 Convergence of the estimates Although the four estimates
differ substantially when the contingency table nij is sparse, standard
arguments show that a sufficient condition for all four estimates to
converge is asymptotic normality. Such normality is guaranteed only
if a sufficient number of observations (usually 5–10) are seen in
every category nij . In this case, the multinomial likelihood is well-
approximated by the multivariate normal and all estimates converge
in distribution.

In actual protein data, site-specific residues have well-
known constraints due to participation in catalytic function or
secondary/tertiary structural elements. These biological constraints
imply that asymptotic normality cannot be achieved in real data.
Therefore, we expect that non-commensurate estimates of MI as
shown in Figure 1 are not exceptional and are in fact inescapable.

A more detailed examination of the convergence of Ip, Ia, Im
and Iu with respect to sample-size and dependence-to-independence
ratio is presented in Supplementary Materials D and F. These
examinations show that under biologically realistic amino acid
frequencies displaying maximal variance as given by the WAG-
model equilibrium frequencies (Whelan and Goldman, 2001) and
no phylogenetic correlation, between 1000 and 10 000 sequences are
needed for convergence, with greater dependency requiring a larger
number of sequences. Since phylogeny and amino acid preference
(smaller variance) can be seen by inspection to reduce the effective
sample size, the actual number of biological replicates required
would be much greater.

Although the example presented in Supplementary Material D
might seem to imply that Ip is the ‘better’ estimate of the four
when sample sizes are small and there is relatively little dependence,
such a conclusion is incorrect because it is not known a priori
that dependency is in fact small. In fact, it is arguable that since
values of Ip appear to be relatively insensitive to both the number
of sequences and the amount of modeled dependence that Ip is less
able to discern true covariation from ‘noise’ than the other measures.
An examination of convergence issues for different groups of protein
orthologs is detailed in Supplementary Material F. Although it is
theoretically impossible that one of the four estimates is, in any
global sense, a ‘better’ estimator of MI than the others, it is certainly
possible that in practice one or more estimators may outperform the
others. However, we emphasize that this study provides no evidence
of such superiority even in light of the single example illustrated by
Supplement Material D.

3.2.3 Boundedness of the estimates Using the method of
Lagrange multipliers, it is straightforward to show that both Ip and
Ia have a finite range (Hutter and Zaffalon, 2005). Specifically,
for a d-dimensional contingency table with mk marginal classes
possessing m1 ×m2 ×···×md joint classes, it can be shown that
0≤Ip,Ia ≤ log

(
maxk{mk}).

In contrast, both Im and Iu are unbounded and can, with non-
zero probability, take any non-negative value. Such unboundedness
does not necessarily make these Im and Iu incongruous with Ip
and Ia since large values of the former only occur if the joint and
marginal frequencies are asymptotically inconsistent. Examples of

such unlikely parameter estimates are discussed in Supplementary
Material C.

4 CONCLUSIONS
MI is a tool commonly used to define and study a type of generalized
covariance between two random variables. In this work, we show
that for sparsely populated contingency tables there exist at least four
different estimates of MI. These estimates are poor predictors of one
other and often differ greatly when compared on both relative and
absolute scales. Unlike previous work, where differences between
estimates of MI are universally attributed to differences in how
frequency parameters are estimated from counts, we show that the
definition of MI itself may be responsible for uncertainty in its value.
For example, given precise frequency parameters pij = 1

16 ·[3 7
1 5

]
,

the additive Ia =−5·log(2)+9/8 ·log(3)+5/8·log(5) whereas the
multiplicative Im = −6 · log(2)+3/16 · log(3)+1/2 · log(

√
105−

7)+1/2 · log(15−√
105)+5/16·log(5)+7/16·log(7). Thus, even

for exact frequencies pij we have Ia �=Im. To our knowledge, this is
the first demonstration that definition of MI itself possesses intrinsic
uncertainty. Such uncertainty may explain why MI, either in raw
or corrected form, is in often an unreliable estimate of categorical
dependency (Dunn et al., 2008; Martin et al., 2005).

Minimizing such differences requires that the estimates mutually
converge, and such convergence requires implausibly large
biological datasets. Thus, the assumed relationship between the
joint and marginal frequencies and the interpretation of unobserved
categories will inevitably have non-negligible consequences. The
breadth of these consequences may explain the broad range of
results observed by Buslje et al. (2009) with respect to the MI-
based detection of protein coevolution. Moreover, the example
convergence discussed in Supplementary Material D taken in the
context of the Central Limit Theorem implies that a necessary
although insufficient condition for an MI estimate to be principally
dependent on the data rather than assumptions is that the expected
value of each of the four estimates must be equal. As shown in
Supplement Material F, an analysis of 10 different alignments across
7 functionally and structurally diverse ortholog families reveals that
even with alignments with ∼1000 sequences, estimates of MI are
primarily dependent on prior assumptions, not observed data.

By carefully tracking all conditional assumptions inherent in
our four MI estimates, we see that both Ip and Ia are inferred
through Pr(pij|nij) and Pr(pi+,p+j|nij,pij,A), where A denotes the
hypothesis of an additive constraint. The Ip estimate builds on Ia
with the additional conditional restriction that pij =nij/n, a strong
assumption that collapses the distribution of Ia to the single-point
Ip, itself a poor predictor of Ia. Similarly to Ia, the Im estimate
is inferred through Pr(pij|nij) and Pr(pi+,p+j|nij,pij,M), where M
denotes the hypothesis of multiplicative subspace decomposition.
Lastly, Iu is inferred via Pr(pij|nij), Pr(pi+|ni+) and Pr(p+j|n+j)
with the only conditional assumptions coming from observed data.
All four of the resultant MI estimates have the form I(p,q)=∑

ij pij log(pij/qij) and can, therefore, be equivalently viewed as
Kullback–Leibler divergences between distributions conditioned on
different hypotheses and parameter estimates (Kullback, 1978).

From a statistical viewpoint, none of these estimates are ‘more
correct’ than any other since each merely conditions on different
assumptions. What we have shown is that estimates of MI are
necessarily as or more affected by these assumptions than the actual
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observed data. The ‘correct’ conditional assumptions to use, we
believe, are those that more closely match known or hypothesized
biological constraints. For example, a pair of protein sites forming
a putative salt bridge may assume that pij =0 for all joint classes
possessing uncharged amino acids. Similarly, sites involved in
putative α-helices may a priori disallow proline and proportionally
weight the prior probability of other amino acids by their known
helical-forming propensities. Unlike the filtering methodology of
Codoñer et al. (2008) that is applied only to Ia, corrections to MI
as per Dunn et al. (2008), or different ways of inferring frequencies
as per Meyer et al. (2008), this information needs to assist in the
construction of the MI computation itself.

A consequence of requiring that mathematical and biological
assumptions be concordant is the impossibility of meaningfully
inferring coevolution using only pair-count data. Like the examples
above that conditioned on possible salt-bridges or α-helices, we posit
that additional biological knowledge is a necessary prerequisite for
meaningful inferences about coevolution. The difficult problem of
how to best express such often-incomplete biological information as
conditional prior-probabilities remains an open question for future
research.
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