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a b s t r a c t

It is often assumed that the space we perceive is Euclidean, although this idea has been challenged by
many authors. Here we show that if spatial cues are combined as described by Maximum Likelihood
Estimation, Bayesian, or equivalent models, as appears to be the case, then Euclidean geometry cannot
describe our perceptual experience. Rather, our perceptual spatial structure would be better described as
belonging to an arbitrarily curved Riemannian space.

© 2008 Elsevier Inc. All rights reserved.
1. Introduction

1.1. Possible perceptual spaces

In his Critique of Pure Reason, Kant (1902) argued that the truths
of geometry are synthetic a priori truths. That is, three-dimensional
Euclidean space is a necessary, but not tautological, presupposed
form underlying all human spatial experience. Kant seems to
be referring to what we today call the ‘‘intrinsic’’ geometry of
perceptual space, rather than its ‘‘extrinsic’’ geometry. Extrinsic
geometry refers to the relationship between the structure of the
observer’s perception and the actual structure of physical space. It
gives the geometrical transformations necessary to map physical
space onto perceptual space. Let us give an example: assume that
both physical space and our internal representation of space are
Euclidean, and that our percepts are distorted so that perceived
objects are veridical only up to a scaling factor in depth (e.g., a
circle is perceived as an ellipse). If such were the case, then the
extrinsic geometry would be affine. It has long been known that
many geometric relations are distorted in perception. For example,
perceived distance is compressed over a large range (Gilinsky,
1951), apparent parallel alleys and equidistance alleys are not
physically parallel and equidistant (Blumenfeld, 1913; Indow &
Watanabe, 1984), apparent frontoparallel planes are not physically
frontoparallel (Helmholtz, 1962; Ogle, 1964), and lines perceived
as curved might be straight in the physical environment (Todd,
Oomes, Koenderink, & Kappers, 2001).
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Intrinsic geometry, by contrast, provides a global set of
constraints by which the judgments of a given observer are
formally related to one another, irrespective of their relation to
the external environment. Our topic here is the structure of the
intrinsic geometry of perception.1 That is, we are dealing with the
internal geometry of a subject’s perceptual space andnot at allwith
the relationship between perceived and actual shape. Of course,
we are assuming that there is a geometry of internal perceptual
space—in other words, that perception is stable and consistent
enough to support such a geometry.
There are two fundamentally different ways in which intrinsic

geometry could depart from being Euclidean. The first way is for
it to stay within the realm of more primitive geometries, this
is, geometries that do not have an internal metric structure. An
instance of this is affine geometry. The second way is to keep a
metric structure but to define this metric in a different way from
that used in Euclidean geometry. An instance of this is Riemannian
geometry.
The fact that perceived structure could be non-Euclidean2 is not

trivial. The interpretation of many psychophysical studies relies
on the assumption of a Euclidean percept. The conclusions from
any psychophysical experiment in which a variable is measured
by an indirect method can potentially be affected by erroneously
assuming Euclidean geometry as valid. By an ‘‘indirect method’’
we mean estimating the variable of interest by measuring a

1 Notice that, as used in psychophysics, thewords ‘‘intrinsic’’ and ‘‘extrinsic’’ have
different meanings from those given in differential geometry.
2 We will use the term non-Euclidean to include any geometry that is not
Euclidean. In some branches of geometry, the term non-Euclidean is usually
restricted to meaning Riemannian geometries other than Euclidean.
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different variable and linking the two variables through standard
Euclidean geometry. For instance, in studies of structure from
motion (Domini & Braunstein, 1998; Domini & Caudek, 2003;
Domini, Caudek, & Richman, 1998) and motion–stereo depth-
cue combination (Domini, Caudek, & Tassinari, 2006) it is often
assumed that the relationship between the perceived slant of a
surface and the perceived relative depth between two points on
that surface satisfies Euclidean geometry. It is unclear at this time
whether and how the conclusions drawn from such studies would
be affected if the Euclidean assumption were relaxed.
Siding with more primitive geometries, Gibson (1979) sug-

gested that Euclidean metric distances in 3-dimensional space are
not a primary component of an observer’s perceptual experience.
This hypothesis has been developed and tested by others (Do-
mini & Braunstein, 1998; Domini & Caudek, 2003; Domini et al.,
1998; Norman & Todd, 1992, 1993; Tittle, Todd, Perotti, & Norman,
1995; Todd & Bressan, 1990; Todd & Norman, 1991; Todd & Re-
ichel, 1989). Their findings indicate that observers are quite accu-
rate and reliable at judging an object’s topological, ordinal, or affine
properties and that the perception of rigid motion occurs when
these properties remain invariant over time. However, accuracy
is low for judgments requiring veridical perception of Euclidean
metric structure, such as judgments of lengths or angles. One pro-
posal, discussed in detail by Norman and Todd (1992), is that per-
ceptual space can best be described as a more abstract space, in
which the concept of distance, as found in Euclidean space, is not
defined. Norman and Todd give the hierarchy of spatial structures
that might be available to our perceptual system, from the most
concrete to the most abstract (i.e., to the most primitive), as Eu-
clidean, affine, ordinal, topological, and nominal (or categorical).
This hierarchy has some resemblance to the classification of spaces
given by Klein (1957), who showed that Euclidean geometry could
be seen within an evolutionary sequence of more and more com-
plex geometries: topological, affine, similarity group, Euclidean.
Another, more extreme, proposal suggests that the internal struc-
ture of an object, as recovered from structure frommotion, is inter-
nally inconsistent (Domini & Braunstein, 1998; Domini & Caudek,
2003; Domini et al., 1998). Thus, although observers can exhibit a
conceptual understanding of Euclidean metric structure, the basis
of this knowledge might be more cognitive than perceptual.
However, in all the cases described above the psychophysical

evidence is also consistent with an alternative interpretation, one
in which the recovered structure of the perceived object (that is,
its intrinsic structure) is still essentially Euclidean but physically
inaccurate. That is, the perceived shape of an object differs from
the actual or simulated shape, so these experiments might reflect
the properties of extrinsic rather than intrinsic geometry.
By a second alternative, mentioned above, the departure

from Euclidean geometry is through a change in the metric of
the space, so that the concept of distance is still defined but
differently from the way in which it is defined in Euclidean
geometry. This generalization of Euclidean space is Riemannian
space. Riemannian geometry was first put forward in a general
form by Bernhard Riemann in the nineteenth century (Petersen,
1998). It deals with a broad range of geometries whose metric
properties vary from point to point, as well as two standard types
of non-Euclidean geometry—spherical geometry and hyperbolic
geometry—plus Euclidean geometry itself. Euclidean space, whose
curvature is zero, is the simplest case of Riemannian space. The
essential difference between Euclidean and Riemannian geometry
is the nature of parallel lines. In Euclidean geometry, if we start
with a line l and a point A not on l, then we can draw only one
line through A that is parallel to l. In hyperbolic geometry, by
contrast, there are infinitely many lines through A parallel to l,
and in elliptic geometry, parallel lines do not exist. An example
often used to make Riemannian space more intuitive is to look at
what happens in 2D space. Euclidean geometry is the geometry
perceived by an observer livingwithin a flat surface (for example, a
plane). A non-Euclidean geometry is the geometry perceived by an
observer living within a curved surface (for example, a sphere), the
surface being curved into a third spatial dimension. Riemannian
geometry, as a description of perceptual space, is clearly a different
alternative from those of the first of our categories, which contains
more abstract (primitive) geometries—e.g., affine, topological, and
similarity spaces—in which distance is not defined.
Luneburg (1947) introduced a Riemannian space of constant

curvature as a description for visual space, a model that was
further developed by Blank (1958, 1978). Recent experiments have
shown that the assumption of a constant curvature is generally
not valid (Cuijpers, Kappers, & Koenderink, 2001; Koenderink &
van Doorn, 2000). For instance, Koenderink and van Doorn (2000)
used classic geometry in a method that positioned the subject at
the barycenter of equilateral triangles of various sizes. By remote
control, the subject rotated ahorizontal arrow located at one vertex
of the triangle so that it appeared to point to a sphere located at
another vertex. From the angle subtended by the visual direction
to the arrow and the exocentric pointing direction—the veridical
value was 30◦—Koenderink and van Doorn obtained the perceived
angle subtended by a vertex of the equilateral triangle. Then they
derived the curvature of Riemannian geometry from the departure
of the sum of angles of the three vertices from 180◦. Koenderink
and van Doorn found that the curvature changed from elliptic in
near space to hyperbolic in far space, to parabolic at very large
distances. Though Howard and Rogers (2002) note the possibility
ofmeasurement bias distorting subjects’ settings, the results of this
elegant experiment are intriguing and important.

1.2. Multiple cues and the geometry of perceptual experience

Regardless of what geometry best describes our perceptual
experience, shape must be obtained by combining information
from the multiple cues available in the sensory input. One of
the major problems in vision (and in perception in general) is to
understand how the brain integrates the information provided by
multiple cues. For example, by combining information fromseveral
depth cues, the visual system can estimate 3D layout with greater
precision across a wider variety of viewing conditions than it could
by relying on any one cue alone (Clark & Yuille, 1990). To realize
this advantage, the reliability of each depth cue must be factored
into the combination rule.
Several approaches have been proposed to understand how our

perceptual system can solve the cue-combination problem in an
effective manner. One approach to optimizing cue combination,
theMaximumLikelihood Estimation (MLE)model, is statistical and
uses a cue-combination rule that results in an estimator that is
often unbiased and hasminimum variance (for a review, see (Oruc,
Maloney, & Landy, 2003)). An alternative approach is to apply
Bayesian methods, in which the observer chooses an estimate
that is the most probable given the image data (for a review, see
(Kersten, Mamassian, & Yuille, 2004)). The two approaches give
very similar estimates under many circumstances. A number of
studies have tested and confirmed the quantitative predictions
of the MLE model for various cues (Alais & Burr, 2004; Ernst &
Banks, 2002; Gepshtein & Banks, 2003; Hillis,Watt, Landy, & Banks,
2004; Knill & Saunders, 2003; Landy & Kojima, 2001). Here we
show that if the MLE, Bayesian, or equivalent models are valid
characterizations of cue combination (as they seem to be), then
Euclidean geometry cannot describe our perceptual experience.
Rather, our perceptual spatial structure would be better described,
at best, as belonging to an arbitrarily curved Riemannian space.
Summing up, there is ample evidence that perceptual space is

not Euclidean, though there is still no consensus in the scientific
community about this. As previously mentioned, many authors
still treat or make the assumption that perceptual space is
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Euclidean. The intention of this article is to take a different
approach from previous work by showing in a more explicit way
why perceptual space cannot be Euclidean; the direct empirical
evidence about this question is not our point. Instead, we assume
first thatMLE is a valid approach, based on empirical evidence, and
then show that if this is so, then perceptual space is not Euclidean.
In short, we will show that a Euclidean perceptual space is not
compatible with MLE.
We can summarize the logic of this article as: (1) Mathemat-

ically, the shape obtained when two Euclidean shapes are com-
bined by means of an average—an average that can be taken not
just over depth values, but over any observable quantity, such as
an angle—will only be Euclidean if the weights have very specific
values. (2)Maximum likelihood estimatedweights are determined
by reliabilities (specifically, the reliability of a given cue in predict-
ing a variable), not by geometrical constraints; one proof of this is
that perceptual learning can change the weights of a given depth
cue (see, e.g., Jacobs & Fine [1999]). (3) Conclusion: MLE is not Eu-
clidean (except by chance).

1.3. Analysis of the inconsistency between MLE and Euclidean
perceptual space

Cue combination as described by MLE and Bayesian models
seems to be in close agreement with whatever procedure our
perceptual system uses. They provide a rule to obtain the final
estimate of a perceptual variable as the weighted average of the
estimates of the individual cues. For instance, our perception of
depthmight combine information frommotion parallax, binocular
disparity, shading, texture, perspective, and so forth.
Let us assume that we have a series of variables xi (n

in total), each of which represents a measurable perceptual
property (distance between two points, angle, etc). Individual cues,
represented by the index j (m in total), each provide an estimate, x̂ji,
for each variable xi. The estimates given by each cue are, in general,
different from one another. A linear depth-cue combinationmodel
states that the observed value, x̂obsi , will be:

x̂obsi =
m∑
j=1

ω
j
i x̂
j
i, (1)

where the weights ωji satisfy
m∑
j=1

ω
j
i = 1. (2)

(Note that MLE estimates are not necessarily minimum variance—
but they are minimum variance estimates whenever the noise
in the cues involved is uncorrelated (Cochran, 1963)—and not
necessarily unbiased. Inwhat followswewill assume for simplicity
that these estimates are unbiased, so Eq. (1) is valid. This will
not be a limitation to the generality of our results: If a different
strategy other that weighted averages were used for depth-cue
combination, wewould still have a constraint to be satisfied, albeit
this will differ from Eq. (1). The results that follow are due to
the existence of a constraint in itself, regardless of its specific
format, that is, whether it is given by Eq. (1) or by some other
cue-combination rule. For instance, the weighted sum model is
equivalent to a Bayesian model with a flat prior and flat cost
function.)
In principle, there could be any number of variables and any

number of cues; each additional one will increase the number
of weights and thus the complexity of the problem. Thus, let us
limit our analysis to the simplest case, the two-variable, two-cue
scenario.3 To show that nothing essential is lost by this constraint,

3 The introduction of additional variables into a single relation introduces
additional weights but adds nothing new to the analysis or the conclusions that
notice that there could be at most n − 1 independent geometric
relations among the variables xi. (A simple example of a geometric
relation would be x1 = 2πx2, where x1 is the circumference of a
circle and x2 is the radius.) Let us write them as:

x1 = f1(x2, . . . , xn),
x2 = f2(x3, . . . , xn),
· · ·

xi = fi(xi+1, . . . , xn),
· · ·

xn−2 = fn−2(xn−1, xn),
xn−1 = fn−1(xn).

(3)

By substituting the equation at the bottom into the one above it,
and then repeating this procedure until we reach the equation
located at the top, this can be reduced to the n− 1 relations:

x1 = g1(xn),
· · ·

xi = gi(xn),
· · ·

xn−1 = gn−1(xn).

(4)

Here gn−1(xn) = fn−1(xn), gn−2(xn) = fn−2(fn−1(xn), xn), and so
on. This shows that the variables in Eq. (4) are related only in pairs,
and thuswe can restrict ourselves,without loss of generality, to the
analysis of the two-variable scenario.4 Let us call the two variables
x and y. Then n = 2, and the set of n− 1 relations shown in Eq. (4)
become the single equation

x = g(y). (5)

Let us assume the best-case scenario, in which the structure
recovered fromeach individual cue, j, is Euclidean, and thus all cues
satisfy the geometric relation given by Eq. (5):

x̂j = g(ŷj). (6)

The questionwe ask is: Does the geometric relation given by Eq.
(5) still hold for the final percept? In otherwords, does the equation

x̂obs = g(ŷobs) (7)

hold?
Asmentioned, wewill restrict our analysis to the simplest, two-

cue scenario. Call the two cues M and S (e.g., motion and stereo).
Let us assume that Eq. (7) is valid. Then substituting Eq. (1) into Eq.
(7) we get:

ωMx x̂
M
+ (1− ωMx )x̂

S
= g[ωMy ŷ

M
+ (1− ωMy )ŷ

S
] (8)

from which we obtain:

ωMx =
g[ωMy ŷ

M
+ (1− ωMy )ŷ

S
] − x̂S

x̂M − x̂S
=
x̃− x̂S

x̂M − x̂S
(9)

where x̃ = g[ωMy ŷ
M
+ (1− ωMy )ŷ

S
] = g(ŷobs).

Now, for Eq. (7) to be true, the value of ωMx given by Eq. (9)
must lie in the interval [0,1] for any value of ωMy ∈ [0, 1]. (Notice
that, when ωMx = ωMy , Eq. (8) reduces to Jensen’s inequality (see
e.g., (Hardy, Littlewood, & Polya, 1934)). In such a case, the left side

will be obtained here, which in the end are the result of having variables subject to
sets of independent constraints (that is, MLE and geometric constraints).
4 Wewill not analyze the case of fewer than n−1 relations, which is not reducible
to be a function of a single variable, but instead will be a function of more than
one. Again, the introduction of additional variables into a single relation introduces
additional weights but adds nothing new to the analysis or the conclusions that will
be obtained here.
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Fig. 1. (a) If x = g(y) is a monotonic function, then the condition expressed in
Eq. (10) is fulfilled: x̃ always falls between x̂M and x̂S . (b) If x = g(y) is a non-
monotonic function, then the condition expressed in Eq. (10) is not valid: there are
values of x̃ that do not fall between x̂M and x̂S .

of Eq. (8) is usually different than the right side; they are equal
only if the function g satisfies certain conditions). It is easy to see
that if ωMy = 0, then ω

M
x = 0, and if ω

M
y = 1, then ω

M
x = 1. For

intermediate values of ωMy , this condition is equivalent to:

x̂S < x̃ < x̂M if x̂S < x̂M

x̂M < x̃ < x̂S if x̂M < x̂S .
(10)

If x = g(y) in monotonic (see Fig. 1a), the inequality given in
Eq. (10) implies that there is a single solution to Eq. (9) and thus,
given x̂S, x̂M , ŷS and ŷM , Eq. (7) is valid only for a single pair of
weights ωMx and ω

M
y . If x = g(y) is not monotonic, then there are

values of x̂S, x̂M , ŷS and ŷM forwhich the inequality given in Eq. (10)
is not satisfied (see Fig. 1b) and thus Eq. (7) is not true. In this latter
case the percept cannot be Euclidean.
Let us concentrate then on the cases in which the Euclidean

constraint could still be satisfied by having an adequate pair of
weights: the monotonic case and the non-monotonic case with
values of x̂S, x̂M , ŷS and ŷM forwhich the inequality given in Eq. (10)
is satisfied. For these cases, Eq. (9) imposes a Euclidean constraint
on perception by establishing the relationship that must hold
between two parameters (the weights given to motion for two
different variables, in this example). MLE as well as Bayesian and
similar methods (and whatever method our visual system uses to
combine cues) impose a constraint on the weights, too. These two
constraints are independent: the Euclidean constraint is given by
geometry, and the MLE constraint is related to the reliability of
a given cue in predicting a variable. Let us look at the Cartesian
space in which the two weights, ωMx and ω

M
y , represent the two

coordinate axes. Cue combination constrains these two weights
to take on a specific pair of values within the interval [0, 1], the
values being a function of the reliabilities not only of the motion
cue but also of the other cues for each of the two properties, x
Fig. 2. The isolated dot represents the weights prescribed by MLE or any other
cue-combination process. The solid curve represents the Euclidean constraint. In
general, the MLE solution and the Euclidean curve will not intersect, except by
chance. If they do intersect, theweights from bothwould agree, that is,ωMx Euclidean =
ωMxMLE .

and y, being estimated. Such a pair of weight values is shown as
point (ωMyMLE, ω

M
xMLE) in Cartesian space in Fig. 2. The Euclidean

constraint from Eq. (9) will result in a curve in this space, also
shown in Fig. 2. Let’s assume that the actual value for ωMy agrees
with the value prescribed by the depth-cue combination rule. For
the Euclidean constraint to be satisfied, ωMx has to take a specific
value on the curve (ωMx Euclidean in Fig. 2). It could happen that the
Euclidean constraint curve includes the point (ωMyMLE, ω

M
xMLE) by

chance; if so, then ωMx Euclidean = ωMxMLE. But this will not happen
in general. In general, these two constraints will not give rise to
the same weight values and will not be valid simultaneously. The
reason is that the probability that two independent constraints
result in the same weights is zero. There still remains the question
of whether the departure from Euclidean (as measured by the
difference between the two weights) would be large enough to be
detectable and thus leading to practical consequences. The answer
to this question seems to be positive. A detailed example for the
case of surface slant estimation is analyzed in the Appendix.
Summing up, various studies have tested and confirmed the

quantitative predictions of the MLE model for different cues, as
indicated in the Introduction. The MLE constraint is independent
of the Euclidean constraint given by geometry. The implication,
therefore, is that perception, in general, is not Euclidean.
Implicit in this conclusion is the assumption that there is always

more than one cue available. This seems like a valid assumption.
There is the possibility that the visual system imposes a veto on
all but one cue (for example, the most reliable one). In such an
extreme case (robust estimation, see (Landy, Maloney, Johnston,
& Young, 1995)) there is no cue-combination constraint to violate
the Euclidean geometry constraint. However, the single-cue case is
suboptimal in general, inconsistentwithmost laboratory evidence,
and therefore not likely to represent the way our perceptual
system works in daily life.

2. Discussion

We have shown that even if individual perceptual cues have
a Euclidean structure, the final percept that emerges from cue
combination will not, in general, be Euclidean. As an intuitive
example, let us assume that the two variables to be estimated are
the radius, r , and the circumference, c , of a circle. Let us also assume
that the recovered structure from each of the two cues, M and S,
is also a circle, and that the estimates of r and c obtained from
each cue differ. If both M and S provide a Euclidean percept, then
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ĉM = 2π r̂M and ĉS = 2π r̂S . Assuming that the final percept is also
be a circle, the perceived values for c and r will be (e.g., fromMLE)
ĉobs = ωMc ĉ

M
+ (1 − ωMc )ĉ

S and r̂obs = ωMr r̂
M
+ (1 − ωMr )r̂

S . In
general, however, these weights will not have values that satisfy
the original relationship c = 2πr , and so ĉobs 6= 2π r̂obs. The circle
will inhabit a curved Riemannian space whose local curvature will
depend on the particular values obtained for ĉobs and r̂obs.
Note that a percept that is non-Euclidean will not appear

‘‘strange’’ to the observer. An object will not pop-out just because
its structure is non-Euclidean. A non-Euclidean slanted plane will
still look like a Euclidean slanted plane, and a non-Euclidean
circle will still look like a Euclidean circle. The only measurable
effect will be that πobs 6= π , but π in itself is not directly
perceivable. However, in the case of the perception of surface slant
(see Appendix), the magnitude of the departure from Euclidean
structure seems to be large enough to bemeasured experimentally.
Our intention here was to show that perception in general

cannot be Euclidean, and that ‘‘at best’’ it is Riemannian. This best-
case scenario is that in which (1) perception is consistent, (2)
perception has an internal metric, and (3) perception based on
each individual cue is Euclidean. Thus, we did not try to prove that
perception is Riemannian, but only that it cannot be Euclidean.
There are other scenarios, including those that might be called the
‘‘worst case’’. For instance, if different judgments of space were
inconsistent with one another then, not only they will not be
Euclidean, but they will not even be Riemannian; there will be no
consistent internal geometry in such a case.
It is worth noting, however, that the MLE models do not

need to, and generally do not, assume a Euclidean perceptual
representation. We’ve shown that they couldn’t validly assume
it. Most of the studies found in the literature do not make any
assumptions about the internal geometry of perceptual space.
Some of them claim otherwise, but in practice they do not test the
assumption because they usually measure only a single variable
(e.g., perceived slant). They do not make any measurements that
require, or test, a geometrical relationship between two different
variables. Thus, most MLE results found in the literature are
actually independent of the assumption of an internal Euclidean
metric. Similarly, it is not necessary to assume a Euclidean metric
to resolve issues of scale incompatibility between the cues. Landy
et al. (1995) discussed the need to get estimates into the sameunits
when combining cues that differ in scale. Landy et al. proposed
ways of ‘promoting’ cues to metric scales, but cue promotion can
be applied to anymetrical space (that is, to any Riemannian space),
whether the metric is Euclidean or not.
A few studies, however—already discussed in the previous

paragraph—do assume a Euclidean relationship between variables,
and thus their results should be interpreted with skepticism (but
these studies are not tests ofMLE, so the issue of the validity ofMLE
is not at stake in them).
All these cue-combination studies, and our demonstration

of their implications for the geometry of internal perceptual
space, seem to make an unsupported, and possibly implausible,
assumption: that humans can readily estimate two or more
geometric properties simultaneously. Perhaps the estimations can
only be made successively, each constituting, in effect, a separate
task.We assumed here the best-case scenario, in which perceptual
space remains stable over time, regardless of task. If this were not
true, then perceptual space would be so unstable that it would
make little sense to assume that it had an internal geometry at
all; the statement that perceptual space is non-Euclidean would
be true without need for further argument.
Finally, it is worth noting that our demonstration is very

general. It applies not only to 3D shape in vision, but also to the
structure of space in general, regardless of what kind of cues lay
behind its recovery—whether they come from the same modality,
e.g. vision, or from different modalities, e.g., vision and touch.
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Appendix. Example: Surface slant estimation

As a concrete example, let us chose our variables to be the
perceived slant of a planar surface, σ , and the depth difference
(measured in a direction parallel to the line of sight) between two
particular points on the surface, ∆Z . We will assume the surface
has a tilt of zero; in other words, iso-distant lines on the surface
are horizontal. In a Euclidean space, the two variables, perceived
slant and depth difference, are related as:

∆Z
Z0
=
∆y
σ

(A.1)

where∆y is the retinal vertical separation between the points, and
Z0 the distance between the observer and the surface. Eq. (A.1) is
a concrete example of a geometrical relationship, as represented
by Eq. (5) in the text. Let us assume that we have two depth cues,
which could be, for example, texture, T , and binocular disparity, D.
If the internal structure of the percepts from each of these cues is
Euclidean, then they satisfy

∆ẑT =
∆y
σ̂ T

and ∆ẑD =
∆y
σ̂ D

(A.2)

were distances were normalized as z = Z/Z0.
Based on our previous analysis, we predict that the perceived

object containing the two cues T and D will depart from the
Euclidean expression:

∆ẑobs =
∆y
σ̂ obs

where

∆ẑobs = ωTz∆ẑ
T
+ (1− ωTz )∆ẑ

D and

σ̂ obs = ωTσ σ̂
T
+ (1− ωTσ )σ̂

D.

(A.3)

The ratio r = ∆ẑobs/( ∆y
σ̂ obs

) gives a measure of the departure
from Euclidean perception. It is equal to 1.0 in the Euclidean case
(see Eq. (A.3)), and the more r departs from 1.0, the more non-
Euclidean the percept will become.
What we want to test here is not whether the cue-combination

percept departs from being Euclidean, which has been demon-
stratedmathematically, but rather whether the departure could be
large enough to be measurable and thus lead to practical conse-
quences. Unfortunately, there are no experiments in the literature
that simultaneously measured perceptual estimates of ∆ẑ and σ̂ ,
for either a single-cue or a combined-cue stimulus. Thus, it is not
possible at this time to test how well psychophysical data agree
with our predictions. But, even if the available data are not com-
plete, we can still obtain some order-of-magnitude estimates us-
ing the data that are available. Specifically, we can use data from
the literature to obtain estimates of r . Using the definition of r and
Eqs. (A.2) and (A.3), we can rewrite r as:

r = (1+ ωTσ δ2)(1− ω
T
z δ1) where

δ1 =
σ̂ T − σ̂ D

σ̂ T
and δ2 =

σ̂ T − σ̂ D

σ̂ D
.

(A.4)

For any pair of values of our choice for δ1 and δ2, we can obtain
reliable values for ωTσ from the work of Hillis et al. (2004) who
measured the reliability of slant estimation across a range of slant
values for two cues, texture and stereo, and from these obtained
predicted MLE weights for the cue-combination condition. They
showed that the actual weights used by human observers do agree
with the MLE predictions for this slant estimation task. From Fig.
5 of Hillis et al. (2004) we can see that the JNDs (Just Noticeable
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Fig. 3. r as a function of ωTz for the parameter values discussed in the main text
extracted from Hillis et al. (2004). Any significant departure of r from unity implies
a significant departure from a Euclidean structure.

Differences) for slant discrimination are about the same for texture
and stereo cueswhen the slants are about 30◦ for texture and 0◦ for
stereo. This happens when the viewing distance is about 100 cm.
Accurate values are not very important, as we will see shortly. The
important issue here is that there are many instances for which
the JNDs (and thus the weights, ωTσ and ω

D
σ ) of the two cues are

the same (and equal to 0.5), but the slants provided by the two
cues differ. In what follows we will assume that perceived and
simulated slants for individual cues are about the same, although
it is known that depth from both of these cues is not always
veridically perceived. This approximation will allow us to use the
simulated slant values instead of the perceived ones, σ̂ T and σ̂ D, in
Eq. (A.4).
The only parameter needed for estimating r that we lack is ωTz .

We do not have data about this weight, so Fig. 3 shows r as a
function of ωTz for the example mentioned above. Values used are
σ̂ T = tan(30◦), σ̂ D = tan(0.01◦) and ωTσ = .5.
Fig. 3 shows that r departs very considerably from 1.0 for any

reasonable value ofωTz : only for very small values ofω
T
z (equivalent

to a veto of the texture cue for depth difference estimation when
stereo is present) is r close to 1.0. More dramatic departures of
r from unity are found when using examples in which the slant
difference between the texture and the stereo cues are larger, or in
examples where σ̂ D is closer to zero. With the value of r estimated
to differ by a large amount from 1.0, departures from Euclidean
structure should in fact be measurable psychophysically.
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