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Abstract

Understanding the brain goes through the assimilation of an increasing amount of biological data going from single cell recording to
brain imaging studies and behavioral analysis. The description of cognition at these three levels provides us with a grid of analysis that
can be exploited for the design of computational models. Beyond data related to specific tasks to be emulated by models, each of these
levels also lays emphasis on principles of computation that must be obeyed to really implement biologically inspired computations. Sim-
ilarly, the advantages of such a joint approach are twofold: computational models are a powerful tool to experiment brain theories and
assess them on the implementation of realistic tasks, such as visual search tasks. They are also a way to explore and exploit an original
formalism of asynchronous, distributed and adaptive computations with such precious properties as self-organization, emergence,
robustness and more generally abilities to cope with an intelligent interaction with the world. In this article, we first discuss three levels
at which a cortical circuit might be observed to provide a modeler with sufficient information to design a computational model and illus-
trate this principle with an application to the control of visual attention.
� 2007 Elsevier Ltd. All rights reserved.
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1. Motivations

Building models and frameworks to compute in a bio-
logically inspired way is fruitful for both neuroscience
and computer science. On one hand, it leads to simulations
that allow a better understanding of the complex relations
between structure and function in the brain. Particularly, it
is possible to investigate the validity of hypotheses onto
these relations. On the other hand, this approach allows
to explore a formalism of computation that is hardly used
in computer science, based on distributed, asynchronous
and adaptive local automata and to learn to master prop-
erties such as emergence, unsupervised learning, multi-
modal processing, robustness, etc. The most critical issue
in this process is to get the pertinent information from neu-
roscience and to select or design the adequate computa-
tional principles. The information can be extracted from
raw data recorded in nervous systems or in behaving ani-
mals. It can also be more elaborated and derive from a
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more conceptualized source, like a functional model. The
computational mechanisms can be derived from a solid
mathematical framework (if available) and benefit from
its properties (stability, convergence proof). Else, it can
be ad hoc mechanisms, suitable for experimental investiga-
tions, the theoretical framework of which remains to be
built. To implement such a complex task as endowing an
autonomous robot with visual search behavior, the inter-
play between neuroscience and computer science involves
several levels of description.

1.1. The microscopic level

The microscopic level requires to identify the adequate
elementary unit of computation depending on the purpose
of the model. For tasks in which the goal is to understand
the inner neuronal functioning, either at the level of a single
cell or at the level of communication and synchronization
between two neurons, spiking neuron models are generally
preferred. In tasks like visiomotor coordination involving
global patterns of cerebral activity and behavioral assess-
ment, we rely on the mean firing rate of neurons or even
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on the behavior of elementary circuits of neurons that can
be found in structures like the cerebral cortex (Burnod,
1990). Choosing such an intermediate level of description
is also fundamental from a computational point of view
since handling the temporal behavior of a neuron at the
level of the spike is a very consuming task for simulations
and is not compatible with the simultaneous evaluation of
millions of neurons. Fortunately, mean firing rate models
neuronal circuits, as proposed for example by the Contin-
uum Neural Field Theory (Amari, 1977; Taylor, 1999) have
proved to be efficient and faithful, compared to cellular
recording of population of neurons (like Local Field Poten-
tial). Such automata aim at explaining the behavior of the
cortical circuitry and generally lay emphasis on the variety
of inputs and outputs which are integrated in cortical cir-
cuits (Bullier, 2001). Whereas thalamic inputs are generally
implemented with a classical integrative model emulating
stimulus-specific units (Ballard et al., 1997), cortico-cortical
relations are represented as performing a gating effect,
implemented with multiplicative connections, and repre-
senting feedback as a modulatory activity onto the percep-
tive flow (Reynolds et al., 2000). Then, the implementation
of a cortical area is only specified by the nature of feed-for-
ward and feedback loops feeding a map of interconnected
units. The behavior of the whole is only a consequence of
patterns of events which are presented in the flows and of
the interplay of the units. In the simulation, everything is
a matter of local numerical computations.

1.2. The mesoscopic level

The mesoscopic level is that of cerebral regions, homo-
geneous at a structural as well as functional level. In the
cortex, cortical areas have been detected for a long time,
by pure observation of the cytoarchitecture (as soon as
the beginning of the 20th century by Brodmann). From
that time, a huge quantity of work has been done to relate
these areas to a functional role and to gather them in infor-
mation flows. This has benefited from great progresses in
visualization and brain activity measurement techniques
(e.g. fMRI, antidromic methods). Sensory and motor
poles, and the nature of processing between them have
been intensively discussed. Particularly, in the visual case,
two main processing flows have been identified from the
occipital visual region (Ungerleider and Mishkin, 1982):
one toward the limbic temporal region (ventral pathway)
dedicated to visual stimuli identification and the other
toward the proprioceptive and parietal regions (dorsal
pathway), the role of which is still intensively discussed
(Milner and Goodale, 1995), from pure spatial localization
to body involvement in visual objects seen as tools. Both
temporal and parietal representations are the internal and
external sensory representations used by the frontal lobe,
seen as the motor pole, responsible for the temporal orga-
nization of behavior (Fuster, 1997).

This simplified picture has to be made more complex in
several ways. Firstly, instead of sequential processing flows,
parallel and redundant processing is reported, in dozens of
interconnected cortical areas (Van Essen and Maunsell,
1983; Zeki, 1978) (e.g. color, depth, texture in various areas
of the temporal lobe; eye, head and body centered informa-
tion in the parietal lobe). Secondly, even if this presentation
lays emphasis on the feed-forward integration (how to
transform visual information into representations of the
identity and the location of relevant objects), feedback
information seems to play a role at least as important as
feed-forward influence (Bullier, 2001) (e.g. receptive fields
of neurons in the parietal lobe changing according to body
parts orientation (Cohen and Andersen, 2002); the features
of a target to look modulate the activity of V4 neurons
(Desimone and Duncan, 1995)). Thirdly, our misleading
functional and symbolic intuition and the weaknesses of
brain imaging techniques incitates us to imagine a step-
by-step processing, where information follows cycles of
processing and builds elaborated representations, whereas
the functioning is certainly much more distributed, asyn-
chronous and sparse (Bullier, 2001).

To better understand and master this counter-intuitive
functioning mode, computational models and simulations
are of very high interest. From a pure structural description
(number and size of areas, connectivity schemes between
them) and from necessary functional recommendations
(local and asynchronous evaluation of units), the local
functioning rules of units (as discussed in the previous sec-
tion) must be confronted here to the achievement of stable
patterns of activity, as observed in the living cortex. This is
consequently a way of refinement for the functioning rules
of the local automaton. The overall activity pattern which
is obtained can also be interpreted as a way to validate the
behavioral level, as discussed at the macroscopic level.

1.3. The macroscopic level

The macroscopic level is concerned with selecting the
task or the behavior you are interested in, and defining
the adequate set of areas (together with their connectivity)
which is supposed to emulate that task or behavior. Mod-
ern imaging techniques and their associated statistical pro-
cessing offer a valuable tool to relate experimental tasks to
brain activations but are not completely satisfactory for
several reasons. Firstly, the brain imaging technology itself
gives some limitations relative to the kind of behaviors and
subjects that can be explored (which are de facto stereo-
typed), to the parts of the brain easy to observe and to their
spatial and temporal resolution. More importantly, observ-
ing a pattern of activity in the brain does not give a com-
plete information neither about the role of the recorded
region in the behavior nor about the kind of information
it stores and processes. More generally, the observed pat-
tern of activity does not provide an interpretation of the
underlying cognitive processes. Consequently, these data
must be correlated with more behavioral, or even psycho-
logical, data and also with brain theories that are them-
selves elaborated from the synthesis and interpretation of



Fig. 1. Feature search can be performed very quickly as illustrated on the
left part of the figure; the disc shape literally pops out from the scene.
However, as illustrated on the right part of the figure, if the stimuli share
at least two features, the pop out effect is suppressed. Hence, finding the
disc shape with the stripes going from up-left to down-right requires an
active scan of the visual scene.
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a large quantity of experimental results. In this picture,
computational models and simulations are complementary
ways of investigation, especially interesting to assess the
validity of an hypothesis or to technically explore an intu-
ition. Using the ascendant approach through levels of
description, as summarized here, also ensures that the
model does not obey a too sequential, centralized,
human-like analysis: whatever the possible bias toward
such an interpretation, the main constraint is that the sim-
ulation has to work in a completely distributed way while
yielding an emergent behavior with acceptable spatial and
temporal characteristics and with comparable underlying
distributed patterns of activity.

2. The computational approach

The computational approach requires in fact to cope
with all these three levels at once in order to have working
computational models that can explain or predict some
experimental results. However, this is a daunting task since
we have to simultaneously integrate data from both anat-
omy, physiology and psychology. This clearly requires to
make clear assumptions and choices at several different lev-
els. We can choose for example among elementary models
of the neuron, architectures, granularity of models, adap-
tive algorithm, etc. As an illustration, we would like to
introduce very briefly one widely studied cognitive phe-
nomenom (visual attention) and explain what are the
choices we did, what those choices implied on the model
and what were their consequences regarding the constraints
brought by the framework of distributed, asynchronous,
and numerical computations we are using.

2.1. Psychological and physiological data

In the early eighties, Treisman and Gelade (1980) pro-
posed that the brain actually extracts, in parallel, some
basic features from the visual information. Among these
basic features, that have been reviewed by Wolfe (1998),
one can find color, shape, orientation or motion. If we con-
sider a visual search behavior, this task is then equivalent
to the finding of conjunction of features that best describes
the target. In this sense, Treisman and Gelade (1980) distin-
guished two main paradigms, see also Duncan and
Humphreys (1989) who proposed a classification of visual
search efficiency in terms of target-distractors similarities:

• Feature search refers to a search where the target suffi-
ciently differs from the distractors to literally pop out
from the search scene.

• Conjunction search refers to a search where the time to
find the target is closely linked to the size of a subset
of the search scene, which contains stimuli that are quite
similar to the target.

Fig. 1 illustrates these two search modes using two tasks
whose common goal is to localize a given target. The sec-
ond task takes more time than the first one and the strategy
generally used to perform the task is to successively scan
each circle until finding the target. The reaction time then
closely depends on the size of the subset of stimuli com-
posed by the circles.

While the pop-out effect can be explained solely on stim-
ulus-driven activities, it must be emphasized that in gen-
eral, the selection of a subset of potential targets highly
depends on the target to look for. This selection process
is one component of the more general concept of visual
attention. While the brain is submerged by a high quantity
of information, and because its resources are somehow lim-
ited, it must perform a selection of the relevant information
among what it receives.

In the visual case, this selection mechanism is referred to
as visual attention and can take different forms. On the one
hand, feature based attention characterizes the modulation
on the processing of visual information by the knowledge
of the features of an object of interest (Motter, 1994). On
the other hand, Rizzolatti et al. (1987) provided evidences
for the influence of saccadic eye movements on directed
attention, which led to the premotor theory of attention.
Moore and Fallah (2001) have also shown that the prepa-
ration of an eye movement toward a specific location pro-
vides a bias to the cells whose receptive field covers that
location. This spatial bias is known as spatial attention.
Several experiments have provided evidences that our brain
can provide such a spatial bias covertly in the absence of
the overt deployment of eye movements (Posner et al.,
1980), and that the underlying circuits mediating the covert
and overt deployment of attention might considerably
overlap (Awh et al., 2006).

The first neural correlate of visual attention at the single
cell level has been discovered by Moran and Desimone
(1985) in V4, where neurons were found to respond prefer-
entially for a given feature in their receptive field. When a
preferred and a non-preferred stimulus for a neuron are
presented at the same time in its receptive field, the
response becomes an average between the strong response
to the preferred feature and the weak response to the
non-preferred one. But when one of the two stimuli is
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Fig. 2. When scanning a visual scene, going for example from stimulus 1
to stimulus 4, as illustrated on the left of the figure, the image received on
the retina is radically changed after each eye movement. When the task
requires to memorize the positions of the previously focused stimuli, the
difficulty is to be able to update their memorized positions after each
saccade. The figures on the stimuli are shown only for explanation purpose
and do not appear on the screen; all the stimuli are identical.
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attended, the response of the neuron represents the
attended stimulus alone (strong or poor), as if the non-
attended were ignored. Attentional modulation of neuronal
activity was also observed in other cortical areas. In Treue
and Maunsell (1996), the author reported feature-based
attentional modulation of visual motion processing in area
MT. An increasing literature is also reporting that the
modulatory effect of attention is not restricted to the
extrastriate cortex but also extends to the early visual areas
(Silver et al., 2007).

The observed modulatory effect of attention on the pro-
cessing of single units raises the intriguing issue of deter-
mining its origin(s). As detailed in the introduction, the
processing of visual information is supposed to rely on
two pathways. On the one hand, the ventral pathway,
going from the occipital lobe through the temporal lobe
is classically thought to mediate object recognition (Gross,
1994). Several studies have shown the influence of the
intrinsic properties of an object of interest on the process-
ing of single cells (Chelazzi et al., 1998). This feature-based
mechanism could originate from the ventral pathway via
massive feedback connections (Rockland and van Hoesen,
1994), and might be generated in the ventrolateral prefron-
tal cortex to provide a bias corresponding to the features of
an object of interest. On the other hand, the dorsal path-
way going from the occipital lobe through the parietal lobe
is supposed to be involved in producing motor representa-
tions of sensory information for the purpose of guiding
movements (Cohen and Andersen, 2002; Matelli and Lup-
pino, 2001). The temporal properties of neurons in the
parietal cortex cannot be solely explained by propriocep-
tive feedbacks as a consequence of a performed movement.
Rather, anterior areas might provide more posterior areas
with the parameters of an impeding movement, then lead-
ing to anticipatory activations or remapping, as observed
by Merriam and Colby (2005) and Merriam et al. (2007).
The latter have shown that, in the case of saccadic eye
movements, neurons in lateral intraparietal area (LIP)
exhibit saccade-related activity occurring before, during
and/or after a saccade bringing a stimulus in the receptive
field of the recorded neurons. These recordings reveal that
a circuit, involving parietal areas, is able to predict the
future position of currently observed stimuli after an
impeding eye movement. Moreover, in the case of overt
deployment of attention, a crucial issue is to be able to
update the position of previously attended stimuli after
each saccade (see Fig. 2).

Saccadic eye movements are too fast to suppose that a
memory of the targets can be continuously updated with
the visual input. Hence, a specific mechanism using the
memorized locations of the targets and an impeding eye
movement, predicting the future positions of these targets
must exist. The frontal eye field (FEF) might be involved
in such a circuit. As shown by Sommer and Wurtz
(2004), FEF receives projections from the superior collicu-
lus (SC), relayed by the mediodorsal thalamus, which could
convey a corollary discharge of movement commands. Sev-
eral studies have also shown memory related activity in
FEF (Lawrence et al., 2005) as well as predictive responses
(Umeno and Goldberg, 1997). This illustrates that the
brain consists in several cooperating areas and that a
behavior observed in tasks such as a visual search actually
emerges from distributed computations.
2.2. Computational approaches to visual attention

In the field of computational neuroscience, several
attempts at modeling visual attention have been proposed.
The pioneering work of Koch and Ullman (1985), relying
on the Feature Integration Theory (Treisman and Gelade,
1980), distinguishes several channels extracted from the
visual input (color, orientation, and intensity), each of
them represented in different sets of maps, used to build
conspicuity maps to finally lead to a single spatial map
representing the behavioral relevance of each location in
the visual field, the so-called saliency map. The selection
of a location to attend to is then determined by a win-
ner-take-all operation on the saliency map. A memory
of the attended locations finally biases that winner-take-
all computation to avoid attending to previously attended
locations. This phenomenon reflects one component of
the inhibition-of-return introduced by Posner and detailed
in the previous section: a cued location facilitates the
deployment of attention at that location when the time
between the cue and the target is short, but, for longer
delays, we observe the reverse effect and, if the target is
presented at a cued location, its processing takes longer.
The model proposed by Koch and Ullman was the first
step to further developments (Itti and Koch, 2001) but,
from the past few years, we are observing a slight shift
from purely feed-forward models to models using both
feed-forward and feedback projections (Tsotsos et al.,
1995), since it is now widely accepted that feedback
influences play a crucial role in single unit processing.
Among these models, we will focus in the rest of this
article on the work of Hamker (2004). This model clearly
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distinguishes between the ventral and dorsal pathways
with a feature-based and a spatial stream processed along
two separate pathways. It also emphasizes the role of
feedback projections that are supposed to be the cause
of attentional effects. The ventral stream provides a fea-
ture-based bias corresponding to an object of interest (an
object we are looking for in a visual search task for exam-
ple) and the dorsal stream provides a spatial bias corre-
sponding to a region of interest, that might be the target
for an impeding eye movement. The main hypotheses is
that V4 could be an intermediate layer, being the major
source of information carrying along the ventral and
dorsal pathways, and the major target of projections from
higher cortical areas. The proposed model exhibits good
performances in visual search task but one of the limita-
tions is that the model is restricted to the covert deploy-
ment of attention, where no eye movement is initiated.
We will see in the following sections a possible extension
of this approach to deal with saccadic eye movements.

2.3. A computational model

The models we propose are built in the framework of
local, distributed, asynchronous and numerical computa-
tions by considering assemblies of units that we call maps,
each unit being connected with other units in the same map
by lateral connections and with units from other maps by
afferent connections. A unit is a stand-alone computational
element, characterized by a numeric activity uM(x, t) that is
locally updated by computing the influence of input units.
The activity of each unit follows the ordinary differential
equation (1) coming from the Continuum Neural Field
Theory (Amari, 1977)
Receptive field

Population of orientation selective cells
Feature based

attention Spatial attention

a b

Fig. 3. (a) A population of orientation selective cells sharing the same receptive
attention as proposed in the contrast gain model. (b) When a preferred and non
the neuron is an average between the responses to the stimuli presented separate
stimulus, the cells respond as if only the attended stimulus was present. This eff
field. The plots are displayed in the same order than the legend.
uMðx; t þ 1Þ ¼ uMðx; tÞ þ s � duMðx; tÞ
duMðx; tÞ ¼

X

y2M

wxy � uMðy; tÞ þ IðxÞ ð1Þ

where M and M 0 are maps of units and I(x) is a function
computing the influence of afferent units.

A key point is to determine how the cells combine their
inputs to perform their local computations. V4 neurons are
a striking example of attentional modulation at the single
cell (or small population) level, as explained in the previous
section. Let us consider a population of orientation selec-
tive cells, receiving afferent connections from lower level
areas, these connections being directly modulated by feed-
back connections coming from higher level areas. These
feedback projections carry information about the features
of an object of interest (feature based attention) and a loca-
tion that might be the target of an impeding action (spatial
attention) that have been shown to have an influence on the
response of V4 neurons. In Taylor et al. (2006) and Rey-
nolds et al. (2000), the authors show that, among different
possibilities of integration of the feedback modulation, the
contrast gain model seems to be the most suitable (Fig. 3a).
In this model, if we record the activity of one unit while
presenting two stimuli in the receptive field of the popula-
tion (a preferred and a non-preferred stimulus for the con-
sidered unit), we observe two properties (Fig. 3b):

• attending the preferred stimulus drives the activity of the
cell toward its response when only the preferred stimulus
is presented;

• attending the non-preferred stimulus drives the activity
of the cell toward its response when only the non-pre-
ferred stimulus is presented.
field. The afferent connections are modulated by feature-based and spatial
-preferred stimuli are both presented in the receptive field, the response of
ly. When feature-based attention is directed either toward one or the other
ect is even stronger when spatial attention is directed toward the receptive
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These modulatory effects reflect the biased competition
mechanism introduced by Desimone and Duncan (1995)
and illustrate how we can deal with biological data at the
single-cell level.

Let us now consider modeling at a higher level, gather-
ing elementary computational units to form maps. These
maps combine flows of information and cooperate in a dis-
tributed way to allow the emergence of a global behavior.
As an illustrating example, let us consider the mechanisms
with which the brain might memorize the attended loca-
tions and update these positions after each eye movement,
in the case of an overt deployment of attention (Fig. 2). In
Vitay and Rougier (2005), we have proposed to connect
homogeneous assemblies of units to build a dynamic work-
ing memory circuit. We have extended this model in Fix
et al. (2006) to take into account the eye movements while
performing a visual search task, by adding a mechanism
that predicts the consequences of these saccades on the
visual perception. We have shown that disrupting this
mechanism drastically impairs the performances of the sys-
tem. At the single cell level, these models are homogeneous
and are built with the same basic units. The specificity of
each map only comes from the pattern of connections that
connect it to the other maps. The structure of these projec-
tions defines the architecture at a mesoscopic level.

We can also think about a model as a whole, and use it
to perform visual search tasks, measuring psychological
variables as, for example, the reaction time. Let us consider
Fig. 4. An example of model relying on local, distributed, asynchronous and nu
can be found in the text below.
the model depicted on Fig. 4. This figure illustrates how the
models proposed in Hamker (2004) and Fix et al. (2006)
could be combined, leading to one among other possibili-
ties of computational models that gather the psychological
and physiological data detailed in the previous sections.
The purpose of this article is not to explain deeply the pat-
terns of connections between the maps. Rather, we would
like to emphasize how the flows of information are com-
bined to allow the emergence of a behavior in a distributed
architecture. The interested reader can find a complete
description of the models in Hamker (2004) and Fix et al.
(2006).

The visual input is processed in parallel in different
maps, extracting basic features. This distributed represen-
tation of the visual input, labeled Feature Maps, then feeds
two pathways, a spatial non-feature specific one and a fea-
ture roughly non-spatial one. The main purpose of the first
is to spatially select a location of interest (within the Sal-

iency and Focus maps), to memorize that given location
has been attended to (the memory consists in a recurrently
connected circuit labeled working memory), and to antici-
pate the consequences of an eye movement on this mem-
ory, if the movement is triggered (with the Anticipation

map). A key point of the model is the use of feedback pro-
jections of the selected location to the Feature maps, bias-
ing this distributed representation toward the features of
the stimulus at the attended location. The feature specific
pathway then combines this representation with a target
merical computations, used to perform a visual search task. Further details
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required to perform the task, increases linearly with the set size in the
conjunction search paradigm while keeping constant in the feature search
paradigm.

Fig. 6. Example of scanpath obtained during a search in which the model
has to perform an eye movement toward each black target. The dashed
rectangle represents the visual field and the circles represent its successive
positions. The target at the bottom right is never focused since it never
appears in the visual field.
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template. This template might be a complex combination
of basic features and is also projected via feedback connec-
tions to the Feature maps. The resulting activities in the
Feature processing maps is then propagated to the decision
area so as to provide it with the necessary clues to decide
which behavior to adopt. In our case, we distinguish two
decisions: one is to switch covertly the locus of attention
(covert attention) and the other is to perform an eye move-
ment toward that location (overt attention). When an eye
movement is performed, the target is decoded from the
Focus map. A striking consequence of the distributed nat-
ure of the computations is that the memory is fed with
an attended location at the same time that the decision to
switch covertly or overtly the attention is taken.

If we now use this model to perform a visual search
task1 and see it as a black box, we can restrict the measure-
ments to the available ones from the point of view of an
external observer, as it would be done by psychologists per-
forming this kind of task with monkeys. We can for exam-
ple measure the time it takes for the model to perform the
task. In a task involving eye movements, we can also record
the number of saccades performed by the ‘‘subject’’, the
target of the movements, the scanpath, etc. The Fig. 5 rep-
resents the reaction time, function of the set size, in the two
paradigms of feature search and conjunction search. In the
first case, the task is to detect a blue bar, among green bars.
In the second case, the task is to detect a blue bar at 45�
among distractors that share at least one feature with the
target, namely green bars at 45� or blue bars at 135�. We
can then observe a classical set size effect: in a feature
search, the time to perform the task does not depend on
the number of distractors whereas the time to perform a
conjunction search linearly depends on the set size.

Fig. 6 is an illustration of a scanpath obtained during a
visual search task in which the model has to perform an eye
1 Videos of the model performing visual search tasks for the two
paradigms of feature and conjunction search are available at http://
www.loria.fr/~rougier/index.php?n=Demos.Demos.
movement toward each of the black targets, the visual field
being limited to the dashed rectangle2. The working mem-
ory contains all the previously focused stimuli and is
updated after each movement. It thus provides the selec-
tion process with an inhibitory bias so that, when several
targets appear in the visual field, the next selected target
is necessarily a non-previously focused one.
3. Discussion

The interplay between neuroscience and computer sci-
ence clearly needs to be reinforced if we want to go any fur-
ther in our understanding of cognition. This is one of the
goals of the field of computational neurosciences that aims
ultimately at gathering knowledge and expertise from sev-
eral domains to propose new theories for brain and cogni-
tion. This article highlights a possible way of bridging the
gap between computer science and neuroscience by
explaining what are the interests and the constraints of
modeling and how to cope with the huge amount of avail-
able data from psychological experiment, fMRI, single cell
recording, etc. We have to make hypothesis and choices
without necessarily having the legitimacy to do so. How-
ever, we think that having such a strongly constrained
and clearly defined modeling framework helps us to make
the right assumptions. In this sense, we clearly try to
restrict ourselves to the design of the most simple model
that can explain data without strong considerations for
an exact model. For example, we know that communica-
tion between neurons is done using spike trains while we
2 A video of the model performing a visual search task with explicit
eye movements is available at http://www.loria.fr/~rougier/index.
php?n=Demos.Demos.

http://www.loria.fr/~rougier/index.php?n=Demos.Demos
http://www.loria.fr/~rougier/index.php?n=Demos.Demos
http://www.loria.fr/~rougier/index.php?n=Demos.Demos
http://www.loria.fr/~rougier/index.php?n=Demos.Demos
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are using mean-firing rate models of neuron. At the single
cell level, this would be a hardly-defendable position since
we cannot take into account a wide range of phenomena
that are known to happen at this scale. However, at the
functional level, where virtually thousands of such units
are interacting together, this assumption makes sense and
helps us to have a better understanding of the whole. Of
course, a question remains on how properties of a func-
tional model would cope with a more detailed model of
neurons. Would it change fundamentally or would it be
rather a refinement of the existing properties: the strength
of computational models is to have the opportunity to
refine this level of description, to compare it with more pre-
cise observations, without drawing again the whole system.

At the mesoscopic level, modeling meets neuroscience
on the analysis of implicated populations and of their
underlying behavior. Similarly to the refinement process
in neuroscience that corresponds to iteratively better
understand the functional role of a cortical map in a task,
computational models can also enrich their description of
maps of computing units, seen as the crossroads of feed-
forward, feedback and lateral information flows. At this
level, adding learning rules, designed as the way to describe
the mutual influence of these flows, is certainly the most
important task to consider in the near future.

The behavior of computational models at the macro-
scopic level is intended to have a deep impact in the behav-
ioral neuroscience and to offer them a new behaving entity
on which to apply their measurement and analysis. This
can be particularly interesting if the simulations are embed-
ded in such autonomous agents as robots, giving a direct
access to an embodied cognition.
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