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A BAYES APPROACH FOR COMBINING 
CORRELATED ESTIMATES 

SEYMOUR GEISSER 
National Institute of Arthritis and Metabolic Diseases 

A Bayes solution is supplied for an estimation problem involving a 
sample from a multivariate normal population having an arbitrary un- 
known covariance matrix, but a vector mean whose components are all 
equal. Assuming that a particular unnormed prior density is a conven- 
ient expression for displaying prior ignorance, it is then demonstrated 
that a posterior interval for this common mean can be based on Stu- 
dent's t distribution. If prior information can be conveniently repre- 
sented by a natural conjugate prior density, the posterior interval will 
also depend on Student's t. An extension is made to the case of estimat- 
ing the constant difference between two parallel profiles. 

1. INTRODUCTION H ALPERIN [7] discussed the frequently occurring problem of combining 
averages from normal populations where each average was an estimate of 

a common mean ,u. He derived confidence intervals when the estimates were 
either correlated or independent. A Bayesian solution for the independent case 
has already been given by Jeffreys [8, p. 199], therefore, we restrict ourselves 
to a Bayesian approach for the correlated case. 

2. CORRELATED ESTIMATES 

The underlying model discussed by Halperin, assumed that the k-vector ob- 
servations xi, * x,n have joint likelihood 

L(,u, ) oc j -1 In/ 2exp(- trx-' E (xj - e)(xj- ,e) (2.1) 
ji=l 

where A is a scalar, e'= (1, i , 1), l; is the kXk covariance matrix and n>lk. 
We assume in this section that in the absence of any prior objective sample 

evidence that we may assign a diffuse joint prior density to 1-1 and A, which 
may be conveniently represented by 

g(1-l 14)dY-ldloc Y I (k+1) /2d -1d1 (2.2) 

where dX -=IT;>j doi and o-4 are the elements of '-1. Therefore the posterior 
distribution of '-1 and ,u is 

P(1-',, ) cc L(A, Y)g(w-1 ,.) (2.3) 

or 

P(X-1 ,) C J (n-c-1) /2 exp ( tr X- EI (xi - Hte) (xi - e)') (2.4) 

The marginal posterior distribution of ,u is found by integrating out 1- in (2.4) 
and yields 
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COMBINING CORRELATED ESTIMATES 603 
n -n/2 

PQ() oc E (xi- ue) (xj- /ue)' (2.5) 
j=1 

Now let the sample mean vector 
n n 

x=nn- xj and S= (x;-x)(x;-x)' 
j=1 j 

so that 
n 

E(xi;- /-e) (x; - /-e) S + n (x- - /e) (x - /e) ' (2 .6) 
j=l 

Further recall that 

|I+ n (x- -.ze) (x - te) 'S-1|= 1 + n(x-,.ze)'l(x -,.ze). (2.7) 

If we define u = e'S=x, z = e'Sle, w = S-1 we may then obtain from (2.5) 

F - U)~~~2 ]-n/2 PQ(A) Oc [ + 1+ n - nu 2Z1] 
(2.8) 

This yields the result that 

t =~~~~ (2.9) ( z ) 1 + nw - nU2Z-l_ 29 

where t is distributed as the "Student" t distribution with n-I degrees of 
freedom. 

Due to the symmetry of the t distribution one would choose a 1- 2a Bayesian 
probability interval on ,; to be 

fu u 
P - - St,, < /.I < + staX =1 - 2ae (2.10) 

tz z J 

where 
1 + nw - nU2Z-1 

82 = (2.11) (n - 1)nz 

and ta is the ath percentage point of the t distribution. Note also that u/z is the 
posterior mode or mean of A and as shown by Halperin [7], the maximum like- 
lihood estimate of /u. 

3. CHOICE OF THE PRIOR DISTRIBUTION 

As regards ,; a location parameter we may take the view of Jeffreys and 
assume that it is uniformly distributed throughout its domain of definition and 
independent of the elements of '-1. We can then take for the prior distribution 
of '-1 the Wishart family 
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g (2-1)dX-1 cc I Z X l/2exp (-2 tr (k - v + 1)AX-z)dr1 (3.1) 
where A is positive definite, so that X-1 is W[(k-v+1)-1A1, k-v+1]; i.e. 
Wishart with parameter [(k-v+l)-1t-A', k-v+ ]. Hence 1- has charac- 
teristic function [Anderson (1, p. 160) ] 

E exp (i tr z-'0) = I I - 2i(I - v + 1)-1A-10 j(k--V+) /2. (3.2) 

While the density exists only for v<2, the characteristic function exists for 
v <Ik+1. Since r'1 is Wishart distributed with k -v+1 degrees of freedom, it 
seems reasonable to argue, in the sense of Jeffreys, that k - v+ 1=0 degrees of 
freedom may represent a particular display of ignorance, diffuse enough to be 
substantially modified by a small number of observations. Hence we let 
v = Ic + 1 and take for our unnormed prior (2.2). This is much like having a 
single vectorial observation on each of m multivariate normal populations hav- 
ing unknown and different vector means, but the same covariance matrix S;. 
In this case, from the sampling theory point of view, there is no information 
available for a joint inference on the elements of z no matter how large m. On 
the other hand if ni observations were available on the i-th population (i= 1, 

m) and though ni <Ik, so that no single sample provides us with a joint 
inference, it is quite clear that as soon as 

(i - 1) > ki 

our pooled estimate is informative. We may note in passing that a single sample 
of size ni where 1< ni <Ik is jointly uninformative but would provrile informa- 
tion for a marginal inference-say on a particular variance. However, the case 
ni= 1 is uninformative jointly or marginally for the elements of 5, and moreover 
the pooling of m such observations as in the case discussed before still does not 
yield any further information jointly or marginally. We have attenmpted here 
to g;ive some intuitive "justification" for the particular diffuse density that was 
employed by a heuristic argument based on sampling theory considerations. 
Other "justifications" appear in some of the papers cited in section 5. 

More generally, if prior information subjective or otherwise may conven- 
iently be incorporable into the following distribution family 

gqv(A, 5:-1 6, 0, A) o exp (-7 (, _ 0)2 tr '-lee') i 0 j/2 

*exp (-Atr (k - v + I)A-') (3.3) 

we obtain as the marginal poster'ior of ,s 

Pv(Qs 6,0A) 

oC | (z - 0)2ee' + (k - v + 1)A + j (x; - tse)(cX - re) j(n+k-v+1)/2 

Note that for 6>0, v <2 and A positive definite, (3.3) is a natural conjugate 
density in the sense defined in Raiffa and Schlaifer [9]. Further (3.3) reduces 
to (2.5) for 6=0 and v=ck+1. Now if we let S be defined as in the previous sec- 
tion and we further define 
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U-= (kv + I)A + S + n(n + 3)-13(x--e)(x-Oe)' (3.5) 
(nx + 80e) 

y = - ~~~~~~~~~~~~~~(3.6) 
(n +8) 

then (3.4) may be written as 

Pv(pj U,y) [1 + (n + t)y-,je)'Lh(y - ge)](n+k-v+?)2 (3.7) 

If we then let u=e'U-'jF, z=e'U-1e, w-y'U-ly then 

t=(,,._u)[ (n+k-v)(n+ 5)z 1/2 (3.8) 
z 1 + (n + 5)w - (n + 3)U2Z-1 

where t is distributed at the "Student" t with n+k-v degrees of freedom. 
Obviously this reduces to (2.9) for v=k+ 1 and 3 =0. 

4. AN EXTENSION TO THE PARALLEL PROFILE CASE 

Suppose we have a set of k-vectorial observations xi, X2, * x. * Xnon N(n, 1) 
and a second set Yi, * * *, Ym on N(t+gze, Y), where n is a mean vector and A 
a scalar. We seek an estimate for ,u, the assumed constant difference between 
two parallel profiles, vide Greenhouse and Geisser [6]. The joint likelihood 

L(,u, n, 1) cc 1 ,-1 j (n+m)/2 

*exp (-2 tr l-'[S +n(x--n)(x--n)' +m(y-n-ite)(y-n-ite)']) (4.1) 

where 
n _ _ m 

S (x - X-)(xj - x)' + (y3 -y)(yj-y)) 
j==l j= 

and 
n m 

X = n-l ' Xj , y-r- y3. 
j=l1 j-l 

We then multiply L(it, n, 2) by the prior density 

g(g,u n -1)dgdnd1-1 oc j XI(k+l)1i2dAdund1-1 (4.2) 
which yields 

P(,u, n, 1-1) oc I 1- 1 (n+m-k- 1) /2 

* exp (-I2tr N-'[S +n(x--n) (x--n) + m(y-n-Ae) (y-n-ite)'] (4 .3) 

We then integrate out -1 and obtain 

P(n, ) c I S + n (x-n) (- e)| (m+n) /2( 

which may be rewritten as 

P(n, i) 
nm -(m?n) / 2 

c| S +c (Me-d) (Ae-d)' + (n + m) (f-n) (f-n)' (4.5) 
n +m 
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where 

nx + my-mAe 

n + m 

and d=y-y-x. Hence the posterior density of ,u is given as 

nm -(n+m-1)12 
P(A) C S + (Ae e-d)(Ae-d)' (4.6) 

n +m 

or that 

nmz 1/12 
(n+m-2) 

/ u\ n + m 
t - - .(4.7) 

z nm 
1+ + (w -u2Z-1) 

_n+m 
where u=e'S'(y-x), z=e'S'e, w= (y-x)'S'(y-x), and t is the "Student" 
t with n+m -2 degrees of freedom. 

A natural conjugate density 

g C n i|/2ep : (4.8) 
oC| v|/2 exp (-!2 tr ;-1[5(,u-O)Iee'+(k-v+l)A+O(n-z)(n-,)']) 

may also be employed here for the prior density. Utilization of (4.8) leads to a 
marginal posterior density for A 

P(,u) cc I U+ c(,ue - h)(e - h)'fl-(n+m-v)/2 (4.9) 

where 

U S + (kn-+v + 1)A + (/n( + n)-m(x ( ) ?(x4). 

(,0 + n)-m m(41 

m(-+n m- - - n) (+n+y-x-e) + (y--e)) (4.10) 

*(n(y~--x - e) + /0(y --e)' 
(f + n)m 

,8 + n + m 

m[n(y -x + (- l] + (:+ n + m)30e (.2 
3(,0 + n + m) + ( + n)m 

Further 

t-= ( - u)[(n + m-v + k - 1)cz(112 

Z 1 + C(w -u2z-') 

has the t distribution with n+m-v+k- 1 degrees of freedom where u- e'U'1h, 
z=e'U-Le, w=h'U-hi. It is clear that (4.13) reduces to (4.7) when a=j3O 
and v=k+l. 
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5. REMARKS 

The same type of approach, with and without minor variations, has also 
been utilized for sundry other multivariate normal problems in the following 
series of papers: Geisser and Cornfield [5], Geisser [3], Tiao and Zellner [10], 
Geisser [4], Ando and Kaufman [2], Zellner and Chatty [11]. 
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