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Temporal and Amplitude Generalization in Motor Learning

SUSAN J. GOODBODY AND DANIEL M. WOLPERT
Sobell Department of Neurophysiology Institute of Neurology, London WC1N 3BG, United Kingdom

Goodbody, Susan J. and Daniel M. Wolpert. Temporal and am- when very limited training is given, for example on only
plitude generalization in motor learning. J. Neurophysiol. 79: two movements, the effect of learning decays rapidly across
1825–1838, 1998. A fundamental feature of human motor control space (Gandolfo et al. 1996), but that when a region of the
is the ability to vary effortlessly over a substantial range, both workspace is learned the generalization is maintained over
the duration and amplitude of our movements. We used a three- space and appears to generalize in intrinsic joint-based coor-dimensional robotic interface, which generated novel velocity de-

dinates (Sainburg and Ghez 1995; Shadmehr and Mussa-pendent forces on the hand, to investigate how adaptation to these
Ivaldi 1994). In these experiments, the temporal componentsaltered dynamics experienced only for movements at one temporal
of the movements were maintained while the spatial locationrate and amplitude generalizes to movements made at a different
was altered systematically.rate or amplitude. After subjects had learned to make a single

point-to-point movement in a novel velocity-dependent force field, In the present work, we study motor learning in the tempo-
we examined the generalization of this learning to movements of ral and amplitude domains by examining generalization
both half the duration or twice the amplitude. Such movements when either the duration of a fixed amplitude movement is
explore a state-space not experienced during learning—any halved or the distance moved in a fixed time is doubled.
changes in behavior are due to generalization of the learning, the Subjects learned to make movements of a particular duration
form of which was used to probe the intrinsic constraints on the and amplitude in a specific velocity dependent force field.motor control process. The generalization was assessed by de-

After learning, subjects were tested on a new movement,termining the force field in which subjects produced kinematically
either half the duration or twice the distance. To assess thenormal movements. We found substantial generalization of the
generalization of learning for these faster movements, a vari-motor learning to the new movements supporting a nonlocal repre-
ety of force fields were applied in an attempt to find thesentation of the control process. Of the fields tested, the form of

the generalization was best characterized by linear extrapolation force field that made these movements kinematically normal.
in a state-space representation of the controller. Such an intrinsic Two experiments were performed to examine the general-
constraint on the motor control process can facilitate the scaling ization of the motor learning. In the first experiment, the
of natural movements. test force fields were designed to discriminate between five

specific hypotheses on the generalization of motor learning.
The first possibility (movement specific) is that the control

I N T R O D U C T I O N
process is specific for each movement and as the movement
is now different either in duration or amplitude, the controllerWhen we walk, speak, reach, or dance we can vary the
will have no expectation of a force for any movement otherrate of the process without changing the spatial pattern of
than that of the exposure phase. A second hypothesis ( local)behavior. This rate modulation often is exploited so that new
is that learning is highly local and that no generalizationtasks, such as a tennis stroke, are practiced at a slow rate
will be seen to velocities not experienced. A third hypothesiswith the assumption that the acquisition at a faster rate will,
(r2 rule) follows from consideration of a possible strategyin some way, be facilitated. Similarly, we can write and
for scaling movements pointed out by Hollerbach (1982).draw both on paper or on a blackboard while maintaining
By considering the dynamic equations of the arm, he notedthe same spatial properties of our impressions. When chil-
that scaling the speed of movement produces a class ofdren are taught to write they start, and are encouraged, to
movement for which there are very simple computationsform large letters with the assumption that the skill will
involved. In the circumstance in which the velocity profilesomeday transfer to the learning of the small characters ex-
shape is maintained but simply scaled in time for movementshibited in adult writing.
of different speed, it is possible to avoid having to recomputeIn this paper, we examine the generalization of motor
the torque profile necessary for new movement speeds if thelearning to tasks of a different duration or amplitude. This
torque profile is already known for one speed. If the move-can be considered a parallel process to the recently studied
ment is made r times as fast, then scaling the time-dependentspatial generalization of motor learning in which the effects
portion of the torque profile by a factor r 2 and playing itof learning in one part of the workspace is investigated in
back r times as fast ( then adding in the gravity componentparts of the workspace that didn’t form the training region.
without any change in amplitude) will achieve the same pathSeveral studies have investigated a learning paradigm in
but at the new speed. The fourth hypothesis (position) iswhich subjects learn to make point-to-point movements in
that, as there is a good correspondence between position andthe presence of novel force fields that can be position depen-
velocity for natural movements, the force is internalized indent (Flash and Gurevich 1991, 1997; Gurevich 1993), ve-
as a function of position. The fifth hypothesis ( linear) islocity dependent (Gandolfo et al. 1996; Lackner and DiZio
that the force-velocity relationship is internalized in a func-1994; Shadmehr and Mussa-Ivaldi 1994), or acceleration

dependent (Sainburg and Ghez 1995). The results show that tional form and then linearly extrapolated to new speeds.

18250022-3077/98 $5.00 Copyright q 1998 The American Physiological Society
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S. J. GOODBODY AND D. M. WOLPERT1826

On the basis of the results of this first experiment, a second
generalization experiment was performed in which new test
fields were designed to examine the degree of linearity of
the generalization. The fields were chosen to test whether
the generalization to novel velocities was best characterized
by a force-velocity relationship, which decayed smoothly
to zero (decay) , remained at the level experienced for the
maximum velocity of the exposure phase ( level) , increased
(supra) , or linearly extrapolated ( linear) .

M E T H O D S

In all sessions, subjects sat with their head in a chin rest and
grasped, with their right hand, a handle attached to a lightweight,
carbon-fiber robotic manipulator (Phantom haptic interface, Sens-
able Devices, Cambridge, MA). This robot, which is free to move
in three dimensions, can exert forces of °20 N, in any direction,
at its endpoint (backdrive friction 0.02 N, closed loop stiffness

FIG. 1. Experimental apparatus for measuring unconstrained 3-dimen-1 N/mm, apparent mass at the tip õ150 g). The handle was free
sional arm movements under 3-dimensional virtual visual and force feed-to rotate in all directions about its center, thereby transmitting only
back. Looking down at the mirror through field sequential glasses, the

translational forces and preventing torques being applied to the subject sees the virtual image of the hand and targets. The Phantom haptic
hand. The position of the motors (and through the kinematic equa- interface can generate state-dependent force fields.
tions of the robot the position of the hand) were sampled on-line
by three optical encoders (10,160 counts per revolution, sampling points on a three-dimensional grid covering the workspace. A linear
rate 3,000 Hz) mounted on the three motors. The velocity of the regression fit of image position to IRED position was performed,
endpoint was obtained by differencing this position signal over a and this then was used on-line to position the targets and hand
10-ms window and applying a low-pass digital filter with a 90-ms feedback images. Cross-validation sets gave a mean calibration
time constant. This velocity was used in the calculation of the error of õ0.8 cm.
velocity-dependent forces exerted by the Phantom on the arm dur- During the experiments, an opaque sheet was fixed beneath the
ing movement. The robot was controlled through a Pentium PC. semisilvered mirror thereby preventing any direct view of the arm.
Two infrared emitting diodes (IREDs) were mounted on the ro- Hand feedback was provided by a 1 cm green wire cube in the
bot’s distal link. An Optotrak 3020 (Northern Digital, Waterloo, virtual scene, and the targets were presented as 1-cm diam colored
Ontario) also was used to record the position of the markers at spheres. By extinguishing the cube, which represented the hand
400 Hz. The optotrak was driven from a Silicon Graphics (SGi) position, movements in the absence of visual feedback could be
Indigo 2 XZ workstation (Silicon Graphics, Mountain View, CA) examined.
where the position data were stored for later analysis. Based on
these two markers, the position of the center of the hand could be

Experimental designreconstructed for use in the virtual visual feedback display on the
SGi. EXPERIMENT 1. Six naive, normal, right-handed students (age

range 20–27), who gave their informed consent before their inclu-
sion, participated in experiment 1. The subjects were familiarizedVisual feedback
with the equipment and performed two sessions, Amp and Dur, of
arm movements on separate days with the order balanced acrossThe targets and feedback of hand position (as defined by the

center point of the handle) were presented as virtual three-dimen- subjects.
The subjects were asked to reach ‘‘naturally’’ between the tar-sional images. This was achieved by projecting the screen from

the SGi with a cathode ray tube (CRT) projector (Electrohome gets–no instructions were given as to the movement path. In all the
sessions, the subject’s task was to move his arm so as to place theMarquee 8000 with P43 low-persistence phosphor green tube, Ran-

cha Cucamonga, CA) onto a horizontal rear projection screen sus- hand cursor at the illuminated target. When the hand was at the
target and stationary, the target was extinguished and a tone signaledpended above the subject’s head (Fig. 1) . A horizontal front-re-

flecting semisilvered mirror was placed face up below the subject’s that the subject should move to another target that became illumi-
nated. Subjects were considered to be on target when they werechin (30 cm below the projection screen). The subject viewed the

reflected image of the rear projection screen through field-sequen- within 1 cm of the target and their speed was õ3.0 cm s01 .
In session Dur, movements were made diagonally between twotial shuttered glasses (Crystal Eyes, Stereo-graphic, CA) by look-

ing down at the mirror. The SGi workstation displayed left and targets 15 cm apart in the horizontal plane. The subjects were
required to make movements of either 500 or 1,000 ms durationright eye images (1,280 1 500 pixels) of the scene to be viewed

at 120 Hz. The shuttered glasses alternately blanked the view from cued by two different tones. The target positions were at (03,
37.2, 037.6) and (7.6, 26.6, 037.6) cm relative to a point midwayeach eye in synchrony with the display thereby allowing each

eye to be presented with the appropriate planar view—subjects between the subject’s eyes (Fig. 2 shows the target positions and
coordinate system). Movements between these targets requiredtherefore perceived a three-dimensional scene. To maintain a high

quality force field, the PC was dedicated to controlling the robot, subjects to make movements away or toward the body at an angle
of 457 to transverse. For the Amp session, the targets were eitherwhereas the SGi was used to generate the virtual images and for

data capture of the hand position through the Optotrak markers. 12.5 or 25 cm apart and the movement duration was fixed at 700
ms for both movement distances. The targets for this session, (Fig.Before each session, the position of the IREDs relative to the

projected image position was calibrated for each subject. By illumi- 2, ●) were at (08.0, 30.2, 037.6) and either (0.8, 21.4, 037.6)
or (9.7, 12.5,037.6) cm for the short and long movements, respec-nating the semisilvered mirror from below, the virtual image and

the IRED could be lined up by eye. Each subject calibrated on 24 tively.
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GENERALIZATION IN MOTOR LEARNING 1827

spersed). This was done to record standard baseline trajectories
for both the fast and slow movements in the absence of visual
feedback (Sb and Fb of Table 2). During the next 100 movements
(exposure) , subjects made slow movements with visual feedback
in a force field generated by the robot (Se movements Table 2).
The force field chosen (Fig. 3) was a curl field (Gandolfo et al.
1996) in which the forces acted in the horizontal plane

F Å Bv Å F 0 11 0
011 0 0

0 0 0
G v , (1)

where F is the force vector in Newtons acting on the hand, v is
the velocity vector of the hand in m/s, and B is in N/mrs. This
force field depends only on the velocity of the movement, always
acts orthogonally to the direction of motion in the horizontal plane,
and magnitude increases linearly with speed. The force field was
not changed during these 100 exposure movements.

FIG. 2. Coordinate system of data capture is shown—the z axis points
During the test phase (384 movements) , subjects still were ex-out of the plane, and the origin is centered midway between the subject’s

posed to the same curl force field for slow movements with visioneyes. Targets lie in the horizontal plane z Å 037.6 cm. l and ●, targets
but occasionally (on average once in every 4 movements) a slowfor the Dur and Amp sessions, respectively. In the Amp session, the targets

for the short and long moves are shown as ● and s, respectively. Half- or fast movement without visual feedback would be required in
filled circle indicates that this target was the same for both the short and which the force field was changed to one of six test force fields.
long moves. Orientation of the intertarget line was preserved between ses- These were chosen to test the specific predictions of the five differ-
sions but was shifted for the Amp session to keep targets within both reach ent hypotheses about the controller (Fig. 4) . For the movement-
and stereo range. specific hypothesis, as the control process is specific for each move-

ment and as the movement is now different either in duration or
amplitude, the controller will have no expectation of a force forIn both sessions, subjects were given feedback of their timing
any movement other than that of the exposure phase (Fig. 4B) .performance in the form of a change in the target’s appearance at
In this case, the removal of the force field will be expected tothe end of their movements signifying too fast ( target turned red),
produce the most kinematically normal movements. For the secondtoo slow (target turned green), or just right (within 150 ms of
hypothesis ( local) , in which learning is highly local to the experi-desired duration-target turned white) . Before each session, subjects
enced velocities, no generalization will be seen to velocities notpracticed making movements of the correct duration. Subjects set-
experienced. In this case, the expected force is zero for velocitiestled down very quickly and were consistently satisfying the timing
greater than the maximum velocity experienced during the slowcriteria within 48 movements.
movements (Fig. 4C) . While, obviously, a physiological controllerEach session consisted of 532 movements with a brief rest period
would not exhibit such a discontinuity, if the learning is local, thenafter each 50 movements. Three factors could be varied for each
this field is a reasonable model of what is expected. For the thirdpoint-to-point movement. First, the speed of the movement could
hypothesis, if the r 2 rule proposed by Hollerbach was applied tobe either fast or slow, and this was cued by a tone. Although
that part of the torque produced to compensate for the externallyduration in session Dur and amplitude in session Amp were manip-
applied field, then, when moving twice as fast over the same dis-ulated, these both doubled the maximum velocity, and we therefore
tance as in session Dur, the controller would scale this part of thewill refer to the movement of longer duration in Dur and of smaller
torque by four, hence the slope of the force-velocity profile ex-amplitude in Amp as slow movements and movements of smaller pected during movements of twice the speed would have to increaseduration in Dur and of larger amplitude in Amp as fast movements by a factor of two (Fig. 4D) . For the fourth hypothesis (position),(see Table 1). Second, visual feedback of hand position could be the force is internalized as a function of position. For temporally

provided by the virtual cube or else extinguished for the entire scaled movements of fixed amplitude as in session Dur, the control-
movement. Third, the nature of the force field generated by the ler could expect the same sequence of forces as a function of
robot during the movement (including no force field) could be distance for the fast moves as was experienced for the slow moves.
varied. However, as the movement is twice as fast, the velocity at each

The session comprised of three phases—baseline (48 move- point is doubled, and to recover the same force-position relation-
ments) , exposure (100 movements) and test phase (384 move- ship, the force-velocity profile would need to halve in its slope
ments) —the movements of interest from these three phases are (Fig. 4E) . This position hypothesis is clearly only applicable to
summarized in Table 2. No indication was given to the subject as the Dur session. However, a second position hypothesis is that the
to the nature of these phases. force is internalized in terms of fraction of movement distance

The first 48 movements (baseline) were made in the absence of traveled. This also would mean that the system would expect a
a force field (with and without visual feedback randomly inter- force velocity profile of half the slope for the fast movements in

both Dur and Amp. The fifth hypothesis ( linear) is that the force-
velocity relationship is internalized in a functional form and then

TABLE 1. Length and duration of fast and slow movements for linearly extrapolated to new speeds (Fig. 4F) .
the Dur and Amp sessions of experiment 1 To capture these hypotheses five of the test fields involved

changing the slope of the linear relationship between force magni-
Slow Speed Fast Speed tude and speed

Dur 15.0 (1,000) 15.0 (500) F Å gBv g √ {0, 0.5, 1.0, 1.5, 2.0} (2)
Amp 12.5 (700) 25.0 (700)

where g is the gain of this change. A value g Å 0 corresponds
Values are in centimeters at number of milliseconds (in parentheses). to movements with no force field present. To examine the local
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S. J. GOODBODY AND D. M. WOLPERT1828

TABLE 2. Movement groups of interest during the three phases of the sessions Dur and Amp of experiment 1

Test (no vision): slope g
Baseline Exposure

(no vision) (vision) 0 0.5 1.0 1.5 2.0 Cutoff

Slow speed Sb Se S0 S0.5 S1 S1.5 S2.0 Scut

Fast speed Fb F0 F0.5 F1 F1.5 F2.0 Fcut

Vision refers to visual feedback of hand movement. For example S1.5 refers to the slow movements made in the absence of visual feedback in the test
phase in the presence of a force field the slope (g) of which was 1.5 times that of the exposure trials (Se).

F Å BvI (5)hypothesis, the sixth force field (cutoff) was one that was the same
as the exposure field up to the maximum velocity of the slow

For É£
i
É ú £

i
max the functional form of £̃

i for each of the linear,movements vmax , and zero otherwise
level, and supra test force fields was £̃i Å a / b£ i / cek£i

containing
F Å BvI (3) constant, linear, and exponential terms. The decay field was chosen

to be a Gaussian £̃
i Å ae (£i0b)2/c . All functions were constrained towhere

be continuous up to and including the first derivative at £
i
max so

that (for clarity the equations are shown for positive velocities
£I

i Å H £
i if É£

i
É ° £

i
max

0 if É£
i
É ú £

i
max

i Å x , y , z (4) only)

As all of these fields produce no force for zero velocity, subjects
had no prior information, at the start of the movement, about which

£I
iÅ

£
i

£
i linear

£
i
max/ t1(10 e0 (£ i0£i

max
) /t

1 ), t1Å 0.1£i
max , level

2£ i0 £
i
max/ t2(10 e0 (£ i0£i

max
) /t

2 ) , t2Å 0.02£ i
max , supra

£
i
maxe ( (£ i0m) 20 (£i

max
0m) 2) / (2£i

max
(£i

max
0 m) ) , mÅ 1.2£ i

max , decay

if £
i° £

i
max

if £
iú £

i
maxfield they were about to move in. Four fast and four slow move-

ments in each direction were made for each of these test forces.

EXPERIMENT 2. Six naive, normal, right-handed students (age
(6)

range 21–27), who gave their informed consent before their inclu-
sion, participated in experiment 2. None of these subjects partici- As all of these fields produce no force for zero velocity, subjects
pated in experiment 1. The subjects were familiarized with the had no prior information, at the start of the movement, about which
equipment and performed two sessions, Dur2 and Control of arm field they were about to move in. Four fast and four slow move-
movements on separate days. Session Dur2 always was performed ments in each direction were made for each of these test forces as
first. The apparatus and setup were as in experiment 1. Session in experiment 1.
Dur2 was identical to session Dur of experiment 1 except for the In session Control of experiment 2, subjects once again per-
test phase in which subjects were exposed to four test fields, three formed a baseline, exposure, and test phase in which they made
of which were different to those of session Dur. The forms of the fast and slow movements between the same targets as in session
four test fields were chosen to probe the degree of linearity of the Dur2. The baseline phase was identical to that of session Dur2
generalization beyond £max (Fig. 5) . (and Dur of experiment 1) , however, the exposure and test phases

For velocities less than the maximum velocity experienced dur- differed. The exposure field remained the same as in all previous
ing the exposure phase, the four test fields were all identical to sessions but rather than making 100 slow movements in the field
that of the exposure phase. For higher velocities the force-velocity during the exposure phase, subjects instead made 100 fast move-
relationships were designed to capture the range of generalization ments. The test phase consisted of only one type of test field, linear,
from sub- to supralinear, thereby allowing a test of how close the presented for both fast and slow movements. This control session
generalization of the controller is to linear extrapolation in state allowed us to compare generalization of learning from slow speeds
space. For velocities greater than those experienced during the to fast with learning solely at fast speeds.
exposure phase, the functional form of the force-velocity relation-
ship either decayed smoothly to zero (decay), remained at the Data analysis
maximum force experienced during the exposure phase (level),
extrapolated linearly (linear) or increased (supra) so that Hand velocities were calculated from the Optotrak marker posi-

tions by first differencing the position data and then filtering with
a Butterworth second order, zero phase lag, low-pass filter with 5
Hz cutoff. The start of the movement was defined as the time when
the hand speed first exceeded 2.5 cm s01 .

To calculate mean hand paths with error bars for various phases
of the experiments, the hand position data for each movement was
resampled at 50 evenly spaced points along the path length, with
linear interpolation between neighboring points. We also analyzed
the data resampled at 50 points evenly spaced over the duration
of the movement, but as these produced very similar results they
will not be presented here. To examine the early stages of move-
ment, including the period before afferent information becomes
available, the mean hand paths were calculated for the first 400
ms of the movements at 10-ms intervals. To remove variability
due to small changes in the starting location of the movement, the
trajectories were translated to align the start points on the startFIG. 3. Velocity-dependent vector curl field as a function of velocity.
target.Magnitude and direction of the field at any velocity are indicated by the

length and orientation of the arrows. To test between the different hypotheses of experiment 1 ( illus-
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GENERALIZATION IN MOTOR LEARNING 1829

FIG. 4. A schematic representing various hypothetical results
of the generalization session of experiment 1 (see METHODS for
details) . Plots show force and velocity magnitude relationships.
A : learned force-speed relationship. £max is the maximum speed
for the slow movements and 2£max is the maximum speed experi-
enced for the fast movements. B–F : force magnitude vs. speed
for predictions of expected force based on 5 different hypotheses
about motor learning. rrr, force speed relationship, which has
been learned; , predicted generalization of the learning under
the hypotheses. B : movement specific learning, which does not
generalize to movements of a new speed. C : local learning, which
does not generalizes to new speeds. D : r 2 scaling of torque
profiles. E : motor learning of position dependent field. F : linear
extrapolation in state space.

WS(r) Å ∑
g

ws
g(r)g /∑

g

ws
g(r)trated in Fig. 4) , we have developed a measure of generalization,

ĝ, which is independent of the extent of learning during the expo-
sure phase. If learning for the slow movements resulted in paths where ws

g(r) Å ÉSb(r) 0 Sg(r)É01 (7)
that were identical to baseline (i.e., Sb and S1 movements were

andidentical) , then the value of ĝ is equivalent to the value of g for
the field in which the fast test movements are identical to the fast WF(r) Å ∑

g

w f
g (r)g /∑

g

w f
g (r)

baseline movements (i.e., Fg is identical to Fb) . However, if learn-
ing during the exposure phase does not result in slow movement

where w f
g (r) Å ÉFb(r) 0 Fg(r)É01 (8)paths that are identical to baseline, then an estimate of the general-

ization ĝ can be derived by quantifying the relationship between where Sb(r) and Fb(r) are the hand position vectors at the
the slow baseline movements and the slow tests and between the resampled point r in the baseline slow and fast movements respec-
fast baseline movements and fast tests as follows. For each session tively, and similarly Sg(r) and Fg(r) are the hand position vectors
and speed of movement, we quantified the location of each point at the resampled point r for the slow and fast movements in the
of the mean baseline movement, Sb or Fb , relative to the equivalent test field g.
points of the movements made in each test force-field, S0–2 and These hand position vectors include all three (x, y, z) compo-
F0–2 , respectively. This was done by assigning to each point a nents. These weighted averages WS(r) and WF(r) represent what
value corresponding to the weighted average (by inverse Euclidean has been learned relative to the test fields. For example, for a slow
distance) of the g values of the test fields so movement, if a baseline point Sb(r) was spatially close to the

corresponding point for a force field of g Å 1.0, the value of WS(r)
for this point would be near 1.0. In this particular example, the
linear hypothesis would be supported by a value of WF(r) Å 1.0
and the position hypothesis by WF(r) Å 0.5, which are identical
to the g values for the corresponding fields. If, however, for a
slow movement, a baseline point Sb(r) was spatially close to the
corresponding point for a force field of g Å 1.5, the value of WS(r)
for this point would be near 1.5 and the linear hypothesis would
be now be supported by a value of WF(r) Å 1.5 and the position
hypothesis by WF(r) Å 0.75. The original hypotheses are therefore
more generally parameterized by ĝ the ratio of WF(r) to WS(r) .
Point-wise estimates of the generalization then were obtained by
calculating the ratios

gP (r) Å WF(r) /WS(r) (9)

This ratio, ĝ describes numerically the similarity of the relation-
ship between slow baseline and slow test movements and that
between the fast baseline and fast test movements. The ratio was
calculated for the paths resampled over path length as well as for
the first 400 ms of movement. The value of ĝ was used to test the
hypotheses. Confidence intervals for this estimate were calculated
by bootstrapping (Efron 1982).

The measure of the generalization ĝ developed for experiment 1
is not appropriate for the data of experiment 2 in which all of the
four test fields are identical for the slow movements. To determineFIG. 5. A schematic representing the test fields of experiment 2 (see
which test field in experiment 2 best approximated the forces ex-METHODS for details) . Plots show force and velocity magnitude relationship
pected due to generalization, we simply calculate WF(r) from Eq.for the decay (A) , level (B) , linear (C) , and supra (D) fields. £max is the

maximum speed for the slow movements. 8. The g values in this equation, which parameterize the fields, were
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The subjects’ mean hand paths in the plane of the targets
(xy) for different phases of the experiment are shown in Fig.
7 (session Dur, left, and session Amp, right) . In all of the
following plots, the paths shown are those resampled over
path length. The baseline movements made in the absence
of a force field show typical straight-line paths for both
directions of movement (Fig. 7, A and D) . When the force
field was first introduced during the exposure phase, the
hand paths deviated from the baseline paths (Fig. 7, B and
E) . However, by the end of the exposure phase, the hand
paths had straightened, to be closer to the baseline move-
ments, despite the presence of the force-field (Fig. 7, C and
F) . Many studies have shown that the goal of the learning
is a return to baseline (Flanagan and Rao 1995; Gurevich
1993; Lackner and DiZio 1993; Shadmehr and Mussa-Ivaldi
1994; Wolpert et al. 1995a), therefore we conclude that over
the course of the exposure phase subjects learned, without
instruction, to produce movements similar to their baseline
movements. During the test phase, subjects were exposed to
a set of novel force-velocity relationships for both the slow
and fast movements. The test movements at the slow rate
were used to investigate what had been learned from the
exposure phase, whereas the test movements at the fast rate
were designed to probe the generalization of this learning
to novel states. The performance in the exposure field, g Å
1, for the slow movements remained stable during this test

FIG. 6. Speed against distance and time from start of movement for
phase. Figure 8 shows the mean hand paths in the plane ofslow (●) and fast (ø) movements made without visual feedback during the
the targets for the last 10 moves of the g Å 1 exposure phasetest phase (subject EKA, 24 slow and 24 fast movements in each direction).

Slow movements during the other phases cover a similar region but have (vision on) and all of the g Å 1 vision on moves of the test
been excluded to allow individual points to be resolved. A : session Dur phase. Also shown for comparison are the vision off, g Å
speed against distance. B : session Amp speed against distance. C : session 1, slow test moves well as slow, vision off, baseline moves.Dur speed against time. D : session Amp speed against time.

The similarity of all these g Å 1 movements, both for vision
on and off, is evidence that the performance in the g Å 1

taken as the area under the force-velocity curve (Fig. 5) between field did not change from the exposure to the test phase in
£max and 2£max normalized so that g for the linear field was 1.0.

which on average once every four moves one of the six test
fields was randomly substituted for the g Å 1 exposure field.

R E S U L T S Figures 9A and 10A show the mean paths in the plane of
the targets (xy) , for all subjects for movements made at theExperiment 1
slow rate during the test phase under the different test force-
fields in sessions Dur and Amp. Also shown for comparisonAlthough none of the subjects had previously experienced

a virtual environment, they found the task natural and easy are the mean baseline movements for all subjects. All these
movements were made in the absence of visual feedback.to perform. Figure 6 shows the hand speed plotted against

distance moved and time, for the slow and fast movements, In both sessions, Dur and Amp, the hand paths of the slow
movements follow a well-defined progression for test fieldsfor all test fields, for a typical subject. All x, y, and z compo-

nents of the hand velocity and position are used in the calcu- from g Å 0 through to g Å 2. For g Å 0, which represents
movements made in the absence of a force field, large after-lation. The relationship of the state of the hand, that is,

position and velocity, to this plot is many-to-one such that effects (a term that has been used to describe the postexpo-
sure changes seen on removal of the prisms after prismdifferent points in this plot correspond to different states of

the hand. We can conclude, then, that although there is some adaptation—we will use this term to represent any changes
in performance seen after removal of a perturbation) canoverlap between the regions, the majority of states explored

during the fast movements were not experienced during the be seen in the path. This demonstrates that the change in
performance over the exposure phase represents more thanslow movements of the exposure or test sessions. Analysis

of the maximum speeds for each subject’s movements made just a nonspecific process such as cocontraction. As might
be expected, these effects are spatially reciprocal to the devi-in the exposure field (g Å 1) for both the slow and fast

movement of the test phase (S1 and F1 of Table 2) showed ations from straight-line paths seen on the introduction of
the force field in the exposure phase (Fig. 7, B and E) .that for all of these 192 movements (bar 1 movement for 1

subject) all the maximum speeds of the fast movements were Increasing the slope (g) of the test force-velocity relation-
ship leads to the paths becoming straighter and, therefore,greater than the maximum speeds for the slow movements.

Therefore for all subjects, the range of velocities experienced more like the baseline movements. However, as g is in-
creased to values as large as 2.0, the paths resemble thoseduring the slow movements was a subset of velocities experi-

enced during the fast movements. seen on the introduction of the novel force field during the
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GENERALIZATION IN MOTOR LEARNING 1831

FIG. 7. Mean hand paths in the plane of the targets (xy)
with standard error bars for the slow movements in the presence
of visual feedback for all subjects in session Dur (A–C) and
session Amp (D–F) . For clarity, the 2 movement directions
have been offset—the movement direction is indicated (r) . A
and D : baseline movements (n Å 36). B and E : first movement
in force field during the exposure phase (n Å 6). C and F : last
10 movements in the force field of the exposure phase (n Å
60).

FIG. 8. Mean hand paths in the plane of the targets (xy) ,
for all subjects, with standard error bars for slow movements
made in the exposure field g Å 1 during different phases of
the experiment: the last 10 moves of the g Å 1 exposure
phase (n Å 60), all of the g Å 1 movements with vision
during the test phase (n Å 864), and all the g Å 1 movements
without vision in the test phase (n Å 24). Also shown are
the slow baseline moves (vision off, n Å 36) for comparison.
For clarity, directions of movement have been offset—the
movement direction is indicated (r) . A : session Dur. B : ses-
sion Amp.
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FIG. 9. Session Dur. Mean hand paths in the plane of the
targets (xy) , for all subjects, with standard error bars for
movements made without visual feedback in each of the dif-
ferent force fields of the test session (n Å 24) as well as
baseline movements (n Å 36). For clarity, directions of
movement have been offset—the movement direction is indi-
cated (r) . A : slow movements of 15 cm amplitude in 1,000
ms. B : fast movements of 15 cm amplitude in 500 ms.

exposure phase (Fig. 7, B and E) . At intermediate values sure, subjects learned to make straight movements. There-
fore it can be concluded that the curved paths for g Å 2 testof g, the paths tend to resemble the baseline movements.

The relation of the baseline movements to these parameter- phase moves result because the system has internalized and
hence is expecting a weaker field.ized paths was used to assess what has been internalized by

the control process. The cutoff force-field (Fig. 11A) shows that for the slow
movement, as expected, the paths are similar to those madeFor movements made away from the body (outward) in

the Dur session (Fig. 9A) , the test field g Å 1.0 is most in the g Å 1.0 field as for this velocity range these two force
fields are identical.similar to the baseline and therefore represents the motor

learning. However, for movements made toward the subject The generalization of this motor learning to the novel state
space experienced during the fast movements of the test( inward), the hand path is such that g Å 0.5 best represents

the baseline movements. Similarly, for session Amp, slow phase is shown in Figs. 9B and 10B for the Dur and Amp
sessions, respectively. These are in the same format as foroutward movements have hand paths that look most similar

to the baseline for movements in test force field g Å 1 (the the slow movements. On removal of the force field (g Å
0), large aftereffects are present, demonstrating that someexposure field) , whereas for inward movements, the hand

paths for test force field g Å 0.5 once again look closest to motor learning is still present for these fast movements.
Similarly, for the cutoff test field, which is zero for velocitiesthe baseline (Fig. 10A) . It could be argued that the curved

paths in test field g Å 2.0 arose not because the system had greater than those experienced during the slow movements,
large deviations can be seen relative to the baseline move-internalized and hence was expecting a weaker force field,

as is proposed here, but because the forces were so strong ments (Fig. 11). The dissimilarity of movements in these
two fields to the baseline movements is evidence of general-that subjects would always make highly curved movements

in this field. To control for the latter possibility, two of the ization of learning from the slow to the fast movements as
it demonstrates that a nonzero force field is expected for theoriginal six subjects performed the baseline and training

phase parts of the session in the g Å 2 field. It was found faster movements. Therefore there is generalization to new
states not visited during the learning. For both movementthat, as for the g Å 1 field, on initial exposure to the field,

subjects’ hand paths were highly perturbed but with expo- directions and sessions, the spatial pattern of hand paths in
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GENERALIZATION IN MOTOR LEARNING 1833

FIG. 10. Session Amp. Mean hand paths in the plane of
the targets (xy) , for all subjects, with standard error bars
for movements made without visual feedback in each of the
different force fields of the test session (n Å 24) as well
as baseline movements (n Å 36). For clarity, directions of
movement have been offset—the movement direction is indi-
cated (r) . A : slow movements of 12.5 cm amplitude in 700
ms. B : fast movements of 25 cm amplitude in 700 ms (note
the change in scale of these axes compared with A) .

FIG. 11. Mean hand paths in the plane of the targets (xy) ,
for all subjects, with standard error bars for 1 direction of move-
ment in both the exposure (g Å 1.0, n Å 24) and cut-off fields
(n Å 24) are shown together with the baseline movements
(n Å 36). A and B : slow movements for sessions Dur and Amp,
respectively. C and D : fast movements for sessions Dur and
Amp, respectively.
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FIG. 12. Plot of estimate of generalization ĝ against
sample point with 95% confidence intervals. A : session
Dur, paths resampled over path length. B : session Amp,
paths resampled over path length. C : session Dur, 1st 400
ms. D : session Amp, 1st 400 ms.

the different fields is similar for both the fast and slow test ms of the movement. Both sets of analyses yield the same
result as does the calculation of ĝ for the paths resampledmovements (compare Fig. 9, A with B , as well as Fig. 10,

A and B) . The relationship between hand paths for the slow over time (not shown). This quantifies the generalization of
motor learning. This estimate is not significantly differentbaselines and the slow test movements (g Å 0–2) is pre-

served when the movement speed is doubled so that a similar from 1.0 for any point along the path (P ú 0.05), but is
significantly different (P õ 0.05) from 0 (movement spe-relationship exists between the fast baselines and the fast

movements in these five test fields (Figs. 9 and 10). If, for cific) , 0.5 (position hypothesis) , and 2.0 (r 2 rule hypothe-
sis) at the majority of points. This supports the linear hypoth-example, there were no generalization, then the paths for the

fast movements would be expected to look closest to baseline esis that ĝ Å 1.
in the cutoff test field and the spatial patterns of Fig. 9, A
compared with B, as well as Fig. 10, A compared with B, Experiment 2
to be very different to one another. The similarity of the
relationship between baseline paths and paths in the test During the test phase of experiment 2, subjects were ex-

posed to four novel force-velocity relationships for both thefields for the fast and slow movements suggests that what-
ever is learned for the slow movements generalizes to the slow and fast movements, which were designed to further

examine the degree of linearity of the generalization foundfast movements. This generalization is quantified in the cal-
culation of ĝ of Eq. 8. For example, consider the inward in experiment 1. The test movements (Fig. 13A) at the slow

rate were, as expected, identical as the fields were identicalmovements of the Amp session (Fig. 10, right) . For the slow
movement, the baseline is almost identical to the g Å 0.5 up to £max . The test movements at the fast rate were made

to probe the generalization of the learning to novel states.field and therefore the weighted average WS of Eq. 7 would
be expected to be close to 0.5. For the fast movements, the In this experiment, subjects tended to move more than twice

the speed for the fast test movements compared with thebaseline again is almost identical to the g Å 0.5 and the
weighted average WF of Eq. 8 would be expected to be close slow (maximum speed ratio of fast to slow test movements

2.5{ 0.2; mean{ SE). As in experiment 1, the performanceto 0.5. The estimate of the generalization ĝ, the ratio of these
weighted averages, would be 1.0 supporting the linear model in the exposure field for the slow movements remained stable

during this test phase. The movements at the end of thefor this case. This analysis assumes that generalization is by
definition the change in behavior from baseline in regions exposure session had returned to the preperturbation paths

(the test trials for the slow movements are shown in Fig.of state space not experienced during the learning, that is,
for the fast movements. This analysis allows quantification 13A) , suggesting that this group had adapted more com-

pletely than the subjects in experiment 1. Figure 13B showsof the observation that the relationship between the control
paths and the paths in each of the test fields is similar for that for the fast movements, the hand paths are initially

similar, as expected, because all of the test fields were identi-fast and slow movements. Figure 12, A and B, shows a plot
of ĝ, as defined in Eq. 9 , against sample point for paths cal for speeds less than £max . As the speed becomes greater

than £max , the paths diverge due to the differences in theresampled over path length for sessions Dur and Amp, re-
spectively. The 95% confidence intervals also are shown. fields. The relationship between these paths and the baseline

fast movements was used to assess the generalization of theAll components x, y, and z are included in this path analysis.
Figure 12, C and D, plot ĝ against real time for the first 400 learning. For both movement directions, the pattern of hand
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GENERALIZATION IN MOTOR LEARNING 1835

ments of session Dur2 against sample point over the entire
path as well as against time for the first 400 ms. This quanti-
fies the generalization of motor learning and shows that
learning lies between the linear [WF(r) Å 1] and the level
[WF(r)Å 0.73] although closer to the linear form of general-
ization. The failure of the decay test field to capture the
generalization further demonstrates that the learning is non
local and there is substantial generalization to new states.

D I S C U S S I O N

Summarizing the results, learning a novel dynamical envi-
ronment, for a single movement, generalizes substantially to
movements of the same orientation of either increased rate
or amplitude. This generalization was quantified by assessing
which of a set of force fields produced the most kinemati-
cally normal movements at the faster rate—this represents
the generalization of motor learning. We found extensive
generalization, which, among the hypotheses tested, was best
captured by a linear extrapolation of the force field repre-
sented in state space.

Returning to the hypotheses considered in METHODS: the
first, movement specific, in which the learning would be
specific only to that movement and therefore no generaliza-
tion would be seen, can be ruled out by the presence of
substantial aftereffects for the faster movements when the
force field was removed unexpectedly (g Å 0 in Figs. 9B
and 10B) . There is, therefore, generalization of learning
between movements of different rates. Movements made in
the cutoff force field also showed large deviations from the
baseline movements (Fig. 11), showing that learning was
not purely limited to the states already visited. This rules
out a local-look–up representation of the control process
(hypothesis local) . To quantify the generalization, the rela-
tionship of the baseline movements to movements under five
parameterized force-fields was examined (different slopes
of the velocity-force relationship, g values) . Both the Dur

FIG. 13. Mean hand paths in the plane of the targets (xy) , for all sub-
jects, with standard error bars for movements made without visual feedback
in each of the different force fields of the test session (n Å 24) as well as
baseline movements (n Å 36) in sessions Dur2 and Control. For clarity,
directions of movement have been offset—the movement direction is indi-
cated (r) . A : session Dur2, slow movements of 15 cm amplitude in 1,000
ms. B : session Dur2, fast movements of 15 cm amplitude in 500 ms. C :
session Control, fast movements of 15 cm amplitude in 500 ms.

paths for the fast movements in the different test fields is
similar. The paths in the decay field soon diverge from base-
line, showing that the generalization does not decay for
speeds greater than £max . Similarly the supra test fields does
not capture the generalization. The generalization of learning
at speeds less than £max to speeds greater £max lies between
the linear and level fields. Figure 13C plots the fast move-
ments in the linear test field of session Control. A compari-
son of Fig. 13, A and C, shows that fast movement paths in
the linear field after extensive exposure to that field for the
fast movements (Fig. 13C, Control) are as close to baseline

FIG. 14. Plot of WF(r) against sample point with 95% confidence inter-as slow movement paths after exposure for slow movements
vals for session Dur2. – – – , g values for the decay (g Å 0.53), level(Fig. 13A, Dur2) . (g Å 0.73), linear (g Å 1.0) , and supra (g Å 1.35) fields. A : paths resam-

Figure 14, A and B, are plots of WF(r) , the weighted pled over path length. B : first 400 ms. All components x, y, and z are
included in this path analysis.average of the g values as defined in Eq. 8, for fast move-

J452-7/ 9k27$$ap31 03-16-98 17:26:38 neupa LP-Neurophys

 on M
arch 2, 2011

jn.physiology.org
D

ow
nloaded from

 

http://jn.physiology.org/


S. J. GOODBODY AND D. M. WOLPERT1836

and Amp sessions showed a generalization value ĝ that was the movement is altered, either by surreptitiously adding
visual curvature to the movement (Wolpert et al. 1994,not significantly different from 1.0. However, ĝ was signifi-

cantly different from 0.5 and 2.0, which represent the posi- 1995a) or by representing the visual feedback of hand posi-
tion in joint-based coordinates (Flanagan and Rao 1995),tion and r 2 rule hypotheses, respectively. In experiment 2,

an extended examination of the linearity of the generalization subjects change their actual hand path to visually straighten
their perceived paths. Similarly, in dynamic adaption studies,showed that, although the generalization lay between the

level and linear fields, of the fields tested, it was best cap- as well as our present study, it has been shown that in the
presence of a perturbing force field (Gurevich 1993; Lacknertured by the linear extrapolation field. In particular, a de-

caying generalization was not supported. However, fast and DiZio 1993; Shadmehr and Mussa-Ivaldi 1994), sub-
jects adapt to regain preperturbation kinematics. Althoughmovements in the linear test field of session Control, in

which subjects had been exposed extensively to this field, still an area of controversy (see Kawato 1996 for a review
of dynamic based planning), we believe these results arguewere significantly closer to baseline than fast movements of

the generalization session in the linear field. We conclude, for a kinematically based plan for simple point-to-point
movements in which there is a hierarchical separation of thetherefore, that although training in the linear field produced

superior performance, among the hypotheses tested, the gen- planning and control aspects of movement. However, studies
of more complex movements around an obstacle suggest thateralization best supports the linear hypothesis.

We can interpret our results by considering motor learning knowledge of the dynamics of the arm is used in planning.
Subjects tend to select their movement paths so as to ensurewithin the general framework of adaptation of an internal

model. Internal models, which have emerged as an important that their closest point of approach to the obstacle is on an
axis where the arm is most inertially stable (Sabes and Jor-theoretical concept in motor control (Jordan 1995; Kawato

et al. 1987), are so named as they internalize or mimic some dan 1997). Given a kinematic plan, several computational
methods have been proposed by which trajectory errors canaspect of a natural process such as the arm’s dynamics. Two

varieties of internal model are forward and inverse models. be used to adapt the internal model appropriately so as to
reduce these errors (Gomi and Kawato 1993; Jordan andForward models, which mimic the causal flow of a process

by predicting its next state (e.g., position and velocity) given Rumelhart 1992; Kawato 1990). Therefore, adaptation to
the perturbing force field is consistent with the hypothesisthe current state and the motor command, have been shown

to be computationally useful in planning, control, and learn- that with exposure to the field the CNS learns to build an
internal model of that field so as to counteract its effect,ing (Gallistel 1980; Ito 1984; Jordan and Rumelhart 1992;

Miall et al. 1993; Robinson et al. 1986; Sutton and Barto thereby producing the desired straight-line movements.
The way in which such an internal model generalizes can1981; Wolpert 1997) and recently there is evidence that such

an internal model is used during the human sensorimotor be viewed from the perspective of function approximation.
In this framework, motor learning consists of approximatingintegration task of localizing the limb position during move-

ment (Wolpert et al. 1995b). A second type of internal the function between desired kinematics and motor com-
mands based on the limited set of movement states experi-model is the inverse model, which inverts the causal flow

by estimating the motor command that causes a particular enced during the exposure phase of the experiment. As there
are infinitely many possible functions consistent with anystate transition. Such inverse models are of use in control

and can function either as a purely feedforward controller finite set of experience, the problem is ill-posed. The mathe-
matical theory of function approximation states that, to ob-(Jordan and Rumelhart 1992) or in conjunction with feed-

back control (Gomi and Kawato 1993; Kawato 1990). The tain a solution to this ill-posed problem, constraints have to
be placed on the function approximator (Tikhonov and Arse-motor learning task can be considered as either adaptation

or augmentation of an internal model to incorporate the nin 1977). The pattern of recalibration that results from this
limited exposure, the generalization, reflects the structurechanges in motor command necessary to counter the external

force field. and constraints underlying the internal model (Ghahramani
and Wolpert 1997; Ghahramani et al. 1996; Imamizu et al.The driving force for adaption is assumed to be a desired

or planned trajectory. Evidence for such a kinematic-based 1995).
Our results show that the motor control process showsplanning process comes from both studies of natural and

perturbed movements. Point-to-point movements show in- substantial nonlocal generalization to temporal and ampli-
tude scaling of an individual movement. Of the fields tested,variant features at the behavioral level (Bernstein 1967) —

subjects tend to move their hands along a straight path with the generalization was best characterized by a linear extrapo-
lation of a state-space representation of the force field. Ina single-peaked, bell-shaped velocity profile (Abend et al.

1982; Atkeson and Hollerbach 1985; Bernstein 1967; Flash other words, the control process could learn the relationship
between velocity and force and then extrapolate this formand Hogan 1985; Kelso et al. 1979; Morasso 1981; Uno et

al. 1989). These features are independent of the hand’s ini- in a linear fashion for new states. A recent study found a
rapid decay in spatial generalization, for different directionstial and final position within the workspace. In contrast, the

joint angular position and velocity profiles show consider- of movement, after learning a limited set of movements
(Gandolfo et al. 1996), implying that the internal model isable variation depending on the hands initial and final posi-

tion within the workspace (Morasso 1981). Recently it has local and decays smoothly with distance from the exposure
region. In that study, both the training and test movementsbeen shown that such invariants are not necessarily at odds

with joint-based planning models such as minimum torque- were carried out at the same speed and amplitude, and there-
fore it did not address the temporal or amplitude scaling ofchange (Uno et al. 1989). Recent perturbation studies, how-

ever, argue for kinematic planning. If the perceived path of motor learning. These results showed that generalization is
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local in direction, whereas our study demonstrates that for a global change in activity of a population within this frame-
work and could account for the difference in generalizationa single direction of motion, motor learning generalizes ex-

tensively even over a twofold increase in either velocity or ability between the scaling and spatial domains.
In conclusion, we have shown extensive generalization ofpositional range. Taken together, these results suggest that

the intrinsic constraints impose a more powerful ability to motor learning to temporal and amplitude scaling of a single
orientation of movement. This generalization is well cap-generalize for scaled movements, either temporally or spa-

tially, compared with those involving spatial translations and tured as a linear extrapolation of the control process when
represented and parameterized by state space. This powerfulrotations. This ability to extrapolate a single movement to

new temporal rates or amplitudes would be of functional ability may be of functional importance in the scaling of
natural movements.importance in the scaling of natural movements.
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