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This paper is concerned with methods for analyzing quantitative, non- 
categorical profile data, e.g., a battery of tests given to individuals in one or 
more groups. It  is assumed that the variables have a multinormal distribution 
with an arbitrary variance-covariance matrix. Approximate procedures based 
on classical analysis of variance are presented, including an adjustment to 
the degrees of freedom resulting in conservative F tests. These can be applied 
to the case where the variance-covariance matrices differ from group to 
group. In addition, exact generalized multivariate analysis methods are 
discussed. Examples are given illustrating both techniques. 

Much  research in the social sciences is of the mul t ivar ia te  type;  multiple 
observations are made on individuals who have been sampled from one or 
more populations. In  particular, when the observations are in the form of a 
ba t te ry  of tests or a set of items, there is the problem of profile analysis, 
wherein it  is customary to test  for differences in the levels and in the shapes 
of the group profiles. I f  the variables being observed are assigned to columns 
and the individuals to rows, the resulting matr ix  of observations is very 
suggestive of the da ta  usually analyzed by  analysis of variance. Furthermore,  
since the rows are random and the columns can be considered in almost  all 
instances as fixed, the appropriate  model is the mixed model. 

As is well known, in order tha t  the usually computed ratios of mean 
squares in this model [7, 14, 16] be exactly distributed as the F distribution, 
i t  is necessary tha t  columns (variables), in addition to being normally dis- 
tributed, have equal variances and be mutual ly  independent or, at  most,  
have  equal correlations. Bu t  these assumptions seem much too restrictive. 
In  most  investigations, i t  is unrealistic to assume tha t  three or more tests, 
items, or t rea tment  schedules have the same pairwise correlations or tha t  
they have  the same variances. I t  seemed obvious, therefore, tha t  this problem 
of multiple observations should be considered in its greatest  generality, 
namely, tha t  an individual vector x l ,  x2, • . .  , x~ is sampled from a p-variate  
normal distribution with an arbi t rary  variance-covariance matrix. 

Exac t  procedures for analyzing da ta  of this type  have been known for 
some t ime and are usually referred to as the generalized mult ivar ia te  analysis 
of variance [1, 10, 12, 13, 17]. These, however, require considerably more 
computat ions than  tha t  demanded by the ari thmetic of the analysis of 

• We are indebted to Mrs. Norton French for performing all the calculations appearing 
in this paper. 
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variance. Furthermore, an analysis of variance approach permits the analysis 
of a set of data which cannot be handled by multivariate procedures, namely, 
the case where n, the number of random vectors, is less than p, the number 
of variables. Although these multivariate methods are discussed subsequently 
and an example is given for the case of two groups, our main purpose is to 
utilize the simpler, and more familiar, conventional univariate analysis of 
variance techniques under, the more general assumptions. Our results concern- 
ing the approximate distributions of the F statistics are based upon thework 
of Box [5, 6] with regard to one group and its extension, by Geisser and 
Greenhouse [8], to several groups. In addition, the latter have found certain 
adjustments to the approximate tests leading to conservative tests which 
can be used, when the group sample sizes are the same, in the case of unequal 
variance-covariance matrices among the groups. 

It  is of interest that Block, Levine, and McNemar [2] were also primarily 
concerned with the application of the analysis of variance to the profile 
problem. They presented F tests for testing t he  homogeneity of variable 
(columns) means, the homogeneity of over-all group means (profile levels) 
and the equality of profile shapes. However, they assumed equal v.ariance, 
among the yariables and, since they imply that the F tests are exact, it  
can only be inferred that they also assumed the variables to be independent 
or equally correlated. 

The Problem 

Our notation is almost identical to that used by Block, Levine, and 
McNemar. Let p tests, xl , x2 , . . .  , x~, be given to each of n~ individuals 
(k = 1, 2, . . .  , g) in each of g established groups. Assume both the p tests 
and the g groups to be fixed, i.e., they are not random elements sampled 
from larger populations. This model, which fixes interest in the tests and 
groups under study, conforms to many experimental situations met with in 
practice. The totality of N p  observed scores (N = ~ = 1  n~) can be classified 
according to the scheme at the top of the next page. 

An individual i in group k has the profile 

(x~i~ , • ° " , X l i k  , 

{ = 1, • • • , nk individuals in group k 

1, , p variables 

1, , g groups.  

And the group profile for group k, say, is represented by 

(2.t~ , ~.~k , "'" , ~.~). 
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Tests 

Group Ind. x~ . . .  x~ . . .  x~ 

1 1 xm xz~ x~p~ 
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nj x,,~n x,~ il x,~r~ 

Means: Gr. 1 ~.1~ x.i~ x-p~ 

1 XHk X]ik Xlpk 

Xilk Zi~k Xi~k 

nk  Xnklk 2¢nkik 3~n~:pk 

Means: Gr. k ~.1~ ~.i~ x.r~ 

g 1 Xllg xl ig  Xzpg 

n g  X~¢1¢ Xn¢ ig Xn cp¢ 

Means: Gr. g ~.ig ~.¢~ ~.pg ~-.g 

Means: All Groups ~.I. ~.i. ~.p- ~... 

Assume that each individual profile is a random vector sampled from a 
p-variate normal distribution with an arbitrary variance-covariance matrix, 

]F ] 
~ P120-10-2 0-2 ' " "  P2~ 0- ~-~ 0-12 0"22 • " '  0-2~ . 

• ° , • 

LpI~0"IO'~ P2~0-20-~ * • • 0 "~  _2  I - - 0 - i ~ ,  0"29 " " " 0 -~ - J  

Also assume t h a t  the  p var iables  have  the  same metr ic .  This  is necessary 
to  give mean ing  to  the  ques t ion of whether  the  group profiles have the  same 
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shape, and not because of any statistical considerations. This restriction 
results in no loss of generality if there already exists a large body of data  
on these p tests so that  the standard deviations can be assumed known. 
For  in this instance, equal metrics can be obtained by  standardization of the 
p test  scores. 

The questions tha t  are most often asked in profile analysis are: 
(i) Are the groups on the same level, i.e., do the groups arise from popu- 

lations having the same group means, namely, E ( 2 . . 1 )  = E ( 2 . . 2 )  . . . . .  

E(~..~) , where E denotes the expectation? 
(if) Do the groups have the same shape, i.e., do the groups arise from 

populations having parallel group profiles? 
Another question that  may  be asked of these data, although not too 

frequently in profile analysis, is whether the p tests have the same means. 
With regard to the question on shape, i t  becomes necessary to define a 

statistic which reflects the concept of equally shaped group profiles. In  
a larger sense, profiles having the same shape can be considered to be parallel 
curves. As Box [4] and Block, Levine, and MeNemar  [2] point out, parallelism 
can be measured by  the group-test interaction mean square. Th a t  is, if the  
curves are parallel, the group-test interaction should be zero and the mean 
square should not  differ significantly from an appropriate error mean square. 
If, on the other hand, the curves have different shapes, the interaction mean 
square should be significantly greater than the error mean square. 

This is made clear by  reference to two group profiles: 

:~.~1 , 2 . ~  , . . .  , :~.~ 
and 

: ~ . 1 2  , X . 2 2  , " " " , X . ~ 2  • 

Denote the corresponding differences between group means for each test  by  

d l , d 2 ,  "-" , d ~ .  

I f  the two profiles are parallel i t  is clear tha t  d~ - -  d2 = d~ . . . . .  d~ . 

On the other hand, if d~ = d2 = d.~ . . . . .  d~, then the two profiles must  
be parallel. Hence, a necessary and sufficient condition that  the two group 
profiles possess the same shape is tha t  

d~ = d~ = d3 . . . . .  d ~ .  

But  the equality of these differences is exactly what  is meant  by no interaction 
between groups and tests, and the extent  to which these differences are 
unequal corresponds to the existence of the group-test interaction. Therefore 
a test  of the group-test interaction is also a test of whether group profiles 
have the same shape. 

T e s t s  o / S i g n i f i c a n c e  I n  the  M i x e d  M o d e l  

If  the p test scores have equal variances and are independent (or, a t  
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most, are equally correlated in pairs), so that 

Ii 
: 0 " "  O" 

~ 0  = o 2  " - -  0 

0 " ' "  0 .2 

o r  

Z 1  = 0. 1 . . .  , 

p " , .  

then the given scheme constitutes the classical mixed model for g samples, 
with proportionate numbers of observations among the samples. The appro- 
pilate analysis of variance breakdown is shown in Table 1. The analysis 
under either of the above assumptions on the covariance matrix follows 
along classicM lines. The F1 , F2 , and F3 statistics used to test hypotheses 
of homogeneity of test (variable) means, of group means (level) and the 
nonexistence of a group-test interaction (equal shapes of group profiles), 
respectively, are exact. 

If, on the other hand, the validity of these two models is suspect, on 
the basis either of prior evidence or of a statistical test, the given F ratios 
are not distributed like the tabulated F distribution. In this situation where 
the covariance matrix is assumed to be arbitrary and given by %, Roy [13], 
Rao [12], and others have approached the problem through the multivariate 
analysis of variance. However, it is of interest, and possibly of considerable 
practical importance, to investigate the distribution of the computed F 
statistics. 

Tests of Significance ]or Arbitrary Covariance Matrix 

Geisser and Greenhouse [8], in extending to several groups Box's work 
[5, 6] rdative to one group, have shown that QI and Q, are each independent 
of Q~ , and Q= is independent of Qa . They have also shown that, under the 
null hypothesis, 

E(Q1) = A, say, E(QO = ( g -  1)A, E(Qa) = ( N -  g)A, 

and 

E(Q2) = ( g -  1)B, say, E(Qa) = ( Y -  g)B. 

Table 2 gives the mean square (M.S.) and the expectations of the mean 
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square (E.M.S.) for each of the five sources of variation in the analysis 
of variance. 

From the results presented in Tables 1 and 2, it follows that each of the 
three F ratios, F1 , F~, and F3, is a ratio of two independent mean squares 

TABLE 2 
Analysis of Variance 

Source M.S. E.M.S. 

Tests (p-l)'iQl (p-l)'IA 

Groups (g-l)'IQ2 B 

Individuals within Groups (N-g)'IQ3 B 

Groups x Tests (p-l)'l(g-l)'iQ4 (p-l)'iA 

Individuals x Tests (p-l)'l(N-g)'IQ5 (p-l)'IA 
within Groups 

with the same expectations under the null hypothesis. Making use of the 
fact that  each of the quadratic forms involved in the three F statistics is 
exactly distributed like a linear sum of independent X ~ variables with the 
same degrees of freedom (theorem 6.1, Box [5, 6]), F~ is approximately dis- 
tributed like F [ ( p  - t)e, (p - 1)(N - g)e],/73 is approximately distributed 
like F [ ( p  - 1)(g - 1)e, (p - 1)(N - g)e], and F2 is exactly distributed like 
F ( g  - -  1, N - g), where 

2 - 
= p ( (Tt t  - -  ~ . . ) 2 / ( p  _ 1)(~E~,  -- 2pX~, =. q- p2~2.); 

at, are the elements of the matrix Z, #,, is the mean of the diagonal terms, 
5,. is the mean of the tth row (or tth column), and 5 is the grand mean. 
Thus, the effect of the arbitrary variance-covariance matrix, which must be 
the same from group to group, is to assess the significance of the F1 and Fs 
statistics in the ordinary tabulated F distribution but with reduced degrees 
of freedom. The F2 test on group means, it will be noted, remains unchanged 
from the standard F test since it results from a one-way analysis of variance 
with all observations having the same variance. 

The reduction in the degrees of freedom for this approximate test is a 
function of the elements of the population variance-covariance matrix. 
This is almost never known, and therefore E will have to be estimated from 
the sample variances and covariances. However, the effect of using an esti- 
mated E on the approximate F distributions involved is unknown. Hence, 
unless the variance-covariance matrix is estimated with a large number of 
degrees of freedom, use of the conservative test given below is suggested. 
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A Conservative Test 

The preceding approximate procedure requires some computations on 
the elements of a known variance-covariance matrix. In many profile problems, 
the number of tests may  be as high as 50 if not more. This results in a 50 × 50 
matrix, necessitating some laborious arithmetic. Furthermore,  in almost all 
problems variances and covariances are unknown and the extent to which 

is changed by  using sample estimates has not  been investigated. As 
result it  is useful to obtain a lower bound on e; it  can be shown tha t  

1 
~ - - -  

p - - 1  

This minimum value of e is independent of the elements of the variance- 
covariance matrix. 

With this new correction to the degrees of freedom, the F1 and F3 stati.stics 
are now judged for significance by  entering the tabulated F distribution 
with 1 and N - g degrees of freedom and with g - 1 and N - g degrees of 
freedom respectively. These tests are called conservative since the minimum 
value of e gives the maximum reduction in degress of freedom. 

An Example 

Five groups of mothers, classified into their groups according to some 
external criteria, were given a maternal a t t i tude quest ionnaire containing 
23 scales. For  purposes of this illustration, six of these scales have been 
selected. Thus p = 6, g = 5, and N = 128. The group profiles and group 
means are given in Table 3. 

The  five variance-covariance matrices were first tested for homogeneity. 
The likelihood ratio test, the multivariate analogue of Bart let t ' s  test for 

TABLE 3 

Mean Profiles for Five Groups of Mothers on Selected Scales of a 
Maternal Attitude Questionnaire* 

No. of Scale Group 
Groups Mothers I 3 6 9 13 14 Mean 

A 59 17.02 10.97 13.24 ii.47 9.80 15.44 12.99 

B 13 17.92 13.85 17.23 14.O0 12.23 17.38 15.44 

C 15 18.87 11.60 14.13 8.93 8.27 17.73 13.26 

D 32 16.75 14.47 15.41 11.78 9.91 15.94 14.04 

E 9 18.33 10.78 13.89 14.44 12.11 18.78 14.72 

All Groups 128 17.35 12.20 14.34 

*We are indebted to Dr. Richard Q. Bell of 
Institute of Mental Health~ fo~ permitting 
example. 

11.72 10.05 16.27 13.65 

the Laboratory of Psychology 3 National 
us to use part of his data for this 
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homogeneity of variances, can be found in Box [3, 4]. (Kullbaek [11] derives 
an equivalent test  through information theory.) The test  statistic is 

5 

M = Nlog~ I S I - ~ n ~ l o g ~  [ S~ I = 112.6565. 

In the above I S I is the determinant of the pooled variance-covarianee 
matrix, and I S~ t is the determinant of the sample variance-covariance 
matrix in the i th  group. Now compute 

A1-- 2 p 2 ~ 3 P - -  1 (~)-~ 1 N) = .17012, 
6(p 4- 1)(g 1) , : ,  n, 

and 

fl = ½p(p + 1)(g - 1) = 84, 

and enter (1 - A1)M = 93.4 in the x 2 distribution with 84 degrees of freedom. 
Since the probability of getting this value of x 2 or larger is fairly high, the 
null hypothesis of equal variance-covariance matrices is not rejected. 

An estimate of the matrix ~ is given by the pooled variance-covariance 
matrix 

S = 

3.100 .101 --.279 --.083 --.009 1.557- 

.101 5.780 1.013 --.114 --1.014 .039 

--.279 1.013 5.560 1.039 1.366 --.169 

- - .083 --.114 1.039 5.600 3.080 .258 

--.009 -- 1.014 1.366 3.080 6.820 .222 

1.557 .039 --.169 .258 .222 5.170. 

Consider now whether the hypothesis of equal variances and equal 
covariances is consistent with S. The best estimate of the uniform variance- 
covariance matrix under this hypothesis is given by 

I 5.3888 .467 . . .  .4671 

k_ .467 .467 -- .  5.338-1 

where the diagonal element is an average of the 6 variances in S and the 
covariance is an average of the 15[½p(p - 1)] covariances in S. The reason 
for testing this hypothesis is that  if $1 is consistent with the data then classical 
analysis of variance procedures are applicable. The test used is again a 
likelihood ratio test, also given by Box [3, 4]. The test statistic is 
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t S [  10,806.42 
M = - ( N  - g) log, I S~ [ = - 1 2 3  l a ~ 4 0 A  9 = 81.956, 

where (N - g) -- 123 is the degrees of freedom entering into the computation 
of any element in S or $1 • Now compute 

p(p  + 1)2(2p - 3) 
A1 = 6(N - g)(p .-- 1)(p ~ q- p - 4) = .01887, 

and 

]1 - -  (p2 -b  p - -  4 ) / 2  = 19, 

and enter (1 - A , ) M  = 80.4 in the x ~ tables with ]~ = 19 degrees of freedom. 
The  probability of this result is well below .001; the hypothesis of equal 
variances and equal covariances must  be rejected. 

The  analysis of variance yields the numerical results of Table  4. 

TABLE 4 

Analysis of Variance 

Source d.f. SS M.S. F 

Tests 5 5092.56 

Groups 4 509.12 127.28 

Individuals within Groups 123 948.41 7.71 

Groups x Tests 20 644.74 32.24 

Individuals x Tests 615 2991.O4 4.86 
within Groups 

F 2 = 16.5i 

F 3 = 6.63 

Of primary interest is the test of the homogeneity of group profiles, which 
is a test  for the existence of the group-test interaction. For  this purpose 
enter the F3 value in the F table with (g -- 1)(p -- 1)e and ( N  - g ) (p  - 1)e, 
or with 20e and 615e, degrees of freedom. From the previous formula, and 
the elements in the S matrix, e is estimated to be .8194. Therefore the effective 
degrees of freedom are 16 and 503. The  observed F3 = 6.63 is greater than 
the .001 point for F with 15 and 120 degrees of freedom. One therefore rejects 
the hypothesis of no interaction and concludes tha t  the mean profiles differ 
in shape from group to group. 

The  conservative test, which of course does not  require the computation 
of e, would enter F3 = 6.63 in the F tables with g -- 1 = 4 and N -- g = 123 
degrees of freedom. The  .001 point for F with these degrees of freedom is 
4.95. In  this case, therefore, the conservative test  yields the same conclusion 
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as the approximate test, namely, the probability tha t  the group profiles differ 
in shape due to chance is less than .001. 

The groups clearly differ with regard to levels as can be seen from the 
very large F~ value. 

Other Procedures 

The foregoing procedures present approximate and conservative tests 
of significance resulting from the analysis of variance utilizing readily available 
tables of the F distribution. As mentioned earlier there are available exact 
procedures in the multivariate analysis of variance. These procedures lead 
to exact tests of the general hypothesis in multivariate analysis of the equality 
of vector means among g populations and of the existence of the group-item 
or group-test interaction of interest in profile analysis. However, all of these 
procedures require laborious computations involving the inversion of (p × p) 
matrices (p equal to the number of tests or items) and the computation of 
latent roots or the evaluation of determinants. A further complication is 
the lack of tabled probability values for the appropriate test statistics. 
Recently, however, distribution tables have appeared relating to the approach 
of multivariate analysis initially taken by Roy [13]. Under this view, the 
distribution of the test statistic is dependent upon the distribution of the 
maximum characteristic root of certain matrices. The  most comprehensive 
tables or charts thus far available are those given by Heck [9]. Heck, inciden- 
tally, specifically considers the problem of profile analysis. 

The ease for two groups will be developed in some detail to illustrate the 
principles involved and then the extension to g groups as given by  Heek 
will be summarized briefly. The former situation leads to Hotelling's general- 
ized T 2 statistic and is implied in the literature on multivariate analysis. 

In the previous notation, x,;,  is an observation on item .i for individual 
i in group k, and 2.;, is the mean of character j in group k. The range of 
subscripts here is k = 1, 2; j = 1, 2, • •. , p; and i = 1, 2, • • • , n , .  As before, 
assume that  the random vector x~c,) = (x,k , . . .  , x~,) is N(~c,) , ~), tha t  
is, the p variables have a multivariate normal distribution in population k 
with mean vector t ~  = (~tk , " '"  , ~ )  and varianee-eovarianee matrix 

which is common to the g populations. The  hypothesis to be tested for 
g = 2 i s  

Transform the p variates in x to p -- 1 variates in y as follows (seo [1], 
pp. 110-112 and [12], pp. 239-244): 

LC~,-1 ,I " • • C~,-I ,~,_1 
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such t h a t  ~--'~:=: c~ = O. T h e  ma t r ix  C, sub jec t  to  the  restrict ion,  can be 
perfect ly arb i t rary .  For  example,  

o 

C =  0 - 1  . . .  

0 0 . . . .  

sub t r ac t s  x2 , •, ' , x~ f rom the  first va r i a t e  resul t ing  in  y: = x~ --  x~, y~ = 
x : - - x . ~ ,  - - . , y ~ _ :  = x ~ - - x ~ . O r ,  

i 11  .... l i: ] C = 1 - 1  p - I --I . . . .  1 

- -1  - -1  - -1  . . .  p - -  1 

which in  effect sub t rac t s  f rom each of the  p var ia tes  the i r  m e a n  2 = ( l / p )  
~ _ :  x~ resul t ing in  y: = x: --  2, . . .  , y~_: = x~_: - -  £ Us ing  the  first 

t r ans fo rma t ion  above,  the  vec tor  y~) = (y~ , - - -  , Yc~-:)k) is m u l t i v a r i a t e  

n o r m a l  wi th  m e a n  v~) = (~:~, " ' "  , ~c~-:)k), v;~ = #~  - ~(;+:)~, a nd  var iance-  
covar iance mat r ix  CF, C' ,  where the  pr ime denotes  the  t ranspose  of ~ matr ix .  

After  t ransforming  the  p x-var ia tes  in to  the  p - 1 y-vari~tes for each 
of the  n = n~ -t- n2 individuals ,  the  group means  in  the  y 's  are 

Y . l l  ~Y.21  , " * "  , y . ( p - - 1 ) l  

and  the  pooled sample  var ianee-covar iance  ma t r ix  in  the  y 's ,  W = [w,~], 
where 

1 
w , .  - -  ( Y , , :  - -  ~ . r , ) ( Y , 8 1  - -  ~.,:) 

n I - ] - n  2 - -  2 i=1 

+ (Y, , ,  - -  ~.~2)(Y,,2 --  ~.,2) , 
i=1 

and  r, s = 1, 2, . - .  , p - 1. I t  is easily seen t h a t  the  nu l l  hypothes is  in  the  
x ' s  is equ iva len t  to  the  following hypothes is  in  the  y's:  

~.~ = ~ - ~ ( ; + ~ ) ~  = v ~ 2  = g ~ 2  - -  ~ ( ; + : ) 2  , j = 1 ,  2 ,  . . .  , ( p  - -  1 ) ;  

i.e., ~(:) = 7(2) • B u t  this  is the  general  hypothes is  of mu l t i va r i a t e  analysis  
of the  equal i ty  of m e a n  vectors  for two groups and  i t  is well know n  t h a t  the  
appropr ia te  s tat is t ic  to tes t  this  hypothes is  is T 2. Therefore  
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T 2 _ nln2 ((Ic1) - 9(2)) 'W-1(~1) - 9(2)) 
~,l -~" n2 

p-I ~-I 
_ nln2 ~.. ~ .  w , 8 ( ~ . r  1 _ ~ . ~ = ) ( ~ . , i  _ ~.,=), 

nl "~ ~2 r 8 

where w"  is element rs in the inverse matr ix  W-k  This statistic has the T 2 
distribution with n~ q- n~_ -- 2 degrees of freedom. 

To  test the hypothesis at  level a, enter 

T=(nl + n~ - p) 
(n~ + n= - 2 ) ( p  - 1) 

in the F table with p - 1 and n~ -k n~ - p degrees of freedom. If 

T'(nl  "-k n ,  -- p) 
> F . ( p  -- 1 , n i  - k n 2  - - p )  

( n  I "-~ n 2 - -  ~ ) ( p  - -  1) 

reiect the hypothesis; otherwise accept. 
The  general case for g populations, of which the above is a special case, 

is given by Heck [9]. The extension is obvious. From the g by  p - 1 table 
of group means, one computes the between groups sums of squares and cross 
products to obtain the elements of the matr ix B,  say. Thus  element rs of 
this matrix is 

b ,  = - - = - 

k = l  /z=l 

where r, s = 1, 2, . . .  , (p - 1). For the error matrix W,  compute similarly 
the sums of products, so tha t  

k = l  i = I  k = l  i k = l  

In the above formula, ~.,~ = n[  ~ ~?~=~ y~,~ . The  various test statistics 
proposed are proportional to some function of the product  matr ix B W  -~. 

In the literature on multivariate analysis, there have been three ap- 
proaches to the distribution problem. Wilks [17], starting with the likelihood 
ratio criterion, derived the test  statistic ] I "l- B W  -~ ]-~, which is obviously 
equal to the inverse of the product  of the characteristic roots of (1 Jr- B W - ~ ) ,  
I being the identi ty matrix. Hotelling [10] has proposed the distribution of 
t r  B W  -~ or of the sum of the characteristic roots of B W  -~. Roy [13] has 
proposed the consideration of the distribution of the maximum characteristic 
root  of B W  -~. For a further  discussion of these three points of view consult 
Anderson ([1], pp. 221-224). There are no probabili ty tables available for 
the first two test  statistics although the exact cumulative distribution of the 
determinantal  statistic is given by an infinite series of x2's, the  first term of 
which, for any reasonable N, gives an excellent approximation to the whole 
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rive test provides a procedure which is more than "rough and ready" and 
yet saves considerable time since it does not require a matrix inversion nor 
even the computation of a covariance matrix. This is particularly true when 
p, the number of variables, is large and the number of samples is greater 
than two. 

The question of electronic computers is another matter. Given the 
availability of a classical analysis of variance program and tJae availability 
of a combined program to carry out the multivariate analysis of variance 
involving the between samples variance-eovariance matrix, the inverse 
of the error variance-covariance matrix, and the extraction of the maximum 
latent root of the product of the two matrices, it is very likely that the former 
would require less machine time. However, the difference is probably of no 
practical importance and the exact procedure should be used. 

A more fundamental question relates to a comparison of the two exact 
tests involved. Are the multivariate analysis of variance procedures depending 
upon the distribution of BW -I more powerful against all alternatives than 
the distribution of the ratio of linear sums of x 2 variatcs? It is not clear that 
this is so, particularly with regard to the analysis of profile shapes where 
the former procedures must reduce the dimensiona~ty of the random vector. 

If one does decide to use the F tests in an analysis, the following series 
of steps are suggested. After finding the traditional analysis of variance 
table, first test the appropriate observed F value in the F distribution with 
full, i.e., unredueed, degrees of freedom. For Fa , for example, this would 
b e F w i t h  (p -- 1)(g - 1) and (p - 1)(N -- g) degrees of freedom. If Fa 
is smaller than the a critical point, one can stop here, for the null hypothesis 
will not be rejected with further manipulation of degrees of freedom. If 
the observed F is significant, then one proceeds to the conservative test 
where the degrees of freedom are reduced by a factor equal to 1 / (p  -- 1). 
For F8, the appropriate F distribution is F(g -- 1, N --  g). If this test leads 
to significance at the a level, one can at this point reject the null hypothesis 
without further testing. However if the conservative test is not significant 
then it is suggested that the e be estimated from the variance-covariance 
matrix and the approximate test be carried out. 

Number  of Individuals  Less than the Number  o] Variables 

As indicated in the introduction, in the case of one group, if (n -- 1) < p, 
or in the case of g groups, if (N - g) < p, it is not possible to apply multi- 
variate procedures. The reason of course is that the error matrix, W, is 
singular. Such situations are not too uncommon, especially in research in 
clinical psychology and psychiatry. Clearly the approximate F tests presented 
are not applicable either since the reduction in degrees of freedom is dependent 
upon the elements of a singular matrix. However, the conservative test 
can be applied. 
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Unequal  Variance-Covariance  Matr i ces  

Perhaps  one of the most  impor tant  uses of the conservative test  is 
in the situation where one cannot assume the equali ty of the unknown 
variance-covariance matrices in the p-var ia te  normal populations being 
sampled. For this case, there are no exact procedures available. I t  will be  
noted tha t  this case, p = 1 and g = 2, reduces to the Fisher-Behrens problem. 

Here, in order for the F statistics to be unbiased, it is necessary to work 
with equal sample sizes in the groups, i.e., nl  . . . . .  ng = n.  Therefore, 
N = Z n ,  = gn. I t  can again be shown tha t  the respective numerator  and 
denominator  quadratic forms entering into F~, F2, and F3 are independent and 
have  the  same expectations. Now, however, when an F distribution is used 
to approximate  these F statistics (see [5], t h e o r e m  6.1), i t  turns out tha t  
there are different factors reducing the numera tor  and denominator  degrees 
of freedom, and these in turn  differ for the three F statistics. Here again i t  
can be shown tha t  these e's have lower limits which when applied to the  
appropriate  degrees of freedom result in a conservative test  for assessing the 
significance of F1 , F~,  and F.~ by  entering these in the F distribution with 1 
and n -- 1 degrees of freedom. I t  is of interest tha t  the F2 test, when p = 1 
and g - 2, is a conservative test  for the various approximate  solutions given 
to the Fisher-Behrens problem of testing the equality of two means with 
unequal variances (e.g., [15], p. 295). 
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