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S

We suggest a nonparametric approach to making inference about the structure of distri-
butions in a potentially infinite-dimensional space, for example a function space, and
displaying information about that structure. It is suggested that the simplest way of pre-
senting the structure is through modes and density ascent lines, the latter being the projec-
tions into the sample space of the curves of steepest ascent up the surface of a functional-
data density. Modes are always points in the sample space, and ascent lines are always
one-parameter structures, even when the sample space is determined by an infinite number
of parameters. They are therefore relatively easily depicted. Our methodology is based on
a functional form of an iterative data-sharpening algorithm.
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1. I

In conventional statistical problems, involving either one- or two-dimensional data,
some of the relationships among data values can be assessed visually. They often provide
important information about the processes that might have generated the data. For
example, the number of clusters is a guide to the number of components in the sampled
population, and the distance of a data value from the centre of its cluster may indicate
the strength of its connection to one component rather than another.

For functional data, however, these relationships are not nearly so obvious from the
data, and standard structure-displaying methods often do not overcome this difficulty. In
particular, conventional perspective mesh plots are generally not helpful when the data
are more than two-dimensional. In this paper we argue that, for functional data, the
simplest way of depicting structure is through modes and density ascent lines, the latter
being the projections into the sample space of the curves of steepest ascent up the surface
of a functional-data density. The key to our methodology is a functional form of an
iterative data-sharpening algorithm, introduced in a finite-dimensional setting by Choi &
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Hall (1999a). In that approach, data are transformed so that they move towards the mode
of a nonparametric density estimator.

One reason for focusing on modes and density-ascent lines is that modes are always
points in the sample space, and ascent lines are always one-parameter structures, even
when the sample space is determined by an infinite number of parameters. This makes
the depiction of distributional features relatively straightforward. By way of comparison,
contours and ridge lines of a functional-data density have co-dimension one and so are
generally infinite-parameter structures. This makes them as difficult to depict as the density
itself. Also, the modes of a functional-data density are directly related to cluster analysis,
and in fact our techniques lead to simple and particularly effective methods for classifi-
cation of functional data. Densities in infinite-dimensional spaces, and density contours
and ridge lines there, are discussed in § 4.

In § 2 we suggest a general method for constructing a functional-data density estimator,
based on a measure of distance in the function space. There is a very wide choice. For
example, if one wished to identify directions in which the distribution was relatively highly
diffuse then one could use the inverse of a measure of covariance to describe distance.
However, to reduce the reader’s workload we shall employ only existing distance measures.
For example, when the data are curves we shall use L 2 distance, or its square, between
two data or between their derivatives. The latter approach can reveal important infor-
mation about differences in shape as opposed to differences in location. In this context a
rank correlation measure of distance, proposed by Heckman & Zamar (2000), is also
useful.

Our modified form of the data-sharpening algorithm reduces the step length of the
motion to zero, at least conceptually; in implementation, the step length is very small but
positive. The modification also involves shifting the ‘points’, which are now functions, all
the way to the mode, and measuring the distance, in the function space, through which
they are moved. This technique enables us to work throughout, both conceptually and
statistically, with the original data. In particular, it is not necessary to select a basis
and a dimension in order to convert the original, functional-data problem into a more
conventional one of multivariate analysis.

Since the density of functional data cannot be viewed directly, the mathematical accu-
racy of statistical approximations to the density is not as important as it would be in a
low-dimensional problem. As a result, choice of the bandwidth cannot be meaningfully
motivated by traditional criteria, such as minimisation of mean squared error. We suggest
instead that it be based on criteria that are relatively easily interpreted, such as the fineness
of data classification that a given bandwidth produces; as bandwidth is decreased the
number of clusters into which the distribution is divided by its modes is increased in an
approximately monotone way. We use this as the basis for describing the effects of different
levels of smoothing on properties of density estimators.

If the distance measure can be expressed through an inner product then it may be used
as the basis for a tree diagram, depicting directed relationships among data values. These
techniques are related to those based on minimal spanning trees for spatial data (Florek
et al., 1951; Friedman & Rafsky, 1981, 1983), and to density-based versions of those
techniques suggested by Cheng et al. (2002). Our methods are illustrated by application
to real data in § 3.

There is a significant literature on direct comparison of data curves, as distinct from
comparison via the structure of their distribution. It includes work of Ramsay et al. (1995)
on comparison of growth curves, as well as methods suggested by Kneip & Gasser (1992),
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Wang & Gasser (1997) and Ramsay & Li (1998) for aligning data curves. Methods for
correlation analysis and principal components analysis for curve data are also related,
not least because they can help to find low-dimensional approximations to problems that
we treat in the full, infinite-dimensional forms. In this context we mention work of
Leurgans et al. (1993), Pezzulli & Silverman (1993) and Silverman (1995). Nonparametric
density and mode estimation via dimension reduction were proposed by Gasser et al.
(1998). Early nonparametric approaches to functional data analysis include that of Rice
& Silverman (1991). These methodologies and many others are discussed at length by
Ramsay & Silverman (1997). Techniques for analysing structure, including clustering, for
complex datasets have been discussed by, for example, Hartigan (1975), Friedman &
Rafsky (1983), Hall et al. (1992), Tierney (1990), Swayne et al. (1991) and Cheng et al.
(2002).

Earlier applications of data sharpening methods to the problem of mode or ridge esti-
mation include those of Fwu et al. (1981), S. B. Boswell in an unpublished 1983 Rice
University Ph.D. dissertation and Jones & Stewart (1997). In the more general context
of density or intensity estimation, and ridge estimation, contributions of Samiuddin &
El-Sayyad (1990), Jones & Signorini (1997) and Choi & Hall (1999a, b), should be
mentioned.

2. M

2·1. Modes, ascent lines and clusters

Suppose a sample X={X1 , . . . , Xn} is drawn from a distribution on the sample space
S, and let d(x, y) be a measure of the distance between elements x and y of S. We shall
often take d to be the square of L 2 distance, in which case dD is a metric. In most cases
only the interpretation of distance suffers if d is not a metric, even if d is asymmetric. An
exception is the case of tree diagrams, where symmetry is relatively important. In the
present section we shall take S to be a vector space. Our numerical examples in § 3, and
our theoretical account in § 4, will address the case where S is a space of functions.

Central to our definitions of modes, ascent lines and clusters will be the assumption
that the sampling distribution admits a measure of density with respect to d. Let X denote
a generic datum X

i
, suppose h>0 and xµS, and write p

h
(x) for either the probability

that d(x, X)∏h or a smooth approximation to the probability such as the kernel-based
one given in the next paragraph. Then we ask that either

(a) p
h
(x)<p

h
(y) for all sufficiently small h or

(b) p
h
(x)>p

h
(y) for all sufficiently small h or

(c) p
h
(x)/p
h
(y)�1 as h�0.

Thus, only relative sizes of p
h
(x) are important to us, not the actual sizes, and so our

estimators of p
h

do not require normalisation. The definition of a density in infinite-
dimensional, or more properly infinite-parameter, function spaces will be discussed in § 4·1.

Let K be a nonnegative and nonincreasing function on the positive half-line, decreasing
to 0 as u�2. We shall generally take K(u) to be either e−u or e−u2/2, although compactly
supported kernels may also be employed. Let h be a bandwidth, and define W

h
(x, y)=

K{d(x, y)/h}. An empirical version of p
h
(x) is given by

p@
h
(x)= ∑

n

i=1
W
h
(x, X

i
), (2·1)

up to a positive multiplier that does not depend on x. Indeed, we may take p
h
(x) to be
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the kernel-smoothed probability E{p@
h
(x)}. Define the transformation

TC
h
(x)=

W

i
X
i
W
h
(x, X

i
)

W

i
W
h
(x, X

i
)

, (2·2)

denoting an average of all data vectors that lie in a neighbourhood of xµS. It is a
Nadaraya–Watson estimator in which the data are taken as both explanatory and response
variables. The transformation TC

h
suffers from virtually no numerical difficulty, even in

infinite-dimensional problems. It requires no implicit solution of equations, and employs
only elementary operations, such as addition and multiplication. If we use a kernel,
such as the Gaussian, with infinite support, and if a norm d .d is defined on S, then
dTC
h
(x)d∏sup

i
dX
i
d for all x.

Let pAh be the version of p@
h

computed using KB , defined by KB (u)=∆
v>u

K(v) dv, instead
of K. In particular, pAh¬p@

h
if K(u)=e−u. We shall show in § 4·2 that, when the distance

between functions x and y is defined by d(x, y)=∆ (x−y)2, TC
h

takes x to a point TC
h
(x)

which is in a region of generally higher empirical density, as measured by pAh , than the
region containing x. Moreover it will be proved that v@

h
(x)=TC

h
(x)−x is a vector in the

direction of the projection into S of a generally upwards-moving trajectory on the density
surface TB , defined by s=pAh (x).

To construct mode estimators and clusters, take a small positive quantity e and, for
each X

i
µX, trace out the sequence of points X

i0
, X
i1

, . . . defined iteratively by X
i0
=X
i

and X
i,j+1
=X
ij
+ev@
h
(X
ij
), for j�0. In the theoretical limit as e�0, this sequence becomes

a density ascent line, LC
i
say, that represents the projection into S of a trajectory drawn

from (X
i
, p@
h
(X
i
)) to a local maximum of a density surface.

It will be shown in § 4·2 that LC
i
may be interpreted as the projection into S of a line

of steepest ascent up a density surface computed using the kernel KB . The context of this
result is that described two paragraphs above. Therefore, density ascent lines LC

i
can be

explicitly related to steepest ascent curves up density surfaces. Each line starts at a data
value and ends at a mode or perhaps at a saddlepoint. Of course, the latter points will
not themselves be data values. If we want the modes to be local maxima of the density
surface defined by s=p@

h
(x), where p@

h
is given by (2·1), then we should replace K in the

definition at (2·2) by −K∞. This result implies that, if distance is measured by the square
root of ∆ (x−y)2, and if we take K to be proportional to a Normal density, then the
kernels used to define the density estimator p@

h
and its associated transformation TC

h
are

identical.
In numerical work we found that, as a result of step length not being infinitesimal, it

is possible for the algorithm tracing a density ascent line to stop before it reaches its mode,
x@0 say. It can be made to continue, and terminate at a mode, by the expedient of reducing
the value of e slightly. Each mode estimate x@0 defines a cluster in the dataset, equal to the
set of those data X

i
whose density ascent lines lead to x@0. Our example in § 3, the analysis

of precipitation curves using L 2 distance, will illustrate the way information about
relatively flat parts of functional-data density surfaces can be obtained through density
ascent lines.

A particularly attractive feature of density ascent lines is the fact that, no matter how
complex the sample space, they are sets determined by a single parameter. For a univariate
density, the density ascent line starting at a real number x is an interval with x as one of
its endpoints and a mode of the density, or density estimator, as the other. The line has
an identical definition in the case of functional data, except that the interval is replaced
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by a path in the function space. Any point on the path may be parameterised by the
integral of the infinitesimal distances through which the function has moved, up to that
point. As a numerical approximation to this quantity, and in a functional-data setting,
the length of the path that leads to the function X

ij
may be taken equal to

S
j
=e ∑
j−1

k=0
qP v@h (Xik )2rD.

The relationship between a data function X
i
and the corresponding modal function x@0,

at the opposite end of LC
i
from X

i
, may be illustrated by plotting the continuum of density

ascent lines that lead from X
i
to x@0. This depiction can be particularly revealing as a

dynamic graphic, indicating both the manner and rate at which different functional-data
features change as functions of S

j
. We suggest that the time dimension in the dynamic

graphic be taken proportional to S
j
, so that features change more rapidly as the density

ascent line moves to regions of the sample space that correspond to more steeply graded
parts of the functional-data density. On paper, the depiction of functional change along
a density ascent line can be represented as a discrete sequence of plots at points that are
equally spaced in terms of the distance measure S

j
.

2·2. T ree diagrams

Suppose the distance function d is defined in terms of an inner product (. , . ), with
d(x, y)= (x−y, x−y). Let TC denote the surface represented by the equation s=p@

h
(x).

Within a given cluster C, a tree diagram depicting directed relationships among data
values may be constructed as follows.

Let l denote a positive constant. We shall use it to weight a penalty term,

d(X
i
, X
j
)− (X

j
−X
i
, u
i
)2�0,

that is added to the simple distance measure d(X
i
, X
j
) when defining its penalised form,

D(X
i
, X
j
). Increasing l will result in greater emphasis being given to linkages that reflect

upwards movement on the surface TC . We shall link X
i
µC to X

j
, in that direction, if,

among all X
j
µC such that p@

h
(X
j
)>p@
h
(X
i
), X
j
minimises

D(X
i
, X
j
)= (1+l)d(X

i
, X
j
)−l(X

j
−X
i
, u
i
)2,

where u
i
=v@
h
(X
i
)/d(0, v@

h
(X
i
))D is an element of S with unit length. If there exists no point

X
j
µC such that p@@

h
(X
j
)>p@
h
(X
i
), then no linkage is drawn away from X

i
to another point;

X
i
represents the element of C at which p@

h
is maximised, and may, without essential loss

of generality, be identified with the mode that corresponds to C.

3. N 

3·1. Preliminaries

Throughout our numerical work we use K(u)=e−u2/2. When taking d to be L 2 distance,
employing this kernel is of course equivalent to using K(u)=e−u when d is the square of
L 2 distance, modulo a change of bandwidth. For the sake of brevity we do not show plots
of function sequences represented by density ascent lines, or plot the measure S

j
of distance

along the steepest-ascent curve. Information in these graphs has been incorporated into
our discussion, however. In particular, plots of S

j
against j are invaluable for showing

where the density surface is steep and where there are ‘shoulders’ in the surface.
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We apply our methods to a dataset of 35 curves representing the natural logarithm
of the daily precipitation at 35 Canadian weather stations averaged over the years
1961 to 1994. Day 1 is 1 January. The data are available from J. O. Ramsay’s website,
www.psych.mcgill.ca. The logarithms of the averages are particularly noisy, and so
we smooth the logarithms using the algorithm smooth.spline in S-Plus, choosing the
smoothing parameter by generalised crossvalidation. This produces the smooth curves in
Fig. 1. To ensure periodicity, each dataset is replicated three times, in the obvious manner,
prior to smoothing.

3

2

1

0

_1

_2

_3
0 50 100 150 200 250 300 350 400

Day

Fig. 1. Smoothed log precipitation curves of 35 Canadian
weather stations averaged over years 1961–1994; day 1 is

1 January.

3·2. Density surface defined by L 2 distance on functions

Figure 2 shows the modal functions resulting from four L 2 analyses using bandwidths
h=14, 10, 8 and 6, equivalent to the 39th, 26th, 19th and 12th percentiles of the interfunc-
tion distances. As outlined in § 2, the modal functions are obtained iteratively as limits of
sequences X

i,j+1
=X
ij
+ev@
h
(X
ij
), for j�0, where X

i0
=X
i
and e>0 is chosen small. Here

we have taken e=0·1.
In kernel estimation of a univariate density, Silverman (1981) showed that the number

of modes is a decreasing function of the bandwidth, provided one uses a normal kernel.
While properties of smoothing with a normal kernel in the multivariate case have been
studied (Kostrowicki & Piela, 1991; Moré & Wu, 1997), it is unclear whether or not
Silverman’s result generalises. Silverman’s (1981) derivation is based on Schoenberg’s
(1950) result about variation-diminishing transformations, and its multivariate version
does not hold for integral transforms obtained by convolution with the Gaussian kernel.
For example, in the bivariate case there exist smooth functions that have only a finite
number of turning points, but are such that their convolution with a Gaussian density
has a continuum of turning points. Nevertheless, in all the examples we considered we
found that reducing the bandwidth never reduced the number of modes.
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Fig. 2. Weather station data: Modal curves for four L 2 analyses
using different bandwidths. In each panel the new modal function
is indicated by a dotted line. The other modal functions change
slightly from panel to panel, because different bandwidths are used,
but the changes are slight. Therefore, the first, . . . , fourth modal
functions are easily recognised; the first k of these are represented

in the kth panel.

In particular, reducing h beyond the values used to prepare Fig. 2 results in a larger
number of modes, up to 35 for sufficiently small bandwidths. The value of e seems only
to affect convergence of the algorithm. If e is chosen to be large, the algorithm either
converges very slowly or not at all. However, upon convergence the modal curves are
basically unchanged by the choice of e.

The modal curves change only slightly as the bandwidth decreases. This property was
observed in simulated data too, and is a particularly helpful feature of our method when
it is used for classification: the modes that represent clusters change only very slowly as
the number of clusters is altered. This means that ‘old’ clusters are easily recognised even
if some of their members have deserted them for other modes.

The precipitation curves whose density ascent lines converge to a given mode may be
regarded as being in the same cluster, and are depicted in Fig. 3 for the case of four modes.
The first cluster contains 19 curves, the second cluster contains 14 curves, the third cluster
consists only of the Resolute weather station and the fourth cluster contains only the
Victoria weather station. In the two- and three-mode analyses, Victoria was part of the
first cluster. Resolute was part of the second cluster in the two-mode analysis, but split
off to form its own cluster in the three-mode analysis. Interestingly, the cluster groups are
very stable, not changing with h. For instance, values of h from 9 to 13 yield two modes,
with the clusters remaining the same throughout.

The curves within each of the first and second cluster in Fig. 3 do not all have the same
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Fig. 3. Weather station data: Four mode case. Shown in the kth
panel are the data curves whose density ascent curves converge to
the kth modal function, for the four modal functions in Fig. 2(d).

shapes. The curves correspond to similar annual precipitation levels, however, and this
seems to be the effective discriminator that is operating there. Indeed, the ranges of values
of logarithms of annual averages of daily precipitations for the stations in the first and
second clusters of Fig. 3, modulo the smoothing that is used to define the curves, are 0·42
to 1·86 and −0·52 to 0·03 log mm, respectively. The average for Resolute, third cluster, is
−1·31 and the average for Victoria, fourth cluster, is 0·49.

Thus our analysis identifies the two stations, Victoria and Resolute, as possible outliers
relative to the other data. Resolute is easily distinguishable in Fig. 1, being the lowest
curve, with average of the smoothed logarithm of precipitation much lower than the other
stations. Victoria is also easily seen as an outlier in the first cluster: its maximum is larger
and its minimum smaller, and, in common with only one other curve, that for Vancouver,
it has a marked ‘V’ shape. The average of Victoria’s daily logarithm of precipitation is
lower than that of Vancouver’s, being 0·49 compared to 0·91. It is possible, however, that
four clusters are too many for this dataset, and that Victoria should be included in the
same cluster as Vancouver, which it most resembles in terms of shape of precipitation curve.

3·3. Density surface defined by L 2 distance on derivatives or by rank distance

For the weather station data, L 2 distance on function derivatives performs well at
identifying curves that have unusually steep gradients. It ignores differences in average
annual rainfall.

As in the case of L 2 distance applied directly to the functions, and also for the rank-
based distance discussed below, modal functions change very little as bandwidth is reduced.
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The first modal function is relatively flat, but with precipitation in summer slightly elevated.
The second modal function shows low precipitation in late summer/early autumn and
high precipitation in the winter. The cluster corresponding to this mode contains only
two stations, Vancouver and Victoria, which are distinguished by their V-shaped precipi-
tation curves. The third modal function is opposite to the second, showing low levels of
precipitation in the winter and high levels in the summer. The fourth modal function is
that for Resolute, which has highest precipitation in the autumn.

The rank distance between two curves is defined to be √(1−r), where r denotes the
rank correlation between the two functions; see Heckman & Zamar (2000). For band-
widths that produce up to four modes by this measure, the first, second and third modal
curves are similar to their counterparts for L 2 distance on the derivatives. However, the
rank-based analysis focuses more on the qualitative similarity of shapes of the curves. For
instance, in the two-mode rank-based analysis, the cluster corresponding to the second
mode includes more than just Vancouver and Victoria: the second cluster contains all
nine stations with high winter precipitation and low summer precipitation. Decreasing h
to the three-mode case results in five stations moving from the first group to form a
cluster. These five stations also form the third cluster in the derivative based analysis, with
low precipitation in the winter and high in the summer. Decreasing h to the four-mode
case results in a singleton for the fourth mode, Kamloops, whose curve is irregularly
shaped.

In the three- and four-mode analyses, convergence was very slow, indicating that the
surface is somewhat flat near the third and fourth modes. In fact, we had to reduce the
value of e from 0·1 to 0·05 to guarantee convergence of our algorithm. Using such a
small value of e for all iterations and all weather stations slows the algorithm. However,
to speed convergence, we can decrease the value of e for some stations and also decrease
e after sufficiently many iterations.

3·4. Paths of the ascent lines

As noted in § 2·1, a plot of S
j
versus j gives information about how the sequence X

ij
,

for j>0, moves to a mode and therefore provides information about the surface rep-
resented by s=p@

h
(x). In the analysis of the precipitation data these plots are usually

convex, with the associated sequence of iterated curves moving with fairly constant deceler-
ation until the mode is reached. This indicates that, along this path, the density surface
is quite smooth, with no pronounced shoulder. However, sometimes the plots have flat
spots, indicating that the sequence is resting at a shoulder of the density surface. We see
this in two situations, one where the initial part of the sequence does not change much
and another when the initial change is rapid followed by little change and then followed
by fast convergence to the mode. The former situation applies to unusual curves, ones
that are, in some sense, outliers, not at first being attracted to a mode. The latter situation
applies to groups of curves, typically those that would form a cluster if one used a smaller
value of h. In this case, the curve that is situated at a resting point of the trajectory is
usually either similar to a modal curve from an analysis with smaller bandwidth or lies
between two modal curves. For instance, in the one-mode analysis using L 2 distance, the
trajectories of the data curves in the second, third and fourth clusters of Fig. 3 rest momen-
tarily at a curve that is similar to, but flatter than, the second modal function. Thus we
infer that there is a shoulder in the unimodal density, situated near the second modal
function.



154 P H  N E. H

Prince GeorgeLondonQuebec

Thunder BayOttawaSherbrooke Montreal Toronto

ScheffervilleBagottville
Fredericton

Arvida

Charlottetown Vancouver

Prince RupertSydneyYarmouth Halifax St. John’s

Fig. 4. Weather station data: Tree diagram for the 19 Canadian weather
stations in first cluster of Fig. 3.

3·5. T ree diagrams

In Fig. 4 we give an example of a tree diagram for the 19 weather stations in the first
cluster of Fig. 3. The diagram is constructed using l=0·3. The value of p@

h
(X
i
) is maximised

for the Montreal weather station, and so Montreal forms the endpoint of the tree. The
second modal curve is shown as a dashed line in the plot for Montreal. It can be seen
that the data curves become similar to the Montreal curve as one progresses through the
tree. Note, for instance, the sequence Schefferville, Arvida, Bagottville and Montreal.

3·6. Simulation study

Here we summarise a simulation study showing that the real structure of a distribution
of random curves can be reliably recovered using our algorithm. For this purpose we shall
view our method purely as a classification rule, and compare it with k-means clustering
(Hartigan, 1975), as implemented in S-Plus. It will be seen that k-means clustering performs
a little better at classification, but the techniques produce similar results and of course
our approach provides more explicit information about the shape of the density surface.

Each of 300 datasets of size n=50 was generated from the model

X(t)=A cos(2pt)+ (B+m) sin(2pt),

with A and B being independent standard Normal random variables. For 25 of the 50
curves we took m=2, and for the other 25 curves, m=−2. Each curve was observed at
100 equally-spaced points tµ[0, 1]. When applying k-means clustering we set the number
of clusters equal to two. When implementing our algorithm we used Euclidean distance
and, for each dataset, determined the bandwidth h that yielded two clusters. In 93% of
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datasets the same h produced the two desired clusters; the remaining datasets required
individual analysis. In almost all cases our algorithm converged when e=0·15, but in a
few instances it was necessary to decrease e to 0·10 or 0·05.

For each algorithm the modal number of misclassifications was one, with 35% of
samples having just one misclassification when using k-means clustering, and 33% when
using our approach. The median number of misclassifications was also one; the proportion
of cases where the number of misclassifications was no more than one was 60% in the
case of k-means clustering and 52% in the case of our own approach. The 75th percentiles
were two in each case, with the percentages of two or fewer misclassifications being 75%
and 83% in the cases of k-means clustering and our technique, respectively. More broadly,
the distribution of error rate was skewed slightly to the right for our method, relatively
to that for k-means clustering.

4. T 

4·1. Density of X

In this section we suggest a definition of a density p of the distribution of a Gaussian
process X. It is shown that the simpler kernel estimator p@

h
, suitably normalised, converges

uniformly to p. Results for a mixture of Gaussian processes are given in a longer version
of this paper, obtainable from the authors.

Suppose X is a random function from a space R to the real line, and has zero mean.
We may write the Karhunen–Loève expansion of X as

X= ∑
2

i=1
Y
i
a
i
y
i
,

where the random variables Y1 , Y2 , . . . are independent and have a common standard
Normal distribution, each a

i
�0, W

i
a2
i
<2 and y1 , y2 , . . . is an orthonormal sequence of

functions from R to the real line. Put a= (a1 , a2, . . . ), let y= (y1 , y2 , . . . ) be a sequence of
real numbers, and define �y	=W

i
y2
i
. Let S

a
denote the class of functions x on R that

can be expressed as

x= ∑
2

i=1
y
i
a
i
y
i
, (4·1)

with W
i
y2
i
a2
i
>2. The sample space S, introduced in § 2·1, will here be S

a
. Given xµS

a
define

txs
a
= ∑
2

i=1
qP

R

x(u)y
i
(u) dur2 a−2i ,

where we interpret 0/0 as 0. If x is expressed in terms of y by (4·1) then txs
a
=�y	.

Assume that K(u)= exp (−u) for u>0, and define

p(x)=exp (−1
2
txs
a
), r

h
(x)=E{p@

h
(x)}/E{p@

h
(0: )},

where 0: denotes the zero function. The denominator here is merely a normalising constant,
and for us its only important property is that it does not depend on x. We may think
of r
h

as the expected value of the density estimator p@
h
, divided by the constant of

proportionality E{p@
h
(0: )}.

The function p may be be interpreted as a density of the distribution of X. Note that
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p(x)=0 when x1S
a
. It may be shown that r

h
(x) converges to p(x), uniformly in x, as

h�0. A proof involves expressing E{p@
h
(x)} in terms of the Laplace transform of the

random variable

d(x
y
, X)= ∑

2

i=1
(y
i
−Y
i
)2a2
i
,

where x
y
denotes the value of the right-hand side of (4·1) for a given value of y.

The rate of convergence of p@
h
/E{p@
h
(0: )} to r may also be explored; it is of course slower

than n−e for any e>0, since the stochastic process X is infinite-dimensional. Details are
obtainable from the authors.

4·2. Properties of TC
h
and x@0

We first relate v@
h
(x)=TC

h
(x)−x to the direction of steepest ascent up a density surface.

Define distance by d(x, y)=∆ (x−y)2, and put (x, y)=∆xy. Let pAh (x) be as at (2·1) but with
W
h

there replaced by the version of this function using KB (u)=∆
v>u

K(v) dv instead of K.
Note that, for K(u)¬e−u, KB ¬K and so pAh¬p@

h
. The formula below shows that v@

h
(x) is

in the direction of steepest ascent up the surface TB defined by s=pAh (x): for gµS,

pA ∞h (x)(g)¬
∂
∂d

pAh (x+dg)K
d=0
=2h−1p@

h
(x)(v@
h
(x), g).

This confirms the claims made in § 2·1 that TC
h
takes x to a point with higher empirical

density, and that a density ascent line LC
i
is the projection into S of a line of steepest

ascent up TB . Excepting possible pathological cases where the line keeps moving uphill
but never actually converges, it will converge to a point x@0 that is either a mode or a
saddlepoint of the surface defined by s=p@

h
(x).

In the finite, k-dimensional case, assume that the true density p has two uniformly
continuous derivatives of all types, the k×k matrix of second derivatives is nonsingular
at each mode, p has three derivatives in the neighbourhood of each mode and no saddle-
point and n−{2/(k+4)}+d∏h∏n−d for some d>0 and all sufficiently large n. Then it may
be shown that x@0−x0=O

p
(h+n−1/2h−(k+2)/4 ). It follows from the latter property that

x@0−x0=O
p
(n−2/(k+6) ) if h is asymptotic to a constant multiple of n−2/(k+6). A central limit

theorem for x@0−x0 may also be proved.

4·3. Definition of density contours and ridge lines

In this section we verify the claim made in § 1 that contours and ridge lines of densities
of functional data are too high-dimensional to be useful for depicting structure. The
contour corresponding to a density p is a level set of p, and so is defined by
T
s
={x : p(x)=s} where 0<s∏sup p. To define a ridge line, let pA ∞h (x)( . ) :S�R be the

gradient functional defined in § 4·2, and let dpA ∞h (x)d denote its norm. Then x=x1µT
s
is

on a ridge line if and only if dpA ∞h (x)d achieves a local minimum there among functions in
T
s
. Under regularity conditions, for each s there will only be a finite number of such x1’s,

and these functions will change smoothly with s. The set of ridge lines is the union over
s of the set of such functions x1.

In two dimensions, for densities of random two-vectors, ridge lines are generally curves
in the plane. They represent the projection into the sample space of ridges on the density
surface, where the ridge can now be interpreted in the geographic sense of that term. More
generally, it follows from the previous paragraph that a contour and a ridge line are both
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of co-dimension one, i.e. their structures require representations involving only one fewer
parameter than the entire space. Thus, it is too complex to depict them when the space
is infinite-dimensional.
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