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Spline Adaptation in Extended 
Linear Models 
Mark H. Hansen and Charles Kooperberg 

Abstract. In many statistical applications, nonparametric modeling can 
provide insights into the features of a dataset that are not obtainable 
by other means. One successful approach involves the use of (univariate 
or multivariate) spline spaces. As a class, these methods have inherited 
much from classical tools for parametric modeling. For example, stepwise 
variable selection with spline basis terms is a simple scheme for locating 
knots (breakpoints) in regions where the data exhibit strong, local features. 
Similarly, candidate knot configurations (generated by this or some other 
search technique), are routinely evaluated with traditional selection criteria 
like AIC or BIC. In short, strategies typically applied in parametric model 
selection have proved useful in constructing flexible, low-dimensional 
models for nonparametric problems. 

Until recently, greedy, stepwise procedures were most frequently sug- 
gested in the literature. Research into Bayesian variable selection, however, 
has given rise to a number of new spline-based methods that primarily rely 
on some form of Markov chain Monte Carlo to identify promising knot lo- 
cations. In this paper, we consider various alternatives to greedy, determin- 
istic schemes, and present a Bayesian framework for studying adaptation in 
the context of an extended linear model (ELM). Our major test cases are 
Logspline density estimation and (bivariate) Triogram regression models. We 
selected these because they illustrate a number of computational and method- 
ological issues concerning model adaptation that arise in ELMs. 

Key words andphrases: Adaptive triangulations, AIC, BIC, density estima- 
tion, extended linear models, finite elements, free knot splines, GCV, linear 
splines, multivariate splines, regression. 

1. INTRODUCTION 

Polynomial splines are at the heart of many popu- 
lar techniques for nonparametric function estimation. 
For regression problems, TURBO (Friedman and Sil- 
verman, 1989), multivariate adaptive regression splines 
or MARS (Friedman, 1991) and nI (Breiman, 1991) 
have all met with considerable success. In the con- 
text of density estimation, the Logspline procedure 
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of Kooperberg and Stone (1991, 1992) exhibits ex- 
cellent spatial adaptation, capturing the full height of 
spikes without overfitting smoother regions. And fi- 
nally, among classification procedures, classification 
and regression trees (CART) (Breiman, Friedman, 01- 
shen and Stone, 1984) is a de facto standard, while 
the more recent PolyMARS models (Kooperberg, Bose 
and Stone, 1997) have been able to tackle even large 
problems in speech recognition. Stone et al. (1997) and 
a forthcoming monograph by Hansen, Huang, Kooper- 
berg, Stone and Truong are the prime references for 
the application of polynomial splines to function es- 
timation. In this paper, we review a general method- 
ological framework common to procedures like MARS 
and Logspline, and contrast it with several Bayesian 
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approaches to spline modeling. We begin with some 
background material on splines. 

1.1 Splines 

Univariate, polynomial splines are piecewise poly- 
nomials of some degree d. The breakpoints marking 
a transition from one polynomial to the next are re- 
ferred to as knots. In this paper, we will let the vector 
t = (tl, ..., tK) E RK denote a collection of K knots. 

Typically, a spline will also satisfy smoothness con- 
straints describing how the different pieces are to be 
joined. These restrictions are specified in terms of the 
number of continuous derivatives, s, exhibited by the 
piecewise polynomials. Consider, for example, piece- 
wise linear curves. Without any constraints, these func- 
tions can have discontinuities at the knots. By adding 
the condition that the functions be globally continu- 
ous, we force the separate linear pieces to meet at 
each knot. If we demand even greater smoothness (say, 
continuous first derivatives), we loose flexibility at the 
knots and the curves become simple linear functions. 
In the literature on approximation theory, the term "lin- 
ear spline" is applied to a continuous, piecewise linear 
function. Similarly, the term "cubic spline" is reserved 
for piecewise cubic functions having two continuous 
derivatives, allowing jumps in the third derivative at 
the knots. In general, it is common to work with splines 
having maximal smoothness in the sense that any more 
continuity conditions would result in a global polyno- 
mial. 

Given a degree d and a knot vector t, the collection 
of polynomial splines having s continuous derivatives 
forms a linear space. For example, the collection of 
linear splines with knot sequence t is spanned by the 
functions 

(1) 1, x, (x -tl)+, (.. - tK)+, 

where (.)+ = max(., 0). We refer to this set as the 
truncated power basis of the space. In general, the 
basis for a spline space of degree d and smoothness s 
is made up of monomials up to degree d together with 
terms of the form (x - tk++, where 1 < j < d - s. 

Using this formula the classical cubic splines have 
d = 3 and s = 2 so that the basis has elements 

(2) 1,x, x2, x3, (x-tl),..., (x-tk) 

From a modeling standpoint, the truncated power basis 
is convenient because the individual functions are tied 
to knot locations. In the expressions (1) and (2), there 
is exactly one function associated with each knot, and 
eliminating that function effectively removes the knot. 

This observation is at the heart of many statistical 
methods that involve splines and will be revisited 
shortly. 

The truncated power functions (1) and (2) are known 
to have rather poor numerical properties. In linear 
regression problems, for example, the condition of 
the design matrix deteriorates rapidly as the num- 
ber of knots increases. An important alternative rep- 
resentation is the so-called B-spline basis (de Boor, 
1978). These functions are constructed to have sup- 
port only on a few neighboring intervals defined by 
the knots. (For splines having maximal smoothness, 
this means d + 1 neighboring intervals.) A detailed de- 
scription of this basis is beyond the scope of this pa- 
per, but the interested reader is referred to Schumaker 
(1993). For the moment, assume we can find a basis 
B1(x; t), ..., Bj(x; t) for the space of splines of de- 

gree d with smoothness s and knot sequence t so that 
any function in the space can be written as 

(3) g(x; , t)= /lBI(x;t) +... + jBj(x;t), 

for some coefficient vector f = (,1, ... , f)t. If we 
are dealing with spline spaces of maximal smoothness, 
then J = K + d + 1, as we have seen in (1) and (2). 
Given this structure, we now briefly describe a broad 
collection of estimation problems that admit relatively 
natural techniques for identifying good fitting func- 
tions g. 

1.2 Extended Linear Models 

Extended linear models (ELMs) were originally de- 
fined as a theoretical tool for understanding the prop- 
erties of spline-based procedures in a large class of es- 
timation problems (Hansen, 1994; Stone et al., 1997; 
Huang, 1998, 2001). This class is extremely rich, con- 
taining all of the standard generalized linear models 
as well as density and conditional density estimation, 
hazard regression, censored regression, spectral den- 
sity estimation and polychotomous regression. To de- 
scribe an ELM, we begin with a probability model 
p(WIh) for a (possibly vector-valued) random vari- 
able W E 'W that depends on an unknown (also pos- 
sibly vector-valued) function h. Typically, h represents 
some component of the probability model about which 
we hope to make inferences. For example, in a nor- 
mal linear model, h is the regression function; while 
for density estimation, we take h to be the log-density. 

Let I(WIh) = log p(WIh) denote the log-likelihood 
for an ELM, and assume that there exists a unique 
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function 0 that maximizes the expected log-likelihood 
El(WIh) over some linear space of real-valued func- 
tions H. The maximizer 0 defines "truth," and is the 
target of our estimation procedures. [In Stone et al. 
(1997) a slightly more general notion of "truth" is de- 
veloped to handle ANOVA-like functional decompo- 
sitions.] We refer to this set-up as an extended linear 
model for 0. In this case, the term "linear" refers to our 
use of a linear model space H. The class H is chosen 
to capture our beliefs about ?, and is commonly de- 
fined through smoothness conditions (e.g., we might 
assume that the true regression function in a linear 
model has two continuous, bounded derivatives). These 
weak assumptions about 0 tend to result in classes H 
that are infinite dimensional. Therefore, for estima- 
tion purposes we choose to work with flexible, finite- 
dimensional spaces G that have good approximation 
properties. That is, the elements g E G can capture the 
major features of functions 0 E H, or mingEG IIg - 011 
is small in some norm for all 0 E H. Splines are one 
such approximation space. 

Given a series of observations W1,..., Wn from the 
distribution of W, we estimate 0 by maximizing the 
log-likelihood 

where g E G. 

Our appeal to maximum likelihood in this context does 
not imply that we believe p(W ?) to be the true, data- 
generating distribution for W. Rather, p may be chosen 
for computational ease in the same way that ordinary 
least squares can be applied when the assumption of 
strict normality is violated. In theoretical studies, it 
is common to let the dimension of G depend on the 
sample size n. For example, if G is a spline space with 
K knots, we let K = K(n) -+ oo as n -- oo. As we 
collect more data, we are able to entertain more flexible 
descriptions of ?. Asymptotic results describing the 
number of knots K(n) and their placement needed to 
achieve optimal mean squared error behavior are given 
in Stone (1985), Stone (1994), Hansen (1994), and 
Huang (1998, 2001), and Stone and Huang (2002). 

An ELM is said to be concave if the log-likelihood 
l(wlh) is concave in h E H for each value of w E W3 
and if El(WIh) is strictly concave in h [when restricted 
to those h for which El(WIh) > -oo]. Strict concav- 
ity holds for all of the estimation problems listed at the 
beginning of this section. Now, let G be a spline space 
with knot sequence t so that any g E G can be written 
in the form (3). Then since g(.) = g(.; f, t), the log- 
likelihood (4) can be written as l (B, t). Because of con- 

cavity, the maximum likelihood estimates (MLEs) f 
for the coefficients f and a fixed t can be found ef- 
ficiently in reasonably-sized problems through simple 
Newton-Raphson iterations. Therefore, it is possible to 
compute 

(5) (t) = max 1 (i, t). 
P 

After making the dependence on t explicit in this 
way, we can consider adjusting the knot locations 
tl < ... < tK to maximize the log-likelihood. It is 

intuitively clear that the knot sequence t = (tl, ..., tK) 
controls the flexibility of elements in g to track local 
features: tightly-spaced knots can capture peaks, while 
widely-separated knots produce smooth fits. 

However, even in the simplest case, linear regression 
with a single univariate predictor, maximizing (5) over 
knot sequences is a difficult optimization problem. To 
see this, we first translate univariate regression into 
an ELM: let W = (X, Y) and define p(WI( ) via the 

relationship 
Y =+(X) +e, 

for an unknown regression function 0. The error E 
is assumed independent of X with a normal distribu- 
tion having mean zero and variance a2. For a spline 
space G, the negative log-likelihood for 8 is propor- 
tional to the regression sum of squares 

RSS(f, t) = (Y - g(Xi; ,, t))2 

i 
= L(Yi - ,1B1(X,; t) -.. 

- BJ Bj(Xi; t))2. 
If we hold t fixed, then 

(6) 
I(t) o -RSS(t) = max{-RSS(/B, t)} 

- -RSS(fi, t), 

where ,B is the ordinary least squares estimate of f. 
Jupp (1978) demonstrated that -RSS(t) has local 
maxima along lines of the form tk = tk+l, making 
the solution to (6) difficult for standard optimization 
software. Not surprisingly, this problem persists in 
even more exotic ELMs. 

Several authors have considered special transforma- 
tions, penalties or ad hoc optimization schemes to max- 
imize the log-likelihood with respect to t (Jupp, 1978; 
Lindstrom, 1999; Kooperberg and Stone, 2002). In this 
paper, we will instead consider an approximate solu- 
tion that begins by connecting knot placement with 
model selection. 
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1.3 Model Selection 

The concavity of an ELM together with the asso- 
ciation of knot locations to terms in the truncated 
power basis suggests simple approximations to maxi- 
mizing (5) based on fast, stepwise approaches to model 
selection. Consider splines of degree d having max- 
imal smoothness and knot sequence t. According to 
Section 1.1, this means that s = d - 1 and each knot 

point tk in t is associated with only one of the trun- 
cated monomials (x - tk)d; the linear (1) and cubic (2) 
splines are two examples. Therefore, moving tk ef- 
fects only one basis element in G, and in fact remov- 
ing tk entirely is equivalent to deleting (x - tk)d from 
the model. Many existing spline methods use this idea 
in some form. It was originally proposed by Smith 
(1982a, b) and it has been the workhorse of many 
procedures suggested since (TURBO, DKCV, MARS, 
PolyMARS). 

Returning to the problem of maximizing (5), sup- 
pose we have a finite set of candidate knots T = 
{t, ..., t, }, from which we want to select a subset of 
size K, t = (tl,..., tK), K < K'. The connection be- 
tween knots and basis functions suggests that finding a 
good sequence t is really a problem in model selection 
where we are choosing from among candidate basis 
functions of the form (x - t)d_, t E T. For linear regres- 
sion and moderate numbers of candidate knots K', we 
can find the sequence of length K that minimizes (6) 
using traditional branch-and-bound techniques. How- 
ever, when K' gets large, or when we have a more 
exotic ELM requiring Newton-Raphson iterations to 
evaluate (5), this approach quickly becomes infeasible. 

For computational efficiency, the algorithms dis- 
cussed by Stone et al. (1997) take a stepwise ap- 
proach, introducing knots in regions where the un- 
known function 0 exhibits significant features, as eval- 
uated through the log-likelihood, and deleting knots 
in regions where / appears relatively smooth. More 
formally, starting from a simple spline model, knots 
are added successively, at each step choosing the lo- 
cation that produces the greatest increase in the log- 
likelihood. This is followed by a pruning phase in 
which unnecessary knots are removed, at each stage 
eliminating the basis element that results in the small- 
est change in the log-likelihood. Because we are al- 
ways taking the best single alteration to the current 
model, these schemes are often referred to as greedy. 
To prevent this process from tracking spurious patterns 
in the data, it is common to impose constraints on the 
initial model, the size M of the largest model fit dur- 
ing addition, and the minimal number of data points 

between each knot. These restrictions are defined in 
terms of allowable spaces, a topic we will discuss in 
more detail in the next section. 

Several facts about ELMs make this approach attrac- 
tive computationally. Consider placing a single knot in 
a linear regression model. Then, among all basis sets 
of the form 1,x, (x - t)+, we want to find the one 
that minimizes the criterion (6), which in this case is 
a function of t. It is not hard to show that RSS(t) is 
a piecewise smooth function of t, with breaks in the 
first derivative at each of the data points. This means 
we can derive fast heuristics to guide the search for 
new knots during the addition phase without having to 
evaluate all the candidates. Next, the concavity of the 
ELMs listed in Section 1.2 means that we can quickly 
approximate the change in log-likelihood from either 
adding or deleting a knot without actually fitting each 
candidate model. We now describe each alteration or 
"move" in more detail. 

Knot addition. Let G be a J-dimensional spline 
space with a given knot sequence, t, and let B denote 
the MLE of f. When using the truncated power basis 
inserting a new knot is equivalent to adding a single 
basis function to G, taking us to a new (J + 1)- 
dimensional space G1 with coefficient vector fl and 
knot sequence tl (where we let Bj+I be the basis 
function associated with the new knot). To evaluate 
the improvement, we employ a Taylor expansion of 
the log-likelihood (fil, tl) around fi1 = (t, 0), which 
specifies a function in G1. This approximation yields 
the well-known Rao (score) statistic and is convenient 
because it allows us to entertain a large number of 
candidate knot locations without having to compute the 
MLE f1 in each candidate space. 

Knot deletion. Again, let G be a given spline space 
and f, the associated MLE. Removing a knot from G 
reduces the dimension of G by one and takes us to a 
space Go. To evaluate the impact of this alteration, we 
again employ a Taylor expansion, this time around f. If 
a E IRJ represents the linear constraint that effectively 
removes a given knot, this expansion yields the Wald 
statistic for testing the hypothesis that at f = 0. For the 
truncated power basis, a is a binary vector with a single 
nonzero entry. With this approach, we can compare the 
impact of removing each knot in G without having to 
compute the MLE in these reduced spaces. 

Alternating phases of knot addition and deletion 
produces a sequence of models, from which we select 
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the single best according to some selection criterion 
like generalized cross validation (GCV) 

(7) GCVa(t) RSS(t) /1 a(J(t)1)2 
n _ n 

or a variant of the Akaike information criterion (AIC) 

(8) AICa (t) = -21(t) + aJ(t) 

(Akaike, 1974), where J(t) is the dimension of the 
spline space. The parameter a in each of these ex- 
pressions controls the penalty assigned to models with 
more knots and is introduced to offset the effects of 
selection bias (Friedman and Silverman, 1989; Fried- 
man, 1991). In Stone et al. (1997) the default value of a 
in (8) is log n, resulting in a criterion that is commonly 
referred to as BIC (Schwarz, 1978). 

Notice that our search for good knot locations 
based on the log-likelihood (5) has led to a heuristic 
minimization of a selection criterion like (7) or (8). 
Several comments about this reduction are in order. 
First, greedy schemes are often criticized for not 
exploring a large enough set of candidate models. In 
the stepwise algorithms of Stone et al. (1997), for 
example, the simple two-pass scheme (knot addition 
to a model of size M followed by deletion) evaluates 
essentially 2M different knot sequences. These 2M 
candidates are also highly constrained, representing a 
potentially narrow path through the search space. As a 
result, when we identify the "best model" according 
to some selection criterion, we have visited at most 
a handful of its "good-fitting" neighbors, those spline 
spaces with about the same number of knots found 
during either addition or deletion. However, as is 
typical with variable selection problems, many spline 
models offer essentially equivalent fits (in terms of AIC 
or GCV). 

Despite these caveats, examples in Stone et al. (1997) 
and other papers show that greedy algorithms for knot 
selection can work quite well. They lead to a surprising 
amount of spatial adaptivity, easily locating extra knots 
near sharp features, while removing knots in smooth 
areas. It is natural, however, to question whether or not 
alternative methods might prove more effective. In the 
discussion following Stone et al. (1997), for example, 
the Bayesian framework of Smith and Kohn (1996) is 
shown to approximately minimize the same objective 
function (8), but with a stochastic search algorithm. 
In general, the recent work on Bayesian model selec- 
tion offers interesting solutions to the shortcomings of 
greedy methods. 

1.4 A Bayesian Approach 

The desire to compare alternative search schemes 
is half the motivation for this paper. As mentioned 
earlier, a major source of inspiration comes from the 
recent work on Bayesian model selection and the 
accompanying Markov chain Monte Carlo (MCMC) 
methods for identifying promising models. To date, 
several Bayesian spline methods have appeared that 
make the connections with model selection listed 
above. The first was Halpern (1973), who constructed 
a hierarchical model for regression with linear splines. 
This application necessarily focused on small problems 
with a limited number of potential knots, succumb- 
ing to the computational resources of the day. More 
moder research in this area has followed a similar ap- 
proach in terms of prior assignment, but makes use of 
MCMC to sample from a (possibly very) large set of 
candidate knots. Perhaps the first such procedure was 
exhibited by Smith (1996) and Smith and Kohn (1996) 
for univariate and additive regression models. Simi- 
lar in spirit are the Bayesian versions of TURBO and 
CART proposed by Denison et al. (1998a, b), which 
employ reversible jump MCMC (Green, 1995). 

In a Bayesian setup, model uncertainty comes from 
both the structural aspects of the space G-knot 
placement-as well as from our selection of members 
g E G-determining coefficients in expression (3). We 
now spell out a simple hierarchical formulation that we 
will revisit in the next section. At the first level of the 
hierarchy, we assign a prior distribution p(G) to some 
set of candidate models G. In the setup for univariate 
regression using linear splines, for example, we would 
typically do that by first choosing a prior distribution 
on the number of knots p(K), and then by choosing an 
additional prior on the collection of knots t given K, 
p(tlK). Through p(tlK) we can prevent knots from 
getting too close, reducing the chance that the fitted 
model will track spurious features in the data. Next, 
given a space G, we generate elements g according to 
the distribution p(glG). Consistent with our motiva- 
tion for modeling with splines in the first place, our 
priors on K, t and g should somehow reflect our be- 
liefs about the smoothness of the underlying function 
of interest in an ELM, 0. In the literature on smooth- 
ing splines we find a class of priors for g that given 
a basis for G and an expansion (3) involves the coef- 
ficients fi = (,8, ..., 1BJ). This amounts to a partially 
improper, normal distribution for f (Silverman, 1985; 
Wahba, 1990; and Green and Silverman, 1994), which 
we will return to in Section 2. 
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Given a prior for spline functions g, we can gener- 
ate a sample from the posterior distribution of g us- 

ing MCMC. In particular, in Sections 2 and 3 we will 
use the reversible jump algorithm of Green (1995) for 
Logspline density estimation and Triogram regression, 
respectively. Details about how to choose priors and 
how to tune algorithms are discussed in these sections. 
When properly tuned, these stochastic methods can 
identify many more good-fitting knot configurations 
than their greedy, deterministic competitors. By focus- 
ing their search in regions of model space that have 
high posterior probabilities, the MCMC schemes listed 
above visit many more "promising" configurations. 

The second major motivation for this paper is the 
form of the final function estimate itself. Since deter- 
ministic searches identify a very small number of us- 
able models, the unknown function is typically esti- 
mated by straight maximum likelihood applied to some 
basis for the identified spline space. Suppose for the 
moment, that the function being estimated is smooth in 
some region, perhaps requiring not more than a single 
knot to adequately describe the curve. From the point 
of view of mean squared error, there are many roughly 
equivalent ways to place this knot in the region. There- 
fore, if given a number of good knot configurations, it 
might be more reasonable to combine these estimates 
in some way. This is roughly a spline or knot-selection 
version of the classical motivation for Bayesian model 
averaging. In later versions of the Gibbs sampling ap- 
proach of Smith and Kohn (1998) and the Bayesian 
versions of TURBO and MARS by Denison, Mallick 
and Smith (1998a, b), the final function estimate is a 
posterior mean. 

In this paper, we compare greedy (stepwise) al- 
gorithms with nongreedy (stochastic, Bayesian) algo- 
rithms for model selection. We evaluate different ap- 
proaches to adaptation by examining strategies for both 
knot placement and coefficient estimation. We focus on 
four classes of methods: greedy, stepwise procedures 
with maximum likelihood estimates in the final spline 
space; MCMC for selecting a single model; model av- 
eraging using maximum likelihood estimates of the co- 
efficients; and finally a fully Bayesian approach with 
model and coefficient averaging. Our two main es- 
timation problems will be Logspline density estima- 
tion and (bivariate) Triogram regression. We selected 
these because they illustrate a number of computational 
and methodological issues concerning model adapta- 
tion that arise in ELMs. 

In Section 2 we discuss greedy and Bayesian model 
selection approaches in the context of Logspline den- 
sity estimation. In Section 3 we turn to Triogram re- 
gression, contrasting it with Logspline. Finally, in Sec- 
tion 4 we identify areas of future research. Our goal in 
preparing this paper was not to advocate one scheme 
over another, but rather to investigate the performance 
of various approaches to model selection in the con- 
text of univariate and multivariate nonparametric esti- 
mation with splines. 

2. LOGSPLINE DENSITY ESTIMATION 

Recall that density estimation is an example of an 
ELM. In the notation of the previous section, the target 
of our analysis, 0, is a log-density, and W = Y, a ran- 
dom variable taking values in some interval (L, U). If 
the density of Y has infinite support, then L, U will 
be ?oc. In Stone and Koo (1986), Kooperberg and 
Stone (1991, 1992) and Stone et al. (1997), a tech- 
nique known as Logspline is developed in which 0 
is modeled with a natural cubic spline. Like the or- 
dinary cubic splines in (2), these functions are also 
twice continuously differentiable, piecewise polynomi- 
als defined relative to a knot sequence t = (t, ..., tK). 
Within each interval [tl, t2],..., [tK-1, tK], natural cu- 
bic splines are cubic polynomials, but on (L, tl] and 
[tK, U) they are forced to be linear functions. It is not 
difficult to see that this tail constraint again yields a 
linear space, but with dimension K. Also, the space 
will contain spline terms providing we have at least 
K > 3 knots (otherwise we have only linear or con- 
stant functions). In this application, we use a basis of 
the form 1, Bl(y; t),..., Bj(y; t), where J = K - 1. 
We chose to make the constant term explicit in this 
way because it disappears from our model; recall that 
each density estimate is normalized to integrate to one. 
Therefore, let G denote the J-dimensional span of the 
functions B1, ..., Bj. So that g E G is of the form 

g(y; , t) = f1 B1 (y; t) + . + /JBj(y; t). 
A column vector f - = (B1, ...., pj)T E IRJ is said to 

be feasible if 

C(/f, t) = log( exp(8Bi (y; t) +. 

+ jBj(y; t)) dy) <oo. 

Let 2 denote the collection of such feasible column 
vectors. Given B E 2, we define a family of positive 
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density functions on (L, U) of the form 

f(y; fB, t) = exp(g(y; ,, t) - C(fi, t)) 

(9) = exp(1i B1 (y; t) + * . + BSjBj(y; t) 

- C(fi, t)), L <y < U. 

Now, given a random sample Y1,..., Yn of size n 
from a distribution on (L, U) having an unknown 
density function exp(q), the log-likelihood function 
corresponding to the Logspline model (9) is given by 

l(f, t) = log f(Yi; B, t) 
i 

= E EijBj(Yi;t)-nC(#; t), / E S. 
i j 

The maximum likelihood estimate f is given by B = 

argmaxfEi/l(B, t), corresponding to g(y) = g(y; 
B, t) for L < y < U. 

Stepwise knot addition begins from an initial model 
with Kinit knots, positioned according to the rule 
described in Kooperberg and Stone (1992). Given a 
knot sequence tl, ..., tK, the addition scheme finds 
a location for a candidate knot corresponding to the 

largest Rao statistic. For numerical stability, we do 
not allow the breakpoints tl,..., tK to be separated 
by fewer than nsep data points. We say that in this 
context, a space G is allowable, providing the knot 

sequence satisfies this condition. Stepwise addition 
continues until a maximum number of knots Kmax is 
reached. Knot deletion is then performed according to 
the outline in the previous section, and a final model is 
selected according to the generalized AIC criterion (8) 
with parameter a = log n. 

2.1 A Bayesian Framework 

We set up the framework for a Bayesian approach 
to Logspline density estimation by selecting several 

priors: first a prior p(G) on the structure of the model 

space G, and then a prior p(gIG) on the splines g in a 

given space. In addition, we will need to specify how 
we sample from the posterior distributions. 

Priors on model space. For Logspline we choose 
to specify p(G) by creating a distribution on knot se- 
quences t formed from some large collection of candi- 
dates T = {t, ..., tK,}. We construct p(G) hierarchi- 

cally, first choosing the number of knots K < K' (in 
this case recall that the dimension J of G is K - 1) 
according to p(K), and then given K, we generate 
t from the distribution p(tlK). Regularity conditions 
on the structural aspects of the associated spline space 

G can be imposed by restricting the placement of 
tl,..., tK through p(tlK). While other authors have 
also considered a discrete set of candidate knot se- 

quences (Denison, Mallick and Smith, 1998a; Smith 
and Kohn, 1996), we could also specify a distribution 
that treats the elements of t as continuous variables 

(e.g., Green 1995). In our experiments we have found 
that for Logspline density estimation the discrete ap- 
proach is sufficient, and we consider those spaces G 
for which all K knots are located at data points. This 
restriction is purely for convenience, but represents lit- 
tle loss of flexibility especially in the context of den- 

sity estimation (where peaks in the underlying density 
naturally produce more candidate knots). For numeri- 
cal stability, we require that there are at least nsep data 

points in between any two knots. 
This leaves us with the task of specifying p(K). 

To the extent that the number of knots also acts as 
a smoothing parameter, this distribution can have a 
considerable effect on the look of the final curves 

produced. We explore several of the proposals that have 

appeared in the literature. The first is a simple Poisson 
distribution with mean y suggested by Green (1995). 
Denison et al. (1998a) take the same distribution for 
more general spline spaces and argue that their results 
are somewhat insensitive to the value of y. The next 

prior we will consider was suggested by Smith and 
Kohn (1996). Either by greatly reducing the number 
of candidate knots or by scaling the prior on the 
coefficients, these authors suggest that K be distributed 

uniformly on the set Kmin ... . Kmax. 
The final proposal for p(K) is somewhat more ag- 

gressive in enforcing small models. To properly moti- 
vate this distribution, we think of the model selection 

procedure as two stages: in the first we find the poste- 
rior average of all models with k knots by integrating 
out t and g, to obtain, say gk and its posterior probabil- 
ity p(gklY1, , Y,, K = k). Suppose that we consider 

gk to have k degrees of freedom (an admittedly ques- 
tionable assumption). If we now were to use an AIC- 
like criterion to choose among the gk, we would select 
the model that minimized 

-2logp(gklY, ..., Yn, K = k) + ak, 

compare (8). On the other hand, using the posterior to 
evaluate the best model suggests maximizing 

p(gk Y,..., Yn, K = k)p(K = k). 

If we take p(K = k) oc exp(-ak/2) these two ap- 
proaches agree. Thus, taking a geometric distribution 
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for p(K) implies an AIC-like penalty on model dimen- 
sion. In particular a = log n and q = 1//n imposes the 
same cost per knot as AIC with penalty log n. For rea- 
sonable settings of Kmin and Kmax, however, the ex- 
pected prior number of knots under this prior will tend 
to zero with n. While it is certainly inituitive that the 
prior probability of K decreases monotonically with k, 
this drop may be at a faster rate than we would expect! 
If a >2 then p(K = k + 1)/p(K = k) < 1/e. 

Priors on splines in a given space. We parameterize 
p(g G) through the coefficients fi in the expansion (3), 
and consider priors on fi that relate to our assumptions 
about the smoothness of g. Recall that as the solution to 
a penalized maximum likelihood fit, smoothing splines 
(Wahba, 1990) have a straightforward Bayesian inter- 
pretation (Silverman, 1985). In univariate smoothing, 
for example, G is a space of natural splines (given 
some knot sequence t), and the "roughness" of any 
g E G is measured by the quantity ffS(g,)2. Expand- 
ing g in a basis, it is not hard to see that 

(10) 

U~ rU 
(whee A = 'A 

where Aij =- f B(x)B fr (x) dx 

for I < i, j < J. 

The traditional smoothing spline fit maximizes the 
penalized likelihood 

arg max{l(i) + Xf'Afi}, 

for some parameter X. Silverman (1985) observes 
that the solution to this problem can be viewed as 
a posterior mode, where f is assigned a partially 
improper, normal prior having mean 0 and variance- 
covariance matrix (XA)-1. This setup has the favorable 
property that it is invariant to our choice of basis. This 
is desirable, as the choice of the basis will often be 
made for computational reasons. 

In our simulations we will compare this smoothing 
prior to the scheme of Denison et al. (1998a) in which 
no stochastic structure is assigned to the coefficients fB 
once G is selected. Instead, these authors employ 
maximum likelihood to make a deterministic choice 
of fB. 

Markov chain Monte Carlo. In order to treat a va- 
riety of estimation problems simultaneously, we have 
chosen the reversible jump MCMC scheme developed 
by Green (1995). Denison et al. (1998a) implement this 

technique in the context of general univariate and ad- 
ditive regression. We refer to these papers for the de- 
tails of the scheme, and we instead focus on the type 
of moves that we need to implement the sampler. In 
general, we alternate (possibly at random) between the 
following moves. 

* Increase model dimension. In this step, we intro- 
duce a new knot into an existing collection of break- 
points. Given the concavity properties of ELMs the 
change in the log-likelihood could either be computed 
exactly or approximated using the appropriate Rao sta- 
tistic. In our experiments we have computed the change 
in the log-likelihood exactly. The new knot is selected 
uniformly from among the set that yields an allowable 
space. 

* Decrease model dimension. As with the greedy 
scheme, knots are deleted by imposing a constraint 
on one or more coefficients in the spline expansion. 
We can either evaluate the drop in the log-likelihood 
exactly, or through the Wald statistics. Any knot can 
be removed at any time (assuming we have more than 
Kmin breakpoints to chose from). 

* Make structural changes to G that do not change 
dimension. Unlike our standard greedy scheme, non- 
nested steps like moving a knot are now possible. 
Moving a knot from tk to tk technically involves 
deleting tk and then inserting a new breakpoint at tk. 
With smart initial conditions on the Newton-Raphson 
steps, we can calculate the change in the log-likelihood 
exactly and still maintain an efficient algorithm. 

* Update (possibly) g. In a nonlinear model like 
Logspline, we can either apply a suitable approxima- 
tion to the posterior and integrate with respect to the 
coefficients fi, or we can fold sampling them into our 
Markov chain. 

Following Green (1995) and Denison et al. (1998a), 
we cycle between proposals for adding, deleting and 
moving knots, assigning these moves probabilities bj, 
dj and 1 - bj - dj (see Denison et al., 1998a). New 
knots can be positioned at any data point that is at 
least nsep data points removed from one of the current 
knots. Subject to this constraint, knot addition follows 
a simple two step procedure. First, we select one of 
the intervals (L, tl), (tl, t2), ..., (tK, U) uniformly at 
random (where the tk are the current breakpoints). 
Within this interval, the candidate knot is then selected 
uniformly at random from one of the allowable data 
points. When moving a knot, we either propose a large 
move (in which a knot is first deleted, and then added 
using the addition scheme just described) or a small 
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move (in which the knot is only moved within the 
interval between its two neighbors). Each of these two 
proposals have probability (1 - dj - bj)/2. 

After each reversible jump step, we update the 
coefficients /. To do this, we use the fact that for a 
given set of knots, we have a parametric model, and 
that the posterior distribution of / given G and the 
data is thus approximately multivariate normal with 
covariance matrix E = (XA + H)-1, and mean E HB, 
where / is the maximum likelihood estimate of / in G, 
and H is the Hessian of the log-likelihood function 
at B. An observation from this distribution is used as 
a proposal in a Metropolis step. Because we are using 
(partially improper) smoothing priors, the acceptance 
ratio for this proposal is formally undetermined (recall 
that the prior covariance matrices are degenerate). We 
solve this problem by "canceling" the zero eigenvalue 
in the numerator and the denominator (see also Besag 
and Higdon, 1999). 

2.2 A Simulation Study 

To compare the performance of the various possible 
implementations of Logspline density model selection 
procedures, we carried out a simulation study. We 
generated data from three densities: 

* normal-the standard normal density; 
* slight bimodal-f (y) = 0.5fz(y; 1.25, 1) + 0.5 

fz(y; -1.25, 1.1), where fz (y; /, r) is the normal 
density with mean ,t and standard deviation a; 

* sharp peak-f(y) = 0.8g(y) + 0.2fz(y;2, 
0.07), where g(Y) is the density of the lognormal ran- 
dom variable Y = exp(Z/2) and Z has a standard nor- 
mal distribution. 

These three densities are displayed in Figure 1. From 
each we generated 100 independent samples of size 
n = 50, 200, 1,000 and 10,000. We applied a variety of 
Logspline methods, see Table 1. For all the Bayesian 
methods we estimated the posterior mean by a simple 
pointwise average of the MCMC samples. Otherwise, 
the Bayesian approaches differ in two aspects: 

normal slight bimodal sharp peak 

FIG. 1. Densities used in the simulation study. 

TABLE 1 
Versions of Logspline density estimation used in 

the simulation study 

Model size Parameters 

(i) Greedy optimization of AIC 

proposed by Stone et al. (1997) 
(ii) Simulated annealing optimization 

of AIC (SALSA) 
(iii) Geometric ML 
(iv) Poisson (5) ML 
(v) Uniform X = l/n 

(vi) Uniform X = 1/ 
(vii) Uniform X = 1 

(viii) Geometric A = 1/n 

* the prior on the model size-we used the geomet- 
ric prior with parameter p = 1 - 1/v/n, the Poisson 

prior with parameter 5, and a uniform prior; 
* parameter estimates f-we took either the maxi- 

mum likelihood (ML) estimate, or we assigned a mul- 
tivariate normal prior to / (for one of several choices 
for X). 

Table 1 summarizes the versions of Logspline which 
are reported here. 

For simulated annealing (ii) (termed SALSA for 
"Simulated Annealing LogSpline Approximation") we 
ran the same MCMC iterations as for version (iii), but 
rather than selecting the mean of the sampled den- 
sities, we chose the density which minimizes AIC. 
As described above this is very similar to taking the 
density with the largest a posteriori probability (the 
mode), except that we ignore the prior on knot loca- 
tions given the number of knots, K. This would have 
changed the penalty in the AIC criterion from K log n 
to K logn + log ('). Since version (ii) begins with 
the fit obtained by the greedy search (i), it is guaran- 
teed to improve as far as AIC is concerned. Version (iii) 
uses the same penalty structure as version (ii), but av- 
erages over MCMC samples. Version (iv) is included 
since a Poisson (5) prior was proposed by Denison et 
al. (1998a). It applies a considerably smaller penalty 
on model size. Versions (v)-(viii) experiment with 
penalties on the coefficients. Generating the parame- 
ters using a multivariate normal prior distribution im- 
plies smoothing with a AIC-like penalty. As such, we 
would expect that using A = 1/n with a uniform prior 
[version (v)] may give reasonable results, but that us- 
ing a geometric prior [version (ix)] would smooth too 
much. Choosing A too large, as in versions (vi)-(vii), 
leads to oversmoothing, while choosing X too small 
tends to produce overly wiggly fits. 
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TABLE 2 
Mean integrated squared error (MISE)for the simulation study 

Version 

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii) 

Distribution n MISE Ratio of MISE over MISE of the greedy version (i) 

Normal 50 0.02790 0.73 1.52 1.84 0.66 0.40 0.26 0.67 
Normal 200 0.01069 0.49 0.60 1.23 0.79 0.50 0.24 0.66 
Normal 1,000 0.00209 0.59 0.58 1.33 0.87 0.90 0.42 0.73 
Bormal 10,000 0.00020 0.33 0.49 1.45 1.35 1.10 0.80 0.87 

Slight bimodal 50 0.02502 0.88 1.09 1.34 0.48 0.36 0.36 0.50 

Slight bimodal 200 0.00770 0.80 0.61 1.14 0.70 0.38 0.46 0.61 

Slight bimodal 1,000 0.00164 0.57 0.60 1.13 0.89 0.66 0.40 0.77 

Slight bimodal 10,000 0.00020 0.77 0.61 0.88 0.71 0.82 0.51 0.84 

Sharp peak 50 0.15226 0.97 0.78 0.81 0.68 0.90 1.12 0.72 

Sharp peak 200 0.03704 0.89 0.75 0.94 0.93 2.02 3.62 1.13 

Sharp peak 1,000 0.00973 0.81 0.67 0.81 0.67 2.01 8.90 0.74 

Sharp peak 10,000 0.00150 0.72 0.57 0.57 0.64 0.58 21.43 0.76 

Average 1.00 0.71 0.74 1.12 0.78 0.89 3.21 0.75 

For versions (iii) and (iv) we ran 600 MCMC 
iterations, of which we discarded the first 100 as bum- 
in. Some simple diagnostics (not reported) suggest that 
after 100 iterations the chain is properly mixed. For 
versions (v)-(viii) each structural change was followed 
by an update of the coefficients f8. 

In Table 2, we report ratios of integrated squared er- 
rors between the greedy scheme and the other methods 
outlined above. In addition, we feel that it is at least as 
important for a density estimate to provide the correct 
general "shape" of a density as to have a low integrated 
squared error. To capture the shape of our estimates, 
we counted the number of times that a scheme pro- 
duced densities having too few, too many and the cor- 
rect number of modes. These results are summarized 
in Tables 3 and 4. Table 5 calculates the "total" lines of 

Tables 3 and 4. Note that for simulations of a normal 
distribution it is not possible for an estimate to have too 
few modes. 

From Table 2 we note that most methods show a 
moderate overall improvement over the greedy ver- 
sion of Logspline, except for (vii). This scheme over- 
smoothes the data, so that the details (like the mode in 
the sharp-peaked distribution) are frequently missed. 
We note that version (iii), choosing the mode of a 
Bayesian approach, is the only version that outper- 
forms the greedy version for all 12 simulation setups. 
Otherwise, the difference between versions (ii), (iii), 
and (viii) seems to be minimal. In particular, if we had 
chosen another set of results than those for (i) to nor- 
malize by, the order of the average MISE for these four 
methods was often changed. 

TABLE 3 
Number of times out of 100 simulations that a Logspline density estimate had too few modes 

Version 

Distribution n (i) (ii) (iii) (iv) (v) (vi) (vii) (viii) 

Slight bimodal 50 45 52 4 0 21 74 99 31 
Slight bimodal 200 6 22 13 0 1 18 96 19 
Slight bimodal 1,000 5 17 19 0 7 6 45 16 
Slight bimodal 10,000 4 12 4 1 3 4 2 10 
Sharp peak 50 24 38 1 0 9 56 99 13 
Sharp peak 200 0 1 0 0 0 0 89 1 
Sharp peak 1,000 0 0 0 0 0 0 0 0 
Sharp peak 10,000 0 0 0 0 0 0 0 0 

Total 84 142 41 1 41 158 430 90 
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Number of times out of 
TABLE 4 

100 simulations that a Logspline density estimate had too many modes 

Version 

Distribution n (i) (ii) (iii) (iv) (v) (vi) (vii) (viii) 

Normal 50 18 11 94 100 49 5 0 28 
Normal 200 34 9 38 100 81 21 0 24 
Normal 1,000 26 4 15 91 68 54 32 32 
Normal 10,000 4 1 7 61 31 29 1 17 

Slight bimodal 50 4 1 84 99 6 0 0 4 

Slight bimodal 200 16 1 19 99 55 4 0 5 

Slight bimodal 1,000 15 1 13 93 51 31 1 17 

Slight bimodal 10,000 6 1 8 68 33 39 0 6 

Sharp peak 50 15 8 90 93 3 1 0 2 

Sharp peak 200 36 19 46 94 43 5 0 5 

Sharp peak 1,000 28 14 30 77 32 12 1 9 

Sharp peak 10,000 25 12 15 31 20 30 11 7 
Total 227 82 459 1006 472 231 46 156 

From Table 3 we note that version (vii), and to a 
lesser extent (ii) and (vi), have trouble with the slight 
bimodal density, preferring a model with just one peak. 
Versions (vi) and (vii) find too few modes, leading us 
to conclude that X should be chosen smaller than 1// I 
when using a uniform prior on model size. On the other 
hand, the Poisson prior leads to models exhibiting too 

many peaks, as do versions (iii) and (v). 
Overall, it appears that the greedy, stepwise search 

is not too bad. It is several orders of magnitude faster 
than any of the other methods. The greedy approach, 
as well as SALSA have the advantage that the final 
model is again a Logspline density, which can be 
stored for later use. For the other methods, we must 
record the posterior mean at a number of points. This 
has the potential of complicating later uses of our 
estimate. Among the Bayesian versions that employ 
ML estimates, version (iii) seems to perform best 
overall, while among those that put a prior on the 
coefficient vector, versions (v) and (viii) (both of which 
set A = l/n) are best. It is somewhat surprising that 
version (viii) performs so well, since it effectively 
imposes twice the AIC penalty on model size: one 

coming from the geometric prior, and one from the 
normal prior on the parameters. Kooperberg and Stone 
(1992) argue that the Logspline method is not very 
sensitive to the exact value of the parameter, possibly 
explaining the behavior of version (viii). In Kooperberg 
and Stone (2002) a double penalty is also employed in 
the context of free knot Logspline density estimation. 

2.3 Income Data 

We applied the nine versions of Logspline used 
for the simulation study to the income data discussed 
in Stone et al. (1997), and the results are displayed 
in Figure 2. For the computations on the income 
data we ran the MCMC chain for 5000 iterations in 
which a new model was proposed, after discarding the 
first 500 iterations for bur-in. For the versions with 

priors on the parameters we alternated these iterations 
with updates of the parameters. The estimates for 
versions (ii), which was indistinguishable from version 
(iii), and versions (viii) which was indistinguishable 
from version (v) are not shown. In Kooperberg and 
Stone (1992) it was argued that the height of the peak 
should be at least about 1. Thus, it appears that versions 

TABLE 5 
Number of times that a Logspline density estimate had an incorrect number of modes 

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii) 

Too few modes 84 142 41 1 41 158 430 90 
Too many modes 227 82 459 1,006 472 231 46 156 
Total 311 224 500 1,007 513 389 476 246 
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FIG. 2. Logspline density estimates for the income data. 

(vi) and (vii) have oversmoothed the peak. On the other 
hand, version (iv) seems to have too many small peaks. 

It is interesting to compare the number of knots for 
the various schemes. The greedy estimate (version i) 
has 8 knots, and the simulated annealing estimate (ver- 
sion ii) has 7 knots. The Bayesian versions (iii), (v) 
and (viii) have an average number of knots between 5 
and 8, while the three versions that produced unsatis- 

factory results (iv, vi and vii) have an average number 
of knots between 14 and 17. 

The MCMC iterations can also give us informa- 
tion about the uncertainty in the knot locations. To 

study this further, we ran a chain for version (iii) with 
500,000 iterations. Since the knots are highly corre- 
lated from one iteration to the next (at most one knot 
moves at each step), we only considered every 250th 
iteration. The autocorrelation function of the fitted log- 
likelihood suggested that this was well beyond the time 
over which iterations are correlated. This yielded 2,000 
sets of knot locations: 1,128 with five knots, 783 with 
six knots, 84 with seven knots, and 5 with eight knots. 
When there were five knots, the first three were always 
located close to the mode, the fourth one was virtually 
always between 0.5 and 1.25, and the last knot between 
1 and 2. The locations of the first three knots overlap 
considerably. When there are six knots, the extra knot 
can either be a fourth knot in the peak, or it is beyond 
the fifth knot. 

3. TRIOGRAM REGRESSION 

When estimating a univariate function 0, our "piec- 
es" in a piecewise polynomial model were intervals 
of the form (tk, tk+l). Through knot selection, we 

adjusted these intervals to capture the major features 
in 0. When 0 is a function of two variables, we 
have more freedom in how we define a piecewise 
polynomial model. In this section we take our separate 
pieces to be triangles in the plane, and consider data- 
drive-techniques that adapt these pieces to best fit 0. 
Our starting point is the Triogram methodology of 
Hansen et al. (1998) which employs continuous, piece- 
wise linear (planar) bivariate splines. Triograms are 
based on a greedy, stepwise algorithm that builds on 
the ideas in Section 1 and can be applied in the 
context of any ELM where 0 is a function of two 
variables. After reviewing some notation, we present a 
Bayesian version of Triograms for ordinary regression. 
An alternative approach to piecewise linear modeling 
was proposed in Breiman (1993) and given a Bayesian 
extension in Holmes and Mallick (2001). 

Let A be a collection of triangles 8 (having disjoint 
interiors) that partition a bounded, polygonal region 
in the plane X = UeAES. The set A is said to be a 
triangulation of X. Furthermore, A is conforming if 
the nonempty intersection between pairs of triangles in 
the collection consists of either a single, shared vertex 
or an entire common edge. Let vi, ... , VK represent the 
collection of (unique) vertices of the triangles in A. 

U, 

C 

Co 
0) 
c 
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Over X, we consider the collection G of continuous, 
piecewise-linear functions which are allowed to break 
(or hinge) along the edges in A. It is not hard to show 
that G is a linear space having dimension equal to 
the number of vertices K. A simple basis composed 
of "tent functions" was derived in Courant (1943): 
for each j = 1,..., K, we define Bj(x; A) to be 
the unique function that is linear on each of the 
triangles in A and takes on the value 1 at vj and 0 
at the remaining vertices in the triangulation. The set 
Bl (x; A), ..., BK(x; A) is a basis for G. Also notice 
that each function Bj (x; A) is associated with a single 
vertex vj, and in fact each g E G 

(11) 
K 

g(x; ,B, A) = ?,j Bj(x; A), 
j=1 

interpolates the coefficients f/ = (B1,..., fK) at the 

points vl,..., VK. 
We now apply the space of linear splines to estimate 

an unknown regression function. In the notation of an 
ELM, we let W = (X, Y), where X e X is a two- 
dimensional predictor and Y is a univariate response. 
We are interested in exploring the dependence of Y 
on X by estimating the regression function 0(x)= 
E(YIX = x). Given a triangulation A, we employ 
linear splines over A of the form (11). For a collection 
of (possibly random) design points X, ... , Xn taken 
from X and corresponding observations Y1, ..., Yn, 
we apply ordinary least squares to estimate P/. That is, 
we take = arg max Ei [Yi - g(Xi; /B, A)]2, and use 
g(x) = g(x; /, A) as an estimate for b. 

As with the univariate spline models, we now con- 
sider stepwise alterations to the space G. Following 
Hansen, Kooperberg and Sardy (1998), the one-to-one 
correspondence between vertices and the "tent" ba- 
sis functions suggests a direct implementation of the 
greedy schemes in Section 1. Stepwise addition in- 
volves introducing a new vertex into an existing tri- 
angulation, thereby adding one new basis function to 
the original spline space. This operation requires a rule 
for connecting the new point to the vertices in A so 
that the new mesh is again a conforming triangulation. 
In Figure 3, we illustrate three options for vertex addi- 
tion: we can place a new vertex on either a boundary 
or an interior edge, splitting the edge, or we an add a 
point to the interior of one of the triangles in A. Given 
a triangulation A, candidate vertices are selected from 
a regular triangular grid in each of the existing trian- 
gles, as well as a number of locations on each of the 
existing edges (for details see Hansen et al., 1998). 

Splitting an Interior Edge Subdividing a Triangle 

FIG. 3. Three "moves" that add a new vertex to an existing 
triangulation. Each addition represents the introduction of a single 
basis function, the support of which is colored gray. 

We impose constraints on our search by limiting, say, 
the area of the triangles in a mesh, their aspect ratio, 
or perhaps the number of data points they contain. As 
with Logspline, spaces satisfying these restrictions are 
referred to as allowable. At each step in the addition 
process, we select from the set of candidate vertices 
(that result in an allowable space), the point that maxi- 
mizes the decrease in residual sum of squares when the 
Triogram model (11) is fitted to sample data. (In re- 
gression, the Rao and Wald statistics are the same and 
reduce to the change in the residual sum of squares be- 
tween two nested models.) 

Deleting a knot from an existing triangulation can 
be accomplished most easily by simply reversing one 
of the steps in Figure 3. Observe that removing a 
vertex in one of these three settings is equivalent 
to enforcing continuity of the first partial derivatives 
across any of the "bold edges" in this figure. Such 
continuity conditions are simple linear constraint on 
the coefficients of the fitted model, allowing us to once 

again apply a Wald test to evaluate the rise in the 
residual sum of squares after the vertex is deleted. 

3.1 A Bayesian Framework 

Priors on model space. As with univariate spline 
models, a prior on the space of Triograms is most easily 
defined by first specifying the structure of the approx- 
imation space, which in this case is a triangulation A. 
For any A, we need to select the number of vertices K, 
their placement v, and the triangles that connect them. 

14 
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Original Triangulation Swapping a Diagonal 

FIG . Additional structural movesfor the reversible jump MCMC scheme. Note that these two proposals result in a nonnested sequence 
of spaces. 

Each set v can be joined by a number of different trian- 
gulations (assuming v has more than 3 points). Sibson 
(1978) shows that by starting from one triangulation 
of v, we can generate any other by a sequence of "edge 
swaps." (This operation is given in Figure 4 and will 
come up later when we discuss MCMC for bivariate 
splines.) Unfortunately, a closed-form expression for 
the number of triangulations associated with a given 
set of vertices does not exist. Computing this number 
for even moderately sized configurations is difficult be- 
cause two sets each with K vertices can have different 
numbers of triangulations. 

To see how this complicates matters, suppose we fol- 
low the strategy for Logspline and propose a hierarchi- 
cal prior of the form 

(12) p(Alv, K)p(vlK)p(K), 

where A is a triangulation of the vertices v = {vl,..., 
VK }. Assigning any proper distribution to A given v 
introduces a normalizing constant in p (AIv, K) that 
involves enumerating the different triangulations of v. 
Therefore, when taking ratios of (12) for two different 
sets of vertices, we are usually left with a prohibitively 
expensive computational problem. MCMC methods 
for exploring the model space are not possible. 

To avoid this problem, we will use a tractable 
prior on triangulations developed by Nicholls (1998). 
This distribution depends on a pair of Poisson point 
processes, one that generates vertices on the interior 
of X and one for the boundary. As constructed, there 
is one parameter f that controls the intensity of this 
process, where larger values of / produce triangula- 
tions with more vertices. Nicholls (1998) avoids count- 
ing triangulations by normalizing across all triangu- 
lations obtainable from all vertex sets generated by 
this point process, and produces a distribution p(A). 
Bounds on the number of triangulations obtainable 
from a given vertex set are used to show that this kind 
of normalization is possible. This construction also has 
the advantage that restrictions on the size and shape 

of triangles are easily enforced and only change the 
(global) normalization constant in p(A). In our experi- 
ments, we set 8 so that the expected number of vertices 
for this base process is 5. We then adapted Nicholls's 
approach, so that the underlying point process pro- 
duces a geometric (with parameter 1 - 1/v/n) or a uni- 
form (on Kmin, . .., Kmax) number of vertices, follow- 

ing the simulation setup in the previous section. 

Priors on splines in a given space. Unlike the Log- 
spline example, we do not have a single obvious choice 
for the smoothing prior for linear splines g E G defined 
relative to a triangulation A. Dyn, Levin and Rippa 
(1990a, b) propose several criteria of the form 

Es2(g,e) forgeG, 
e 

where the summation is over all edges in A. Their cost 
function s(g, e) evaluates the behavior of g along an 
edge, assigning greater weight when the hinged lin- 
ear pieces are farther from a single plane. Koenker 
and Mizera (2001) elegantly motivate a cost function 
s(g, e) = 1I g+ - Vge I.lell, where Vg+ and vge 
are the gradients of g computed over the triangles that 
share the common edge e having length Ilell. This is 
similar to the approach taken by Nicholls (1998) who 
derived an edge-based smoothness penalty for piece- 
wise constant functions defined over triangulations. 

We choose to work with the cost function of Koenker 
and Mizera (2001). It is not hard to show that this 
gives rise to a quadratic penalty on the coefficient 
vector f = (81, ... , BK) which can be written BtAfB 
for a positive-semidefinite matrix A. Since constant 
and linear functions have zero roughness by this 
measure, A has two zero eigenvalues. As was done for 
Logspline, we use A to generate a partially improper 
normal prior on fB (with prior variance a2/X, where a2 
is the error variance). Following Denison et al. (1998a), 
we assign a proper, inverse-gamma distribution to a, 
and experiment with various fixed choices for X that 
depend on sample size. 

Moving a Vertex 
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Markov chain Monte Carlo (MCMC). Our approach 
to MCMC for Triograms is similar to that with Log- 
spline except that we need to augment our set of 
structural changes to A to include more moves than 
simple vertex addition and deletion. In Figure 4, 
we present two additional moves that maintain the 
dimension of the space G but change its structure. 
The middle panel illustrates swapping an edge, an 
operation that we have already noted is capable of 
generating all triangulations of a given vertex set 
v. Quak and Schumaker (1991) use random swaps 
of this kind to come up with a good triangulation 
for a fixed set of vertices. In in the final panel of 
Figure 4, we demonstrate moving a vertex inside 
the union of triangles that contain it. These changes 
to A are non-nested in the sense that they produce 
spline spaces that do not differ by the presence or 
absence of a single basis function. For Triograms, the 
notion of an allowable space can appear through size 
or aspect ratio restrictions on the triangulations, and 
serves to limit the region in which we can place new 
vertices or to which we can move existing vertices. 
For example, given a triangle, the set into which we 
can insert a new vertex and still maintain a minimum 
area condition is a subtriangle, easily computable in 
terms of barycentric coordinates (see Hansen et al., 
1998). As with Logspline, we alternate between these 

True surface 

08 0~ 4 P3 

06 O / o 
y 0.2 

Greedy fit 

0.6 02O, q 
y O. 0 i 

structural moves and updating the model parameters, 
following essentially the recipe in Denison et al. 
(1998a). Because we are working with regression, we 
can integrate out fi and only have to update a2 at each 
pass. This approach allows us to focus on structural 
changes as was done by Smith and Kohn (1996) for 
univariate regression. [Of course, we can also integrate 
out a2, but to retain consistency with Denison et al. 
(1998a) we chose to sample.] 

3.2 Simulations 

In Figure 5, we present a series of three fits to 
a simulated surface plotted in the upper lefthand 
corer. A data set consisting of 100 observations 
was generated by first sampling 100 design points 
uniformly in the unit square. The actual surface is 
described by the function 

f(x) = 40exp{8[(xl - 0.5)2 + (x2 - 0.5)2]} 

(exp{8[(xl - 0.2)2 + (X2 - 0.7)2]} 

+ exp{8[(xl - 0.7)2 + (X2 - 0.2)2]})-1, 

to which we add standard Gaussian errors. This func- 
tion first appeared in Gu et al. (1989), and it will be 
hereafter referred to as simply GBCW. The signal-to- 
noise ratio in this setup is about 3. In the lower left- 
hand panel in Figure 5, we present the result of apply- 
ing the greedy, Triogram algorithm. As is typical, the 

Model averaging, smoothing prior 

0.0 ~~~~~~~~ ,P~-, + 
04 

Simulated annealing 

00 + 

0 
0.2 

0 

0 

FIG. 5. In the top row we have the true surface (left) and the it resultingfrom model averaging (right). In the bottom row we have two 
isolated fits, each a "minimal" BIC model, the leftmost coming from a greedy search, and the rightmost produced by simulated annealing 
(the triangulations appear at the top of each panel). 
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procedure has found a fairly regular, low-dimensional 
mesh describing the surface (the MISE is 0.31). For 
the fit plotted in the lower righthand panel, we em- 
ployed a simulated annealing scheme similar to that 
described for Logspline. The geometric prior for A is 
used to guide the sampler through triangulations, and 
in each corresponding spline space G we consider g, 
the MLE (or in this case the ordinary least squares fit). 
In this way, the objective function matches that of the 
greedy search, the generalized AIC criterion (8). The 
scheme alternates between (randomly selected) struc- 
tural changes (edge swaps and vertex moves, additions 
and deletions) and updating the estimate a2 of the 
noise variance. After 6,000 iterations, the sampler has 
managed to find a less regular, and marginally poorer- 
fitting model (the MISE is 0.32). In the context of tri- 
angulations, the greedy search is subject to a certain 
regularity that prevents configurations like the one in 
Figure 5. We can recapture this in the MCMC simula- 
tions either by placing restrictions on the triangulations 
in each mesh (say, imposing a smallest allowable size 
or aspect ratio) or by increasing the penalty on dimen- 
sion, specified through our geometric prior. 

In the last panel, we present the result of model 
averaging using a uniform prior on model size and 
a smoothing prior on the coefficients (3, = l/n). The 
sampler is run for a total of 6,000 iterations, of which 
1,000 are discarded as bur-in. We then estimate the 
mean as a pointwise average of the sampled surfaces. 
The final fit is smoother in part because we are 
combining many piecewise-planar surfaces. We still 
see sharp effects, however, where features like the 
central ridge are present. The model in the lower 
righthand panel is not unlike the surfaces visited by 
this chain. As spaces G are generated, the central spine 
(along the line y = x) of this surface is always present. 
The same is true for the hinged portions of the surface 

TABLE 6 
Versions of Triogram used in the simulation study 

Model size Parameters 

(i) Greedy optimization of AIC 
(ii) Simulated annealing optimization of AIC 

(iii) Poisson (5) ML 
(iv) Geometric ML 
(v) Uniform X = 1/n 

along the lines x = 0 and y = 0. With these caveats 
in mind, the MISE of the averaged surface is about 
half of the other two estimates (0.15). We repeated 
these simulations for several sample sizes, taking n = 
100, 500 and 1000 (100 repetitions for each value of 
n). In Table 6, we present several variations in the 
prior specification and search procedure. In addition to 
GBCW, we also borrow a test function from Breiman 
(1991), which we will refer to as Exp. Here, points 
X = (X1, X2) are selected uniformly from the square 
[-1, 1]2. The response is given by exp(xl sin(7rx2)) to 
which normal noise is added (a = 0.5). The signal-to- 
noise ratio in this setup is much lower, 0.9. The results 
are presented in Table 7. It seems reasonably clear that 
the simulated annealing approach can go very wrong, 
especially when the sample size is small. Again, this 
argues for the use of greater constraints in terms of 
allowable spaces when n is moderate. It seems that 
model averaging with the smoothing prior (. = 1/n) 
and the Poisson/ML prior of Denison et al. (1998a) 
perform the best. A closer examination of the fitted 
surfaces reveals the same kinds of secondary structure 
as we saw in Figure 5. To be sure, smoother basis 
functions would eliminate this behavior. It is not clear 
at present, however, if a different smoothing prior on 
the coefficients might serve to "unkink" these fits. 

TABLE 7 
Mean integrated squared error (MISE)for two smooth test functions 

Version 

(i) (ii) (iii) (iv) (v) 

Distribution n MISE Ratio of MISE over (i) 

GBCW (high snr) 100 0.31 1.35 0.85 0.78 0.77 
GBCW (high snr) 500 0.10 1.0 0.64 0.76 0.80 
GBCW (high snr) 1,000 0.08 0.91 0.82 0.94 0.79 
Exp (low snr) 100 0.15 0.90 0.52 0.51 0.49 
Exp (low snr) 500 0.04 0.85 0.46 0.50 0.47 
Exp (low snr) 1,000 0.03 0.51 0.32 0.40 0.46 
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TABLE 8 

Mean integrated squared error (MISE)for two piecewise-planar test functions 

Version 

(i) (ii) (iii) (iv) (v) 

Distribution n MISE Ratio of MISE over (i) 

Model 1 50 0.16 0.97 0.70 0.35 0.80 
Model 1 200 0.04 0.82 0.95 0.52 0.62 
Model 1 1,000 0.01 0.63 0.72 0.76 0.40 
Model 3 50 0.70 1.40 0.86 0.51 0.50 
Model 3 200 0.17 0.85 0.63 0.27 0.30 
Model 3 1,000 0.03 0.34 0.45 0.21 0.20 

The performance of the Poisson (5) distribution is 
somewhat surprising. While for Logspline this choice 
led to undersmoothed densities, it would appear that 
the Triogram scheme benefits from slightly larger mod- 
els. We believe that this is because of the bias involved 
in estimating a smooth function by a piecewise-linear 
surface. In general, these experiments indicate that tun- 
ing the Bayesian schemes in the context of a Triogram 
model is much more difficult than univariate set-ups. 
One comforting conclusion, however, is that essentially 
each of the schemes considered outperform the simple 
greedy search. 

As a final test, we repeated the simulations from 
Hansen et al. (1998). We took as our trial functions 
two piecewise-planar surfaces, one that the greedy 
scheme can jump to in a single move (Model 1), and 
one that requires several moves (Model 3). In this 
case, the model averaged fits (iv) were better than 
both simulated annealing and the greedy procedure. 
The estimate built from the Poisson prior tends to 
spend too much time in larger models, leading to its 
slightly poorer MISE results, while the geometric prior 
extracts a heavy price for stepping off of the "true" 
model. (Unlike the smooth cases examined above, the 
extra degrees of freedom do not help the Poisson 
scheme.) The simulations are summarized in Table 8. 
One message from this suite of simulations, therefore, 
is that a posterior mean does not oversmooth edges, 
and in fact identifies them better than the greedy 
alternatives. 

4. DISCUSSION 

Early applications of splines were focused mainly 
on curve estimation. In recent years, these tools have 
proved effective for multivariate problems as well. By 
extending the concepts of "main effects" and "interac- 
tions" familiar in traditional d-way analysis of variance 

(ANOVA), techniques have been developed that pro- 
duce so-called functional ANOVAs. Here, spline basis 
elements and their tensor products are used to construct 
the main effects and interactions, respectively. In these 
problems, one must determine which knot sequence to 
employ for each covariate, as well as what interactions 
are present. 

In this paper we have discussed a general frame- 
work for adaptation in the context of an extended linear 
model. Traditionally, model-selection for these prob- 
lems is accomplished through greedy, stepwise algo- 
rithms. While these approaches appear to perform rea- 
sonably well in practice, they visit a relatively small 
number of candidate configurations. By casting knot 
selection into a Bayesian framework, we have dis- 
cussed an MCMC algorithms that sample many more 
promising models. We have examined various tech- 
niques for calibrating the prior specifications in this 
setup to more easily compare the greedy searches and 
the MCMC schemes. An effective penalty on model 
size can be imposed either explicitly (through a prior 
distribution on dimension), or through the smoothness 
prior assigned to the coefficient vector. In general, we 
have demonstrated a gain in final mean squared er- 
ror when appealing to the more elaborate sampling 
schemes. 

We have also gone to great lengths to map out con- 
nections between this Bayesian method and other ap- 
proaches to the knot placement problem. For example, 
a geometric prior distribution on model size, has a nat- 
ural link to (stepwise) model selection with BIC, while 
we can choose a multivariate normal prior on the co- 
efficients to connect us with the penalized likelihood 
methods employed in classical smoothing splines. In 
addition, the Bayesian formalism allows us to account 
for the uncertainty in both the structural aspects of our 
estimates (knot configurations and triangulations) as 
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well as the coefficients in any given expansion. Model 
averaging in this context seems to provide improve- 
ment over simply selecting a single "optimal" model 
in terms of say BIC. The disadvantage of this approach 
is that we do not end up with a model based on one set 
of knots (or one triangulation). 

While running our experiments, we quickly reached 
the conclusion that the priors play an important role: 
an inappropriate prior can easily lead to results that are 
much worse than the greedy algorithms. However, in 
our experiments we found out that, when the priors are 
in the right ballpark, Bayesian procedures do perform 
somewhat better than greedy schemes in a mean 
squared error sense. This improvement in performance 
is larger for a relatively "unstable" procedures such 
as Triogram, while the improvement for a "stable" 
procedure such as Logspline is smaller. 

For the Triogram methodology there is an addi- 
tional effect of model averaging: the average of many 
piecewise-planar surfaces will give the impression of 
being smoother. Whether this is an advantage or not 
probably depends on the individual user and her/his 
application: when we gave seminars about the origi- 
nal Triogram paper, there were people who saw the 
piecewise-planar approach as a major strength, while 
others saw it as a major weakness of the methodology. 
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This paper uses ideas for stochastic search imple- 
mentations of adaptive Bayesian models, such as those 

outlined in Denison, Mallick and Smith (1998a, b) and 

Chipman, George and McCulloch (1998a) and effec- 

tively applies these ideas to logspline density estima- 

tion and triogram regression. Interesting comparisons 
are made to assess the effect of greedy search, stochas- 

tic search and model averaging. Such comparisons are 
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valuable, since readily available computing power en- 
ables the construction of many methods, and an under- 

standing of what works is important in developing new 

methodology. 
It is very important to note the role of the prior 

when adaptive models are used in conjunction with 
stochastic searches. Inevitably, priors guide and temper 
our wandering in a large space of models. This benefit 
comes with a price: the need to select a prior that is 

appropriate for the problem at hand. It is important 
to acknowledge the simple fact that a prior choice 

represents a bet on what kind of models we want to 
consider. 

If we skip to the end of the paper and read the 

discussion, what lessons have been learned? We have 
that (i) "... we have demonstrated a gain... when 

appealing to the more elaborate sampling schemes" 

(relative to simple greedy search) and that (ii) "priors 

play an important role." These things we know to be 

valuable, since readily available computing power en- 
ables the construction of many methods, and an under- 

standing of what works is important in developing new 

methodology. 
It is very important to note the role of the prior 

when adaptive models are used in conjunction with 
stochastic searches. Inevitably, priors guide and temper 
our wandering in a large space of models. This benefit 
comes with a price: the need to select a prior that is 

appropriate for the problem at hand. It is important 
to acknowledge the simple fact that a prior choice 

represents a bet on what kind of models we want to 
consider. 

If we skip to the end of the paper and read the 

discussion, what lessons have been learned? We have 
that (i) "... we have demonstrated a gain... when 

appealing to the more elaborate sampling schemes" 

(relative to simple greedy search) and that (ii) "priors 

play an important role." These things we know to be 

20 20 


	Article Contents
	p. 2
	p. 3
	p. 4
	p. 5
	p. 6
	p. 7
	p. 8
	p. 9
	p. 10
	p. 11
	p. 12
	p. 13
	p. 14
	p. 15
	p. 16
	p. 17
	p. 18
	p. 19
	p. 20

	Issue Table of Contents
	Statistical Science, Vol. 17, No. 1 (Feb., 2002), pp. 1-148
	Front Matter
	Editorial [p.  1]
	Spline Adaptation in Extended Linear Models [pp.  2 - 20]
	[Spline Adaptation in Extended Linear Models]: Comment [pp.  20 - 22]
	[Spline Adaptation in Extended Linear Models]: Comment [pp.  22 - 24]
	[Spline Adaptation in Extended Linear Models]: Comment [pp.  24 - 29]
	[Spline Adaptation in Extended Linear Models]: Comment [pp.  30 - 31]
	[Spline Adaptation in Extended Linear Models]: Comment [pp.  32 - 33]
	[Spline Adaptation in Extended Linear Models]: Comment [pp.  33 - 37]
	[Spline Adaptation in Extended Linear Models]: Comment [pp.  37 - 40]
	[Spline Adaptation in Extended Linear Models]: Rejoinder [pp.  40 - 51]
	Bootstraps for Time Series [pp.  52 - 72]
	Inference for Superpopulation Parameters Using Sample Surveys [pp.  73 - 96]
	Sir Gilbert Walker and a Connection between El Niño and Statistics [pp.  97 - 112]
	A Conversation with Kanti Mardia [pp.  113 - 148]
	Back Matter



