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Abstract

The goal of the research presented in this thesis is to design an integrated system

for the automatic acquisition of a human body model, using input images from

mutually orthogonal views. The model consists of two sets of free-form surface

patches: the torso and its arms. We determine a neck joint on the torso and

six joint positions on the arms (i.e., one location for each shoulder, elbow and

wrist).

A conventional three-dimensional reconstruction technique called “shape from

silhouettes” is applied in the project. However, one of the challenges of the

project is to automatically separate the body segments during the reconstruc-

tion of the model from occluded silhouettes. The system suggests a body part

localization procedure to determine the joint positions through the analysis of a

feature view of body poses. Furthermore, this virtual human model is capable

of simulating the motion of a real person using a-priori knowledge of the body.

The human model will be specified using Virtual Reality Modelling Language

(VRML) and visualized and rendered in a scene graph system, OpenSG.
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Chapter 1

Introduction

1.1 Human body models

Human motion modelling plays an increasingly important role in medical appli-

cations, surveillance systems, avatar animation for movies and computer games.

It requires the identification of a human body and estimation of its shape and

motion parameters. We define the human motion modelling problem to be a

combination of two major components, model acquisition and pose estimation.

Model acquisition aims to reconstruct the parameters of a human body model

that correspond to the specific shape and size of a given human subject. Pose

estimation aims to configure a model such that it accurately reflects the position

and the configuration of the human subject during a motion capture process.

A large variety of two-dimensional (2D) and three-dimensional (3D) human

models has been proposed. Different applications require different levels of rep-

resentation details. For surveillance purposes, simple low-level 2D image blob
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models [18] have proved their effectiveness for approximating 2D human track-

ing. Other 2D models use planar articulated representations [8], where the

model is built in terms of limbs, and represented as intensity patches and joints

which are modelled as planar articulations. Such models have been employed

both for body part labeling and tracking [17]. However, despite their effective-

ness, they fundamentally represent only 2D information and cannot represent

3D constraints. Research in recent years on human motion estimation has used

3D volumetric and kinematic models. Many algorithms have also proved fairly

effective [5, 25], but they often use simplified models of the human body built

from ellipsoidal, cylindrical or skeleton parts, and do not use a realistic surface

model. Actually, realistic 3D body models are possible and may be effective

in controlled scenarios, especially when the human subject wears tight fitting

clothing. Such models use free-form surface patches as a means of marker-free

human motion tracking (e.g., see, [33]) and have lead to robust results.

(a) Grid visualization of a human
model.

(b) Coordinate systems of a human
model.

Figure 1.1: A human model and its design.

2



Being motivated by the design of a robust algorithm for 2D-3D pose estimation

of human beings in [31, 33], we use free-form surface meshes to build a realistic

human body model. This allows to incorporate a diversity of constraints which

configure the model, and in consequence it supports a more stable tracking

performance. Human body models in this thesis are assumed to be rigid objects.

Furthermore, both the motions of the artificial body model and the real human

body can be described by hierarchical kinematic chains. This scheme implies

that the transformation of these joints that are lower in the hierarchy, involves

all transformations of the preceding joints too. Therefore, the body model is

designed to consist of a hierarchic arrangement of eight body segments: head,

torso, upper arm, lower arm, and so forth. Body segments are defined by their

local coordinates, and joints (neck, shoulder, elbow and wrist) are added in

between. Figure 1.1 shows an example of such a model and its coordinate

systems. A joint here is represented by a joint that has three degrees of freedom

(DOF). Rigid transformations at each joint define a specific body pose for the

model. These transformations are constrained to simulate the actual motions

of the body.

1.2 Related work

This section is restricted to the research involving realistic human body mod-

elling and body part separation. Techniques for visual object reconstruction

can be broadly divided into active methods, in which light patterns are pro-

jected into a scene to provide visual features for matching, and passive methods
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that rely on matching visual cues between images [36]. Active techniques of-

ten use a range scanner for model acquisition, which employs a time-of-flight

approach. A focused laser pulse is emitted from a transmitter with a constant

speed. It is reflected by the object surface and detected by a receiver. The

time between transmitting and receiving gives the distance traveled. The laser

device scans through the entire surface and provides a depth map of the object.

This approach acquires highly accurate geometric data of the shape. However,

it usually outputs point cloud data, which are not suitable for animation. To

overcome this issue, [27] developed techniques for automatically creating and

animating models obtained from scanned data. [27] extracts key landmarks and

fits them to an underlying skeleton. Articulated models are generated without

the interaction of the users. One of the disadvantages of active methods is

that it requires a large amount of time and expertise to use it. Moreover, such

systems are prohibitively expensive and need a special environmental setting.

Compared to active sensing techniques, passive scene reconstruction from im-

ages is a low-cost technique. It enables greater flexibility in scene capture and

relies on matching visual cues such as features, surface appearance, shading

and silhouettes. Therefore passive methods have received considerable interest

in the past few years, and many approaches have been proposed.

Kakadiaris and Metaxas have developed a system for 3D human body model

acquisition in [19] using three cameras placed in a mutually orthogonal config-

uration. A subject is requested to perform a set of movements according to

4



a protocol that reveals the structure of the human body. The body parts are

identified and reconstructed incrementally from 2D deformable contours.

Hiltion et al. [14] proposed an approach for modelling the human body from

four views. This approach uses extrema for helping to find feature points. It is

simple and efficient. However, it is not reliable for identifying neck joints and

it does not provide a solution to find elbow and wrist joints. Furthermore, it is

not a seamless model for animations. W. Lee et al. [23] builds seamless human

models having similar body structure as defined in [14]. Different methods

are employed to head and body reconstruction. The approach ensures robust

and efficient results in face modelling, and a realistic appearance of the whole

body. However, it is not a fully automatic approach and cannot detect the joint

positions, which have to be manually given by users.

1.3 Purpose of this thesis

This work is part of a human motion analysis project based on captured se-

quences, as presented in [31, 32, 33]. For a detailed study of human motions,

the project requires an automatic model generation system, so that pose recov-

ery can be evaluated for different persons (e.g., male or female, small or tall

people).

Our goal is to provide an integrated framework for the automatic generation of
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human models that consist of free-form surface patches and body segments con-

nected by joints. The main difficulties in developing algorithms for modelling

stem from occlusions among body parts. This thesis solves that problem and

acquires a concise 3D model of a human body using vision sensors. Further-

more, as a first stage towards human motion modelling and pose estimation, an

application for simple joint tracking is presented.

1.4 Organization of this thesis

Chapter 2 firstly exploits the mathematical fundamentals used in this thesis.

Human motion modelling is an extended study of this project. This chapter also

provides a general introduction to rigid body motions. The discussed concepts

and notions will be used in later chapters.

Chapter 3 gives the system overview. It includes the lab setup for model acqui-

sition, system overview and the software requirements for running the program

produced in our work.

Chapter 4, Chapter 5 and Chapter 6 describe three components for modelling

a human body. They combine various image processing and 3D reconstruction

techniques. Chapter 4 deals with segmenting the region of interest by means

of background subtraction [15]. A computational model is used to distinguish

the object and background. Morphologic operators [22] are also introduced.
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Chapter 5 discusses a feasible way to find the positions of joints. It is a com-

bination of skeletonization [4, 20], chain coding [11] and corner detection [9].

Refinements are also discussed. Chapter 6 discusses the 3D reconstruction of

human bodies. It discusses different strategies for 3D reconstruction of torso

and arms. Apart from 3D modelling, camera calibration [37] is also involved.

Chapter 7 demonstrates some experimental results from the implementation

of the ideas described in this thesis. In particular, we illustrate animation

sequences showing motion tracking using the concepts described in Chapter

2, and a-priori knowledge of body parameters obtained from considerations

discussed in Chapter 5 and Chapter 6.

Chapter 8 summaries this thesis. It also discusses improvements for future work

and possible extensions of this study.
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Chapter 2

Mathematical basics and rigid

body motions

This chapter contains two parts. The first part provides a general introduction

to the mathematical fundamentals used in this thesis. The second part deals

with the formulation of rigid body motions. Modelling of human motions is an

extended study of this project. It is introduced in Chapter 7.

2.1 Basics

2.1.1 Representations for points, lines and planes

A point, representing a position in the 2D or 3D space, can simply be expressed

by a two-dimensional or three-dimensional vector. For our purpose, homoge-

neous coordinates [26] are used. For example, 2D points are represented as 3D

vectors (x, y, 1)T , and 3D points as 4D vectors (x, y, z, 1)T .

8



A line l can be represented by a combination of two points in 2D or 3D space,

denoted as P1P2. In parametric representation, we specify a line L as a set of

points Pl with

L = {Pl|Pl = P1 + u(P2 − P1), u ∈ IR}, (2.1.1)

where u is a positioning factor with respect to P1.

Implicitly, a line can be specified by its direction n and a moment m. We denote

that by L = (n,m). The direction n is defined as a unit direction,

n =
P2 − P1

||P2 − P1||
. (2.1.2)

The momentm is defined as the cross product of a point on the line and direction

n,

m = P1 × n. (2.1.3)

It is noted that m is independent of the point position [31]. A point Pl is

incident with the line L = (n,m) iff

Pl × n−m = 0. (2.1.4)

A plane can be specified by three points P1, P2, P3 on that plane. Its parametric

representation as follows:

Pp = P1 + u1(P2 − P1) + u2(P3 − P1), u1, u2 ∈ IR. (2.1.5)

Implicitly, the equation of a plane can be represented by a unit normal vector

n = (a, b, c)T of the plane and the Hessian distance d from the origin to the
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plane (Figure 2.1). Incidence of a point Pp on the plane is given as

(n · Pp)− d = 0, (2.1.6)

where, n = (a, b, c)T , ||n|| = 1 and d ∈ IR. If a plane is denoted by a vector of

its parameters, (a, b, c, d)T , the general form for an equation of a plane is

ax+ by + cz + d = 0. (2.1.7)

P0

O

d

n=(a,b,c)T

Figure 2.1: A plane can be represented by a normal vector n of the plane and
the Hessian distance d from origin to the plane.

2.1.2 Line-line intersection

We first consider the situation for the 2D case. Two lines L1 = P1P2, and

L2 = P3P4, intersect at a point if Pa = Pb, for ua, ub ∈ IR

Pa = P1 + ua(P2 − P1), (2.1.8)
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Pb = P3 + ub(P4 − P3). (2.1.9)

Having Pa = Pb and Pi = (xi, yi), this leads to the following two equations in

unknown factors of ua and ub:

x1 + ua(x2 − x1) = x3 + ub(x4 − x3), (2.1.10)

y1 + ua(y2 − y1) = y3 + ub(y4 − y3). (2.1.11)

Solving gives the following expressions for ua and ub:

ua =
(x4 − x3)(y1 − y3)− (y4 − y3)(x1 − x3)

(y4 − y3)(x2 − x1)− (x4 − x3)(y2 − y1)
, (2.1.12)

ub =
(x2 − x1)(y1 − y3)− (y2 − y1)(x1 − x3)

(y4 − y3)(x2 − x1)− (x4 − x3)(y2 − y1)
. (2.1.13)

Substituting either of these into the corresponding equation, Equation (2.1.8)

or Equation (2.1.9), gives the intersection point.

P1

P2

Pa

Pb

P3

P4

Figure 2.2: Line-line intersection in 3D space.

In the 3D case, the intersection of the two lines may not necessarily exist, so

that we have to find the closest pair of points, one per line, that approximate
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the intersection. Thus the point being closest to two 3D lines can be found by

minimizing the Cartesian distance between the points of these lines (Figure 2.2).

That is minimizing the following:

||Pa − Pb||
2 = ||P1 + ua(P2 − P1)− P3 − ub(P4 − P3)||

2. (2.1.14)

The unknown factors can take the form of a 2× 1 vector with the elements ua

and ub. After partial derivatives by desired factors are set equal to zero, the

solution of a closest pair is derived as follows:
(

ua

ub

)

=

(

∆T
12∆12 ∆T

12∆34

∆T
12∆34 ∆T

34∆34

)−1(

−∆T
31∆12

−∆T
31∆34

)

(2.1.15)

where ∆ji = Pi − Pj. Finally, the middle point of the line segment between Pa

and Pb is regarded as the intersection.

2.1.3 Line-plane intersection

Given a plane (a, b, c, d)T and a line through X1(x1, y1, z1) and X2(x2, y2, z2),

the combination with Equation (2.1.1) and Equation (2.1.7) gives

a(x1 + u(x2 − x1)) + b(y1 + u(y2 − y1) + c(z1 + u(z2 − z1)) + d = 0. (2.1.16)

Solving for u gives

u =
ax1 + by1 + cz1 + d

a(x1 − x2) + b(y1 − y2) + c(z1 − z2)
. (2.1.17)

If the denominator is zero then the line is either parallel to the plane, and

there are no solutions, or the line is on the plane, in which case there is an

infinite number of solutions. If the denominator is nonzero, back-substituting u

to Equation (2.1.1) gives the intersection point.
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2.2 Rotations

y0

x0

z0

y

x

z

q

Figure 2.3: Rotation of a rigid object about a point. The solid coordinate frame
of an inertial frame and the dashed coordinate frame is attached to the rotating
rigid body.

A 3×3 rotation matrix R can be used to describe the orientation of an object by

giving the relative orientation between a coordinate frame attached to the object

and a fixed or inertial coordinate frame (see Figure 2.3, the dashed coordinate

frame x0y0z0 is attached to the rotating rigid body, and the coordinate frame

xyz remains fixed). A rotation matrix R for a right-handed coordinate frame,

R =







r11 r12 r13

r21 r22 r23

r31 r32 r33






,

has the following key properties,
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1. RRT = I;

2. det(R) = 1.

Euler angles α, β, γ are often used in classical mechanics to represent a rotation

by using these three parameters [26]. There are several conventions for Euler

angles, depending on the axes about which the rotations are carried out. A

way to describe the orientation of a coordinate frame B relative to another

coordinate frame A is as follows:

1. Start with frame B coincident with frame A;

2. Rotate frame B about the z-axis of frame B by an angle α;

3. Rotate about the new y-axis of frame B by an angle β;

4. Rotate the z-axis of frame B by an angle γ.

This yields a net orientation R(α, β, γ) with the triple of Euler angles (α, β, γ)

representing the rotation. We define the elementary rotations about the x, y

and z axes as follows,

Rx(γ) =







1 0 0

0 cos(γ) −sin(γ)

0 sin(γ) cos(γ)







;

Rx(γ) =







cos(β) 0 sin(β)

0 1 0

−sin(β) 0 cos(β)







;
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Rx(α) =







cos(α) −sin(α) 0

sin(α) cos(α) 0

0 0 1






.

Concatenation of these three matrices leads to the general rotation which defines

the final orientation of frame B relative to frame A,

R = Rz(α)Ry(β)Rx(γ). (2.2.1)

2.3 Exponential mapping in rigid motions

In [31] Lie groups and Lie algebras are used to model rigid motions. We first

begin with SO(3), which denotes the group of rotational motions in IR3. Let

ω ∈ IR3 be a unit vector that specifies the direction of rotation and let θ ∈ IR be

the angle of rotation in radians. According to [26], every rotation of an object

corresponds to some rotation matrix R ∈ SO(3). This means that R should be

an orthogonal matrix with determinant 1. SO(3) is identified with the family

of all of these 3× 3 matrices. The notation SO is an abbreviation for “special,

orthogonal”. We write R as a function of ω and θ, R(ω, θ), if we rotate about

the axis ω at unit velocity by an amount θ.

For a one-parameter Lie group given in matrix representation, the tangent space

defines its Lie algebra so(3) (see [26]) as follows:

so(3) = {ω̂ ∈ IR3×3|ω̂ = −ω̂T}. (2.3.1)

15



The matrix ω̂ is a skew-symmetric matrix,

ω̂ =







0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0






. (2.3.2)

The space of all 3 × 3 skew-symmetric matrices is denoted by so(3). As ex-

ponentials of skew matrices are orthogonal, Lie group SO(3) and Lie algebra

so(3) are connected via the exponential mapping function exp : so(3)→ SO(3).

For any ω̂ ∈ so(3), the Rodrigues’ formula [26] gives an efficient method for

computing the exponentials,

R(ω, θ) = exp(ω̂θ) = I + ω̂ sin(θ) + ω̂2(1− cos(θ)) (2.3.3)

where ω̂ is a skew-symmetric matrix, for ω = (ω1, ω2, ω3)
T with ||ω|| = 1.

Geometrically, the skew-symmetric matrix corresponds to an axis of rotation,

and the exponential map generates the rotation corresponding to rotation about

the axis ω by a specified amount θ.

An extension from SO(3) is the group of rigid body motions denoted by SE(3)

(special Euclidean group), which consists of a rotation matrix R and a trans-

lation vector T . Homogeneous coordinates are common in representing rigid

motions. Every 3D rigid body motion (RBM) can be represented by a 4 × 4

matrix

M =

(

R3×3 T1×3

03×1 1

)

, with R ∈ SO(3) and T ∈ IR3. (2.3.4)
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The corresponding Lie algebra to SE(3) is

se(3) = {(v, ω̂) : v ∈ IR3, ω̂ ∈ so(3)}. (2.3.5)

An element ξ = (v, ω̂) ∈ se(3) is called a twist, and its matrix representation

takes the form

ξ̂ =

(

ω̂ v

03×1 0

)

. (2.3.6)

ξ̂ is referred to as an infinitesimal generator of the Euclidean group.

Analogous to SO(3), the exponential map exp : se(3) → SE(3) leads to a

mapping from se(3) to SE(3) [26], which can be computed by evaluating

exp(ξ̂θ) =

(

exp(ω̂θ) (I − exp(ω̂θ)(ω × v) + ωωTvθ)

0 1

)

. (2.3.7)

2.4 Screw motion

As mentioned previously, a rigid body motion corresponds to an Euclidean

transformation group SE(3). The exponent exp(θξ̂) leads to a rigid motion

and corresponds to a screw motion. A screw motion is a specific class of rigid

body motion that consists of a rotation about a straight line combined with a

translation parallel to that line. It is defined by an axis ω in space through

an angle of θ, combined with a translation along the same axis by an amount

d. Screw motions are not only special cases of rigid motions. Indeed, Chasles

has proved in 1802 that the reverse is true: Every rigid body motion can be

expressed as a screw motion. Figure 2.4 illustrates the principle of screw motion.
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d

P

PSfrag replacements

θ

ω

Figure 2.4: A screw motion along axis ω.

The pitch of the screw is defined to be the ratio of translation to rotation during

motion, h := d
θ
(d, θ ∈ IR, θ 6= 0). There exist several special cases of screw

motion. If h → ∞ then the screw motion corresponds to a pure translation

along the axis of the screw, called an infinite pitch screw. A zero pitch screw

is a screw motion for which the pitch is h=0, corresponding to a pure rotation

about an axis.

Joints on a human body are revolute joints. They can be modelled by zero pitch

screws, which is a general rotation. We describe a general rotation as a rotation

of a point around an arbitrary line l, usually not passing through the origin in

space. To model a general rotation of a point, the general idea is to translate

the point by the distance vector between a line and the origin, such to perform a

rotation, and to translate the transformed point back. If T is a matrix denoting
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the translation, and R is the rotation given by Equation (2.3.7), the general

rotation has the form

M = TRT−1. (2.4.1)

In human body pose estimation algorithms [31, 33], the preferred method of

representing the RBM matrix is as merely an exponential of a twist with zero

pitch, since the exponential form enables us to linearize the rigid motion with

respect to θ, and it is more easy to calculate its derivative this way.

19



Chapter 3

System design and overview

3.1 Configuration of stereo system

We assume that a human subject stands in front of a monochromatic back-

ground that is used to distinguish the object from the environment. At least

two perpendicular views of the object should be captured by CCD cameras. A

blue curtain is chosen as the background.

Two cameras are used during the experiments (but our approach can easily be

extended to more cameras). The subject stands still with arms stretching out,

while images are captured by the two cameras from perpendicular positions

(see Figure 3.1). To create the lab setup for these experiments, the following

minimal equipment is needed: a blue curtain, two frame grabbers, a computer,

two CCD cameras, and two tripods.
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Figure 3.1: The lab setup scene.

3.2 General design and requirement

3.2.1 System overview

One of our goals is the design of a robust and flexible automatic 3D recon-

struction system for a human model. This means that the system should be

running without too many manually interventions. It also implies that the sys-

tem should be able to modify every parameter “on the fly” (without restarting

any process).

Figure 3.3 illustrates the interface of the application. The implementation of

the system involves seven functional modules correspondingly shown by seven

buttons on the toolbar of the interface. Figure 3.2 describes the flow chart of

running the system.
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Figure 3.2: Flow chart of the system.

“Segmentation” extracts the silhouette of an object against a background. This

module takes a colour image as input and outputs a binary image. It will be

applied on three different views. They are the front view, the side view, and

the side view of the arms. The related algorithms are described in Chapter

4. The second button “cutting” in Figure 3.3 is an additional function for our

convenience, as we currently model only the upper part of the human body.

A “cutting” function is used to define a horizontal line below which the body
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parts are invisible. This module is only necessary for the front view. The picture

in Figure 3.3 shows an example. The cutting line was determined by simply

clicking on the front view at a desired position.

The module of “joint localization” is responsible for finding joint positions such

as the shoulder, elbow and wrist on the body. The related algorithms are

described in detail in Chapter 5.

We build separately the 3D models of body torso and arms separately. The but-

tons “modelling torso” and “modelling arms” correspond to these two modules,

respectively. The whole model of the body will be integrated at the end (button

“modelling all”). “Camera calibration” is a pre-setting step that calibrates the

cameras. The stereo system will be calibrated using Tsai’s method [37]. This

module takes two views of a calibration cube and outputs two lists of camera

parameters, respectively. The related algorithms of 3D reconstruction, and also

camera calibration, are described in Chapter 6.

3.2.2 Libraries and programming language

Considering the above system design, we need to choose suitable graphics li-

braries for visualization, and also a suitable programming language.

A proper 3D graphics library is helpful in rendering the model and integrating
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Figure 3.3: The interface.

our system into a 3D scene. The choice of the 3D graphics library and program-

ming language is relatively simple, considering what is available and what our

needs are. We need a complete and fast library. The only choice at the moment

is OpenGL [38] maintained by Silicon Graphics. OpenGL is available on almost

every possible platform, from the personal computers to the multi-processor ma-

chines. Many graphic cards are designed for OpenGL and implement efficiently

the rendering primitives.

The choice of a suitable programming language is also obvious. It should com-

bine qualities such as powerful mechanisms, good performance, efficiency and
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of course the support of OpenGL. The two best candidates that also have an

OpenGL binding are C/C++ and Java. Although these two languages are very

comparable in features, the decisive point may be the speed of execution as

we need to handle a sequence of images. Furthermore, the system is designed

running under Linux. It is not necessary to consider too much about the porta-

bility. C/C++ [16, 28], the most popular language under the Linux environment,

is the language selected for use.

VRML [30] is an ISO standard of a file format for describing interactive 3D

objects and worlds. It is a powerful scene graph language. We adopt VRML

representation to define the generic human model as it can be specified with

multiple levels-of-detail, and it can achieve both an efficient and realistic visual

appearance. OpenSG [29], developed and maintained by the OpenSG Sympo-

sium, is a portable scene graph system to create real time graphics programs

(e.g., for virtual reality applications). In the system, OpenSG is used as VRML

parser and rendering tool.

Finally, it is necessary to take a graphical user interface (GUI) into account. A

GUI serves as a front end to the system. It has the responsibility of displaying

information in a clear and concise manner to the user, and being able to handle

user input. For GUI design, GTK and Qt are two useful GUI toolkits under

Linux. Again, without taking portability into account, they are compatible.

The choice of GTK [34] is subjective.
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In summary, the softwares or tools for running the system are listed here: The

system is developed under a Linux Redhat 9.0 environment. OpenGL is used

as the graphic API. The application is written in C/C++. Human models are

specified in the VRML format. A scene graph system OpenSG helps to parse

and visualize VRML files. GTK is our GUI development toolkit.
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Chapter 4

Segmentation

Silhouette extraction or segmentation is the process of extracting a region of

interest from an image. The accuracy and efficiency of contour segmentation

is clearly very crucial to our task. This can be achieved through a background

subtraction technique together with a series of morphologic operations.

The idea of background subtraction is to subtract the current image from a

reference image. T. Horprasert et al. proposed an algorithm in [15] to ex-

tract objects against a static background. This algorithm deals with extracting

objects from a video sequence based on a statistical approach. The reference

image is acquired from a static background during a period of time. Our sys-

tem follows the general procedure defined in [15] however we use a particular

lab configuration described in Section 3.1, and the reference image is acquired

from only one background image rather than a series of images. Therefore, we

slightly modify the algorithm.
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4.1 Computational colour model

Let the ith pixel of the background have an RGB value Ei, which is also called

the expected colour. Let the same pixel of the foreground have an RBG colour

Fi, which is also called the observed colour. The colour values Ei and Fi are

denoted as

Ei = [ER(i), EG(i), EB(i)]

Fi = [FR(i), FG(i), FB(i)]

where ER(i), EG(i) and EB(i) are the red, green and blue values of the ith pixel

in the background image; FR(i), FG(i) and FB(i) are the red, green and blue

values of the ith pixel in the foreground image.

The distortion between Ei and Fi can be decomposed into two components:

brightness distortion and chromaticity distortion. Figure 4.1 illustrates this

colour model, the line OEi passing through the origin and the point Ei is called

the expected chromaticity line. The brightness distortion α is a scalar value that

brings the observed colour close to the expected line. The chromaticity distor-

tion CD is defined as the orthogonal distance between the observed colour and

the expected chromaticity line. The brightness distortion αi is 1 if the bright-

ness of the given pixel in the foreground image is the same as in the background

image, αi less than 1 if it is darker, and greater than 1 if it becomes brighter than

the expected brightness. The brightness distortion can be obtained by minimiz-

ing the distance between the foreground colour and the expected chromaticity
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line, which is the chromaticity distortion. For

αi =
FR(i)ER(i) + FG(i)EG(i) + FB(i)EB(i)

ER(i)2 + EG(i)2 + EB(i)2
,

we get

CDi = ||Fi − αiEi||

=
√

(FR(i)− αiER(i))2 + (FG(i)− αiEG(i))2 + (FB(i)− αiEB(i))2.

 F

R

E

G

B

O
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α Ei

i i

i
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Figure 4.1: Color model in RGB space.

4.2 Subtraction operation

During the subtraction operation, the difference between the background im-

age and the foreground image is evaluated. The difference is decomposed into

brightness and the chromaticity components. The thresholding should be op-

erated over these two components. Applying two suitable thresholds on the
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brightness distortion α, Tα, and chromaticity distortion CDi, TCD, for pixel i, it

segments the foreground image into a binary image. Based on this definition, a

pixel is classified into two categories, either background or foreground (object):

a pixel is a background pixel only if it has both brightness and chromaticity

similar to those of the same pixel in the background image, otherwise it is an

object pixel. This decision procedure is summarized in Figure 4.2.

PROCEDURE background subtraction
1. Input: background image E and foreground image F ,

brightness distortion threshold Tα,
chromaticity distortion threshold TCD;

2. for each pixel i in F and the same pixel in E

3. compute brightness αi;
4. compute chromaticity CDi;
5. if |αi − 1| > Tα or CDi > TCD;
6. pixel i set to be object
7. else
8. pixel i set to be background
ENDPROCEDURE

Figure 4.2: Procedure for background subtraction.

4.3 Morphologic operations

Morphology [21] is the study of form and patterns (i.e, of geometric properties of

binary images). The two basic morphologic operations are dilation and erosion,

where dilation causes an enlargement of objects, and erosion causes an enlarge-

ment of the background. Opening and closing operations are two additional

morphologic operations that are derived from the fundamental operations of
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dilation and erosion. They allow to derive shape information, and can be used

to decompose objects into parts.

Morphologic operations usually take two data types as an input. One is the

binary image, and the other is a structuring element that determines the ef-

fects of the operator on the image. A structuring element is also known as

a kernel, which consists of a pattern specified as the coordinates of a num-

ber of discrete points relative to some origin. Normally Cartesian coordinates

are used, so that the elements can be represented as a small image on a rect-

angular grid in a convenient way. A commonly used example is depicted in

Figure 4.3 as a 3×3 square, with the origin at its center. Its corresponding set

of coordinate points (from top to bottom and from right to left) are defined as

{(−1,−1), (0,−1), (1,−1), (−1, 0), (0, 0), (1, 0), (−1, 1), (0, 1), (1, 1)}.

1 1 1

1 1

111

1*
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Figure 4.3: A 3×3 square structuring element with origin at *.

4.3.1 Dilation

Dilation is an operation that expands an object in some way, thus potentially

filling in small holes and connecting disjoint objects. Figure 4.4 shows an ex-

ample of dilation using a 3×3 structuring element.
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Suppose that X is the set of Euclidean coordinates corresponding to an input

binary image, and that B is the set of coordinates for the structuring element.

Let Bx denote the translation of B so that its origin is at x. Then the dilation

of X by B is simply the set of all points x such that the intersection of Bx with

X is non-empty. The dilation operation is also written as

X ⊕B = {x : Bx

⋂

X 6= ∅}. (4.3.1)
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(c) X ⊕ B

Figure 4.4: An example of dilation.

4.3.2 Erosion

Erosion is the dual operation of dilation. Erosion shrinks an object by etching

away (eroding) their boundaries. Figure 4.5 shows an example of erosion using

a 3×3 structuring element.

Suppose that X is the set of Euclidean coordinates corresponding to an input
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binary image, and that B is the set of coordinates for the structuring element.

Let Bx denote the translation of B so that its origin is at x. The erosion of X

by B is simply the set of all points x such that Bx is a subset of X. The dilation

operation is also written as

X ªB = {x : Bx ⊂ X}. (4.3.2)
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(c) X ª B

Figure 4.5: An example of erosion.

4.3.3 Opening

An opening operation is defined as an erosion followed by a dilation, using the

same structuring element for both operations. Figure 4.6 shows an example of

opening using a 3×3 structuring element. The opening operation over an image

X by the structuring element B can be written as

X ◦B = (X ªB)⊕B. (4.3.3)
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(c) X ◦ B

Figure 4.6: An example of opening.

4.3.4 Closing

A closing operation is simply an opening performed in reverse. It is defined as

a dilation followed by an erosion, using the same structuring element for both

operations. Closing is similar in some ways to dilation but it is less destructive

on the original boundary shape. An example is shown in Figure 4.7. The closing

operation over an image X by the structuring element B can be written as

X •B = (X ⊕B)ªB. (4.3.4)

In practice, we usually obtain a binary image that contains noise after segmen-

tation (Figure 4.8(a)). Morphologic operations are used to remove noise and to

fill in gaps on edges. Figure 4.8(b) shows a result using 3× 3 operators.
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Figure 4.7: An example of closing.
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(b) After morphological processing.

Figure 4.8: Morphological processing after segmentation.
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Chapter 5

Joint localization

The main idea of joint localization is the extraction of the body parameters

such as the length of the arms, hands, and so forth, from a feature posture,

and consequently being able to estimate the position of joints on the occluding

silhouettes. The proposed approach involves a variety of image processing tech-

niques such as skeletonization [4, 20], chain coding [11], and corner detection

[9]. The first three sections will discuss these fundamental techniques. The

joint localization algorithm and its refinements will be addressed in the last two

sections.

5.1 Skeletonization

5.1.1 Basics

The aim towards skeletonization is to determine the position of the joints. Skele-

tonization is a process of reducing foreground regions in a binary image to a
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skeletal remnant that largely preserves the extent and connectivity of the orig-

inal region while throwing away most of the original foreground pixels.

A skeleton is a lower dimensional shape description of an object that represents

the topological structure of the object. It can be computed from an underlying

silhouette. Four pairs of images [1] in Figure 5.3 show the extracted skeletons of

their shapes. A skeleton should be able to fulfill these requirements: (1) Similar

topology. It should retain the original shape. (2) Centred. It should be in the

middle of the object to preserve the shape. (3) Affine-invariant. It should be

invariant under affine transformations.
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Figure 5.1: The example skeletons of 2D shapes.

There are two categories [20] of skeletonization methods. One category is based

on thinning approaches. Thinning is a one-way simple deformation. More

specifically, it is a deformation of an image that changes the value of simple

pixels while preserving the adjacency relations between the connected compo-

nents of object pixels and background pixels. It is normally implemented by

37



an iterative process of transforming the object pixels into background pixels

without destroying the topology of the image. The notion of a simple pixel is

defined as follows [20].

Definition 5.1 A simple pixel is a single element p of a digital image with

value I(p) that can change this value I(p) without destroying the topology of the

image.
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Figure 5.2: Examples of simple pixels (upper row) and non-simple pixels(lower
row); the p and *s can be either 0 or 1.

Some examples of simple and non-simple pixels are shown Figure 5.2 [22]. For

example, [20] gives criteria for identifying simple pixels using an algorithm called

an “iterative thinning algorithm”. The skeleton obtained from thinning is a

topologically equivalent image, however it is not a subset of the medial axis of

the original shape.

Another category is based on distance transforms [35]. Brute force distance

calculations are very expensive, since for each pixel of the region the distance to

the nearest boundary point has to be evaluated for all the boundary points. An
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approximate technique has therefore been developed, known as a distance trans-

form, which tries to estimate the Euclidean distance in a reasonable time. Its

main idea is to replace the global distance computation by a local propagation

of distance in a small neighbourhood. This approach always requires several

passes through the image data. One efficient approach, in terms of precision

and cost calculation, is the Chamfer distance transform [4]. The skeletons ob-

tained by those methods are on the medial axis of the shape. However it is not

topology-preserving. A comparison of two categories of skeletonization methods

is made in Figure 5.3(a) and Figure 5.3(b). The skeletons are extracted from

the same underlying silhouette by using an iterative thinning algorithm and

Chamfer distance transformation, respectively.

The first leads to a well connected, but not a centred result. Furthermore, we

are interested in detecting corners of skeletons, but the resultant curve is very

smooth, which makes it hard to detect, for example, the position of the elbow

joint.

The second category of methods allows centred skeleton, but violates the con-

nectivity constraint. For our specific task, we decided to work with the approach

based on Chamfer distance transform since we want to extract the positions of

joints that are always on the medial axis of the shape. We will introduce this

approach in the second part of this section. The drawback of this approach

must be avoided by applying an additional process that is to be discussed in

the next section.

39



PSfrag replacements

θ

ω
αEi

(a) Iterative thinning.

PSfrag replacements

θ

ω
αEi

(b) Chamfer distance
transform.

PSfrag replacements

θ

ω
αEi

(c) The skeleton of arms
extracted by the pro-
posed approach.

Figure 5.3: A comparison between the different skeleton extraction methods
and the proposed method.

5.1.2 Chamfer distance transform

For a given digitized object O, the distance to the background db of a point P

belonging to O is defined as [6]

∀(P ∈ O,Q ∈ O), db = min[d(P,Q)].

The Chamfer distance transforms is derived under the assumption that the

distance can be computed from the values at the neighbouring position plus a

mask constant. A (3,4)-Chamfer distance map can be produced in two raster

scans, a forward scan and a backward scan, over the image using the mask in

Figure 5.4. In the forward scan, the mask starts in the upper left corner of the

image, moves from left to right and from top to bottom by using the upper

triangle of the mask. When an object pixel is reached by the forward run, its

lowest discrete distance df is computed as

df =min
{N(P )} [df [N(P )] + d(P,N(P ))]. (5.1.1)
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There, N(P ) denotes a neighbour of P defined in its mask. This value is then

assigned to P . The same process is applied in the backward scan. It starts at

the bottom-right corner, moves from right to left and from bottom to top by

using the lower triangle as its mask. When an object pixel is reached by the

backward run, it is assigned the value

db(P ) = min[df (P ),min
{N(P )} [df [N(P )] + d(P,N(P ))]]. (5.1.2)
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Figure 5.4: Masks used by (3,4)-Chamfer algorithm.

The skeleton can then be defined as the set of pixels S whose distance db is a

local maximum with regard to neighbouring pixels,

P ∈ S ⇔ ∀N ∈ {N(P )}, db(P ) ≥ db(N(P )).

This simple definition of a skeleton does not preserve connectivity but it repre-

sents the medial axis at reasonable quality, as an example shows in Figure 5.3(b).

The connectivity problem can be solved by a combination of Chamfer distance

transform and chain coding, which will be introduced in the next section. Fig-

ure 5.3(c) shows the final result using the proposed method. It is noted that we

are only interested on the arm skeletons.
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5.2 Chain coding

5.2.1 Basics

A successful chain coding operation is a crucial step to stabilizing the applica-

tion. Chain coding is a fundamental image processing technique which deals

with a region or object representation in a compact way. Chain code represen-

tation is based on work of Freeman [11]. Standard chain coding will be applied

over the silhouette to get a chained boundary of the shape, while a modified

chain coding approach will be applied to the skeletons of the arms. The for-

mer provides input for corner detection (Section 5.3), and the later solves the

disconnectivity problem of skeletonization (Section 5.1).

Figure 5.2.2 shows an example of the directional encoding of a curve. The

directional codes are usually called chain codes. A chain is an ordered finite

sequence of code numbers. The chain coding function takes a binary image as an

input and returns a linked list of border pixels with their direction. Essentially,

it starts with a point that is believed to be on the boundary, normally the upper

left corner of the shape, and follows the contour in a counter-clockwise manner.

Once a neighbouring pixel is found, its position is noted and then searches

clockwise, starting 135 degrees counter-clockwise of the current direction. When

it finds a pixel, it records the direction to that pixel in the location of the

previous pixel in a labeled array. Once the starting pixel is found, we iterate

over the labeled pixels to build a linked list, which is then returned. There
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are eight possible directions for a link between a point and its neighbours. In

Figure 5.2.2, these eight directions are numbered 0 through 7 in a counter-

clockwise sense. Each of these can be considered to be an angular direction, in

multiples of 45 degrees, which are considered as possible moves from one pixel

to the next. The absolute coordinates (x, y) of the first boundary pixel, together

with the chain codes, represent a complete description of a discrete boundary

of a region.
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Figure 5.5: Chain code and one example of a simple shape.

5.2.2 Modified chain code

Chain coding for a body silhouette can be done by applying the conventional

chain coding technique. However, the resultant skeletons from the (3,4)-Chamfer

distance transform (as mentioned previously) are disconnected arcs. The prob-

lem inherent in the chain code definition must be solved before embarking on

further processing. The solution here is to apply a horizontal and vertical scan

wherever a pixel is found to be in a position of a gap. It defines the nearest pixel
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as the next pixel, and then continues with chain coding. This solution relies on

knowledge of the trend of the skeletons because we design a particular posture

of the arms. The general trend of skeletons in the right arm goes from top-right

to bottom-left; whereas it goes from bottom-right to top-left in the left arm.
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Figure 5.6: Detect possible gap positions in modified chain coding.

Two end points of the skeleton on the right arm are assumed to be known. The

one end, the rightmost point M(xr, yr), can be found by a simple raster scan.

The other end, which is the right shoulder joint S(xs, ys), can also be known

from the joint localization procedure which will be introduced later in Section

5.4. The skeleton of interest runs through these two points. A pixel Pi in the

right arm, that is in the position of a possible gap is defined as:

• Every 8-neighbour pixel on the right is either a non-skeleton pixel or a

skeleton pixel previous to Pi on the chain.

• Every 8-neighbour pixel below is either a non-skeleton pixel or a skeleton
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pixel previous to Pi on the chain.

An example is illustrated in Figure 5.6. Starting with pixel P1, we arrive at

pixel P6, which is an end pixel and a position of a possible gap, as its subseg-

ment neighbourhood pixels are non-skeleton pixels but its north-east neighbour

is an “already chained” pixel (P5). A gap is also assumed at P10, as all its

neighbouring pixels, except the west neighbour, are non-skeleton pixels.

If a pixel Pi assumed to be in the position of a possible gap the nearest pixel

Pi+1 (i.e., next to Pi) on the chain, can be found using the following steps:

• Search the rightmost pixel A(xa, ya) in columns between xi+1 ∼ xs, and

in rows between yi+1 ∼ ys;

• Search the topmost pixel B(xb, yb) in rows between yi+1 ∼ ya and in

columns between xi+1 ∼ xs;

• If B is found, return B as pixel Pi+1 next to Pi.

• If there is no such pixel found then return S as the end point.

In the example of Figure 5.6, once pixel P6 is identified as a possible gap, A can

be found in a horizontal scan, and then B can also be found in a vertical scan,

defining the pixel Pi+1.

Similar processing is applied to the skeleton in the left arm. However, in contrast

to the right arm, the skeleton of interest goes from the left shoulder joint to the
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leftmost point. Therefore, searching is from bottom-right to top-left. In the

modified chain code algorithm, the relationship between two adjacent pixels on

the chain cannot always be presented with a direction code. This happens when

a pixel is in the position of a possible gap. It is necessary to note the coordinate

whenever a next pixel is found. Hence the output of the modified chain code is

a set of chained points (i.e. a list of coordinates).

5.3 Corner detection

To locate the position of joints such as the shoulder joint, elbow joint, and so

forth, it is necessary to extract corners from silhouettes or skeletons. A corner

detection method is proposed by Chetverikov in [9]. Our application follows the

general procedure defined in [9], but we do some slight modifications since we

have more constraints to be considered.

The proposed two-pass algorithm in [9] defines a corner in a simple and intu-

itively appealing way, as a location where a triangle of specified size and opening

angle can be inscribed into the curve. The input of a corner detector should be

a chain-coded curve, which is converted into a connected sequence of 2D points

Pi = (xi, yi), i = 1, 2, ..., n. For each point P on a curve, the corner detector tries

to inscribe a triangle (P−, P, P+) along the curve, where P− is the backward

point and P+ the forward point. In the second pass, similar to edge detection,

we find the local minima angle of these inscribed triangles. One example is

shown in Figure 5.7. Assume that P1, P2 and P3 are three points in a sequence,
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triangles are inscribed at the three points along the edges of the shape. Angles

α1, α2 and α3 are opening angles of these triangles. Since α2 appears to be a

local minima, P2 is regarded as a corner.

P P

P

P

P

1
−

2

+

3
+

21

3

P

P1
+

P3
−−P2
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Figure 5.7: An example for the corner detection algorithm.

The notion of a corner is subjective. The corner here is defined as an obvious

corner such as an armpit. The small corners caused by the uneven dressing or

the quality of the silhouette are neglected. This definition requires long triangle

arms: L−arm = ||P−P ||, or L+
arm = ||PP+||. However, the problem in working

with a long triangle arm is that we also detect “ false triangles”. As shown on

the right of Figure 5.8, the inscribed triangle cannot represent the corner at that

point. To solve this problem, we examine every point Pm between the points

P+ and P−. If the distance dm from Pm to backward arm PP− or forward arm

PP+ is longer than a threshold Td, dm > Td, then we do not inscribe a triangle

to that point. The opening angle of that point can be set with a large value.

The corner detection algorithm is stated formally below.

1. For each pixel P on the chained object contour, construct such a
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Figure 5.8: The examples show a successful inscribing triangle (left) and a false
inscribing triangle (right).

triangle (P+, P, P−) as constrained by a set of rules as follow,

(a) Triangle arms L−arm ≥ Tarm and L+
arm ≥ Tarm, where Tarm is a

pre-defined threshold of the length of triangle arm;

(b) For each pixel Pm on the chain between P+P and PP−, if dm is

the distance from Pm to the forward arm P+P or the backward

arm PP−, then dm < Td, where Td is a pre-defined threshold

of distance value.

2. If the triangle (P+, P, P−) is successfully inscribed then calculate

its opening angle and assign this value to that pixel;

3. For each pixel P on the chained object contour, if it is satisfied

by:

(a) The pixel P is assigned with an angle;
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(b) The assigned angle is a local minima;

(c) The assigned angle is less than a pre-defined angle threshold

Tangle.

Then this pixel is at corner position, otherwise it is not.

5.4 Initial estimation of joint locations
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Figure 5.9: The input images for joint localization. Left: a front view. Right:
a joint view.

A particular pose which is called joint view (as shown on the right of Figure 5.9)

is used to locate the positions of the joints. We begin the joint localization

process with shoulder joints and neck joint extraction directly from the front

view (the left of Figure 5.9). Shoulder joints are located by searching armpits

D1 and D2 (see Figure 5.10), which are the two lowermost corners over the

silhouette that are not located on the bottom line. The position of the neck

joint can be found when walking along the boundary of the silhouette from

an upper shoulder point towards the head. It is common sense that the slice

where a neck joint is located, is always the narrowest x-slice of the silhouette.
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Therefore, when we walk along the boundary from the upper shoulder point U1,

the x value will increase. We stop at a point whose x value does not increase.

It can be asserted that this point N1 is located in the slice of the neck joint.

Likewise we have N2 from another side. So far, two possible slices are obtained

from both sides. The narrowest one gives the neck joint. Next, to gain the

length of the hand, upper arm, and so forth, we use a special reference frame (

joint view). The aim at this stage is to find the positions of the elbow joints and

wrist joints. We first perform a skeletonization operation (Section 5.1) on the

joint view. Second, we apply a corner detection operation (Section 5.2 and 5.3)

on the skeleton. This gives us the positions of the elbow joints and wrist joints.

Lengths of body parts therefore can be calculated. With these parameters it

is possible to estimate the joints within the occluding front view. The joint

localization algorithm is summarized in four steps as follows:

U1
N1 N2

1 D2

U2

D

neck

r_wrist r_elbow
r_shoulder l_shoulder l_elbow l_wrist
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Figure 5.10: Joints and feature points.
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Step 1: Estimate the shoulder joints in the front view.

(a) Extract the chained boundary from the front view silhouette;

(b) Apply corner detection on the chained boundary, find the armpits

D1 and D2.

(c) Locate the shoulder joints by scanning up from the armpits.

Step 2: Estimate the neck joint in the front view.

(a) Search for the upper shoulder points U1 and U2, from the armpits

D1 and D2;

(b) Walk along the boundary from U1 and find the narrowest point

N1;

(c) Walk along the boundary from U2 and find the narrowest point

N2;

(d) Compare the widths of the horizontal slices through N1 and

N2, the neck joint is located at a slice has small value.

Step 3: Estimate the elbow joints and wrist joints in the joint view.

(a) Extract the skeleton in the joint view;

(b) Locate the shoulder joint in the joint view, extract the chained

skeleton of the arm;

(c) Apply corner detection on the chained skeleton of the arms,

estimate the elbow joint and wrist joint in the joint view;
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(d) Calculate the lengths of the upper arm Lup and lower arm Llow

from the positions of the shoulder joints, elbow joints and

wrist joints in the joint view;

Step 4: Estimate elbow joints and wrist joints in the front view.

(a) Locate the elbow joints in the front view with the length of

the upper arm Lup, starting from the shoulder joint;

(b) Locate the wrist joints in the front view with the length of

the lower arm Llow, starting from the elbow joint.

A corner detection operator normally outputs a list of corner points. We need to

classify these corners as belonging to a particular joint or feature point. Firstly,

it is easy to determine a corner that belongs to the left or right arm with the

knowledge of relative position between the centroid of the silhouette and corners.

Secondly, further consideration is needed according to which corner we want to

detect. In step one, a corner detector is applied over the silhouette and the

armpits can be regarded as the lowest corners next to the bottom line. In step

three, corner detectors are applied to the skeletons of the two arms respectively.

The wrist is the uppermost corner while the elbow is the lowermost corner. The

body part cutting in Figure 5.11 presents the result of joint localization.

5.5 Refinements on joint localization

We have addressed the main strategy of joint localization. In practice, it is

observed that the elbow joint and wrist joint are often not very accurate. An
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Figure 5.11: The result of joint localization.

additional mechanism for estimating “anatomic better fitting” joint locations is

needed.

The refinement for the position of the wrist joint is straightforward. A general

knowledge of location around the wrist is available from the initial estimation.

We measure the heights of the y-slices within the wrist area. The slice at the

wrist joint has the lowest value. The left wrist slice is the leftmost one having

a lowest value while the right wrist slice is the rightmost one.

As to elbow joint localization, an arm anatomy view in Figure 5.12 [24] is helpful

for understanding its refinement. From the previous section, we regard the elbow

joint as located on the medial axis at E ′. Actually, from the anatomical point

of view, it is at E, one end of the humerus. We visualize the error of locating

the elbow joint at E ′ by an experiment that overlays the model on images (the

framework of the experiment will be described in Chapter 7). It is shown in the

middle of Figure 5.14.
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Figure 5.12: Anatomy of an arm [24].

To estimate the position of the elbow joint, since the knowledge of E ′ and the

shoulder joint S (Figure 5.13) is available, we extend the line E ′S to reach the

boundary at B. It is easy to compute the middle point C of line segment E ′B.

We use the distance of ||CS|| to approximate the length of the upper arm Lup

and locate the elbow joint in the front view. The right of Figure 5.14 shows

this approximation, which has a better result in comparison to the initial joint

estimation.
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Figure 5.13: Extend the predetermined elbow joint from E ′ to C.
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Figure 5.14: A comparison of using different methods to estimate the elbow
joint. Left: overlaid with the initial estimated model. Right: overlaid with the
refined model.
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Chapter 6

3D Reconstruction of a human

body

Reconstruction of an object surface is a well known discipline in computer vision

[22]. The task is to build surface meshes for a human being from two mutually

orthogonal views by using the “shape-from-silhouettes” [22] technique.

6.1 Basics

There are two main approaches for 3D reconstruction using shape from silhou-

ettes. One is a volume carving approach [22] and the other a surface-based

approach [39]. The volume carving approach calculates projection rays of all

the points on the occluding contours and cuts the predetermined volume of

interest into object and non-object. It is a simple, fast and robust method.

However, it identifies every voxel in the volume of interest, and does not give

an explicit way to define points on surface meshes.
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In comparison to volume carving, the surface based approach is a different type

of mathematical approach for surface modelling. It uses B-spline surface patches

as a mathematical model of 3D surface reconstruction from epipolar geometry,

which deals with the correspondence problem between two images. A point

on the occluding contour in one image is matched to a point on a contour in

the other image by searching along epipolar lines. The surface-based approach

produces a better result than the volume carving approach for an object having

a smooth and continuous surface, for instance, a human body. This section

will discuss fundamentals of the surface-based approach. It first includes the

geometry of a camera system as well as epipolar theory, and continues with the

introduction to the proposed mathematical model.

6.1.1 Perspective camera model and camera calibration

3D scenes can be projected on 2D images by perspective transformations. A

common way to model perspective cameras is to use a pinhole camera model

[22]. An ideal pinhole model, shown in Figure 6.1, is the simplest geometric

camera model. It consists of the image plane and the optical center O, located

at distance f , the focal length of the optical system. The optical axis is the line

perpendicular to the image plane which crosses O.

The relationship between a 3D point P (X,Y, Z, 1)T and its projected point

p(x, y, 1)T on the image plane can be written as

x = −
fX

Z
and y = −

fY

Z
. (6.1.1)
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Figure 6.1: The pinhole camera model.

A linear mapping can be used to represent the projection from 3D to 2D in

homogeneous coordinates. In general, this mapping can be defined by a 3 ×

4 matrix P , called the projection matrix. The projection matrix P can be

obtained by combining a series of coordinate transformations and a projection

into the camera coordinate system. It involves the following steps:

1. Rigid body motion. A transformation from the 3D world coordinate

system to the camera coordinate system;

2. Central Projection. A projection of the camera coordinates onto the

image plane;

3. Pixel transformation. A transformation of the undistorted coordinates

into the distorted coordinates, and a shift of centred distorted coordinates

into non-centred image coordinate having the origin at the upper-left cor-

ner.

We further assume that the projection is a linear projection, which means that

58



there is no lens distortion. The camera projection matrix is as follows,

P =







−fkcx 0 xc

0 −fkcy yc

0 0 1







︸ ︷︷ ︸

K







1 0 0 0

0 1 0 0

0 0 1 0







(

R3×3 T1×3

03×1 1

)

︸ ︷︷ ︸

M

, (6.1.2)

where f is the focal length, (xc, yc) are the coordinates of the image center

(in pixels), and the scaling factors kcx and kcy are expressed in relative units

(pixel/meter) and inversely proportional to the horizontal and vertical size of

the pixel.

The rotation matrix R and translation vector T describe the orientation and

position of the camera with respect to the world coordinate system. They

are components of the matrix M and are called extrinsic camera parameters.

Meanwhile, the intrinsic camera parameters f, kcx, kcy, xc and yc, which define

the matrix K, specify the optics and the physics of the camera.

Camera calibration is the process of estimating the extrinsic and the intrinsic

parameters of a camera. Various camera calibration methods exist [22]. In

1986, R. Y. Tsai suggested a method today well known as Tsai’s calibration

[37]. Because it works accurately and there is a fully developed free software

available on the Internet [2], Tsai’s method is widely used. It has two variants,

one for coplanar calibration marks and one for non-coplanar calibration marks.

Non-coplanar calibration requires at least seven accurately measured points

which are given in arbitrary but known geometric configuration. Fully optimized

calibration requires at least eleven points.
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Figure 6.2: Two views of a calibration cube from both cameras; the left one is
from the front camera, and the right one from the side camera.

To calibrate two nearly perpendicular positioned cameras, calibration marks

are placed on three faces of a cube as shown in Figure 6.2, so that each camera

is capable of seeing two faces. In our set-up, the calibration cube contains

thirty-six marks with twelve on each face.

6.1.2 Epipolar geometry

The epipolar geometry [22] is the intrinsic projective geometry between two

views. It is independent of scene structure and only depends on the camera

parameters. The epipolar geometric constraint is useful for correspondence

search. Assume we start a correspondence analysis process with a point in one

image plane, say x1. A search for the corresponding point x2 in the second

image plane can be simplified significantly by utilizing the epipolar geometry

underlying the binocular image acquisition. Figure 6.3 visualizes this geometric
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relation of a binocular system. An epipolar plane is defined by a point X in 3D

space and both optical centers O1 and O2. The base line is incident with O1 and

O2. If both image planes are not coplanar, the base line intersects each plane

in one point. These two intersection points are called epipoles. The epipole e1

is the projection point of O2 in Camera 1, and e2 is the projection point of O1

in Camera 2. An epipolar line is the intersection of an epipolar plane with an

image plane. An epipolar line on an image plane with respect to X is incident

with the epipole and its projection point. This allows the following definition

of the epipolar constraint: A point x1 in one image can only correspond to such

a point x2 in the second image which lies on the corresponding epipolar line in

the second image which is uniquely defined by x1.

X

O1

O2

e1 e2

1l l2

1x
x2
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Figure 6.3: Epipolar geometry.

In the example of Figure 6.3, the epipolar constraint allows to define the epipolar

line l2 as a function of x1, l2 = Fx1, where F is the fundamental matrix. As x2

belongs to l2, we have xT
2 l2 = 0. The relationship between the corresponding
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image points x1 and x2 satisfies, xT
2 Fx1 = 0. Actually, the fundamental matrix

F is the algebraic representation of epipolar geometry and encapsulates this

intrinsic projective geometry. It can be computed from either the knowledge of

the internal camera parameters and relative camera pose, or from at least eight

point correspondences [12]. In this thesis, we investigate the computation of a

fundamental matrix only from camera properties.

Suppose the projection matrices of two cameras are known, P1, for the front

camera, and P2, for the side camera. The relation between X and x1, x2 are

given by

x1 = P1X, (6.1.3)

and

x2 = P2X. (6.1.4)

Therefore, the ray back-projection from x1 is obtained by solving P1X = x1.

The solution is given as

X = P+
1 x1, (6.1.5)

where P+
1 is the pseudo-inverse of P1. It can be computed by

P+
1 = P T

1 (P1P
T
1 )−1. (6.1.6)

For an epipole e2, we have, e2 = P2O1. The epipolar line is the line joining two

projection points of e2 and x2. It can be represented as the cross product of

these two points l2 = e2 × x2. Together with Equation(6.1.4), l2 is derived as

l2 = (P2O1)× (P2X). (6.1.7)
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Combining with Equation (6.1.5), we get

l2 = (P2O1)× (P2P
+
1 x1) = Fx1. (6.1.8)

We then have the fundamental matrix

F = (P2O1)× (P2P
+
1 ). (6.1.9)

6.1.3 B-spline interpolation

Free-form surfaces represented as B-splines are suitable geometric models for

representing complex 3D objects such as a human body. B-spline curves [3, 13]

are piecewise polynomial functions that can provide approximation of shapes

using a sequence of a small number of control points. These control points

indicate the general shape of a curve while B-spline curves result in smoothing

of coarsely digitized contours. Figure 6.4 shows an example of a B-spline curve.

A B-spline curve can be expressed as a linear combination of basis functions,

P (t) =
n∑

i=0

PiNi,k(t), (6.1.10)

where Pi (i = 0, 1, · · · , n) are the vertices of the control polygon, and Ni,k(t)

are B-spline basis functions of order k. The order k determines the number of

control points that have an influence on the points of the curve. The curve is

then Ck−2 continuous. For the cubic B-spline that we use in the project, we

have C2 continuity for k = 4.
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Figure 6.4: An example of a B-spline curve defined by control points.

The de Boor algorithm [10] provides a fast and numerically stable algorithm

for finding a point on a B-spline curve at the interval defined by a knot vector

T = (t0, t1, t2, · · · , tn+k), with t0 ≤ t1 ≤ · · · ≤ tn+k. It defines the B-spline basis

function recursively as follows:

Ni,1(t) =

{

1 ti ≤ x ≤ ti+1

0 otherwise
(6.1.11)

Ni,k(t) =
t− ti

ti+k−1 − ti
Ni,k−1(t) +

ti+k − t

ti+k − ti+1

Ni+1,k−1(t). (6.1.12)

In terms of geometry, the de Boor algorithm actually is a corner-cutting process.

That is, corner P
[r−1]
i is cut by line segment P

[r]
i P

[r]
i+1. Figure 6.5 illustrates that

the cutting begins at polygon Pj−k+1Pj−k+2 · · ·Pj. After k-1 iterations, we reach

the point P r−1
j which is on the curve.
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Figure 6.5: Corner cutting processing of the de Boor algorithm.

6.2 Modelling a human torso

6.2.1 Geometric reconstruction
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Figure 6.6: The input images for reconstructing the torso. Left: the front view.
Right: the side view.

The body torso and the arms are treated as two different sets of free-form

surface patches. The surface patches of the body torso are sliced horizontally
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whereas the surface patches of the arms are sliced vertically. Once body seg-

ments are separated by the joint localization procedure (Chapter 5), it allows

to reconstruct the torso and arms separately. The reconstruction process takes

two perpendicular views (Figure 6.6), the body parameters together with cam-

era parameters as input. Since then each slice has four control points to fit a

B-spline curve. The principle of reconstruction for a human torso is illustrated

in Figure 6.7. The main idea is to find the four control points C1, C2, C3 and C4

for each slice and, then to interpolate them as a B-spline curve. It assumes that

a horizontal line in a silhouette of the front view corresponds to a slice in 3D

space. Therefore we can start with one slice of the front view, and use its edge

points P11 and P21 as the first two reference points. Multiplying them with the

fundamental matrix (Equation (6.1.9)) to the second camera gives the epipolar

lines (Equation (6.1.8)). Their correspondences P41 and P42 in the side view

are the intersection points of the epipolar line with one downline of the second

silhouette. In the case of Figure 6.7, it is on the right. Hence the control points

C2 and C3 are obtained. On the other hand, to find the other two control points

C1 and C4, we start from P31 and P32, which are the points located in the same

row of P31 and P41 but on the opposite side (the left side) of the side view. The

algorithm for modelling a torso is summarized below.

1. For each horizontal slice in the front view, find its edge points

P11 and P21;

2. Calculate the epipolar lines to the side view for P11 and P21,

and search for their corresponding points, P41 and P42;
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Figure 6.7: Modelling the torso.

3. A horizontal scan from P41 and P42 in the side view locates the

edge points P31 and P32 in the other side;

4. Calculate the epipolar lines to the front view for P31 and P32,

and search for their corresponding points P12 and P22;

5. Estimate four control points from corresponding pairs in 3D space:

(a) Projection rays from P22 and P23 intersect at C1;

(b) Projection rays from P21 and P42 intersect at C2;

(c) Projection rays from P11 and P41 intersect at C3;

(d) Projection rays from P12 and P31 intersect at C4.

6. Interpolate as a B-spline curve from the four control points.
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Figure 6.8: Error in modelling when the object is close to the top of the image.

6.2.2 Correction function

It is observed that searching for a corresponding point in such a way by the

intersection of epipolar lines and silhouettes, will cause errors when the con-

trol point is invisible in one of the views. This is shown in Figure 6.8. The

control point C2 is invisible in the side view. Its projection point E is inside

the silhouette. However, the corresponding point obtained from this approach

is F which is the intersection of the epipolar line l and the silhouette contour.

In particular, this error will be obvious when the object of interest lies in the

area far from the image center. In order to reduce such an error, we propose a

correction function. With respect to the side view, C3 is on the same side as

C2 and always visible. It assumes that their projection points D and E are on

the same column j in the image. Therefore the corresponding point of C2 in
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Figure 6.9: Visualization of the two different methods. Left: surface model of
the torso with the correction function. Right: surface model of torso without
the correction function.

the side view is adapted to the intersection of l and vertical line x = j. This

correction function is also applied to the other three control point pairs: C3 and

C4, C4 and C1, C1 and C2. Figure 6.9 visualizes the error caused in the normal

method by comparing it with the method using the correction function.

6.3 Modelling arms

In comparison to the 3D reconstruction of the torso, we use a different scheme to

build the model of the arms, as they are sliced vertically instead of horizontally.

Arms can also be modelled from two nearly perpendicular views, which are

the front view and the side view of arms. However, both views are acquired

from the same camera instead of two cameras. This is shown in Figure 6.10.

The front view is the same image as in the torso reconstruction (on the left in

Figure 6.10), and the side view of arms is obtained by turning over the arms at
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Figure 6.10: The input images for reconstructing the arms. Left: the front view.
Right: the side view of the arms.

ninety degrees as shown on the right of Figure 6.10.

6.3.1 Aligning the arms

Epipolar theory cannot be applied to the correspondence analysis for arm re-

construction since only one camera is used. We establish the corresponding

pairs by simply matching vertical slices between two views (see Figure 6.11).

In practice, the corresponding slices may not lie in the same column of the two

images when the human subject turns over the arms. This problem can easily

be solved by aligning the arm in both views at the fingertips. We regard the

front view as a reference view, and the corresponding slice l2 in the side view

with respect to slice l1 in front view is given by

l2 = wa1 + (l1 − w1) (6.3.1)

for the right arm, and

l2 = wa2 − (w2 − l1) (6.3.2)
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Figure 6.11: Two views of the right arms are aligned at the fingertip.

for the left arm. There, l1 is the slice column in the front view, l2 is the slice

column in the side view corresponding to l1, w1 is the right fingertip column in

the front view, w2 is the left fingertip column in the front view, wa1 is the right

fingertip column in the side view, and wa2 is the left fingertip column in the

side view.

6.3.2 Mid-plane geometry

We define the mid-plane as a plane going through the middle of the torso (see

Figure 6.12). It assumes that this mid-plane also goes through the middle of

the arms and all the joints of the arms are laid on the plane. As we have already
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Figure 6.12: A mid-plane goes through the middle of the torso.

reconstructed the torso, it is possible to calculate the equation of the mid-plane

from geometric data of a slice in the torso. Normally we choose a closest slice to

the shoulder joint. Figure 6.13 illustrates the principle of the calculation. The

points on the slice plane S are given, therefore vectors v1 and v2 are known.

The normal of the slice plane n′ is given by

n′ = v1 × v2. (6.3.3)

Thus, the normal of the mid-plane n is

n = n′ × v1. (6.3.4)

Having the normal of a plane means that its parameters a, b, c are known. To-

gether with any point on the mid-plane π0, the parameter d of π0 can be com-

puted from Equation (2.1.7).
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Figure 6.13: Mid-plane π0 is calculated from geometric data of a slice plane S.

6.3.3 Geometric Reconstruction

Figure 6.14 illustrates the computation of the 3D control points for an arm slice.

We offset the mid-plane backward or forward; then we reconstruct the rays from

the edge points of the slice. The intersections of these rays with the planes give

desired control points. The backward or forward offset distance for each slice

can be computed from the side view. This is shown in Figure 6.14(a). In the

side view, we have two edge points of a slice, p3 and p4 and their mid-point

m in the 2D image. Back projecting them onto the mid-plane gives their 3D

positions P3, P4 and M . Spatial distances from P3 and P4 to M , d1 and d2, are

the offset distances. Since the offset planes π1 and π2 have the same normal

as mid-plane π0 = (a0, b0, c0, d0)
T , the equations of the offset planes can be

derived as π1 = (a0, b0, c0, d1)
T and π2 = (a0, b0, c0, d2)

T . Result surface meshes

are visualized in Figure 6.15. We summarize the algorithm for modelling arms

below.
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Figure 6.14: Modelling the arms.
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Figure 6.15: Grid visualization of the results of modelling arms, from up to
bottom: the right arm and the left arm.

1. For each vertical slice in the front view of the arms, find the

edge points p1 and p2;

2. Align the side view of the arms with the front view at the

fingertips, find the corresponding points p3 and p4 in the side

view;

3. Reconstruct the projection rays from p3, p4 and their middle point

m in the side view; estimate their 3D positions P3, P4 and M by

intersecting these rays with the mid-plane respectively;

4. Calculate the distance d1 = ||MP3|| and d2 = ||MP4||, offset the

mid-plane forward with distance d1 as plane π1 and backward with

distance d2 as plane π2;
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5. Reconstruct the projection rays from p1 and p2 in the front view;

estimate the control points of the slice as rays intersecting with

the offset plane π1 and π2:

(a) Projection ray from p1 intersects plane π1 at C1;

(b) Projection ray from p2 intersects plane π1 at C2;

(c) Projection ray from p1 intersects plane π2 at C3;

(d) Projection ray from p2 intersects plane π2 at C4.

6. Interpolate the four control points as a B-spline curve.

6.4 Integration

The joint localization procedure allows the classification of 3D data into different

data sets of body segments. However, all the 3D points computed so far are

defined in the world coordinates. As the body segments are required to be

defined by their own local coordinate systems, we need to transform the world

coordinates to the local coordinates. Furthermore we also need to investigate

the translations between neighbouring segments so that we can store the data

sets into a VRML file.

Transforming a coordinate system from one to another requires the following

information: a normalized rotation matrix (see Section 2.2) defining the orien-

tation of the new coordinate system, and the translation between both systems.

We assume that the local coordinate systems have exactly the same orientation
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as the mid-plane π0. The orientation R of the mid-plane with respect to the

world coordinate system can be decomposed into three components, vector u

which is the orientation of axis x, vector v which is the orientation of axis y,

and vector w which is the orientation of axis z. Referring to Figure 6.12, the

direction of axis x, y and z is the same as vector v1, n
′ and n, respectively.

Thus, vectors u, v and w are equal to the normalized vectors of v1, n
′ and n,

respectively.

The translation from the world coordinate system to the local coordinate system

is actually revealed by its origin with respect to the world coordinate system.

We also assume that the origins of local coordinate systems are all placed on the

mid-plane π0. They generally sit at joints or extrema points. The arrangement

of these origins is depicted in Table 6.1 and also visualized in Figure 1.1(b).

In a 2D image, they are already known during the joint localization processing.

Hence, the positions of these origins with respect to the world coordinate system

can be estimated by reconstructing the rays from the image and intersecting

them with the mid-plane.

Given the orientation R and origin O′ with respect to the world coordinate

system, the formula of transforming a point P in world coordinate system to a

point P ′ in the local coordinate system is as follows:

P ′ = P ·R−O′ ·R. (6.4.1)

There, O′ is the coordinate of an origin with respect to world coordinate system,
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Body segments Positions of origins
head top tip
torso neck joint
left hand left finger tip
left lower arm left wrist joint
left upper arm left elbow joint
right hand right finger tip
right lower arm right wrist joint
right upper arm right elbow joint

Table 6.1: The arrangements for the local coordinate systems.

and · is the dot (inner) product operator. The offsets or translations between

neighbouring body segments are determined by the distances of their origins.

We have assumed that all the joints and extrema points are located in the same

plane, it follows that offsets in z-direction are always zero.

6.5 Texture mapping

Texture mapping is useful to get a more realistic colourful model. This section

presents an approach of texture mapping using the surface patch of the head

as an example. This is because the surface patch of the head carries more

information than other patches.

The main idea of texture mapping is to get an image by combining two orthog-

onal views in a proper way to get the highest resolution for most detailed parts.

We first map two views onto the model. Since the stereo system is calibrated, it

is possible to project the 3D points onto the corresponding views and get their

78



texture coordinates. In the next step, we flatten the textured 3D models and

generate two texture images. As each surface patch is defined in grid structure,

flattening grid points onto a 2D image at any resolution is straightforward. For

example, to flatten an n×m surface patch onto an image, we divide this image

into an n×m grid as well. Each grid of the image is associated with a grid on

the 3D model. It can therefore be assigned with the same texture coordinates.

This produces two texture images for both the front view and side view (see

Figure 6.16). One of the advantages of this approach is that the two generated

images are matched pixel by pixel. This enables us to gain a fused texture

image with the highest resolution. Burt et al. [7] proposed a multi-resolution

method for removing boundaries between different image sources (see the first

of Figure 6.17). [7] uses a weighted average splining technique. For the sake of

simplicity, we adapt it to a linear weighted function in our work.
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Figure 6.16: Texture maps of two views of a head, from top to bottom: front
view and side view.

79



Suppose that one image, Fl(i), is on the left and the other, Fr(i) is on the

right, and that the images are to be combined at point i. Let Hl(i) be a

weighting function which decreases monotonically from left to right, and let

Hr(i) = 1−Hl(i). Then the combined image F (i) is given by

F (i) = Hl(i)Fl(i) +Hr(i)Fr(i). (6.5.1)

This function is applied to a predetermined transition zone over whichHl ranges

from 1 to 0. There are two transition zones defined in the upper part of Fig-

ure 6.17. When it is applied with the multi-resolution method, the edges in

transition zones are no longer visible (the lower part of Figure 6.17).
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Figure 6.17: Two views are connected before (top) and after (bottom) the
multi-resolution method is applied.
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Chapter 7

Experimental results

This chapter demonstrates some experimental results for our system. The ex-

periments are implemented on a machine that has a 2.8GHz Pentium IV CPU

and 1GB RAM running under a Linux Redhat 9.0 environment. We used EVI-

D31 CCD cameras. The first experiment demonstrates different test cases and

evaluates the performance of our system. The second experiment proposes an

application to track the joint movements in 3D space. It uses the knowledge

of body parameters gained in the model generation system. The 3D model is

overlaid on the image sequence in order to visualize the errors between subject

and generic model. This is also a first stage of human motion tracking. We

apply the notions of human motion modelling which have been introduced in

Chapter 2.

7.1 Experiment I – Different test cases

We test our algorithm on different test subjects. Figure 7.1 shows four test

subjects. The experiment showed that we are able to generate different models
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Figure 7.1: 3D models of different test subjects. Left: grid models. Right:
texture-mapped models. From top to bottom, subject “Bodo”, “Reinhard”,
“An” and “Lei”.
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with fine-efficiency. On the other hand, for our tests we asked the subjects to

perform a particular pose. In our practice, we found that not everyone will

follow a briefly described pose in the same way. This is shown in Figure 7.2.

Poses have differences. Bodo (upper left), presents a pose with bended wrist;

whereas Reinhard the (upper right) presents a non-flexible wrist configuration.

However, our system proved to be very robust in joint localization and can be

used under such differing situations.
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Figure 7.2: Joint poses for different subjects.

The data in Table 7.1 show differences in lengths of body parts between sub-

jects and our generic model. For a subject, we manually measure the lengths of

body parts and compare these data with the geometric data calculated from the
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3D model. It shows that the errors vary by about 1-2cm, which is satisfactory

for our purpose. It is suspected that the potential source of errors are from

the following aspects. (1) Segmentation. Although our background subtraction

algorithm is robust, we cannot completely remove all the shadows. This partic-

ularly effects finding the wrist joint. As we regard the narrowest position on the

silhouette of arm as the wrist joint, the shadow of hand always enlarge the shape

of the hand. This is the reason why the lengths of the hands are always bigger

than expected. Furthermore, due to the restriction of our lab facilities, we do

not have a monochromatic blue background. Therefore a global threshold does

not guarantee that every pixel can be accurately distinguished into background

and object. (2) Camera calibration. Errors of calibration normally come from

these points, the precision of the calibration planes; the measurement accuracy

of the calibration patches. In practice, we also consider that the error may be

due to the shape of the calibration object. We designed such an object having

a long shape so that it can cover a subject in height since the system is used for

a standing person. However it cannot cover the subject in width as the subject

is stretching the arms. Therefore the calibration error will propagate towards

the edge of the image horizontally. (3) The manually measurement of subjects.

Having the human models, it is capable of simulating the motions of a subject

in a virtual environment. The image sequence on the top of Figure 7.3 shows

the motions of a subject. The pose results from the sequence are modelled by a
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Subject Measurement Generic model Error
head 25.6 25.7 0.1

lower arm 25.0 27.0 2.0
hand 20.0 19.0 1.0

Bodo lower arm 25.0 27.0 2.0
upper arm 25.0 27.0 2.0

width 185.2 187.3 2.1
head 23.5 23.7 0.2
hand 18.0 19.0 1.0

Reinhard lower arm 27.0 27.0 0.0
upper arm 27.8 27.0 0.8

width 179.0 181.0 2.0
head 24.2 24.1 0.1
hand 18.0 19.0 1.0

lower arm 21.0 20.2 0.8
An upper arm 21.1 22.0 0.9

width 166.1 168.0 1.9
head 22.6 22.7 0.1
hand 17.0 18.0 1.0

lower arm 20.2 19.1 1.1
Lei upper arm 21.3 21.0 0.3

width 151.1 152 0.8

Table 7.1: Comparison of body parts in lengths between measurement and
generic model (unit:cm).

5DOF kinematic chain for each arm. There are three joints on the shoulder (up-

and-down, backward-and-forward, twist) one joint on elbow (up-and-down) and

one joint on the wrist (up-and-down). The estimated joint angles are provided

by the human motion analysis project [32, 33]. We impose this data to the

generic models and drive them to perform the same movements. The bottom

four rows in Figure 7.3 shows three poses of the subjects simulating the motions

of a real person.
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Figure 7.3: The captured motions (top row) and different subjects perform the
same motions (bottom four rows).
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7.2 Experiment II–Joint movement estimation

7.2.1 Framework of the experimental application

The application takes a video sequence as input. The human motions captured

have six DOFs, one DOF on each wrist, elbow, shoulder. This implies that

the arms are moving up and down within the mid-plane. It assumes that the

right arm moves only on the right side of the body, and the left arm moves only

on the left. The same segmentation and skeleton extraction algorithms stated

in Chapter 4 and Chapter 5 are applied on the image frames. At this stage,

human body parameters (i.e., the lengths of the body segments) are already

computed during the model reconstruction. It allows finding the joints with

these parameters. The next step is to calculate the joint angles from the image

data.

Joint recovery

For the sake of simplicity, we assume that the human subject is standing at

the same place as in the model reconstruction experiment. The position of the

shoulder joints are considered the same as the front view. As the length of

the upper arm Lup and length of the lower arm Llow have already been given

from model reconstruction, joints are expected to be recovered by measuring

the lengths from the skeleton of the arms. However, as mentioned in Chapter 5,

the skeletonization algorithm does not preserve the connectivity and the poses

of the arms are arbitrary. The modified chain code algorithm cannot be applied

here. Alternatively, the elbow joint can be reached by a raster scan for a skeleton
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point starting from the shoulder joint with distance Lup in arm space, while the

wrist joint can be reached by a similar scan starting from the elbow joint with

distance Llow. Note that in searching for the wrist joint and starting from the

elbow, it probably reaches two candidate positions. One is at the upper arm

and the other is at the lower arm. They are easy to identify by comparing the

distances to the shoulder joint. The wrist is located in the position with longer

distance.

Calculation of joint angles

S0 1(S )E0
W0F0
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W1
F1
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Figure 7.4: Joint angles

The angle of the shoulder joint is calculated from the comparison between the

initial pose and the current pose of the upper arm. As shown in Figure 7.4,

the initial elbow joint position E0 and shoulder joint position S0 are given from

the front view pose (initial view), the elbow joint position E1 and wrist joint

position W1 are given from the current pose. The shoulder joint angle is

θS = ∠(
−−−→
E0S0,

−−−→
S1E1).

There, ∠(
−−−→
E0S0,

−−−→
S1E1) denotes the angle between the vectors

−−−→
E0S0 and

−−−→
S1E1.
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Similarly, the angle of the elbow joint is estimated by the angle between the

vectors
−−−→
S1E1 and

−−−→
E1W1:

θE = ∠(
−−−→
S1E1,

−−−→
E1W1).

The angle of the wrist joint is estimated by the position of the fingertip F1

together with the position of the wrist joint W1 and the elbow joint E1:

θW = ∠(
−−−→
E1W1,

−−−→
W1F1).

However, normally the skeleton does not reach the finger tip. A fingertip finding

algorithm is performed in two steps. First of all, the hand is segmented by

classifying the object into hand pixels and non-hand pixels. We then regard the

fingertip as a hand pixel having the longest distance to wrist joint W1.

Step 1: Hand segmentation. Given the position of the wrist joint W1 and

elbow joint E1, hand pixels can be segmented by drawing a cutting line

l through W1 and orthogonal to the line W1E1. Since E1 is known, it is

easy to determine that the hand pixels are located on the side opposite to

E1 of l. However, in a case as similar to that shown in Figure 7.5, some

non-hand pixels may also be included. A verification function is therefore

introduced. For each candidate pixel located on the hand side of line l

draw a line from that point to the wrist joint. If the line goes through the

background space, it is not a hand pixel, and vice versa. In the example,

as line PW1 passes through the background, P is not a hand pixel.

Step2: Searching for finger tips. A straightforward way to find a finger tip
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Figure 7.5: Hand segmented by cutting line l.

is to calculate the distance to the wrist joint W1 from each hand pixel.

The pixel having the longest distance value is regarded as the finger tip.

7.2.2 Joint transformed model

The human model generalized by the system has three DOFs at each joint.

However, the human anatomy allows for much more DOFs than that. A human

being is not only able to move the arms backwards/forwards or up/down, but

also able to move the shoulder simultaneously. An example during an image

sequence is shown in Figure 7.6. A person is moving the arms down, and, as

shown in the left image, the shoulders are moving downwards as well. This

additional DOF can be modelled by a linear joint transformation. The amount

of joint transformation is steered through the angle of the shoulder joint. The

pose result for the non-transformed model is shown in the right image and the

joint-transformed model is shown in the middle image. This shows that the

matching result of the joint transformed model is much better. It is observed

that, if the shoulder is moving, muscles are tense and the skin is morphed. The
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amount of surface deformation is also dependent on the joint angle. Research

related to this topic is reported in [32]. Due to time constraints, we did not

implement the surface morphing but concentrated on the joint transformation

which is sufficient to extend the experiment in this way.
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Figure 7.6: Comparison of pose results for a joint transformed model and a
non-transformed model in the arms, from left to right: the original model, the
non-transformed model and the transformed-model.

7.2.3 Tracking the joints

This section presents experiments is to study the performance of the joint track-

ing system. The algorithm is tested on a monocular view (front view) video

sequence at a resolution of 384× 286 pixels. In the first experiment, a tracked

sequence contained 85 frames is captured. Figure 7.7 shows six frames of a

tracked sequence. In this sequence we use just three joints on each arm. All

joints are up-and-down joints. The first of the pair is the original image. The
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second is the 3D model overlaid to the image. As can be seen, the pose overlaid

with image data appears to be good. The diagram in Figure 7.8 shows the esti-

mated angles of the joints during the image sequence. Though we do not have

any ground truth, the angles match with the real motion and the curves are

relatively smooth indicating a reasonable stable algorithm. Another sequence

shown in Figure 7.10 indicates that we are able to track the movement of head

as well. In this experiment, the subject’s head moves as the arms are moving.

Extracting the skeletons for each frame allows us to evaluate the displacement

of the neck joint. We are therefore able to approximate the angle of neck joint

that defines the configuration of the head.

7.3 Experiment III–A special test

In this experiment, we rebuild a model using the parameters from other subject.

We would like to visualize the errors caused. In the example, Lei’s data are

imposed onto Bodo’s model. Therefore a new model is generated by a body cut

different to the one shown in the previous section. We perform the tracking by

overlaying the new 3D model using the joint angles extracted from Section 7.1 to

the image. The new sequence gained is shown in Figure 7.10. It can be seen that

tracking in this case has poor results in comparison to the experiment shown in

Figure 7.7. Our algorithm for estimating joint positions and 3D reconstruction

can be used to produce reasonably accurate human body models.
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Figure 7.7: Results with 3DOF kinematic chains.
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Figure 7.8: Joint angles of arms.
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Figure 7.9: A tracking sequence for the movements of head and arms.
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Figure 7.10: Tracking sequence with different object model.
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Chapter 8

Conclusions and possible

extensions

This thesis presents a system for the automatic generation of a 3D surface model

for a human being using two calibrated views. We summarize the work in this

thesis:

Firstly, this work utilizes many fundamental techniques in the fields of im-

age processing and computer graphics. We exploited the basics of background

subtraction (Section 4.2), morphologic operations (Section 4.3), skeletoniza-

tion (Section 5.1), chain coding (Section 5.2), corner detection (Section 5.3),

B-spline curves (Section 6.1.3), epipolar geometry (Section 6.1.2) and texture

fusion (Section 6.5).

Secondly, we adapted fundamentals to suit our task. This thesis proposes a

reconstruction algorithm for the human body. One core of the reconstruction

algorithm is joint extraction. Another is the reconstruction algorithm which uses
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a “shape-from-silhouettes” technique. Joints are recovered from the occluded

silhouette by making use of a particular posture. This work also involved the

development of a GUI for friendly interaction of threshold parameters.

Thirdly, we investigate the human motion models coupled with kinematic chains.

We performed several experiments with different subjects. In one experiment,

we drive the generic model to simulate the motions of a real person. In another

experiment, the generic model is capable of tracking the movements of joints.

The results demonstrate feasibility of the reconstruction. However, further im-

provement will provide potentials for the rapid generation of more realistic mod-

els. First of all, for joint localization, it will be desirable to find a method that

can provide optimal skeletons in a reasonable time. The desired skeleton should

be centred, connected and without unexpected artifacts.

For 3D reconstruction, the current system uses B-spline curves obtained from

two views to approximate the shape of the subject. It appears suitable for the

reconstruction of a torso and arms, but it is not well enough for the recon-

struction of a more complex shape such as a head. A necessary and possible

solution is to use multiple cameras. This will significantly improve the accu-

racy. In terms of accuracy, according to what we have analyzed for the potential

source of errors in Chapter 7, employing a monochromatic blue background and

a concise, bigger calibration object is suggested for further improvement.
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As mentioned previously, the purpose of this work is to provide a generic model

for a wider human motion analysis project at the University of Auckland. This

project deals with the human pose estimation problem and aims for natural

looking human motion. Consequently an interesting extension of our study

goes towards building “more realistic” human models. Namely, deformations of

a human during its motions can be realistically modelled. The hypothesis is that

the more accurate the human being is modelled, the more accurate pose results

will be. The rigid body assumption for body segments in this work currently

is not consistent with the rules of human motions. Actually, human motions

are caused by the movement of muscles together with the bones. Apparently,

the muscles are tense and the skin is morphed. In Chapter 7, the investigation

of joint movements is performed for a very simple situation, and this is just a

first step towards this topic. Further study is desirable for producing physically

realistic forms of motions.
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