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Introduction

Human–like biomechanics is a modern scientific approach to human–like mo-
tion dynamics and control. Its human perspective has been developed in the
work of the present authors (see [Iva91, ILI95, IS01, IP01b, IP01a, Iva02,
Iva04, Iva05, IB05, PI03, PI04]). The dynamics of human motion is extremely
complex, multi–dimensional, highly nonlinear and hierarchical. Human skele-
ton has more than two hundred rigid bones, connected by rotational joints,
witch have up to three axes of rotation. Nevertheless, in classical biomechan-
ics the main analytical tool was translational vector geometry (see Figure
1.1). The skeleton is driven by a synergistic action of its 640 skeletal muscles.
Each of these muscles has its own excitation and contraction dynamics, in
which neural action potentials are transformed into muscular force vectors
(see [Hat77a, Hat77b, Hat78]).

On the other hand, robotic approach to human–like motion dynamics and
control has been developed in the last tree decades in the work of M. Vuko-
bratovic (and his collaborators). He started in the early 1970s with pioneering
papers on synthesis, control and stability of biped gait [VJ69, VJF70, VFJ70],
followed by mathematical models of locomotion robots and anthropomorphic
mechanisms [VS72, VS73, Vuk75, Vuk78]. later, in 1980s, he developed the sci-
entific fundamentals of robotics in seven volumes of the Springer–Verlag book
series [VP82, VS82, VK85a, VK85b, VSK85, VP85, VBS89]. In recent years,
within the realm of mature robotic science, Vukobratovic has been revising
the study of anthropomorphism and intelligence of humanoid robots [VPM03,
KV03a, KV03b, VB04, VPR, VPT04, VAB04, VBB05, PV05, RV05].

In this introductory Chapter we introduce the reader to the subject of
modern human–like biomechanics, presenting its local (tensorial) language
as well as its global (functorial) one. The objective here is to introduce our
covariant force law (see subsection A.1.4 in Appendix),

Fi = mgija
j , that ‘in plain English’ reads :

Force 1–form–field = Mass distribution × Acceleration vector–field
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1.1 Local Tensorial Language of Human–Like
Biomechanics

The local tensorial language of human–like biomechanics can be introduced in
the following way. As it is pointed out in Appendix, the acceleration vector is
not an ordinary time derivative of the velocity vector; ‘even worse’, the force,
which is a paradigm of a vector in statics and engineering vector mechanics,
is not a vector at all. The acceleration vector is the absolute time deriva-
tive of the velocity vector, while the force is a differential one–form. Proper
description of these ideas is called geometrodynamics.1

Fig. 1.1. Force vectors and their corresponding lever arms in classical translational
biomechanics.

1.1.1 Classical Translational Biomechanics

Classical biomechanics consists of inverse and forward dynamics. Inverse dy-
namics is the commonly used technique used to gain insight into the net sum-
mation of all muscle activity at each joint. In this method, the joint forces
1 Term geometrodynamics was coined by John A. Wheeler from Princeton.



1.1 Local Tensorial Language of Human–Like Biomechanics 7

and torques are calculated from a prescribed movement. Since the segmental
movements, in contrast to the internal forces, can be measured, this method is
commonly applied for the analysis of measured movements. A full kinematic
description obtained from motion capture of marker positions is sufficient
to get an inverse solution; however, motion capture is often combined with
output from other sensors, including force plates, in order to improve the pre-
cision of the estimated joint loads [Dar]. On the other hand, the rarely used
forward dynamics takes joint forces and torques as input to simulate trans-
lational and rotational motion. This paper focuses on the basic principles of
rotational forward dynamics.

Most of the classical biomechanics is based on the Newton’s second law ,
which states that a conservative particle of mass m > 0 immersed in a poten-
tial V (q) moves along a curve qi(t) in Euclidean 3D space R

3, in such a way
that the Newtonian equation of motion is satisfied

mq̈i = − grad V (q), (1.1)

for qi = {q1 ≡ x, q2 ≡ y, q3 ≡ z} ∈ R
3.

Now, if we introduce the translational (or, the so–called ‘linear’) mo-
menta pi = mq̇i and the total energy H(q, p) = 1

2m‖p‖2 + V (q), (where
‖ · ‖ denotes the Euclidean norm in R

3), then the second Newton’s law of
motion is equivalent to translational Hamiltonian equations of motion (see
[AMR88, Arn89, MR99]):

q̇i =
∂H

∂pi
≡ ∂piH, ṗi = −∂H

∂qi
≡ ∂qiH, (i = 1, . . . , n). (1.2)

One proceeds to study this system of first–order equations for a general

H(q, p). To do this, we introduce the matrix J =
(

0 I
−I 0

)

, where I is the

3× 3 identity, and note that the equations become ξ̇ = J · grad H(ξ), where
ξ = (q, p).

Set XH = J · grad H. Then ξ(t) satisfies Hamilton’s equations iff ξ(t) is
an integral curve of XH , that is, ξ̇(t) = XH(ξ(t)) [AMR88].

The space R
3 × R

3 of the ξ’s is called the phase space. For a system of n
particles we would use R

3n × R
3n.

The conservative Hamiltonian system (1.2) is characterized by conserva-
tion of energy, and consequently momentum; the classical example of the later
is reactive recoil of a gun after shooting.

The left, q̇−equation in (1.2) is called the ‘Velocity equation’, while the
right, ṗ−equation is called the ‘Force equation’. Combined, they give the
biomechanical sense of the celebrated Hill’s ‘Force–Velocity relation’ ([Hil38]).
All biologically essential non-conservative forces, like neuro–muscular servo–
drives, tendon elasticities and joint dampings, are to be added to the force
equation. This is probably the most plausible way of presenting the transla-
tional biomechanics.
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1.1.2 Calculus of Geometric Objects

Following the trend that has prevailed in physical sciences for several decades
(see, e.g., [MTW73]), we state here the leading idea of this book: every biome-
chanical quantity can be described by a geometric object; all biomechanical laws
can be expressed as geometric relationships between these geometric objects.
This trend has its mathematical beginnings in the Erlanger Program of Felix
Klein and entered the physical sciences in the form of the ‘principle of gen-
eral covariance’ of Albert Einstein: physical laws must be independent of any
particular coordinate systems if they are to be valid. A study of the conse-
quences of this requirement leaded, at first, to classical tensor calculus, and
subsequently, to its modern development, calculus of coordinate–free geomet-
ric objects, the most natural machinery for analysis of biomechanical systems.
We assume that our reader is familiar with classical tensor calculus, while the
modern calculus of coordinate–free geometric objects will be developed as we
proceed in our study of human–like biomechanics.

In biomechanics, the most important geometric objects are Riemannian
metric and curvature tensors (see Appendix), as well as several exterior dif-
ferential forms.

Metric Tensor – the Core of Geometrodynamics

The act of measurement in curved spaces is performed by the use of Rie-
mannian metrics. The general result is this: at each point of any smooth
Riemannian manifold there exists a geometric object called the metric tensor
g, usually given by its covariant components gij . However, it is easier to start
with our familiar ordinary Euclidean three–dimensional space with rectilinear
Cartesian axes defined on it.

In any case, the metric tensor g = (gij) defines a linear symmetrical ma-
chine g(·, ·) with two input slots for the insertion of two vectors, producing a
real number as an output. It can be used for calculating the scalar product

v · w = g(v, w) = gijv
iwj

of two different vectors v = (vi) and w = (wi), or the square length

g(v, v) = v2

of a single vector v.
In particular, in Euclidean 3D space R

3, with the coordinate basis

{e1 = dx, e2 = dy, e3 = dz}

along the standard Cartesian axes {x, y, z}, the metric tensor g = (gij) is
defined by

g = g(ei, ej) = ei · ej ,
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while the vector v = (vi) is expressed in components as

v = v1e1 + v2e2 + v3e3 = viei

(Einstein’s summation convention is always in place).
At this point we need to emphasize that more fundamental than the com-

ponents of a tensor (or a vector) is the tensor (respectively vector) itself, a
geometric object with a physical or biomechanical meaning independent of
all coordinates. For example, velocity of a particle moving in R

3 is a tangent
vector to the trajectory of the particle, defined locally as a derivative of the
trajectory at a certain point. However, coordinates necessarily enter the scene
when numerical analysis is required.

Classical Tensor Dynamics in Brief

Now we switch from geometry to dynamics, intending to show that they are
actually the same thing, sometimes called geometrodynamics. Recall that a
material system is regarded from the dynamical standpoint as a collection
of particles which are subject to interconnections and constraints of various
kinds (e.g., a rigid body is regarded as a number of particles rigidly connected
together so as to remain at invariable distances from each other). The number
of independent coordinates which determine the configuration of a dynamical
system completely is called the number of degrees of freedom (DOF) of the
system. In other words, this number, n, is the dimension of the system’s con-
figuration manifold . This viewpoint is the core of our geometric biomechanics.

For simplicity, let us suppose that we have a dynamical system with three
DOF (e.g., a particle of mass M , or a rigid body of mass M with one point
fixed); generalization to n DOF, with N included masses Mα, is straightfor-
ward. The configuration of our system at any time is then given by three
coordinates {q1, q2, q3}. As the coordinates change in value the dynamical
system changes its configuration. Obviously, there is an infinite number of
sets of independent coordinates which will determine the configuration of a
dynamical system, but since the position of the system is completely given by
any one set, these sets of coordinates must be functionally related. Hence, if
q̄i is any other set of coordinates, these quantities must be connected with qi

by formulae of the type

q̄i = q̄i(qi), (i = 1, ..., n(= 3)). (1.3)

Relations (1.3) are the equations of transformation from one set of dynam-
ical coordinates to another and, in a standard tensorial way (see Appendix,
as well as e.g., [McC60, SS78, BL81, LR89, LC03], although we recommend
[MTW73]), we can define tensors relative to this coordinate transformation.
The generalized coordinates qi, (i = 1, ..., n) constitute the system’s configu-
ration manifold .
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In particular, in our ordinary Euclidean 3−dimensional (3D) space R
3, the

ordinary Cartesian axes are xi = {x, y, z}, and the system’s center of mass
(COM) is given by

Ci =
Mαx

i
α∑N

α=1Mα

,

where Greek subscript α labels the masses included in the system. If we have a
continuous distribution of matter V = V (M) rather than the discrete system
of masses Mα, all the α−sums should be replaced by volume integrals, the
element of mass dM taking the place of Mα,

N∑

α=1

Mα ⇒
∫∫∫

V

dM.

An important quantity related to the system’s COM is the double symmetric
contravariant tensor

Iij = Mαx
i
αx

j
α, (1.4)

called the inertia tensor , calculated relative to the origin O of the Cartesian
axes xi

α = {xα, yα, zα}. If we are given a straight line through O, defined by
its unit vector λi, and perpendiculars pα are drawn from the different particles
on the line λi, the quantity

I(λi) = Mαp
2
α

is called the moment of inertia around λi. The moment of inertia I(λi) can
be expressed through inertia tensor (1.4) as

I(λi) = (Igij − Iij)λiλj ,

where gij is the system’s Euclidean 3D metric tensor (as defined above),
I = gijI

ij , and Iij = grmgsnI
mn is the covariant inertia tensor . If we now

consider the quadric Q whose equation is

(Igij − Iij)xixj = 1, (1.5)

we find that the moment of inertia around λi is 1/R, where R is the radius
vector of Q in the direction of λi. The quadric Q defined by relation (1.5) is
called the ellipsoid of inertia at the originO. It has always three principal axes,
which are called the principal axes of inertia at O, and the planes containing
them in pairs are called the principal planes of inertia at O. The principal
axes of inertia are given by the equations

(Igij − Iij)λj = θλi,

where θ is a root of the determinant equation

|(I − θ)gij − Iij | = 0.



1.1 Local Tensorial Language of Human–Like Biomechanics 11

More generally, if we suppose that the points of our dynamical system are
referred to rectilinear Cartesian axes xi in a Euclidean n−dimensional (nD)
space R

n, then when we are given the time and a set of generalized coordinates
qi we are also given all the points xi of the dynamical system, as the system
is determined uniquely. Consequently, the xi are functions of qi and possibly
also of the time, that is,

xi = xi(qi, t).

If we restrict ourselves to the autonomous dynamical systems in which these
equations do not involve t, i.e.,

xi = xi(qi), (1.6)

then differentiating (1.6) with respect to the time t gives

ẋi =
∂xi

∂qj
q̇j . (1.7)

The quantities q̇i, which form a vector with reference to coordinate transfor-
mations (1.3), we shall call the generalized velocity vector . We see from (1.7)
that when the generalized velocity vector is given we know the velocity of each
point of our system. Further, this gives us the system’s kinetic energy ,

Ekin =
1
2
Mαgmnẋ

m
α ẋ

n
α =

1
2
Mαgmn

∂xm
α

∂qi

∂xn
α

∂qj
q̇iq̇j . (1.8)

Now, if we use the Euclidean metric tensor gij to define the material metric
tensor Gij , including the distribution of all the masses Mα of our system, as

Gij = Mαgmn
∂xm

α

∂qi

∂xn
α

∂qj
, (1.9)

the kinetic energy (1.8) becomes a homogenous quadratic form in the gener-
alized system’s velocities q̇i,

Ekin =
1
2
Gij q̇

iq̇j . (1.10)

From the transformation relation (1.9) we see that the material metric tensor
Gij is symmetric in i and j. Also, since Ekin is an invariant for all transforma-
tions of generalized coordinates, from (1.10) we conclude that Gij is a double
symmetric tensor. Clearly, this is the central quantity in classical tensor sys-
tem dynamics. We will see later, that Gij defines the Riemannian geometry of
the system dynamics. For simplicity reasons, Gij is often denoted by purely
geometric symbol gij , either assuming or neglecting the material properties of
the system.

Now, let us find the equations of motion of our system. According to the
D’Alembert’s Principle of virtual displacements, the equations of motion in
Cartesian coordinates xi in R

n are embodied in the single tensor equation



12 1 Introduction

gmn(Mαẍ
m
α −Xm

α )δxn
α = 0, (1.11)

where Xi
α is the total force vector acting on the particle Mα, while δxi

α is
the associated virtual displacement vector, so that the product gijXi

αδx
j
α is

the virtual work of the system, and we can neglect in Xi
α all the internal

or external forces which do not work in the displacement δxi
α. If we give the

system a small displacement compatible to with the constraints of the system,
we see that this displacement may be effected by giving increments δqi to the
generalized coordinates qi of the system, and these are related to the δxi in
accordance with the transformation formulae δxi

α = ∂xi
α

∂qj δq
j .

Furthermore, in this displacement the internal forces due to the constraints
of the system will do no work, since these constraints are preserved, and
consequently only the external forces will appear in (1.11), so it becomes

gmn

[

Mα
d

dt

(
∂xm

α

∂qj
q̇j

)
∂xn

α

∂qi
−Xm

α

∂xn
α

∂qi

]

δqi = 0. (1.12)

Now, using (1.8–1.10), we derive

Mαgmn
d

dt

(
∂xm

α

∂qj
q̇j

)
∂xn

α

∂qi
=
d

dt
(Gij q̇

j)− 1
2
∂Gst

∂qi
q̇j q̇k =

d

dt

(
∂Ekin

∂q̇i

)

− ∂Ekin

∂qi
.

Also, if we put

Fi = gmnX
m
α

∂xn
α

∂qi
,

we get
Fiδq

i = gmnX
m
α δx

n
α = δW, (1.13)

where δW is the virtual work done by the external forces in the small displace-
ment δqi, which shows that Fi is the covariant vector, called the generalized
force vector . Now (1.12) takes the form

[
d

dt

(
∂Ekin

∂q̇i

)

− ∂Ekin

∂qi
− Fi

]

δqi = 0.

Since the coordinates qi are independent this equation is true for all variations
δqi and we get as a final result the covariant Lagrangian equations of motion,

d

dt

(
∂Ekin

∂q̇i

)

− ∂Ekin

∂qi
= Fi.

If the force system is conservative and Epot is the system’s potential energy
given by

Fi = −∂Epot

∂qi
,

then, using (1.13) the Lagrangian equations take the standard form
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d

dt

(
∂L

∂q̇i

)

=
∂L

∂qi
, (1.14)

where the Lagrangian function L = L(q, q̇) of the system is given by L =
Ekin − Epot (since Epot does not contain q̇i).

Now, the kinetic energy Ekin of the system, given by quadratic form (1.10),
is always positive except when q̇i is zero in which case Ekin vanishes. In other
words, the quadratic form (1.10) is positive definite. Consequently, we can
always find the line (or arc) element , defined by

ds2 = Gijdq
idqj . (1.15)

A manifold in which ds2 is given by relation of the type of (1.15), geometrically
with gij instead of Gij , is called a Riemannian manifold .

Riemannian Curvature Tensor

Every Riemannian manifold is characterized by the Riemann curvature ten-
sor . In physical literature (see, e.g., [MTW73]) it is usually introduced through
the Jacobi equation of geodesic deviation, showing the acceleration of the rel-
ative separation of nearby geodesics (the shortest, straight lines on the mani-
fold). For simplicity, consider a sphere of radius a in R

3. Here, Jacobi equation
is pretty simple,

d2ξ

ds2
+Rξ = 0,

where ξ is the geodesic separation vector (the so–called Jacobi vector–field),
s denotes the geodesic arc parameter given by (1.15) and R = 1/a2 is the
Gaussian curvature of the surface.

In case of a higher–dimensional manifold M , the situation is naturally
more complex, but the main structure of the Jacobi equation remains similar,

D2ξ

ds2
+R(u, ξ, u) = 0,

whereD denotes the covariant derivative andR(u, ξ, u) is the curvature tensor,
a three–slot linear machine. In components defined in a local coordinate chart
(xi) on M , this equation reads

D2ξi

ds2
+Ri

jkl

dxj

ds
ξk dx

l

ds
= 0,

where Ri
jkl are the components of the Riemannian curvature tensor.

Exterior Differential Forms

Recall that exterior differential forms are a special kind of antisymmetrical
covariant tensors (see, e.g., [DRh84, Fla63]). Such tensor–fields arise in many
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applications in physics, engineering, and differential geometry. The reason for
this is the fact that the classical vector operations of grad, div, and curl
as well as the theorems of Green, Gauss, and Stokes can all be expressed
concisely in terms of differential forms and the main operator acting on them,
the exterior derivative d. Differential forms inherit all geometric properties
of the general tensor calculus and add to it their own powerful geometric,
algebraic and topological machinery (see Figures 1.2 and 1.3). Differential
p−forms formally occur as integrands under ordinary integral signs in R

3:

• a line integral
∫
P dx + Qdy + Rdz has as its integrand the one–form

ω = P dx+Qdy +Rdz;
• a surface integral

∫∫
Adydz + B dzdx + C dxdy has as its integrand the

two–form α = Adydz +B dzdx+ C dxdy;
• a volume integral

∫∫∫
K dxdydz has as its integrand the three–form

λ = K dxdydz.

By means of an exterior derivative d, a derivation that transforms p−forms
into (p+ 1)−forms, these geometric objects generalize ordinary vector differ-
ential operators in R

3:

• a scalar function f = f(x) is a zero–form;
• its gradient df , is a one–form2

df =
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz;

• a curl dω, of a one–form ω above, is a two–form

dω =
(
∂R

∂y
− ∂Q
∂z

)

dydz +
(
∂P

∂z
− ∂R
∂x

)

dzdx+
(
∂Q

∂x
− ∂P
∂y

)

dxdy;

• a divergence dα, of the two–form α above, is a three–form

dα =
(
∂A

∂x
+
∂B

∂y
+
∂C

∂z

)

dxdydz.

Now, although visually intuitive, our Euclidean 3D space R
3 is not suf-

ficient for thorough biomechanical analysis. The fundamental concept of a
smooth manifold , locally topologically equivalent to the Euclidean nD space
R

n, is required (with or without Riemannian metric tensor defined on it).
In general, a proper definition of exterior derivative d for a p−form β on a
smooth manifold M , includes the Poincaré lemma: d(dβ) = 0, and validates
the general integral Stokes formula
2 We use the same symbol, d, to denote both ordinary and exterior derivation, in

order to avoid extensive use of the boldface symbols. It is clear from the context
which derivative (differential) is in place: exterior derivative operates only on
differential forms, while the ordinary differential operates mostly on coordinates.
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Fig. 1.2. Basis vectors and one-forms in Euclidean R
3−space: (a) Translational

case; and (b) Rotational case.

∫

∂M

β =
∫

M

dβ,

where M is a p−dimensional manifold with a boundary and ∂M is its (p −
1)−dimensional boundary , while the integrals have appropriate dimensions.

A p−form β is called closed if its exterior derivative is equal to zero,

dβ = 0.

From this condition one can see that the closed form (the kernel of the exterior
derivative operator d) is conserved quantity. Therefore, closed p−forms possess
certain invariant properties, physically corresponding to the conservation laws.
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Fig. 1.3. Fundamental two–form and its flux in R
3: (a) Translational case; (b) Rota-

tional case. In both cases the flux through the plane u∧v is defined as
∫ ∫

u∧v
c dpidqi

and measured by the number of tubes crossed by the circulation oriented by u ∧ v.

A p−form β that is an exterior derivative of some (p− 1)−form α,

β = dα,

is called exact (the image of the exterior derivative operator d). By Poincaré
Lemma, exact forms prove to be closed automatically,

dβ = d(dα) = 0.

Similarly to the components of a 3D vector v defined above, a one–form
θ defined on an nD manifold M can also be expressed in components, using
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the coordinate basis {dxi} along the local nD coordinate chart {xi} ∈M , as

θ = θi dx
i.

Now, the components of the exterior derivative of θ are equal to the compo-
nents of its commutator defined on M by

dθ = ωij dx
i dxj ,

where the components of the form commutator ωij are given by

ωij =
(
∂θi

∂xi
− ∂θi

∂xj

)

.

The space of all smooth p−forms on a smooth manifold M is denoted by
Ωp(M). The wedge, or exterior product of two differential forms, a p−form
α ∈ Ωp(M) and a q−form β ∈ Ωq(M) is a (p+ q)−form α ∧ β. For example,
if θ = aidx

i, and η = bjdx
j , their wedge product θ ∧ η is given by

θ ∧ η = aibjdx
idxj ,

so that the coefficients aibj of θ∧η are again smooth functions, being polyno-
mials in the coefficients ai of θ and bj of η. The exterior product ∧ is related
to the exterior derivative d : Ωp(M) → Ωp+1(M), by

d(α ∧ β) = dα ∧ β + (−1)pα ∧ dβ.

Another important linear operator is the Hodge star ∗ : Ωp(M) →
Ωn−p(M), where n is the dimension of the manifoldM . This operator depends
on the inner product (i.e., Riemannian metric) on M and also depends on the
orientation (reversing orientation will change the sign). For any p−forms α
and β,

∗ ∗ α = (−1)p(n−p)α, and α ∧ ∗β = β ∧ ∗α.
Hodge star is generally used to define dual (n − p)−forms on nD smooth
manifolds.

For example, in R
3 with the ordinary Euclidean metric, if f and g are

functions then (compare with the 3D forms of gradient, curl and divergence
defined above)

df =
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz,

∗df =
∂f

∂x
dydz +

∂f

∂y
dzdx+

∂f

∂z
dxdy,

df ∧ ∗dg =
(
∂f

∂x

∂g

∂x
+
∂f

∂y

∂g

∂y
+
∂f

∂z

∂g

∂z

)

dxdydz = ∆f dxdydz,
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where ∆f is the Laplacian on R
3. Therefore the three–form df ∧ ∗dg is the

Laplacian multiplied by the volume element, which is valid, more generally,
in any local orthogonal coordinate system in any smooth domain U ∈ R

3.
The subspace of all closed p−forms on M we will denote by Zp(M) ⊂

Ωp(M), and the sub-subspace of all exact p−forms on M we will denote by
Bp(M) ⊂ Zp(M). Now, the quotient space

Hp(M) =
Zp(M)
BpM

=
Ker

(
d : Ωp(M) → Ωp+1(M)

)

Im (d : Ωp−1(M) → Ωp(M))

is called the pth De Rham cohomology group (or vector space) of a manifoldM .
Two p−forms α and β onM are equivalent, or belong to the same cohomology
class [α] ∈ Hp(M), if their difference equals α − β = dθ, where θ is a (p −
1)−form on M .

1.1.3 Lagrangian Action and Feynman Path Integral

Recall that all the fundamental laws of classical physics can be understood in
terms of one mathematical construct, the action principle, as well as all the
fundamental laws of quantum physics can be understood in terms of associated
construct, the Feynman path integral (see, e.g., [Ram90]).

In 1746 Maupertuis formulated the Principle of Least Action, which is
all too commonly credited to one of the three great mathematicians, Euler,
Lagrange, and Hamilton, who further developed it. This principle is one of the
greatest generalizations in all physical science, although not fully appreciated
until the advent of quantum mechanics and Feynman path integral in the mid
20th century.

In particular, all Newtonian particle mechanics is contained in the Hamil-
ton’s principle of least action, which demands that the true trajectory x = x(t)
of a particle is that function which minimizes the action S[x(t)], given as a
temporal integral of the autonomous Lagrangian function L = L(x, ẋ),

S[x] =
∫ t1

t0

L(x, ẋ)dt −→ min, or, δS[x] = 0,

where the second expression reads: ‘variation of the action equals zero’ and
implies using techniques from the calculus of variations (see e.g., [For60]).

Now, associated to the least action principle is the path integral, or Feyn-
man’s sum–over–histories.3 While Nature’s command for the classical particle
is: “Follow the path of least action,” to the elementary particle it commands:
“Explore all possible paths!”
3 Here we quote F. Dyson: “Dick Feynman told me about his sum–over–histories

version of quantum mechanics. “The electron does anything it likes,” he said. “It
just goes in any direction at any speed, forward or backward in time, however it
likes, and then you add up the amplitudes and it gives you the wave–function.”
I said to him, “You’re crazy.” But he wasn’t.”
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According to this general action principle – path integral formalism (see
section 3.3 as well as Appendix, section A.3), we first formulate the accept-
able action functional (AF, denoted by square brackets [...]), from which we
derive Euler–Lagrangian equations of motion, and subsequently we perform
the quantization of the system and find its transition amplitude, by evaluating
the associate path integral.

In mechanics, the Lagrangian action formalism is a four–step algorithm
with a purpose of finding the true, or straight path xi = xi(t), (i = 1, ..., N)
of an N–degree–of–freedom autonomous dynamical system:

1. Formulate the Lagrangian function L = L(x, ẋ) of the system, e.g., as a
function L(x, ẋ) = Ekin(ẋ)− Epot(x);

2. Write down the AF, as a temporal integral,

S[x] =
∫ t1

t0

Ldt;

3. Formulate the action principle, as a vanishing variation of the AF,

δS[x] = δ

∫ t1

t0

Ldt =
∫ t1

t0

δLdt = 0,

with zero initial and final path variations, δx(t0) = δx(t1) = 0;
4. Derive the Euler–Lagrangian equations of motion,

d

dt

(
∂L

∂ẋi

)

=
∂L

∂xi
, (i = 1, ..., N),

using the vanishing functional derivative, δS
δxi = 0, given by (using stan-

dard variational techniques)

δS

δxi
≡ ∂L

∂xi
− d

dt

(
∂L

∂ẋi

)

.

For illustration, take the simple example of a single point particle moving
in Euclidean 3D space, with position vector xi = xi(t) (i = 1, 2, 3), at time
t, within a time independent potential field V (xi). The corresponding AF is
given by

S
([
xi
]
, t0, t1

)
=
∫ t1

t0

dt

(
1
2
m
dxi

dt

dxi

dt
− V (xi)

)

. (1.16)

The AF (1.16) is a function of the initial and final times, t0 and t1 (which we
write S (t0, t1)), and at the same time a functional of the path xi(t) (which we
write S

[
xi
]
) for t0 < t1.4 To build the AF, we consider a small deformation

of the path,
xi(t) → xi(t) + δxi(t).

4 For example, the length of a path is a functional of the path.



20 1 Introduction

The S−response to the small path deformation is given by

S
[
xi + δxi

]
=
∫ t1

t0

dt

(
1
2
m
d(xi + δxi)

dt

d(xi + δxi)
dt

− V (xi + δxi)
)

(1.17)

= S
[
xi
]
+
∫ t1

t0

dt δxi
(
−∂iV (xi)−mẍi

)
+m

∫ t1

t0

dt
d

dt

(
δxiẋi

)
,

where ∂i ≡ ∂xi ≡ ∂
∂xi , and

V (xi + δxi) = V (xi) + δxi∂iV (xi).

According to the standard variation techniques, the last term in (1.17) is just
a ‘surface’ term, which is usually eliminated by restricting the variations to
paths which vanish at the end points,

δxi(t0) = δxi(t1) = 0.

In this way, (1.17) becomes

S
[
xi + δxi

]
= S

[
xi
]
+
∫ t1

t0

dt δxi δS

δxi
,

where the functional derivative δS
δxi is defined by

δS

δxi
= −(mẍi + ∂iV (xi)). (1.18)

Therefore, the minimization of the AF (1.16) is, according to the Hamilton
action principle, equivalent to the vanishing functional derivative, which leads
to the equations of motion

δS

δxi
≡ −(mẍi + ∂iV (xi)) = 0, or, mẍi = ∂iV (xi).

Note, however, that minimization of S only leads to a class of possible paths.
Which of those is followed depends on the boundary conditions, given as initial
values of positions xi(t0) and velocities ẋi(t0) ≡ dxi(t0)

dt .
More generally, in field theory , the four–step Lagrangian action formalism

is the following algorithm:

1. Formulate the Lagrangian density L = L(ϕi, ∂µϕ
i) of the system as a

function of m field variables ϕi = ϕi(xµ) and their first partial derivatives
∂µϕ

i over the n system coordinates xµ (e.g., 4 space–time coordinates);
2. Write down the AF, as an nD integral,

S[x] =
∫
L(ϕi, ∂µϕ

i) dx, dx =
n∏

µ=1

dxµ;
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3. Formulate the action principle, as a vanishing variation of the AF,

δS[x] = δ

∫
Ldx =

∫
δLdx = 0,

with zero boundary field variations;
4. Derive the Euler–Lagrangian equations of motion, using the vanishing

functional derivative, δS
δxi = 0, given by

δS

δϕi
≡ ∂L
∂ϕi

− ∂µ

(
∂L
∂µϕi

)

.

Now, once we have an acceptable AF, we can formulate the associated
Feynman path integral, according to the procedures developed in Appendix. In
case of a single point particle, the path integral corresponding to the AF (1.16)
is formally written as (we use the normal units with � = 1; also, i ≡

√
−1)

∫
D[x] eiS([x],t0,t1) =

∫
D[x] exp

[

i
∫ t1

t0

dt

(
1
2
mẋiẋi − V (xi)

)]

, (1.19)

where
∫
D[x] ≈

∫ N∏

k=1

dxi
k√

2πkdt

is the Lebesgue integration over all possible complex–valued trajectories xi =
xi(t) between t0 and t1, performed by splitting the time interval [t0, t1] into
N subintervals (see Appendix for details). Integral (1.19) represents the tran-
sition amplitude

〈
Xi

1|Xi
0

〉
for the particle ‘jumping’ from point xi(t0) to point

xi(t1), where Xi = Xi(t) is the Hermitian position operator corresponding to
the coordinate xi such that the boundary condition for xi at point t0 is Xi

0

and xi at point t1 is Xi
1. The transition amplitude is then given by

〈
Xi

1|Xi
0

〉
=
∫
D[x] eiS([x],t0,t1).

In case of external driving forces, Fi = Fi(t), the AF (1.16) is expanded into

S ([x], t0, t1) =
∫ t1

t0

dt

(
1
2
mẋiẋi − V (xi) + Fi(t)xi(t)

)

,

and the corresponding forced transition amplitude becomes (see, e.g., [Ram90])

〈
Xi

1|Xi
0

〉
F

=
∫
D[x] exp

[

i
∫ t1

t0

dt

(
1
2
mẋiẋi − V (xi) + Fi(t)xi(t)

)]

.

For the derivation of the path integral, see Appendix. In Chapter 5 we will
formulate the path–integral model for the neural control of human motion.
In Chapter 6 we will use more general actions and path integrals to explore
biophysics of electro–muscular stimulation.
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1.1.4 Noether Theorem

Recall that the ‘surface term’ G of the general action functional (AF)

S
([
xi
]
, t0, t1

)
=
∫ t2

t1

L(xi, ẋi) dt, (i = 1, ..., N) (1.20)

offers a connection between the conservation laws and the invariants of the
dynamical system, governed by the celebrated Noether theorem (see [Ram90,
AM78, Arn89, MR99]).

Noether’s theorem relates pairs of basic ideas of physics, one being the
invariance of the form that a physical law takes with respect to any (gen-
eralized) transformation that preserves the coordinate system (both spatial
and temporal aspects taken into consideration), and the other being a con-
servation law of a physical quantity. Informally, Noether’s theorem can be
stated as: There is a one-to-one correspondence between continuous symme-
tries of the laws of physics, and conservation laws in physics. More precisely,
yet still informal: To every differentiable symmetry which is generated by local
actions, there corresponds a conservation law, defining a conserved current,
and vice versa. The formal statement of the theorem derives an expression for
the physical quantity that is conserved (and hence also defines it (actually, its
current)), from the condition of invariance alone. For example: (i) Invariance
of physical systems with respect to translation gives the law of conservation
of linear momentum (when simply stated, it is just that the laws of physics
don’t vary with location in space); (ii) Invariance with respect to rotation
gives law of conservation of angular momentum; (iii) Invariance with respect
to time gives the well known law of conservation of energy , etc.

To get some ‘feeling’ for the Noether’s theorem, recall that the Lagrangian
equations corresponding to the action (1.20) read

d

dt

(
∂L

∂ẋi

)

=
∂L

∂xi
.

These equations signify that if the expression on the r.h.s is zero, ∂L
∂xi = 0,

meaning that L is symmetrical over the coordinates xi = xi(t), then the rate of
change of the expression in parentheses on the l.h.s is also zero, d

dt

(
∂L
∂ẋi

)
= 0,

and therefore, the N generalized momenta, pi = ∂L
∂ẋi , are conserved quantities.

Despite the fact that the classical Lagrangian equation, d
dt

(
∂L
∂ẋi

)
= ∂L

∂xi ,
is essentially an explicit statement of this proposition, it seems not to have
been discussed and formalized as a theorem until 1918, by Emmy Noether
(1882–1935), so it is now called Noether’s Theorem. This theorem was praised
by Einstein as a piece of “penetrating mathematical thinking”. It is now a
standard workhorse in theoretical physics.

More precisely, let us assume that our variation of the AF vanishes under
certain circumstances: δS[x] = 0. We then say that the action, which remains
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unchanged, is invariant under that particular variation of the path. Recall
that the principle of stationary action then states:

δS[x] = 0 = G2 −G1,

i.e., G has the same value, independent of the initial and final configurations.
In particular, let us assume that the AF (in Hamiltonian formulation) is

invariant for a variation around the actual path for which it holds that

δxi(t1,2) = 0,
d

dt
(δt) = 0, therefore δt = const = ε.

Then it follows from the invariance of the AF under infinitesimal constant
time translation:

δS = 0 = G2 −G1 = −H(t2)δt2 +H(t1)δt1 = −(H2 −H1)ε,

the conservation of energy:

H(t2) = H(t1), meaning Ḣ = 0.

Similarly, the conservation law for linear momentum follows if we assume
that the AF is invariant under constant space translation and the change of
the terminal times vanishes:

δxi = δεi = const, δt(t1,2) = 0,
δS = 0 = G2 −G1 = (piδx

i)2 − (piδx
i)1 = (pi2 − pi1)δεi,

or pi(t2) = pi(t1), meaning ṗi = 0.

Now let

H =
p2i
2m

+ V (r),

i.e., potential may only depend on the distance r =
√

(xi)2. Then no space
direction is distinguished, and with respect to rigid rotations δωi = const and

δt(t1,2) = 0, δxi = εijk δωjx
k,

it can be proved that

δS = δ

∫ t2

t1

dt

[

piẋ
i − p2i

2m
− V (

√
xi)
]

= 0.

Because

δS = 0 = G2 −G1 = (piδx
i)2 − (piδx

i)1
= (piε

ij
k δωjx

k)2 − (piε
ij
k δωjx

k)1
= δωi{[(r × p)i]2 − [(r × p)i]1}
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this implies the conservation for angular momentum:

L(t2) = L(t1), meaning L̇ = 0.

Conversely, the conservation for angular momentum corresponds to the in-
variance, δS = 0, under rigid rotation in space. The generalization of this
statement is this: if a conservation law exists, then the AF is stationary with
respect to the infinitesimal transformation of a corresponding variable. The
converse of this statement is also true: If the AF is invariant with respect to
an infinitesimal transformation, δS = 0, then the corresponding conservation
is valid.

Emmy Noether was primarily an algebraists, but when she came to
Göttingen in 1915, she was asked by David Hilbert for help in trying to un-
derstand the status of energy conservation in general relativity. As we have
seen, the conservation of energy in classical physics is closely related to the
time–invariance of physical laws, but in general relativity there is not nec-
essarily a global time coordinate, so the classical invariance cannot be in-
voked to establish the conservation of energy. Nevertheless, if spacetime in
the region of interest is regarded as asymptotically flat, it is possible to define
a conserved energy. This important aspect of general relativity was greatly
clarified by Noether’s Theorem in 1918. Subsequently the theorem has found
important applications in many branches of physics. For example, in quantum
mechanics the phase of the wave function can be incremented without affecting
any observables, and this gauge symmetry corresponds to the conservation of
electric charge. Moreover, Noether’s approach of identifying symmetries with
conserved quantities forms the basis of the Standard Model of particle physics.

A proper mathematical exposition of the Noether’s theorem is founded on
the theory of Sophus Lie: groups, algebras, symmetries and general invariance
(see section 2.4.1 below).

1.1.5 Symplectic Mechanics

In general mechanics on smooth manifolds, one first defines the configuration
manifold Q of the system in consideration, and then proceeds either using
Lagrangian formalism on the tangent bundle TQ or Hamiltonian formalism
on the cotangent bundle T ∗Q. In case of Hamiltonian formalism, T ∗Q is called
the (momentum) phase space, admitting a natural symplectic structure that
is usually defined as follows (see [AMR88, Arn89, Put93, MR99]). Let Q be
a smooth n–dimensional manifold and pick local coordinates {dq1, ..., dqn}.
Then {dq1, ..., dqn} defines a basis of the cotangent space T ∗

qQ, and by writing
the canonical one–form θ ∈ T ∗

qQ as

θ = pidq
i, (1.21)

we get local coordinates {q1, ..., qn, p1, ..., pn} on T ∗Q (see Figure 1.2 for the
basis of Euclidean R

3−space). Now, define the canonical symplectic two–form
form ω on T ∗Q by
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ω = dθ = dpi ∧ dqi. (1.22)

This two–form ω is obviously independent of the choice of coordinates {q1, ...,
qn ∈ Q} and independent of the base point {q1, ..., qn, p1, ..., pn} ∈ T ∗

qQ; there-
fore, it is locally constant, and so dω = 0 (see Figure 1.3 for the fundamental
two–form in Euclidean R

3−space).
Let (M,ω) be a symplectic manifold and H ∈ C∞(M,R) a smooth real

valued function on M . Hamiltonian vector field XH , corresponding to the
total energy function H, is the smooth vector field on M , determined by the
condition

iXH
ω + dH = 0,

where iXH
denotes the contraction (or inner product) of the vector field XH

and the symplectic form w. A triple (M,ω,H) is called a Hamiltonian me-
chanical system. Nondegeneracy of ω guarantees that XH exists (see [Put93]).

Let {q1, ..., qn, p1, ..., pn} be canonical coordinates on M , i.e., relation
(1.22) is valid. Then in these coordinates Hamiltonian vector field XH is de-
fined by

XH =
∂H

∂pi

∂

∂qi
− ∂H
∂qi

∂

∂pi
. (1.23)

As a consequence,
(
(qi(t)), (pi(t))

)
is an integral curve of XH (for i = 1, ..., n)

iff Hamilton’s equations (3.10) hold.
In this way, the Newton’s law of motion (1.1), for n conservative particles,

has the following symplectic formulation on R
3n (see [AMR88, Put93]):

M = T ∗
R

3n� R
6n, ω = dpi ∧ dqi, H =

3n∑

i=1

p2i
2mi

+ U.

The Hamiltonian vector field (1.23) is

XH =
pi

mi

∂

∂qi
− ∂U
∂qi

∂

∂pi
,

and the Hamilton’s equations (3.10) become

q̇i =
pi

mi
, ṗi = −∂U

∂qi
, (i = 1, . . . , n).

1.1.6 Modern Rotational Biomechanics

Despite the elegance of translational symplectic geometry/mechanics outlined
above, the most suitable formalism to deal with the full complexity of mod-
ern biomechanics of human motion and its robotics application, is rotational
symplectic geometry/mechanics. Namely, as human joints are by nature ro-
tational, combined muscular force vectors are transformed by joint geometry
into driving torque one–forms, Ti(t, qi, pi) (see Figure 1.4).
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Fig. 1.4. Rotational synovial joints in human body.

Joint rotations are in modern biomechanics described in the language of
constrained rotational Lie groups, SO(2) and SO(3), where constrained rota-
tion is for each human joint separately defined in anatomically terms, so that
the rotational joint amplitude is always less then the full circle. Nevertheless,
the formalism of rotational Lie groups still works, just bearing in mind the
imposed anatomical joint restrictions (see [Iva04, ILI95]).

All active joint–angles qi (i = 1, . . . , N ≡ DOF ), constitute a smooth
configuration manifold QN , defined as a direct product of constrained ro-
tational joint Lie groups SO(3) × SO(2) × SO(3) × ... for all rotational
joints considered (see Figure 1.5). Uniaxial, ‘hinge’ joints represent con-
strained, classical, rotational groups SO(2)i, parameterized by constrained
angles qi ≡ qi ∈ [qi

min, q
i
max]. Their associated velocities are defined by the cor-

responding Lie algebras so(2)i. Three–axial, ‘ball–and–socket’ joints represent
constrained rotational groups SO(3)i, usually parameterized by constrained
Euler angles qi

1,2,3 = {φ, ψ, θ}i. Their associated velocities are defined by the
corresponding Lie algebras so(3)i.

We refer to the tangent bundle TQN of the configuration manifold QN as
the velocity phase–space manifold, and to its cotangent bundle T ∗QN as the
momentum phase–space manifold. In this way, rotational biomechanics uses
the full power of symplectic mechanics outlined above.
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Fig. 1.5. Basic structure of the biomechanical configuration manifold Qn composed
as a direct product of constrained rotational Lie groups of human ‘ball–end–socket
joints’.

Passive Joint Dynamics

Recall that all biological systems are dissipative structures, emphasizing ir-
reversible processes inefficient energetically, but highly efficient in terms of
information and control (see [NP77]). In case of biomechanics, we have the
passive joint damping contribution to driving torque one–forms, Ti(t, qi, pi),
which has the basic stabilizing effect to the complex human movement. This
effect can be described by (q, p)–quadratic form of the Rayleigh – Van der
Pol’s dissipation function (see [BR78])

R =
1
2

9∑

i=1

p2i [ai + bi(qi)2], (1.24)

where ai and bi denote dissipation parameters. Its partial derivatives ∂R/∂p
give rise to viscous forces in the joints which are linear in pi and quadratic in
qi. It is based on the unforced Van der Pol’s oscillator

ẍ−
(
a+ b x2

)
ẋ+ x = 0,
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where the damping force F dmp(ẋ) = −∂R/∂ẋ is given by the Rayleigh’s dis-
sipation function R = 1

2

(
a + b x2

)
ẋ2 – with the velocity term ẋ replaced by

our momentum term p2 (see [Iva04, ILI95]).
Using (1.24) we get the dissipative Hamiltonian biomechanics

q̇i =
∂H(q, p)
∂pi

+
∂R(q, p)
∂pi

, (1.25)

ṗi = −∂H(q, p)
∂qi

+
∂R(q, p)
∂qi

, (i = 1, . . . , N),

which reduces to the gradient system in case H = 0 (as well as to the conser-
vative system in case R = 0).

1.1.7 Muscular Dynamics and Control

Muscular Dynamics

Muscular dynamics describes the internal excitation and contraction dynam-
ics [Hat78, Iva04] of equivalent muscular actuators, anatomically represented
by resulting action of antagonistic muscle–pairs for each uniaxial joint. We
attempt herein to describe the equivalent muscular dynamics in the simplest
possible way (for example, Hatze used 51 nonlinear differential equations of
the first order to derive his, arguably most elaborate, myocybernetic model
[Hat78]), and yet to include the main excitation and contraction relations.

The active muscular–control contribution to the torque one–forms, Ti =
Ti(t, qi, pi), should describe the internal excitation and contraction dynamics
[IS01, Iva04, Iva91, IP01a]) of equivalent muscular actuators, anatomically
represented by resulting action of antagonistic muscle–pairs per each active
degree–of–freedom.

(a) Excitation dynamics can be described by impulse torque–time relation

T imp
i = T 0

i (1 − e−t/τ i) if stimulation > 0

T imp
i = T 0

i e
−t/τ i if stimulation = 0,

where F 0
i denote the maximal isometric muscular torques applied at i–th joint,

while τ i denote the time characteristics of particular muscular actuators. This
is a rotational–joint form of the solution of the Wilkie’s muscular active–state
element equation [Wil56]

ẋ + β x = β S A, x(0) = 0, 0 < S < 1,

where x = x(t) represents the active state of the muscle, β denotes the element
gain, A corresponds to the maximum tension the element can develop, and
S = S(r) is the ‘desired’ active state as a function of motor unit stimulus rate
r.
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(b) Contraction dynamics has classically been described by the Hill’s hy-
perbolic force–velocity relation [Hil38], which we propose here in the rotational
(q, p)–form

THill
i =

(
T 0

i bi − aipi

)

(pi − bi)
,

where ai (having dimension of torque) and bi (having dimension of momen-
tum) denote the rotational Hill’s parameters (see [IS01, Iva04]), corresponding
to the energy dissipated during the contraction and the phosphagenic energy
conversion rate, respectively.

Therefore, we can describe the excitation/contraction dynamics for the ith
equivalent muscle–joint actuator, i.e., antagonistic muscle pair, by the simple
impulse–hyperbolic product–relation

Ti(t, q, p) = T imp
i × THill

i , (i = 1, . . . , N). (1.26)

Using (1.26) we get the forced dissipative Hamiltonian biomechanics, in
the form

q̇i =
∂H(q, p)
∂pi

+
∂R(q, p)
∂pi

, (i = 1, . . . , N), (1.27)

ṗi = Ti(t, q, p)−
∂H(q, p)
∂qi

+
∂R(q, p)
∂qi

.

Muscular Control

We introduce the control Hamiltonian function Hc : T ∗MN → R, in local
canonical coordinates on T ∗MN defined by [NS90]

Hc(q, p, u) = H0(q, p)− qi ui, (i = 1, . . . , N), (1.28)

where ui = ui(t, q, p) are feedback–control one–forms, representing the cor-
rections to the torque one–forms Ti(t, q, p).

Using (1.28), the affine Hamiltonian system can be defined as

q̇i =
∂Hc(q, p, u)

∂pi
+
∂R(q, p)
∂pi

, (i = 1, . . . , N)

ṗi = Ti(t, q, p)−
∂Hc(q, p, u)

∂qi
+
∂R(q, p)
∂qi

, (1.29)

oi = −∂Hc(q, p, u)
∂ui

, qi(0) = qi
0, pi(0) = p0i ,

where oi = oi(t) represent the natural outputs which can be different from
commonly used joint angles.

If nominal reference outputs oi
R = oi

R(t) are known, the simple PD
stiffness–servo [Whi87] could be formulated, via error function e(t) = oj−oj

R,
in covariant form
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ui = Koδij(oj − oj
R) +Kȯδij(ȯj − ȯj

R), (1.30)

where Ks are the control–gains and δij is the Kronecker tensor.
If natural outputs oi actually are the joint angles and nominal canoni-

cal trajectories
(
qi
R = qi

R(t), pR
i = pR

i (t)
)

are known, then the stiffness–servo
(1.30) could be formulated in canonical form as

ui = Kqδij(qi − qi
R) +Kp(pi − pR

i ). (1.31)

In this way formulated affine Hamiltonian control system (1.29–1.31) re-
sembles the physiological autogenetic motor servo [Hou79], acting on the
spinal–reflex level of the human locomotor control in the following way. Volun-
tary contraction force Φ of human skeletal muscle is reflexly excited (positive
feedback +Φ−1) by responses of its spindle receptors to stretch and is reflexly
inhibited (negative feedback −Φ−1) by responses of its Golgi tendon organs to
contraction. Stretch and unloading reflexes are mediated by combined actions
of several autogenetic neural pathways, forming the so-called ‘motor–servo’.
Term ‘autogenetic’ means that the stimulus excites receptors located in the
same muscle that is the target of the reflex response. The most important
of these muscle receptors are the primary and secondary endings in muscle-
spindles, sensitive to length change – positive length feedback +Φ−1, and the
Golgi tendon organs, sensitive to contractile force – negative force feedback
−Φ−1.

The gain G of the length feedback +Φ−1 can be expressed as the positional
stiffness (the ratio G ≈ S = dΦ/dx of the force–Φ change to the length–x
change) of the muscle system. The greater the stiffness S, the less will the
muscle be disturbed by a change in load and the more reliable will be the
performance of the muscle system in executing controlled changes in length
+Φ−1.

The autogenetic circuits +Φ−1 and −Φ−1 appear to function as servoreg-
ulatory loops that convey continuously graded amounts of excitation and in-
hibition to the large (alpha) skeletomotor neurons. Small (gamma) fusimotor
neurons innervate the contractile poles of muscle spindles and function to
modulate spindle–receptor discharge (for further details, see section 5.4 be-
low).

1.2 Global Functorial Language of Human–Like
Biomechanics

In modern mathematical sciences whenever one defines a new class of math-
ematical objects, one proceeds almost in the next breath to say what kinds
of maps between objects will be considered [Swi75]. A general framework for
dealing with situations where we have some objects and maps between ob-
jects, like sets and functions, vector spaces and linear operators, points in a
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space and paths between points, etc. – provides the modern metalanguage of
categories and functors. Categories are mathematical universes and functors
are ‘projectors’ from one universe onto another. For this reason, in this book
we extensively use this language, mainly following its founder, S. MacLane
[MacL71].

1.2.1 Preliminaries from Calculus, Algebra and Topology

Before defining categories, functors and their natural transformations, we give
the necessary preliminaries from calculus, algebra and point–set topology.

Notes From Calculus

Functions

Recall that a function f is a rule that assigns to each element x in a set A
exactly one element, called f(x), in a set B. A function could be thought of
as a machine [[f ]] with x−input (the domain of f is the set of all possible
inputs) and f(x)−output (the range of f is the set of all possible outputs)
[Stu99]

x→ [[f ]]→ f(x)

There are four possible ways to represent a function: (i) verbally (by a de-
scription in words); (ii) numerically (by a table of values); (iii) visually (by
a graph); and (iv) algebraically (by an explicit formula). The most common
method for visualizing a function is its graph. If f is a function with domain
A, then its graph is the set of ordered input–output pairs

{(x, f(x)) : x ∈ A}.

Algebra of Functions

Let f and g be functions with domains A and B. Then the functions f + g,
f − g, fg, and f/g are defined as follows [Stu99]

(f + g)(x) = f(x) + g(x) domain = A ∩B,
(f − g)(x) = f(x)− g(x) domain = A ∩B,

(fg)(x) = f(x) g(x) domain = A ∩B,
(
f

g

)

(x) =
f(x)
g(x)

domain = {x ∈ A ∩B : g(x) �= 0}.



32 1 Introduction

Compositions of Functions

Given two functions f and g, the composite function f ◦ g (also called the
composition of f and g) is defined by

(f ◦ g)(x) = f(g(x)).

The (f ◦ g)−machine is composed of the g−machine (first) and then the
f−machine [Stu99],

x→ [[g]]→ g(x) → [[f ]]→ f(g(x))

For example, suppose that y = f(u) =
√
u and u = g(x) = x2 + 1. Since y

is a function of u and u is a function of x, it follows that y is ultimately a
function of x. We compute this by substitution

y = f(u) = f ◦ g = f(g(x)) = f(x2 + 1) =
√
x2 + 1.

The Chain Rule

If f and g are both differentiable and h = f ◦ g is the composite function
defined by h(x) = f(g(x)), then h is differentiable and h′ is given by the
product [Stu99]

h′(x) = f ′(g(x)) g′(x).

In Leibniz notation, if y = f(u) and u = g(x) are both differentiable functions,
then

dy

dx
=
dy

du

du

dx
.

The reason for the name chain rule becomes clear if we add another link to
the chain. Suppose that we have one more differentiable function x = h(t).
Then, to compute the derivative of y with respect to t, we use the chain rule
twice,

dy

dt
=
dy

du

du

dx

dx

dt
.

Integration and Change of Variables

Based on the chain rule, under the certain hypotheses (such as a one–to–one
C0 map T with a nonzero Jacobian

∣
∣
∣ ∂(x,...)
∂(u,...)

∣
∣
∣ that maps a region S onto a

region R, see [Stu99]) we have the following substitution formulas:

1. for a single integral,
∫

R

f(x) dx =
∫

S

f(x(u))
∂x

∂u
du,

2. for a double integral,
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∫∫

R

f(x, y) dA =
∫∫

S

f(x(u, v), y(u, v))
∣
∣
∣
∣
∂(x, y)
∂(u, v)

∣
∣
∣
∣ dudv,

3. for a triple integral,
∫∫∫

R

f(x, y, z) dV =
∫∫

S

f(x(u, v, w), y(u, v, w), z(u, v, w))
∣
∣
∣
∣
∂(x, y, z)
∂(u, v, w)

∣
∣
∣
∣ dudvdw,

4. similarly for n−tuple integrals.

Notes from Set Theory

Given a function f : A → B, the set A is called the domain of f , and
denoted Dom f . The set B is called the codomain of f , and denoted Cod f.
The codomain is not to be confused with the range of f(A), which is in general
only a subset of B.

A function f : X → Y is called injective or one–to–one or an injection
if for every y in the codomain Y there is at most one x in the domain X
with f(x) = y. Put another way, given x and x′ in X, if f(x) = f(x′), then
it follows that x = x′. A function f : X → Y is called surjective or onto or
a surjection if for every y in the codomain Cod f there is at least one x in
the domain X with f(x) = y. Put another way, the range f(X) is equal to
the codomain Y . A function is bijective iff it is both injective and surjective.
Injective functions are called the monomorphisms, and surjective functions
are called the epimorphisms in the category of sets (see below).

A relation is any subset of a Cartesian product (see below). By definition,
an equivalence relation α on a setX is a relation which is reflexive, symmetrical
and transitive, i.e., relation that satisfies the following three conditions:

1. Reflexivity : each element x ∈ X is equivalent to itself, i.e., xαx,
2. Symmetry : for any two elements x, x′ ∈ X, xαx′ implies x′αx, and
3. Transitivity : a ≤ b and b ≤ c implies a ≤ c.

Similarly, a relation ≤ defines a partial order on a set S if it has the
following properties:

1. Reflexivity : a ≤ a for all a ∈ S,
2. Antisymmetry : a ≤ b and b ≤ a implies a = b, and
3. Transitivity : a ≤ b and b ≤ c implies a ≤ c.

A partially ordered set (or poset) is a set taken together with a partial
order on it. Formally, a partially ordered set is defined as an ordered pair
P = (X,≤), where X is called the ground set of P and ≤ is the partial order
of P .
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Notes from General Topology

Topology is a kind of abstraction of Euclidean geometry, and also a natural
framework for the study of continuity . Euclidean geometry is abstracted by
regarding triangles, circles, and squares as being the same basic object. Conti-
nuity enters because in saying this one has in mind a continuous deformation
of a triangle into a square or a circle, or any arbitrary shape. On the other
hand, a disk with a hole in the center is topologically different from a circle
or a square because one cannot create or destroy holes by continuous defor-
mations. Thus using topological methods one does not expect to be able to
identify a geometric figure as being a triangle or a square. However, one does
expect to be able to detect the presence of gross features such as holes or the
fact that the figure is made up of two disjoint pieces etc. In this way topology
produces theorems that are usually qualitative in nature – they may assert,
for example, the existence or non–existence of an object. They will not in
general, provide the means for its construction [Nas83].

Let X be any set and Y = {Xα} denote a collection, finite or infinite of
subsets of X. Then X and Y form a topological space provided the Xα and Y
satisfy:

1. Any finite or infinite subcollection {Zα} ⊂ Xα has the property that
∪Zα ∈ Y , and

2. Any finite subcollection {Zα1 , ..., Zαn
} ⊂ Xα has the property that

∩Zαi
∈ Y .

The set X is then called a topological space and the Xα are called open
sets. The choice of Y satisfying (2) is said to give a topology to X.

Now, given two topological spaces X and Y , a function (or, a map)
f : X → Y is continuous if the inverse image of an open set in Y is an open
set in X.

The main general idea in topology is to study spaces which can be con-
tinuously deformed into one another, namely the idea of homeomorphism. If
we have two topological spaces X and Y , then a map f : X → Y is called a
homeomorphism iff

1. f is continuous, and
2. There exists an inverse of f , denoted f−1, which is also continuous.

Definition (2) implies that if f is a homeomorphism then so is f−1. Homeomor-
phism is the main topological example of reflexive, symmetrical and transi-
tive relation, i.e., equivalence relation. Homeomorphism divides all topological
spaces up into equivalence classes. In other words, a pair of topological spaces,
X and Y , belong to the same equivalence class if they are homeomorphic.

The second example of topological equivalence relation is homotopy . While
homeomorphism generates equivalence classes whose members are topological
spaces, homotopy generates equivalence classes whose members are continuous
maps (or, C0−maps). Consider two continuous maps f, g : X → Y between
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topological spaces X and Y . Then the map f is said to be homotopic to the
map g if f can be continuously deformed into g (see below for the precise
definition of homotopy). Homotopy is an equivalence relation which divides
the space of continuous maps between two topological spaces into equivalence
classes [Nas83].

Another important notions in topology are covering , compactness and con-
nectedness . Given a family of sets {Xα} = X say, then X is a cover of another
set Y if ∪Xα contains Y . If all theXα happen to be open sets the cover is called
an open cover . Now consider the set Y and all its possible open coverings. The
set Y is compact if for every open covering {Xα} with ∪Xα ⊃ Y there always
exists a finite subcovering {X1, ..., Xn} of Y with X1 ∪ ... ∪Xn ⊃ Y .5 Again,
we define a set Z to be connected if it cannot be written as Z = Z1 ∪ Z2,
where Z1 and Z2 are both open and Z1 ∩ Z2 is an empty set.

Let A1, A2, ..., An be closed subspaces of a topological space X such that
X = ∪n

i=1Ai. Suppose fi : Ai → Y is a function, 1 ≤ i ≤ n, iff

fi|Ai ∩Aj = fj |Ai ∩Aj , 1 ≤ i, j ≤ n. (1.32)

In this case f is continuous iff each fi is. Using this procedure we can define
a C0−function f : X → Y by cutting up the space X into closed subsets Ai

and defining f on each Ai separately in such a way that f |Ai is obviously
continuous; we then have only to check that the different definitions agree on
the overlaps Ai ∩Aj .

The universal property of the Cartesian product : let pX : X × Y → X,
and pY : X × Y → Y be the projections onto the first and second factors,
respectively. Given any pair of functions f : Z → X and g : Z → Y there is a
unique function h : Z → X×Y such that pX ◦h = f , and pY ◦h = g. Function
h is continuous iff both f and g are. This property characterizes X/α up to
homeomorphism. In particular, to check that a given function h : Z → X is
continuous it will suffice to check that pX ◦ h and pY ◦ h are continuous.

The universal property of the quotient : let α be an equivalence relation on
a topological space X, let X/α denote the space of equivalence classes and
pα : X → X/α the natural projection. Given a function f : X → Y , there is a
function f ′ : X/α→ Y with f ′ ◦ pα = f iff xαx′ implies f(x) = f(x′), for all
x ∈ X. In this case f ′ is continuous iff f is. This property characterizes X/α
up to homeomorphism.

Now we return to the fundamental notion of homotopy. Let I be a compact
unit interval I = [0, 1]. A homotopy from X to Y is a continuous function
5 The notion of compactness is fundamental for biomechanical control. Namely,

the basic (kinematic) unit of the biomechanical manifold is the special Euclidean
group SE(3). This group is non–compact, which means that it does not ad-
mit a natural metric generated by the segment’s kinetic energy, and therefore
there is not a natural control. However, its two subgroups, the group of rotations
SE(3) and the group of translations R

3 are both compact, admitting the natural
quadratic metric forms given by the kinetic energy. This implies the existence of
(muscular–like) optimal controls in the sense of geodesics (see Chapter 2).
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F : X×I → Y . For each t ∈ I one has Ft : X → Y defined by Ft(x) = F (x, t)
for all x ∈ X. The functions Ft are called the ‘stages’ of the homotopy. If
f, g : X → Y are two continuous maps, we say f is homotopic to g, and write
f � g, if there is a homotopy F : X× I → Y such that F0 = f and F1 = g. In
other words, f can be continuously deformed into g through the stages Ft. If
A ⊂ X is a subspace, then F is a homotopy relative to A if F (a, t) = F (a, 0),
for all a ∈ A, t ∈ I.

The homotopy relation � is an equivalence relation. To prove that we have
f � f is obvious; take F (x, t = f(x), for all x ∈ X, t ∈ I. If f � g and F is a
homotopy from f to g, then G : X × I → Y defined by G(x, t) = F (x, 1− t),
is a homotopy from g to f , i.e., g � f . If f � g with homotopy F and g � f
with homotopy G, then f � h with homotopy H defined by

H(x, t) =
{
F (x, t), 0 ≤ t ≤ 1/2
G(x, 2t− 1), 1/2 ≤ t ≤ 1 .

To show that H is continuous we use the relation (1.32).
In this way, the set of all C0−functions f : X → Y between two topological

spaces X and Y , called the function space and denoted by Y X , is partitioned
into equivalence classes under the relation�. The equivalence classes are called
homotopy classes, the homotopy class of f is denoted by [f ], and the set of
all homotopy classes is denoted by [X;Y ].

If α is an equivalence relation on a topological space X and F : X×I → Y
is a homotopy such that each stage Ft factors through X/α, i.e., xαx′ implies
Ft(x) = Ft(x′), then F induces a homotopy F ′ : (X/α) × I → Y such that
F ′ ◦ (pα × 1) = F .

Homotopy theory has a range of applications of its own, outside topology
and geometry, as for example in proving Cauchy theorem in complex variable
theory, or in solving nonlinear equations of artificial neural networks.

A pointed set (S, s0) is a set S together with a distinguished point s0 ∈ S.
Similarly, a pointed topological space (X,x0) is a space X together with a
distinguished point x0 ∈ X. When we are concerned with pointed spaces
(X,x0), (Y, y0), etc., we always require that all functions f : X → Y shell
preserve base points, i.e., f(x0) = y0, and that all homotopies F : X × I → Y
be relative to the base point, i.e., F (x0, t) = y0, for all t ∈ I. We denote the
homotopy classes of base point–preserving functions by [X,x0;Y, y0] (where
homotopies are relative to x0). [X,x0;Y, y0] is a pointed set with base point
f0, the constant function: f0(x) = y0, for all x ∈ X.

A path γ(t) from x0 to x1 in a topological space X is a continuous map
γ : I → X with γ(0) = x0 and γ(1) = x1. Thus XI is the space of all paths
in X with the compact–open topology. We introduce a relation ∼ on X by
saying x0 ∼ x1 iff there is a path γ : I → X from x0 to x1. ∼ is clearly an
equivalence relation, and the set of equivalence classes is denoted by π0(X).
The elements of π0(X) are called the path components , or 0−components of
X. If π0(X) contains just one element, then X is called path connected , or
0−connected . A closed path, or loop in X at the point x0 is a path γ(t) for
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which γ(0) = γ(1) = x0. The inverse loop γ−1(t) based at x0 ∈ X is defined
by γ−1(t) = γ(1 − t), for 0 ≤ t ≤ 1. The homotopy of loops is the particular
case of the above defined homotopy of continuous maps.

If (X,x0) is a pointed space, then we may regard π0(X) as a pointed set
with the 0−component of x0 as a base point. We use the notation π0(X,x0)
to denote p0(X,x0) thought of as a pointed set. If f : X → Y is a map then
f sends 0−components of X into 0−components of Y and hence defines a
function π0(f) : π0(X) → π0(Y ). Similarly, a base point–preserving map f :
(X,x0) → (Y, y0) induces a map of pointed sets π0(f) : π0(X,x0) → π0(Y, y0).
In this way defined π0 represents a ‘functor’ from the ‘category’ of topological
(point) spaces to the underlying category of (point) sets (see the next section).

Commutative Diagrams

S. MacLane says that the category theory was born with an observation that
many properties of mathematical systems can be unified and simplified by
a presentation with commutative diagrams of arrows [MacL71]. Each arrow
f : X → Y represents a function (i.e., a map, transformation, operator); that
is, a source (domain) set X, a target (codomain) set Y , and a rule x �→ f(x)
which assigns to each element x ∈ X an element f(x) ∈ Y . A typical diagram
of sets and functions is

X Y�f

h
�

�
�
��
Z
�

g or

X f(X)�f

h
�

�
�
��
g(f(X))

�

g

This diagram is commutative iff h = g ◦ f , where g ◦ f is the usual composite
function g ◦ f : X → Z, defined by x �→ g(f(x)).

Similar commutative diagrams apply in other mathematical, physical and
computing contexts; e.g., in the ‘category’ of all topological spaces, the letters
X,Y, and Z represent topological spaces while f, g, and h stand for continuous
maps. Again, in the category of all groups, X,Y, and Z stand for groups, f, g,
and h for homomorphisms.

Less formally, composing maps is like following directed paths from one
object to another (e.g., from set to set). In general, a diagram is commutative
iff any two paths along arrows that start at the same point and finish at the
same point yield the same ‘homomorphism’ via compositions along successive
arrows. Commutativity of the whole diagram follows from commutativity of
its triangular components (depicting a ‘commutative flow’, see Figure 1.6).
Study of commutative diagrams is popularly called ‘diagram chasing’, and
provides a powerful tool for mathematical thought.

As an example from linear algebra, consider an elementary diagrammatic
description of matrices, using the following pull–back diagram [Bar93]:
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Fig. 1.6. A commutative flow (denoted by curved arrows) on a triangulated digraph.
Commutativity of the whole diagram follows from commutativity of its triangular
components.

Nat×Nat Nat�
product

Matrix A List A�entries

�

shape

�

length

asserts that a matrix is determined by its shape, given by a pair of natural
numbers representing the number of rows and columns, and its data, given by
the matrix entries listed in some specified order.

Many properties of mathematical constructions may be represented by
universal properties of diagrams [MacL71]. Consider the Cartesian product
X × Y of two sets, consisting as usual of all ordered pairs 〈x, y〉 of elements
x ∈ X and y ∈ Y . The projections 〈x, y〉 �→ x, 〈x, y〉 �→ y of the product
on its ‘axes’ X and Y are functions p : X × Y → X, q : X × Y → Y . Any
function h : W → X × Y from a third set W is uniquely determined by its
composites p ◦ h and q ◦ h. Conversely, given W and two functions f and g as
in the diagram below, there is a unique function h which makes the following
diagram commute:

X X × Y�
p Y�

q

W

f
�

�
�

�� �
h g

�
�

�
��

This property describes the Cartesian product X × Y uniquely; the same
diagram, read in the category of topological spaces or of groups, describes
uniquely the Cartesian product of spaces or of the direct product of groups.
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The construction ‘Cartesian product’ is technically called a ‘functor’ be-
cause it applies suitably both to the sets and to the functions between them;
two functions k : X → X ′ and l : Y → Y ′ have a function k × l as their
Cartesian product:

k × l : X × Y → X ′ × Y ′, 〈x, y〉 �→ 〈kx, ly〉.

Groups and Related Algebraic Structures

As already stated, the basic functional unit of lower biomechanics is the special
Euclidean group SE(3) of rigid body motions. In general, a group is a pointed
set (G, e) with a multiplication µ : G × G → G and an inverse ν : G → G
such that the following diagrams commute [Swi75]:

1.

G

1
�

�
�
��

G G×G�(e, 1)
G�(1, e)

�

µ 1
�

�
�
��

(e is a two–sided identity)
2.

G×G G�
µ

G×G×G G×G�µ× 1

�

1× µ
�

µ

(associativity)
3.

G

e
�

�
�
��

G G×G�(ν, 1)
G�(1, ν)

�

µ e

�
�

�
��

(inverse).

Here e : G → G is the constant map e(g) = e for all g ∈ G. (e, 1) means
the map such that (e, 1)(g) = (e, g), etc. A group G is called commutative or
Abelian group if in addition the following diagram commutes

G×G G×G�T

G

µ
�

�
�
��

µ
�

�
�

��
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where T : G × G → G × G is the switch map T (g1, g2) = (g1, g2), for all
(g1, g2) ∈ G×G.

A group G acts (on the left) on a set A if there is a function α : G×A→ A
such that the following diagrams commute [Swi75]:

1.

A G×A�(e, 1)

1
�

�
�
��
A
�

α

2.

G×A A�
α

G×G×A G×A�1× α

�

µ× 1

�

α

where (e, 1)(x) = (e, x) for all x ∈ A. The orbits of the action are the sets
Gx = {gx : g ∈ G} for all x ∈ A.

Given two groups (G, ∗) and (H, ·), a group homomorphism from (G, ∗) to
(H, ·) is a function h : G→ H such that for all x and y in G it holds that

h(x ∗ y) = h(x) · h(y).

From this property, one can deduce that h maps the identity element eG of G
to the identity element eH of H, and it also maps inverses to inverses in the
sense that h(x−1) = h(x)−1. Hence one can say that h is compatible with the
group structure.

The kernel Kerh of a group homomorphism h : G → H consists of all
those elements of G which are sent by h to the identity element eH of H, i.e.,

Kerh = {x ∈ G : h(x) = eH}.

The image Imh of a group homomorphism h : G → H consists of all
elements of G which are sent by h to H, i.e.,

Imh = {h(x) : x ∈ G}.

The kernel is a normal subgroup of G and the image is a subgroup of H.
The homomorphism h is injective (and called a group monomorphism) iff
Kerh = eG, i.e., iff the kernel of h consists of the identity element of G only.

Similarly, a ring is a set S together with two binary operators + and ∗
(commonly interpreted as addition and multiplication, respectively) satisfying
the following conditions:
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1. Additive associativity: For all a, b, c ∈ S, (a+ b) + c = a+ (b+ c),
2. Additive commutativity: For all a, b ∈ S, a+ b = b+ a,
3. Additive identity: There exists an element 0 ∈ S such that for all a ∈ S,

0 + a = a+ 0 = a,
4. Additive inverse: For every a ∈ S there exists −a ∈ S such that a+(−a) =

(−a) + a = 0,
5. Multiplicative associativity: For all a, b, c ∈ S, (a ∗ b) ∗ c = a ∗ (b ∗ c),
6. Left and right distributivity: For all a, b, c ∈ S, a∗ (b+ c) = (a∗ b)+(a∗ c)

and (b+ c) ∗ a = (b ∗ a) + (c ∗ a).

A ring (the term introduced by D.Hilbert) is therefore an Abelian group
under addition and a semigroup under multiplication. A ring that is commu-
tative under multiplication, has a unit element, and has no divisors of zero is
called an integral domain. A ring which is also a commutative multiplication
group is called a field . The simplest rings are the integers Z, polynomials R[x]
and R[x, y] in one and two variables, and square n× n real matrices.

An ideal is a subset I of elements in a ring R which forms an additive
group and has the property that, whenever x belongs to R and y belongs to
I, then xy and yx belong to I. For example, the set of even integers is an ideal
in the ring of integers Z. Given an ideal I, it is possible to define a factor ring
R/I.

A ring is called left (respectively, right) Noetherian if it does not contain
an infinite ascending chain of left (respectively, right) ideals. In this case,
the ring in question is said to satisfy the ascending chain condition on left
(respectively, right) ideals. A ring is said to be Noetherian if it is both left and
right Noetherian. If a ring R is Noetherian, then the following are equivalent:

1. R satisfies the ascending chain condition on ideals.
2. Every ideal of R is finitely generated.
3. Every set of ideals contains a maximal element.

A module is a mathematical object in which things can be added together
commutatively by multiplying coefficients and in which most of the rules of
manipulating vectors hold. A module is abstractly very similar to a vector
space, although in modules, coefficients are taken in rings which are much
more general algebraic objects than the fields used in vector spaces. A module
taking its coefficients in a ring R is called a module over R or R−module.
Modules are the basic tool of homological algebra.

Examples of modules include the set of integers Z, the cubic lattice in d
dimensions Z

d, and the group ring of a group. Z is a module over itself. It
is closed under addition and subtraction. Numbers of the form nα for n ∈ Z

and α a fixed integer form a submodule since, for (n,m) ∈ Z, nα ± mα =
(n±m)α and (n±m) is still in Z. Also, given two integers a and b, the smallest
module containing a and b is the module for their greatest common divisor,
α = GCD(a, b).
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A module M is a Noetherian module if it obeys the ascending chain con-
dition with respect to inclusion, i.e., if every set of increasing sequences of
submodules eventually becomes constant. If a module M is Noetherian, then
the following are equivalent:

1. M satisfies the ascending chain condition on submodules.
2. Every submodule of M is finitely generated.
3. Every set of submodules of M contains a maximal element.

Let I be a partially ordered set. A direct system of R−modules over I is an
ordered pair {Mi, ϕ

i
j} consisting of an indexed family of modules {Mi : i ∈ I}

together with a family of homomorphisms {ϕi
j : Mi →Mj} for i ≤ j, such that

ϕi
i = 1Mi

for all i and such that the following diagram commutes whenever
i ≤ j ≤ k

Mi Mk
�ϕi

k

Mj

ϕj
k

�
�

�
��

ϕi
j

�
�

�
��

Similarly, an inverse system of R−modules over I is an ordered pair
{Mi, ψ

j
i} consisting of an indexed family of modules {Mi : i ∈ I} together with

a family of homomorphisms {ψj
i : Mj → Mi} for i ≤ j, such that ψi

i = 1Mi

for all i and such that the following diagram commutes whenever i ≤ j ≤ k

Mk Mi
�ψk

i

Mj

ψk
j

�
�

�
��

ψj
i

�
�

�
��

1.2.2 Categories

A category is a generic mathematical structure consisting of a collection of
objects (sets with possibly additional structure), with a corresponding collec-
tion of arrows, or morphisms, between objects (agreeing with this additional
structure). A category K is defined as a pair (Ob(K), Mor(K)) of generic objects
A,B, . . . in Ob(K) and generic arrows f : A → B, g : B → C, . . . in Mor(K)
between objects, with associative composition:

A
f � B

g � C = A
f◦g� C,

and identity (loop) arrow. (Note that in topological literature, Hom(K) or
hom(K) is used instead of Mor(K); see [Swi75]).
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A category K is usually depicted as a commutative diagram (i.e., a diagram
with a common initial object A and final object D):

C D�
k

A B�f

�
h

�
g

�

�

�

�

K

To make this more precise, we say that a category K is defined if we have:

1. A class of objects {A,B,C, ...} of K, denoted by Ob(K);
2. A set of morphisms, or arrows MorK(A,B), with elements f : A → B,

defined for any ordered pair (A,B) ∈ K, such that for two different pairs
(A,B) �= (C,D) in K, we have MorK(A,B) ∩ MorK(C,D) = ∅;

3. For any triplet (A,B,C) ∈ K with f : A → B and g : B → C, there is a
composition of morphisms

MorK(B,C)× MorK(A,B) � (g, f) → g ◦ f ∈ MorK(A,C),

written schematically as

f : A→ B, g : B → C

g ◦ f : A→ C
.

If we have a morphism f ∈ MorK(A,B), (otherwise written f : A → B,

or A
f � B), then A = dom(f) is a domain of f , and B = cod(f) is a

codomain of f (of which range of f is a subset) and denoted B = ran(f).
To make K a category, it must also fulfill the following two properties:

1. Associativity of morphisms: for all f ∈ MorK(A,B), g ∈ MorK(B,C), and
h ∈ MorK(C,D), we have h ◦ (g ◦ f) = (h ◦ g) ◦ f ; in other words, the
following diagram is commutative

B C�
g

A D�h ◦ (g ◦ f) = (h ◦ g) ◦ f

�

f
	
h

2. Existence of identity morphism: for every object A ∈ Ob(K) exists a unique
identity morphism 1A ∈ MorK(A,A); for any two morphisms
f ∈ MorK(A,B), and g ∈ MorK(B,C), compositions with identity mor-
phism 1B ∈ MorK(B,B) give 1B ◦ f = f and g ◦ 1B = g, i.e., the following
diagram is commutative:
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B

f
�

�
�
��

A B�f
C�g

�

1B g

�
�

�
��

The set of all morphisms of the category K is denoted

Mor(K) =
⋃

A,B∈Ob(K)

MorK(A,B).

If for two morphisms f ∈ MorK(A,B) and g ∈ MorK(B,A) the equality
g◦f = 1A is valid, then the morphism g is said to be left inverse (or retraction),
of f , and f right inverse (or section) of g. A morphism which is both right
and left inverse of f is said to be two–sided inverse of f .

A morphism m : A → B is called monomorphism in K (i.e., one–to–one,
or injection map), if for any two parallel morphisms f1, f2 : C → A in K the
equality m ◦ f1 = m ◦ f2 implies f1 = f2; in other words, m is monomorphism
if it is left cancellable. Any morphism with a left inverse is monomorphism.

A morphism e : A→ B is called epimorphism in K (i.e., onto, or surjection
map), if for any two morphisms g1, g2 : B → C in K the equality g1 ◦e = g2 ◦e
implies g1 = g2; in other words, e is epimorphism if it is right cancellable. Any
morphism with a right inverse is epimorphism.

A morphism f : A→ B is called isomorphism in K (denoted as f : A ∼= B)
if there exists a morphism f−1 : B → A which is a two–sided inverse of f
in K. The relation of isomorphism is reflexive, symmetric, and transitive, i.e.,
equivalence relation.

For example, an isomorphism in the category of sets is called a set–
isomorphism, or a bijection, in the category of topological spaces is called
a topological isomorphism, or a homeomorphism, in the category of differen-
tiable manifolds is called a differentiable isomorphism, or a diffeomorphism.

A morphism f ∈ MorK(A,B) is regular if there exists a morphism
g : B → A in K such that f ◦ g ◦ f = f . Any morphism with either a left or a
right inverse is regular.

An object T is a terminal object in K if to each object A ∈ Ob(K) there
is exactly one arrow A → T . An object S is an initial object in K if to each
object A ∈ Ob(K) there is exactly one arrow S → A. A null object Z ∈ Ob(K)
is an object which is both initial and terminal; it is unique up to isomorphism.
For any two objects A,B ∈ Ob(K) there is a unique morphism A → Z → B
(the composite through Z), called the zero morphism from A to B.

A notion of subcategory is analogous to the notion of subset. A subcategory
L of a category K is said to be a complete subcategory iff for any objects
A,B ∈ L, every morphism A→ B of L is in K.

The standard categories that we will use in this book are:

• S – all sets as objects and all functions between them as morphisms;
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• PS – all pointed sets as objects and all functions between them preserving
base point as morphisms;

• V – all vector spaces as objects and all linear maps between them as
morphisms;

• B – Banach spaces over R as objects and bounded linear maps between
them as morphisms;

• G – all groups as objects, all homomorphisms between them as morphisms;
• A – Abelian groups as objects, homomorphisms between them as mor-

phisms;
• AL – all algebras (over a given field K) as objects, all their homomorphisms

between them as morphisms;
• T – all topological spaces as objects, all continuous functions between

them as morphisms;
• PT – pointed topological spaces as objects, continuous functions between

them preserving base point as morphisms;
• T G – all topological groups as objects, their continuous homomorphisms

as morphisms;
• M – all smooth manifolds as objects, all smooth maps between them as

morphisms;
• Mn – nD manifolds as objects, their local diffeomorphisms as morphisms;
• LG – all Lie groups as objects, all smooth homomorphisms between them

as morphisms;
• LAL – all Lie algebras (over a given field K) as objects, all smooth homo-

morphisms between them as morphisms;
• T B – all tangent bundles as objects, all smooth tangent maps between

them as morphisms;
• T ∗B – all cotangent bundles as objects, all smooth cotangent maps be-

tween them as morphisms;
• VB – all smooth vector bundles as objects, all smooth homomorphisms

between them as morphisms;
• FB – all smooth fibre bundles as objects, all smooth homomorphisms

between them as morphisms;

A groupoid is a category in which every morphism is invertible. A typical
groupoid is the fundamental groupoid Π1(X) of a topological space X. An
object of Π1(X) is a point x ∈ X, and a morphism x → x′ of Π1(X) is a
homotopy class of paths f from x to x′. The composition of paths g : x′ → x′′

and f : x → x′ is the path h which is ‘f followed by g’. Composition applies
also to homotopy classes, and makes Π1(X) a category and a groupoid (the
inverse of any path is the same path traced in the opposite direction).

A group is a groupoid with one object, i.e., a category with one object in
which all morphisms are isomorphisms. Therefore, if we try to generalize the
concept of a group, keeping associativity as an essential property, we get the
notion of a category.
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A category is discrete if every morphism is an identity. A monoid is a
category with one object. A group is a category with one object in which
every morphism has a two–sided inverse under composition.

Homological algebra was the progenitor of category theory (see e.g.,
[Die88]). Generalizing L. Euler’s formula f + v = e + 2 for the faces, ver-
tices and edges of a convex polyhedron, E. Betti defined numerical invariants
of spaces by formal addition and subtraction of faces of various dimensions; H.
Poincaré formalized these and introduced homology. E. Noether stressed the
fact that these calculations go on in Abelian groups, and that the operation
∂n taking a face of dimension n to the alternating sum of faces of dimen-
sion n − 1 which form its boundary is a homomorphism, and it also satisfies
∂n·∂n+1 = 0. There are many ways of approximating a given space by poly-
hedra, but the quotient Hn = Ker ∂n/ Im ∂n+1 is an invariant, the homology
group. Since Noether, the groups have been the object of study instead of
their dimensions, which are the Betti numbers (see Chapter 4 for details).

1.2.3 Functors

In algebraic topology, one attempts to assign to every topological space X
some algebraic object F(X) in such a way that to every C0−function f :
X → Y there is assigned a homomorphism F(f) : F(X) −→ F(Y ) (see [Swi75,
DP97]). One advantage of this procedure is, e.g., that if one is trying to prove
the non–existence of a C0−function f : X → Y with certain properties, one
may find it relatively easy to prove the non–existence of the corresponding
algebraic function F(f) and hence deduce that f could not exist. In other
words, F is to be a ‘homomorphism’ from one category (e.g., T ) to another
(e.g., G or A). Formalization of this notion is a functor .

A functor is a generic picture projecting one category into another. LetK =
(Ob(K), Mor(K)) be a source (or domain) category and L = (Ob(L), Mor(L))
be a target (or codomain) category. A functor F = (FO,FM ) is defined as a
pair of maps, FO : Ob(K) → Ob(L) and FM : Mor(K) → Mor(L), preserving
categorical symmetry (i.e., commutativity of all diagrams) of K in L.

More precisely, a covariant functor , or simply a functor, F∗ : K → L is a
picture in the target category L of (all objects and morphisms of) the source
category K:

C D�
k

A B�f

�
h

�
g

�

�

�

�

K

F(C) F(D)�
F(k)

F(A) F(B)�F(f)

�
F(h)

�
F(g)

�

�

�

�

LF∗ �

Similarly, a contravariant functor , or a cofunctor , F∗ : K → L is a dual
picture with reversed arrows:
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C D�
k

A B�f

�
h

�
g

�

�

�

�

K

F(C) F(D)�
F(k)

F(A) F(B)� F(f)

	F(h) 	F(g)

�

�

�

�

LF∗ �

In other words, a functor F : K → L from a source category K to a
target category L, is a pair F = (FO,FM ) of maps FO : Ob(K) → Ob(L),
FM : Mor(K) → Mor(L), such that

1. If f ∈ MorK(A,B) then FM (f) ∈ MorL(FO(A),FO(B)) in case of the
covariant functor F∗, and FM (f) ∈ MorL(FO(B),FO(A)) in case of the
contravariant functor F∗;

2. For all A ∈ Ob(K) : FM (1A) = 1FO(A);
3. For all f, g ∈ Mor(K): if cod(f) = dom(g), then
FM (g ◦ f) = FM (g) ◦ FM (f) in case of the covariant functor F∗, and
FM (g ◦ f) = FM (f) ◦ FM (g) in case of the contravariant functor F∗.

Category theory originated in algebraic topology, which tried to assign al-
gebraic invariants to topological structures. The golden rule of such invariants
is that they should be functors. For example, the fundamental group π1 is a
functor. Algebraic topology constructs a group called the fundamental group
π1(X) from any topological space X, which keeps track of how many holes
the space X has. But also, any map between topological spaces determines a
homomorphism φ : π1(X) → π1(Y ) of the fundamental groups. So the fun-
damental group is really a functor π1 : T → G. This allows us to completely
transpose any situation involving spaces and continuous maps between them
to a parallel situation involving groups and homomorphisms between them,
and thus reduce some topology problems to algebra problems.

Also, singular homology in a given dimension n assigns to each topological
space X an Abelian group Hn(X), its nth homology group of X, and also to
each continuous map f : X → Y of spaces a corresponding homomorphism
Hn(f) : Hn(X) → Hn(Y ) of groups, and this in such a way that Hn(X)
becomes a functor Hn : T → A.

The leading idea in the use of functors in topology is that Hn or πn gives
an algebraic picture or image not just of the topological spaces X,Y but also
of all the continuous maps f : X → Y between them.

Similarly, there is a functor Π1 : T → G, called the ‘fundamental groupoid
functor’, which plays a very basic role in algebraic topology. Here’s how we
get from any space X its ‘fundamental groupoid’ Π1(X). To say what the
groupoid Π1(X) is, we need to say what its objects and morphisms are. The
objects in Π1(X) are just the points of X and the morphisms are just certain
equivalence classes of paths in X. More precisely, a morphism f : x → y in
Π1(X) is just an equivalence class of continuous paths from x to y, where two
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paths from x to y are decreed equivalent if one can be continuously deformed to
the other while not moving the endpoints. (If this equivalence relation holds
we say the two paths are ‘homotopic’, and we call the equivalence classes
‘homotopy classes of paths’ (see [MacL71, Swi75]).

Another examples are covariant forgetful functors:

• From the category of topological spaces to the category of sets;
it ‘forgets’ the topology–structure.

• From the category of metric spaces to the category of topological spaces
with the topology induced by the metrics; it ‘forgets’ the metric.

For each category K, the identity functor IK takes every K−object and
every K−morphism to itself.

Given a category K and its subcategory L, we have an inclusion functor
In : K −→ K.

Given a category K, a diagonal functor ∆ : K −→ K takes each object
A ∈ K to the object (A,A) in the product category K ×K.

Given a category K and a category of sets S, each object A ∈ K determines
a covariant Hom–functor K[A, ] : K → S, a contravariant Hom–functor
K[ , A] : K −→ S, and a Hom–bifunctor K[ , ] : Kop ×K → S.

A functor F : K → L is a faithful functor if for all A,B ∈ Ob(K) and for
all f, g ∈ MorK(A,B), F(f) = F(g) implies f = g; it is a full functor if for
every h ∈ MorL(F(A),F(B)), there is g ∈ MorK(A,B) such that h = F(g); it
is a full embedding if it is both full and faithful.

A representation of a group is a functor F : G → V.
Similarly, we can define a representation of a category to be a functor

F : K → V from the 2−category K (a ‘big’ category including all ordinary,
or ‘small’ categories, see subsection (1.2.7) below) to the category of vector
spaces V. In this way, a category is a generalization of a group and group
representations are a special case of category representations.

1.2.4 Natural Transformations

A natural transformation (i.e., a functor morphism) τ : F ·→ G is a map
between two functors of the same variance, (F ,G) : K ⇒ L, preserving cate-
gorical symmetry:

A B�f

�

�

�

�
K

F �

τ ⇓
G � G(A) G(B)�

G(f)

F(A) F(B)�F(f)

�
τA

�
τB

�

�

�

�

L
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More precisely, all functors of the same variance from a source category
K to a target category L form themselves objects of the functor category LK.
Morphisms of LK, called natural transformations, are defined as follows.

Let F : K → L and G : K → L be two functors of the same variance from
a category K to a category L. Natural transformation F τ−→ G is a family
of morphisms such that for all f ∈ MorK(A,B) in the source category K, we
have G(f) ◦ τA = τB ◦ F(f) in the target category L. Then we say that the
component τA : F(A) → G(A) is natural in A.

If we think of a functor F as giving a picture in the target category L
of (all the objects and morphisms of) the source category K, then a natural
transformation τ represents a set of morphisms mapping the picture F to
another picture G, preserving the commutativity of all diagrams.

An invertible natural transformation, such that all components τA are
isomorphisms) is called a natural equivalence (or, natural isomorphism). In
this case, the inverses (τA)−1 in L are the components of a natural isomor-
phism (τ )−1 : G ∗−→ F . Natural equivalences are among the most important
metamathematical constructions in algebraic topology (see [Swi75]).

For example, let B be the category of Banach spaces over R and bounded
linear maps. Define D : B → B by taking D(X) = X∗ = Banach space of
bounded linear functionals on a space X and D(f) = f∗ for f : X → Y a
bounded linear map. Then D is a cofunctor. D2 = D ◦ D is also a functor.
We also have the identity functor 1 : B → B. Define T : 1→ D ◦D as follows:
for every X ∈ B let T (X) : X → D2X = X∗∗ be the natural inclusion – that
is, for x ∈ X we have [T (X)(x)](f) = f(x) for every f ∈ X∗. T is a natural
transformation. On the subcategory of finite–dimensional Banach spaces T
is even a natural equivalence. The largest subcategory of B on which T is a
natural equivalence is called the category of reflexive Banach spaces [Swi75].

As S. Eilenberg and S. MacLane first observed, ‘category’ has been defined
in order to define ‘functor’ and ‘functor’ has been defined in order to define
‘natural transformation’ [MacL71]).

Compositions of Natural Transformations

Natural transformations can be composed in two different ways. First, we have
an ‘ordinary’ composition: if F ,G and H are three functors from the source
category A to the target category B, and then α : F ·→ G, β : G ·→ H are two
natural transformations, then the formula

(β ◦ α)A = βA ◦ αA, for all A ∈ A, (1.33)

defines a new natural transformation β ◦ α : F ·→ H. This composition law
is clearly associative and possesses a unit 1F at each functor F , whose A–
component is 1FA.

Second, we have the Godement product of natural transformations, usually
denoted by ∗. Let A, B and C be three categories, F ,G, H and K be four
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functors such that (F ,G) : A ⇒ B and (H,K) : B ⇒ C, and α : F ·→ G,
β : H ·→ K be two natural transformations. Now, instead of (1.33), the
Godement composition is given by

(β ∗ α)A = βGA ◦H (αA) = K (αA) ◦ βFA, for all A ∈ A, (1.34)

which defines a new natural transformation β ∗ α : H ◦ F ·→ K ◦ G.
Finally, the two compositions (1.33) and (1.33) of natural transformations

can be combined as

(δ ∗ γ) ◦ (β ∗ α) = (δ ◦ β) ∗ (γ ◦ α) ,

where A, B and C are three categories, F ,G, H, K, L, M are six functors,
and α : F ·→ H, β : G ·→ K, γ : H ·→ L, δ : K ·→ M are four natural
transformations.

Dinatural Transformations

Double natural transformations are called dinatural transformations. An end
of a functor S : Cop × C → X is a universal dinatural transformation from
a constant e to S. In other words, an end of S is a pair 〈e, ω〉, where e is an
object of X and ω : e ..→ S is a wedge (dinatural) transformation with the
property that to every wedge β : x ..→ S there is a unique arrow h : x→ e of
B with βc = ωch for all a ∈ C. We call ω the ending wedge with components
ωc, while the object e itself, by abuse of language, is called the end of S and
written with integral notation as

∫

c

S(c, c); thus

S(c, c) ωc→
∫

c

S(c, c) = e.

Note that the ‘variable of integration’ c appears twice under the integral sign
(once contravariant, once covariant) and is ‘bound’ by the integral sign, in
that the result no longer depends on c and so is unchanged if ‘c’ is replaced by
any other letter standing for an object of the category C. These properties are
like those of the letter x under the usual integral symbol

∫
f(x) dx of calculus.

Every end is manifestly a limit – specifically, a limit of a suitable diagram
in X made up of pieces like S(b, b) → S(b, c) → S(c, c).

For each functor T : C → X there is an isomorphism
∫

c

S(c, c) =
∫

c

Tc ∼= LimT,

valid when either the end of the limit exists, carrying the ending wedge to the
limiting cone; the indicated notation thus allows us to write any limit as an
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integral (an end) without explicitly mentioning the dummy variable (the first
variable c of S).

A functorH : X → Y is said to preserve the end of a functor S : Cop×C →
X when ω : e ..→ S an end of S in X implies that Hω : He ..→ HS is an and
for HS; in symbols

H

∫

c

S(c, c) =
∫

c

HS(c, c).

Similarly, H creates the end of S when to each end v : y ..→ HS in Y there is
a unique wedge ω : e ..→ S with Hω = v, and this wedge ω is an end of S.

The definition of the coend of a functor S : Cop × C → X is dual to that
of an end. A coend of S is a pair 〈d, ζ〉, consisting of an object d ∈ X and a
wedge ζ : S ..→ d. The object d (when it exists, unique up to isomorphism)
will usually be written with an integral sign and with the bound variable c as
superscript; thus

S(c, c)
ζc→

c∫
S(c, c) = d.

The formal properties of coends are dual to those of ends. Both are much like
those for integrals in calculus (see [MacL71], for technical details).

1.2.5 Limits and Colimits

In abstract algebra constructions are often defined by an abstract property
which requires the existence of unique morphisms under certain conditions.
These properties are called universal properties. The limit of a functor gener-
alizes the notions of inverse limit and product used in various parts of math-
ematics. The dual notion, colimit , generalizes direct limits and direct sums.
Limits and colimits are defined via universal properties and provide many
examples of adjoint functors.

A limit of a covariant functor F : J → C is an object L of C, together
with morphisms φX : L → F(X) for every object X of J , such that for
every morphism f : X → Y in J , we have F(f)φX = φY , and such that the
following universal property is satisfied: for any object N of C and any set of
morphisms ψX : N → F(X) such that for every morphism f : X → Y in J ,
we have F(f)ψX = ψY , there exists precisely one morphism u : N → L such
that φXu = ψX for all X. If F has a limit (which it need not), then the limit
is defined up to a unique isomorphism, and is denoted by limF .

Analogously, a colimit of the functor F : J → C is an object L of C,
together with morphisms φX : F(X) → L for every object X of J , such that
for every morphism f : X → Y in J , we have φY F(X) = φX , and such that
the following universal property is satisfied: for any object N of C and any set
of morphisms ψX : F(X) → N such that for every morphism f : X → Y in J ,
we have ψY F(X) = ψX , there exists precisely one morphism u : L→ N such
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that uφX = ψX for all X. The colimit of F , unique up to unique isomorphism
if it exists, is denoted by colimF .

Limits and colimits are related as follows: A functor F : J → C has a
colimit iff for every object N of C, the functor X �−→MorC(F(X), N) (which
is a covariant functor on the dual category J op) has a limit. If that is the
case, then MorC(colimF , N) = limMorC(F(−), N) for every object N of C.

1.2.6 The Adjunction

The most important functorial operation is adjunction; as S. MacLane once
said, “Adjoint functors arise everywhere” [MacL71].

The adjunction ϕ : F � G between two functors (F ,G) : K � L of opposite
variance [Kan58], represents a weak functorial inverse

f : F(A) → B

ϕ(f) : A→ G(B)

forming a natural equivalence ϕ : MorK(F(A), B)
ϕ−→ MorL(A,G(B)). The

adjunction isomorphism is given by a bijective correspondence (a one–to–one
and onto map on objects) ϕ : Mor(K) � f → ϕ(f) ∈ Mor(L) of isomorphisms
in the two categories, K (with a representative object A), and L (with a
representative object B). It can be depicted as a (non–commutative) diagram

B G(B)�
G

F(A) A� F

�
f

�
ϕ(f)

�

�

�

�

K

�

�

�

�

L

In this case F is called left adjoint , while G is called right adjoint .
In other words, an adjunction F � G between two functors (F ,G) of op-

posite variance, from a source category K to a target category L, is denoted
by (F ,G,η, ε) : K � L. Here, F : L → K is the left (upper) adjoint functor,
G : L ← K is the right (lower) adjoint functor, η : 1L → G ◦ F is the unit
natural transformation (or, front adjunction), and ε : F ◦G → 1K is the counit
natural transformation (or, back adjunction).

For example, K = S is the category of sets and L = G is the category
of groups. Then F turns any set into the free group on that set, while the
‘forgetful’ functor F∗ turns any group into the underlying set of that group.
Similarly, all sorts of other ‘free’ and ‘underlying’ constructions are also left
and right adjoints, respectively.

Right adjoints preserve limits, and left adjoints preserve colimits.
The category C is called a cocomplete category if every functor F : J → C

has a colimit. The following categories are cocomplete: S,G,A, T , and PT .
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The importance of adjoint functors lies in the fact that every functor which
has a left adjoint (and therefore is a right adjoint) is continuous. In the cat-
egory A of Abelian groups, this e.g., shows that the kernel of a product of
homomorphisms is naturally identified with the product of the kernels. Also,
limit functors themselves are continuous. A covariant functor F : J → C is
cocontinuous if it transforms colimits into colimits. Every functor which has
a right adjoint (and is a left adjoint) is cocontinuous.

The analogy between adjoint functors and adjoint linear operators relies
upon a deeper analogy: just as in quantum theory the inner product 〈φ, ψ〉
represents the amplitude to pass from φ to ψ, in category theory Mor(A,B)
represents the set of ways to go from A to B. These are to Hilbert spaces
as categories are to sets. The analogues of adjoint linear operators between
Hilbert spaces are certain adjoint functors between 2−Hilbert spaces [Bae97,
BD98]. Similarly, the adjoint representation of a Lie group G is the linearized
version of the action of G on itself by conjugation, i.e., for each g ∈ G, the
inner automorphism x �→ gxg−1 gives a linear transformation Ad(g) : g→ g,
from the Lie algebra g of G to itself.

1.2.7 n−Categories

Generalization from ‘Small’ Categories to ‘Big’ n−Categories

If we think of a point in geometric space (either natural, or abstract) as
an object (or, a 0−cell), and a path between two points as an arrow (or, a
1−morphism, or a 1−cell), we could think of a ‘path of paths’ as a 2−arrow (or,
a 2−morphism, or a 2−cell), and a ‘path of paths of paths’ (or, a 3−morphism,
or a 3−cell), etc. Here a ‘path of paths’ is just a continuous 1–parameter
family of paths from between source and target points, which we can think
of as tracing out a 2D surface, etc. In this way we get a ‘skeleton’ of an
n−category, where a 1−category operates with 0−cells (objects) and 1−cells
(arrows, causally connecting source objects with target ones), a 2−category
operates with all the cells up to 2−cells [Ben67], a 3−category operates with all
the cells up to 3−cells, etc. This skeleton clearly demonstrates the hierarchical
self–similarity of n–categories:
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0− cell :x •

1− cell :x • f � • y

2− cell :x •

f

g

h
�

�∨ • y

3− cell :x •

f

g

h i
j

� �
>

�

�
• y

where triple arrow goes in the third direction, perpendicular to both single
and double arrows. Categorical composition is defined by pasting arrows.

In this way defined, a 1−category can be depicted as a commutative tri-
angle:

A F (A)�F

G(F (A))

G ◦ F
�

�
�
��

G
�

�
�

��

a 2−category is a commutative triangle:

A

f

g

α
�

�∨
B F (A)

F (f)

F (g)

F (α)
�

�∨
F (B)�F

G(F (A))

G(F (f))

G(F (g))

G(F (α))
�

�∨ G(F (B))

G ◦ F

�
�

�
�

�
�
��

G

�
�

�
�

�
�

��

a 3−category is a commutative triangle:
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A

f

g

α β
ψ

� �
>

�

�
B F (A)

F (f)

F (g)

F (α) F (β)
F (ψ)

� �
>

�

�
F (B)�F

G(F (A))

G(F (f))

G(F (g))

G(F (α)) G(F (β))
G(F (ψ))

� �
>

�

�
G(F (B))

F ◦ G

�
�

�
�

�
�

�
�

�
��

G

�
�

�
�

�
�

�
�

�
��

etc., up to n−categories.
Many deep–sounding results in mathematical sciences are obtained by the

process of categorification6 of the high school mathematics [CF94, BD98].
An n−category is a generic mathematical structure consisting of a collec-

tion of objects, a collection of arrows between objects, a collection of 2−arrows
between arrows [Ben67], a collection of 3−arrows between 2−arrows, and so
on up to n [Bae97, BD98, Lei02, Lei03, Lei04].

More precisely, an n−category (for n ≥ 0) consists of:

• 0−cells, or objects, A,B, . . .

• 1−cells, or arrows, A
f � B, with a composition

A
f � B

g � C = A
g◦f� C

• 2−cells, ‘arrows between arrows’, A

f

g

α
�

�∨
B, with vertical compositions

(denoted by ◦) and horizontal compositions (denoted by ∗), respectively
given by

A

f

g

h

α

β

�∨

∨




�
B = A

f

h

β◦α
�

�∨ B

6 Categorification means replacing sets with categories, functions with functors, and
equations between functions by natural equivalences between functors. Iterating
this process requires a theory of n−categories.
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and

A

f

g

α
�

�∨ A′

f ′

g′

α′�

�∨ A′′ = A

f ′◦f

g′◦g

α′ ∗ α
�

�∨ A′′

• 3−cells, ‘arrows between arrows between arrows’, A

f

g

α β
Γ

� �
>

�

�
B

(where the Γ−arrow goes in a direction perpendicular to f and α), with
various kinds of vertical, horizontal and mixed compositions,

• etc., up to n−cells.

Calculus of n−categories has been developed as follows. First, there is K2,
the 2–category of all ordinary (or small) categories. K2 has categories K,L, ...
as objects, functors F ,G : K ⇒ L as arrows, and natural transformations, like
τ : F ·→ G as 2–arrows.

In a similar way, the arrows in a 3–category K3 are 2–functors F2,G2, ...
sending objects in K2 to objects in L2, arrows to arrows, and 2–arrows to
2–arrows, strictly preserving all the structure of K2

A

f

g

α
�

�∨ B
F2 � F2(A)

F2(f)

F2(g)

F2(α)
�

�∨ F2(B).

The 2–arrows in K3 are 2–natural transformations, like τ2 : F2
2·⇒ G2 be-

tween 2–functors F2,G2 : K2 −→ L2 that sends each object in K2 to an
arrow in L2 and each arrow in K2 to a 2–arrow in L2, and satisfies natu-
ral transformation–like conditions. We can visualize τ2 as a prism going from
one functorial picture of K2 in L2 to another, built using commutative squares:

A

f

g

α
�

�∨
B

G2
�

�
��

F2

�
�
��

F2(A)

F2(f)

F2(g)

F2(α)
�

�∨ F2(B)

G2(A)

G2(f)

G2(g)

G2(α)
�

�∨ G2(B)

⇓

K2

L2

�

τ2(A)

�

τ2(B)
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Similarly, the arrows in a 4–category K4 are 3–functors F3,G3, ... sending
objects in K3 to objects in L3, arrows to arrows, and 2–arrows to 2–arrows,
strictly preserving all the structure of K3

A

f

g

α β
ψ

� �
>

�

�
B

F3 � F3(A)

F3(f)

F3(g)

F3(α) F3(β)
F3(ψ)

� �
>

�

�
F3(B)

The 2–arrows in K4 are 3–natural transformations, like τ3 : F 3·⇒ G between
3–functors F3,G3 : K3 → L3 that sends each object in K3 to a arrow in L3 and
each arrow in K3 to a 2–arrow in L3, and satisfies natural transformation–like
conditions. We can visualize τ3 as a prism going from one picture of K3 in L3

to another, built using commutative squares:

A

f

g

α β
ψ

� �
>

�

�
B

G3

�
�

�
��

F3

�
�

�
��
F3(A)

F3(f)

F3(g)

F3(α) F3(β)
F3(ψ)

� �
>

�

�
F3(B)

G3(A)

G3(f)

G3(g)

G3(α) G3(β)
G3(ψ)

� �
>

�

�
G3(B)

⇓

K3

L3

�

τ 3(A)

�

τ 3(B)

Topological Structure of n−Categories

We already emphasized the topological nature of ordinary category theory.
This fact is even more obvious in the general case of n−categories (see [Lei02,
Lei03, Lei04]).

Homotopy Theory

Any topological manifold M gives rise to an n−category Πn(M) (its funda-
mental n−groupoid), in which 0–cells are points in M ; 1–cells are paths in M
(i.e., parameterized continuous maps f : [0, 1] → M); 2–cells are homotopies
(denoted by �) of paths relative to endpoints (i.e., parameterized continuous
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maps h : [0, 1] × [0, 1] → M); 3–cells are homotopies of homotopies of paths
in M (i.e., parameterized continuous maps j : [0, 1] × [0, 1] × [0, 1] → M);
categorical composition is defined by pasting paths and homotopies. In this
way the following ‘homotopy skeleton’ emerges:

0− cell : x • x ∈M ;

1− cell : x • f � • y f : x � y ∈M,
f : [0, 1] →M, f : x �→ y, y = f(x), f(0) = x, f(1) = y;
e.g., linear path: f(t) = (1− t)x+ ty;

2− cell : x •

f

g

h
�

�∨ • y h : f � g ∈M,

h : [0, 1]× [0, 1] →M, h : f �→ g, g = h(f(x)),
h(x, 0) = f(x), h(x, 1) = g(x), h(0, t) = x, h(1, t) = y

e.g., linear homotopy: h(x, t) = (1− t)f(x) + tg(x);

3− cell : x •

f

g

h i
j

� �
>

�

�
• y j : h � i ∈M,

j : [0, 1]× [0, 1]× [0, 1] →M, j : h �→ i, i = j(h(f(x)))
j(x, t, 0) = h(f(x)), j(x, t, 1) = i(f(x)),
j(x, 0, s) = f(x), j(x, 1, s) = g(x),
j(0, t, s) = x, j(1, t, s) = y

e.g., linear composite homotopy: j(x, t, s) = (1− t)h(f(x)) + t i(f(x)).

If M is a smooth manifold, then all included paths and homotopies need
to be smooth. Recall that a groupoid is a category in which every morphism
is invertible; its special case with only one object is a group.

Category T T

Topological n−category T T has:

• 0–cells: topological spaces X

• 1–cells: continuous maps X
f � Y
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• 2–cells: homotopies h between f and g : X

f

g

h
�

�∨ Y

i.e., continuous maps h : X × [0, 1] → Y , such that ∀x ∈ X, h(x, 0) = f(x)
and h(x, 1) = g(x)

• 3–cells: homotopies between homotopies : X

f

g

h i
j

� �
>

�

�
Y

i.e., continuous maps j : X × [0, 1]× [0, 1] → Y .

Category CK

Consider an n−category CK, which has:

• 0–cells: chain complexes A (of Abelian groups, say)

• 1–cells: chain maps A
f � B

• 2–cells: chain homotopies A

f

g

α
�

�∨ B,

i.e., maps α : A→ B of degree 1

• 3–cells A

f

g

α β
Γ

� �
>

�

�
B: homotopies between homotopies,

i.e., maps Γ : A→ B of degree 2 such that dΓ − Γd = β − α.

There ought to be some kind of map CC : T T ⇒ CK (see [Lei02, Lei03, Lei04]).

Categorification

Categorification is the process of finding category–theoretic analogs of set–
theoretic concepts by replacing sets with categories, functions with functors,
and equations between functions by natural isomorphisms between functors,
which in turn should satisfy certain equations of their own, called ‘coherence
laws’. Iterating this process requires a theory of n−categories.

Categorification uses the following analogy between set theory and cate-
gory theory [CF94, BD98]:
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Set Theory Category Theory
elements objects
equations isomorphisms

between elements between objects
sets categories

functions functors
equations natural isomorphisms

between functions between functors

Just as sets have elements, categories have objects. Just as there are func-
tions between sets, there are functors between categories. Now, the proper
analog of an equation between elements is not an equation between objects,
but an isomorphism. Similarly, the analog of an equation between functions
is a natural isomorphism between functors.

1.2.8 Abelian Functorial Algebra

An Abelian category is a certain kind of category in which morphisms and
objects can be added and in which kernels and cokernels exist and have the
usual properties. The motivating prototype example of an Abelian category
is the category of Abelian groups A. Abelian categories are the framework for
homological algebra (see [Die88]).

Given a homomorphism f : A → B between two objects A ≡ Dom f and
B ≡ Cod f in an Abelian category A, then its kernel , image, cokernel and
coimage in A are defined respectively as:

Ker f = f−1(eB), Coker f = Cod f/ Im f,
Im f = f(A), Coim f = Dom f/Ker f,

where eB is a unit of B [DP97].
In an Abelian category A a composable pair of arrows,

• f � B
g � •

is exact at B iff Im f ≡ Ker g (equivalence as subobjects of B) – or, equiva-
lently, if Coker f ≡ Coim g [MacL71].

For each arrow f in an Abelian category A the triangular identities read

Ker(Coker(Ker f)) = Ker f, Coker(Ker(Coker f)) = Coker f.

The diagram (with 0 the null object)

0 � A
f � B

g � C � 0 (1.35)

is a short exact sequence when it is exact at A, at B, and at C.
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Since 0 → a is the zero arrow, exactness at A means just that f is monic
(i.e., one–to–one, or injective map); dually, exactness at C means that g is
epic (i.e., onto, or surjective map). Therefore, (1.35) is equivalent to

f = Ker g, g = Coker f.

Similarly, the statement that h = Coker f becomes the statement that the
sequence

A
f � B

g � C � 0

is exact at B and at C. Classically, such a sequence was called a short right
exact sequence. Similarly, k = Ker f is expressed by a short left exact sequence

0 � A
f � B

g � C.

If A and A′ are Abelian categories, an additive functor F : A → A′ is a
functor from A to A′ with

F(f + f ′) = Ff + Ff ′,

for any parallel pair of arrows f, f ′ : b→ c in A. It follows that F0 = 0.
A functor F : A → A′ between Abelian categories A and A′ is, by defini-

tion, exact when it preserves all finite limits and all finite colimits. In partic-
ular, an exact functor preserves kernels and cokernels, which means that

Ker(Ff) = F(Ker f) and Coker(Ff) = F(Coker f);

then F also preserves images, coimages, and carries exact sequences to exact
sequences. By construction of limits from products and equalizers and dual
constructions, F : A → A′ is exact iff it is additive and preserves kernels and
cokernels.

A functor F is left exact when it preserves all finite limits. In other words,
F is left exact iff it is additive and Ker(Ff) = F(Ker f) for all f : the last
condition is equivalent to the requirement that F preserves short left exact
sequences.

Similarly, a functor F is right exact when it preserves all finite colimits. In
other words, F is right exact iff it is additive and Coker(Ff) = F(Coker f)
for all f : the last condition is equivalent to the requirement that F preserves
short right exact sequences.

In an Abelian category A, a chain complex is a sequence

... � cn+1

∂n+1� cn
∂n � cn−1

� ...

of composable arrows, with ∂n∂n+1 = 0 for all n. The sequence need not be
exact at cn; the deviation from exactness is measured by the nth homology
object
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Hnc = Ker(∂n : cn � cn−1)/ Im(∂n+1 : cn+1
� cn).

Similarly, a cochain complex in an Abelian category A is a sequence

... � wn+1

dn+1� wn
dn � wn−1

� ...

of composable arrows, with dndn+1 = 0 for all n. The sequence need not be
exact at wn; the deviation from exactness is measured by the nth cohomology
object

Hnw = Ker(dn+1 : wn
� wn+1)/ Im(dn : wn−1

� wn).

A cycle is a chain C such that ∂C = 0. A boundary is a chain C such that
C = ∂B, for any other chain B.

A cocycle (a closed form) is a cochain ω such that dω = 0. A coboundary
(an exact form) is a cochain ω such that ω = dθ, for any other cochain θ.




