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Geometric Basis of Human–Like Biomechanics

In this Chapter we develop the geometric structure of modern biomechanics.

2.1 Biomechanical Manifold M

The core of geometrodynamics is the concept of the manifold , the stage where
our covariant force law , Fi = mgija

j , works. To get some dynamical feeling
before we dive into more serious geometry, let us consider a simple 3DOF
biomechanical system (e.g., a representative point of the center of mass of the
human body) determined by three generalized coordinates qi = {q1, q2, q3}.
There is a unique way to represent this system as a 3D manifold, such that
to each point of the manifold there corresponds a definite configuration of
the biomechanical system with coordinates qi; therefore, we have a geometric
representation of the configurations of our biomechanical system. For this
reason, the manifold is called the configuration manifold . If the biomechanical
system moves in any way, its coordinates are given as the functions of the time.
Thus, the motion is given by equations of the form: qi = qi(t). As t varies we
observe that the system’s representative point in the configuration manifold
describes a curve and qi = qi(t) are the equations of this curve.

On the other hand, a topological manifold is a separable Hausdorff spaceM
which is locally homeomorphic to R

n (see, e.g., [Tho79, Hir76, Hel01, Lee00,
Lee02]). So, a topological manifold has the following properties:

1. M is a Hausdorff space: For every pair of points m1,m2 ∈ M , there are
disjoint open subsets U, V ⊂M such that m1 ∈ U and m2 ∈ V .

2. M is second countable: There exists a countable basis for the topology of
M .

3. M is locally Euclidean of dimension n: Every point of M has a neighbor-
hood that is homeomorphic to an open subset of R

n.

This further implies that for any point m ∈M there is a homeomorphism
φ : U → φ(U) ⊆ R

n, where U is an open neighborhood of m in M and φ(U)
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is an open subset in R
n. The pair (U, φ) is called a coordinate chart at a point

m ∈M .

2.1.1 Definition of the Manifold M

Given a chart (U, φ), we call the set U a coordinate domain, or a coordi-
nate neighborhood of each of its points. If in addition φ(U) is an open ball
in R

n, then U is called a coordinate ball. The map φ is called a (local)
coordinate map, and the component functions

(
x1, ..., xn

)
of φ, defined by

φ(m) =
(
x1(m), ..., xn(m)

)
, are called local coordinates on U .

Two charts (U1, φ1) and (U2, φ2) such that U1 ∩ U2 �= ∅ are called com-
patible if φ1(U1 ∩ U2) and φ2(U2 ∩ U1) are open subsets of R

n. A family
(Uα, φα)α∈A of compatible charts on M such that the Uα form a cover of M
is called an atlas. The maps φαβ = φβ ◦ φ−1

α : φα (Uαβ) → φβ (Uαβ) are called
the chart changings, or transition maps, for the atlas (Uα, φα)α∈A , where
Uαβ = Uα ∩ Uβ , so that we have a commutative triangle:

φα (Uαβ) φβ (Uαβ)�
φαβ

Uαβ ⊆M

φα

�
�

�
��

φβ

�
�

�
��

An atlas (Uα, φα)α∈A for a manifoldM is said to be a Ck−atlas, if all tran-
sition maps φαβ : φα (Uαβ) → φβ (Uαβ) are differentiable of class Ck. Two Ck

atlases are called Ck−equivalent, if their union is again a Ck−atlas for M . An
equivalence class of Ck−atlases is called a Ck−structure onM . In other words,
a smooth structure on M is a maximal smooth atlas on M , i.e., such an atlas
that is not contained in any strictly larger smooth atlas. By a Ck−manifold
M , we mean a topological manifold together with a Ck−structure and a chart
on M will be a chart belonging to some atlas of the Ck−structure. Smooth
manifold means C∞−manifold, and the word ‘smooth’ is used synonymously
for C∞. However, for most of our biomechanical needs, the weaker require-
ment, Ck would be sufficient. In case of any doubt, we can simply replace Ck

with C∞.
Sometimes the terms ‘local coordinate system’ or ‘parametrization’ are

used instead of charts. That M is not defined with any particular atlas, but
with an equivalence class of atlases, is a mathematical formulation of the gen-
eral covariance principle. Every suitable coordinate system is equally good. A
Euclidean chart may well suffice for an open subset of R

n, but this coordinate
system is not to be preferred to the others, which may require many charts
(as with polar coordinates), but are more convenient in other respects.

For example, the atlas of a n−sphere Sn has two charts. If N = (1, 0, ..., 0)
and S = (−1, ..., 0, 0) are the north and south poles of Sn respectively, then
the two charts are given by the stereographic projections from N and S:
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φ1 : Sn\{N} → R
n, φ1(x

1, ..., xn+1) = (x2/(1− x1), . . . , xn+1/(1− x1)),

and

φ2 : Sn\{S} → R
n, φ2(x

1, ..., xn+1) = (x2/(1 + x1), . . . , xn+1/(1 + x1)),

and the overlap map φ2 ◦ φ−1
1 : R

n\{0} → R
n\{0} is given by the diffeomor-

phism (φ2 ◦ φ−1
1 )(z) = z/||z||2, for z in R

n\{0}, from R
n\{0} to itself.

Various additional structures can be imposed on R
n, and the corresponding

manifold M will inherit them through its covering by charts. For example, if
a covering by charts takes their values in a Banach space E, then E is called
the model space and M is referred to as a Ck−Banach manifold modelled
on E. Similarly, if a covering by charts takes their values in a Hilbert space
H, then H is called the model space and M is referred to as a Ck−Hilbert
manifold modelled on H. If not otherwise specified, we will consider M to be
an Euclidean manifold, with its covering by charts taking their values in R

n.
For a Hausdorff Ck−manifold the following properties are equivalent

[KMS93]:

1. It is paracompact.
2. It is metrizable.
3. It admits a Riemannian metric.
4. Each connected component is separable.

2.1.2 Smooth Maps Between Manifolds

A map ϕ : M → N between two manifolds M and N , with M � m �→ ϕ(m) ∈
N , is called a smooth map, or Ck−map, if we have the following charting:

  �
ψ ◦ ϕ ◦ φ−1

  �ϕ

�

φ

�

ψ

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
U

m

V

ϕ(m)

M N

�

�

�

�

�

�

�

�

φ(U) ψ(V )

φ(m) ψ(ϕ(m))

R
m �

	

R
n�

	

This means that for each m ∈M and each chart (V, ψ) on N with ϕ (m) ∈ V
there is a chart (U, φ) on M with m ∈ U,ϕ (U) ⊆ V , and Φ = ψ ◦ ϕ ◦ φ−1 is
Ck, that is, the following diagram commutes:
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φ(U) ψ(V )�
Φ

M ⊇ U V ⊆ N�ϕ

�

φ

�

ψ

Let M and N be smooth manifolds and let ϕ : M → N be a smooth map.
The map ϕ is called a covering , or equivalently, M is said to cover N , if ϕ is
surjective and each point n ∈ N admits an open neighborhood V such that
ϕ−1(V ) is a union of disjoint open sets, each diffeomorphic via ϕ to V .

A Ck−map ϕ : M → N is called a Ck−diffeomorphism if ϕ is a bijection,
ϕ−1 : N → M exists and is also Ck. Two manifolds are called diffeomorphic
if there exists a diffeomorphism between them.

All smooth manifolds and smooth maps between them form the category
M.

The most important examples of biomechanical manifolds have also an
additional group structure and thus belong to the category of Lie groups G.

2.2 Biomechanical Bundles

In this section we introduce secondary concepts of biomechanical bundles,
derived from the primary concept of the manifold.

2.2.1 The Tangent Bundle of the Manifold M

Recall that if [a, b] is a closed interval, a C0−map γ : [a, b] →M is said to be
differentiable at the endpoint a if there is a chart (U, φ) at γ(a) such that the
following limit exists and is finite [AMR88]:

d

dt
(φ ◦ γ)(a) ≡ (φ ◦ γ)′(a) = lim

t→a

(φ ◦ γ)(t)− (φ ◦ γ)(a)
t− a . (2.1)

Generalizing (2.1), we get the notion of the curve on a manifold . For a smooth
manifold M and a point m ∈ M a curve at m is a C0−map γ : I → M from
an interval I ⊂ R into M with 0 ∈ I and γ(0) = m.

Two curves γ1 and γ2 passing though a point m ∈ U are tangent at m
with respect to the chart (U, φ) if (φ ◦ γ1)′(0) = (φ ◦ γ2)′(0). Thus, two curves
are tangent if they have identical tangent vectors (same direction and speed)
in a local chart on a manifold.

For a smooth manifold M and a point m ∈M, the tangent space TmM to
M at m is the set of equivalence classes of curves at m:

TmM = {[γ]m : γ is a curve at a point m ∈M} .
A Ck−map ϕ : M � m �→ ϕ(m) ∈ N between two manifolds M and N

induces a linear map Tmϕ : TmM → Tϕ(m)N for each point m ∈M , called a
tangent map, if we have:
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� �-
ϕ

� �-T (ϕ)

?

πM

?

πN

#
"

 
!

#
"

 
!m ϕ(m)

M N

TM T (N)Tm(M) Tϕ(m)(N)

i.e., the following diagram commutes:

M 3 m ϕ(m) ∈ N-
ϕ

TmM Tϕ(m)N-Tmϕ

?

πM

?

πN

with the natural projection, or tangent bundle projection, πM : TM → M,
given by πM (TmM) = m, that takes a tangent vector v to the point m ∈M
at which the vector v is attached i.e., v ∈ TmM .

For a smooth manifold M of dimension n, its tangent bundle TM is the
disjoint union of all its tangent spaces TmM at all points m ∈M , i.e., TM =⊔
m∈M

TmM .

If M is an n−manifold, then TM is a 2n−manifold. To define the smooth
structure on TM , we need to specify how to construct local coordinates on
TM . To do this, let

(
x1(m), ..., xn(m)

)
be local coordinates of a point m

on M and let
(
v1(m), ..., vn(m)

)
be components of a tangent vector in this

coordinate system. Then the 2n numbers
(
x1(m), ..., xn(m), v1(m), ..., vn(m)

)
give a local coordinate system on TM . This is the basic idea one uses to prove
that indeed TM is a 2n−manifold [MR99].

TM =
⊔
m∈M

TmM defines a family of vector spaces parameterized by M .

The inverse image π−1
M (m) of a point m ∈ M under the natural projection

πM is the tangent space TmM . This space is called the fibre of the tangent
bundle over the point m ∈M [Sti51].

A Ck−map ϕ : M → N between two manifolds M and N induces a
linear tangent map Tϕ : TM → TN between their tangent bundles, i.e., the
following diagram commutes:
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M N�
ϕ

TM TN�Tϕ

�

πM

�

πN

All tangent bundles and their tangent maps form the category T B. The
category T B is the natural framework for Lagrangian biomechanics.

Now, we can formulate the global version of the chain rule. If ϕ : M → N
and ψ : N → P are two smooth maps, then we have T (ψ ◦ϕ) = Tψ ◦ Tϕ (see
[KMS93]). In other words, we have a functor T : M⇒ T B from the category
M of smooth manifolds to the category T B of their tangent bundles:

N P�
ψ

M

ϕ
�

�
�

��
(ψ ◦ ϕ) T=⇒

�
�

�
��

TN TP�
Tψ

TM

Tϕ
�

�
�

��

T (ψ ◦ ϕ)
�

�
�
��

2.2.2 The Cotangent Bundle of the Manifold M

The dual notion to the tangent space TmM to a smooth manifoldM at a point
m is its cotangent space T ∗

mM at the same point m. Similarly to the tangent
bundle, for a smooth manifold M of dimension n, its cotangent bundle T ∗M
is the disjoint union of all its cotangent spaces T ∗

mM at all points m ∈M , i.e.,
T ∗M =

⊔

m∈M

T ∗
mM . Therefore, the cotangent bundle of an n−manifold M is

the vector bundle T ∗M = (TM)∗, the (real) dual of the tangent bundle TM .
IfM is an n−manifold, then T ∗M is a 2n−manifold. To define the smooth

structure on T ∗M , we need to specify how to construct local coordinates on
T ∗M . To do this, let

(
x1(m), ..., xn(m)

)
be local coordinates of a point m on

M and let (p1(m), ..., pn(m)) be components of a covector in this coordinate
system. Then the 2n numbers

(
x1(m), ..., xn(m), p1(m), ..., pn(m)

)
give a local

coordinate system on T ∗M . This is the basic idea one uses to prove that indeed
T ∗M is a 2n−manifold.
T ∗M =

⊔

m∈M

T ∗
mM defines a family of vector spaces parameterized by M ,

with the conatural projection, or cotangent bundle projection, π∗M : T ∗M →
M, given by π∗M (T ∗

mM) = m, that takes a covector p to the point m ∈M at
which the covector p is attached i.e., p ∈ T ∗

mM . The inverse image π−1
M (m)

of a point m ∈ M under the conatural projection π∗M is the cotangent space
T ∗

mM . This space is called the fibre of the cotangent bundle over the point
m ∈M .

In a similar way, a Ck−map ϕ : M → N between two manifolds M and N
induces a linear cotangent map T ∗ϕ : T ∗M → T ∗N between their cotangent
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bundles, i.e., the following diagram commutes:

M N�
ϕ

T ∗M T ∗N�T ∗ϕ

�

π∗M
�

π∗N

All cotangent bundles and their cotangent maps form the category T ∗B.
The category T ∗B is the natural stage for Hamiltonian biomechanics.

Now, we can formulate the dual version of the global chain rule. If ϕ : M →
N and ψ : N → P are two smooth maps, then we have T ∗(ψ◦ϕ) = T ∗ψ◦T ∗ϕ.
In other words, we have a cofunctor T ∗ : M⇒ T ∗B from the category M of
smooth manifolds to the category T ∗B of their cotangent bundles:

N P�
ψ

M

ϕ
�

�
�

��
(ψ ◦ ϕ) T∗

=⇒
�

�
�
��

T ∗N T ∗P�
T ∗ψ

T ∗M

T ∗ϕ

�
�

�
��

T ∗(ψ ◦ ϕ)

�
�

�
��

2.2.3 Fibre Bundles

Vector Bundles

Both the tangent bundle (TM, πM ,M) and the cotangent bundle (T ∗M ,
π∗M ,M) are examples of a more general notion of vector bundle (E, π,M)
of a manifold M , which consists of manifolds E (the total space) and M (the
base), as well as a smooth map π : E →M (the projection) together with an
equivalence class of vector bundle atlases (in this section we follow [KMS93]).
A vector bundle atlas (Uα, φα)α∈A for (E, π,M) is a set of pairwise compati-
ble vector bundle charts (Uα, φα) such that (Uα)α∈A is an open cover of M .
Two vector bundle atlases are called equivalent, if their union is again a vector
bundle atlas.

On each fibre Em = π−1(m) corresponding to the point m ∈M there is a
unique structure of a real vector space, induced from any vector bundle chart
(Uα, φα) with m ∈ Uα. A section u of (E, π,M) is a smooth map u : M → E
with π ◦ u = IdM .

Let (E, πM ,M) and (F, πN , N) be vector bundles. A vector bundle homo-
morphism Φ : E → F is a fibre respecting, fibre linear smooth map induced
by the smooth map ϕ : M → N between the base manifolds M and N , i.e.,
the following diagram commutes:
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M N�
ϕ

E F�Φ

�

πM

�

πN

We say that Φ covers ϕ. If Φ is invertible, it is called a vector bundle isomor-
phism.

All smooth vector bundles together with their homomorphisms form a
category VB.

If (E,π,M) is a vector bundle whichadmits a vector bundle atlas (Uα, φα)α∈A

with the given open cover, then, we have φα ◦ φ−1
β (m, v) =

(
m,φαβ(m)v

)
for

Ck−transition functions φαβ : Uαβ = Uα ∩ Uβ → GL(V ) (where we have
fixed a standard fibre V ). This family of transition maps satisfies the cocycle
condition

{
φαβ(m) · φβγ(m) = φαγ(m) for each m ∈ Uαβγ = Uα ∩ Uβ ∩ Uγ ,

φαα(m) = e for all m ∈ Uα.

The family (φαβ) is called the cocycle of transition maps for the vector bundle
atlas (Uα, φα) .

Now, let us suppose that the same vector bundle (E, π,M) is described
by an equivalent vector bundle atlas (Uα, ψα)α∈A with the same open cover
(Uα). Then the vector bundle charts (Uα, φα) and (Uα, ψα) are compatible for
each α, so ψα ◦ φ−1

β (m, v) = (m, τα(m)v) for some τα : Uα → GL(V ). We get

τα(m)φαβ(m) = φαβ(m) τβ(m) for all m ∈ Uαβ ,

and we say that the two cocycles (φαβ) and (ψαβ) of transition maps over
the cover (Uα) are cohomologous. If GL(V ) is an Abelian group, i.e., if the
standard fibre V is of real or complex dimension 1, then the cohomology
classes of cocycles (φαβ) over the open cover (Uα) form a usual cohomology
group H1 (M,GL(V )) with coefficients in the sheaf GL(V ) [KMS93].

Let (E, π,M) be a vector bundle and let ϕ : N → M be a smooth map
between the base manifolds N and M . Then there exists the pull–back vec-
tor bundle (ϕ∗E,ϕ∗π, ϕ∗N) with the same typical fibre and a vector bundle
homomorphism, given by the commutative diagram [KMS93]:

N M�
ϕ

ϕ∗E E�π∗ϕ

�

ϕ∗π

�

π

The vector bundle (ϕ∗E,ϕ∗π, ϕ∗N) is constructed as follows. Let E =
V B(φαβ) denote that E is described by a cocycle (φαβ) of transition maps over
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an open cover (Uα) of M . Then (φαβ ◦ϕ) is a cocycle of transition maps over
the open cover

(
ϕ−1(Uα)

)
ofN and the bundle is given by ϕ∗E = V B(φαβ◦ϕ).

The Second Vector Bundle of the Manifold M

Let (E, π,M) be a vector bundle over the biomechanical manifoldM with fibre
addition +E : E×ME → E and fibre scalar multiplicationmE

t : E → E. Then
(TE, πE , E), the tangent bundle of the manifold E, is itself a vector bundle,
with fibre addition denoted by +TE and scalar multiplication denoted bymTE

t .
The second vector bundle structure on (TE, Tπ, TM), is the ‘derivative’ of the
original one on (E, π,M). In particular, the space {Ξ ∈ TE : Tπ.Ξ = 0 ∈
TM} = (Tp)−1(0) is denoted by V E and is called the vertical bundle over E.
Its main characteristics are vertical lift and vertical projection (see [KMS93]
for details).

All of this is valid for the second tangent bundle T 2M = TTM of a mani-
fold, but here we have one more natural structure at our disposal. The canon-
ical flip or involution κM : T 2M → T 2M is defined locally by

(T 2φ ◦ κM ◦ T 2φ−1)(x, ξ; η, ζ) = (x, η; ξ, ζ).

where (U, φ) is a local chart on M (this definition is invariant under changes
of charts). The flip κM has the following properties (see [KMS93]):

1. κM ◦ T 2f = T 2f ◦ κM for each f ∈ Ck(M,N);
2. T (πM ) ◦ κM = πTM ;
3. πTM ◦ κM = T (πM );
4. κ−1

M = κM ;
5. κM is a linear isomorphism from the bundle (TTM, T (πM ), TM) to

(TTM, πTM , TM), so it interchanges the two vector bundle structures on
TTM ;

6. κM is the unique smooth map TTM → TTM which, for each γ : R →M ,
satisfies

∂t∂sγ(t, s) = κM∂t∂sγ(t, s).

In a similar way the second cotangent bundle of a manifold M can be
defined. Even more, for every manifold there is a geometric isomorphism be-
tween the bundles TT ∗M = T (T ∗M) and T ∗TM = T ∗(TM) [MS78].

General Fibre Bundles

A vector bundle is a special case of a more general structure, a fibre bundle
[Sti51], a topological construction which itself is a class of fibrations.

Let I = [0, 1]. A map p : E → B is said to have the homotopy lifting
property (HLP) with respect to a topological spaceX if for every map f : X →
E and homotopy G : X × I → B of p ◦ f there is a homotopy F : X × I → E
with f = F0 and p◦F = G. F is said to be a lifting of G. p is called a fibration
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if it has the HLP for all spaces X and a weak fibration if it has the HLP for
all disks Dn, n ≥ 0. If b0 ∈ B is the base point, then the space F = p−1(b0)
is called the fibre of p. The projection onto the first factor, pB : B × F → B,
is clearly a fibration and is called the trivial fibration over B with fibre F
[Swi75].

A fibre bundle is a quadruple (B, p,E, F ) where the space B is called
the base space, E is the total space, and the vector spaces F = p−1(b) are
the fibers. Here the projection p : E → B is such a map that B has an
open covering {Uα}α∈A, and for each α ∈ A there is a homeomorphism φα :
Uα × F → p−1Uα such that p ◦ φα = pUα : Uα × F → Uα [Sti51]. In other
words, locally p : E → B looks like a trivial fibration. If B is paracompact,
one can show that p : E → B is a fibration. If (B, p,E, F ) is a fibre bundle,
then p : E → B is a weak fibration [Swi75]. A map p : E → B has a local
cross–section at a point x ∈ B if there is a neighborhood U of x in B and a
map λ : U → E with p ◦ λ = 1U .

A fibre bundle (B, p,E, F ) with F discrete is called a covering of B. p is
called a a covering projection and E a covering space over B. For example,
the n−torus Tn is the n−fold Cartesian product S1 × S1 × ... × S1. The
map p : R

n → Tn defined by p(r1, r2, ..., rn) =
(
e2πir1 , e2πir2 , ..., e2πirn

)
is a

covering projection. The fibre is the set of integer lattice points in R
n. Since

R
n is contractible, it follows that its kth homotopy group πk(Tn) = 0 for
k ≥ 2 [Swi75].

All smooth fibre bundles together with their homomorphisms form a cat-
egory FB.

Our vector bundle defined above represents an important class of fibre
bundles for which every fibre has the structure of a vector space in a way
which is compatible on neighboring fibres. Let F denote R,C or H – the real,
complex or quaternionic numbers. An nD F−vector bundle is a fibre bundle
ξ = (B, p,E, Fn) in which each fibre p−1(b), b ∈ B, has the structure of a
vector space over F such that there is an open covering {Uα : α ∈ A} of B and
for each α ∈ A a homeomorphism φα : Uα × Fn → p−1Uα with p ◦ φα = pUα

and (φα|{b} × Fn) : {b} × Fn → p−1(b) a vector space isomorphism for each
b ∈ Uα. We speak of real, complex or quaternionic vector bundles according
to whether F = R,C or H [Swi75].

For example, for any space B the trivial nD F−vector bundle is (B, pB , B×
Fn, Fn).

If we let E be the quotient space of I×R under the identifications (0, t) ∼
(1,−t), then the projection I × R → I induces a map p : E → S1 which is
a 1D vector bundle, or line bundle. Since E is homeomorphic to a Mőbius
band with its boundary circle deleted, we call this bundle the Mőbius bundle
[Hat02].

For any n ≥ 1 the tangent bundle TSn of the unit n−sphere Sn = {x ∈
R

n+1 : ‖x‖ = 1} is the fibre bundle (Sn, p, E,Rn), where E = {(x, y) ∈
R

n+1 × R
n+1 : ‖x‖ = 1, x · y = 0} and p : E → Sn is defined by p(x, y) = x.
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For any n ≥ 1 the normal bundle NSn of the n−sphere Sn is the fibre
bundle (Sn, p′, E′,R1), where E′ = {(x, y) ∈ R

n+1 × R
n+1 : ‖x‖ = 1, y =

λx, λ ∈ R
1} and p′ : E′ → Sn is defined by p′(x, y) = x [Swi75].

The only two vector bundles with base space B a circle and 1D fibre F are
the Mőbius band and the annulus, but the classification of all the different
vector bundles over a given base space with fibre of a given dimension is quite
difficult in general. For example, when the base space is a high–dimensional
sphere and the dimension of the fibre is at least three, then the classification
is of the same order of difficulty as the fundamental but still largely unsolved
problem of computing the homotopy groups of spheres [Hat02].

Now, there is a natural direct sum operation for vector bundles over a
fixed base space X, which in each fibre reduces just to direct sum of vector
spaces. Using this, one can obtain a weaker notion of isomorphism of vector
bundles by defining two vector bundles over the same base space X to be
stably isomorphic if they become isomorphic after direct sum with product
vector bundles X × R

n for some n, perhaps different n’s for the two given
vector bundles. Then it turns out that the set of stable isomorphism classes of
vector bundles overX forms an Abelian group under the direct sum operation,
at least if X is compact Hausdorff. The traditional notation for this group is
K̃O(X). In the case of spheres the groups K̃O(Sn) have the quite unexpected
property of being periodic in n. This is called Bott periodicity , and the values
of K̃O(Sn) are given by the following table [Hat02]:

nmod 8 1 2 3 4 5 6 7 8
K̃O(Sn) Z2 Z2 0 Z 0 0 0 Z

For example, K̃O(S1) is Z2, a cyclic group of order two, and a generator
for this group is the Mőbius bundle. This has order two since the direct sum
of two copies of the Mőbius bundle is the product S1 ×R

1, as one can see by
embedding two Mőbius bands in a solid torus so that they intersect orthogo-
nally along the common core circle of both bands, which is also the core circle
of the solid torus.

The complex version of K̃O(X), called K̃(X), is constructed in the same
way as K̃O(X) but using vector bundles whose fibers are vector spaces over
C rather than R. The complex form of Bott Periodicity asserts simply that
K̃(Sn) is Z for n even and 0 for n odd, so the period is two rather than eight.

The groups K̃(X) and K̃O(X) for varying X share certain formal proper-
ties with the cohomology groups studied in classical algebraic topology. Using
a more general form of Bott periodicity, it is in fact possible to extend the
groups K̃(X) and K̃O(X) to a full cohomology theory, families of Abelian
groups K̃n(X) and K̃O

n
(X) for n ∈ Z that are periodic in n of period two

and eight, respectively. There is more algebraic structure here than just the
additive group structure, however. Tensor products of vector spaces give rise
to tensor products of vector bundles, which in turn give product operations
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in both real and complex K–theory similar to cup product in ordinary coho-
mology. Furthermore, exterior powers of vector spaces give natural operations
within K–theory [Hat02].

Tensor Fields as Sections of the Vector Bundle

A tensor–field τ ∈ Γ (F(M)) of type (p, q) (see Appendix) on a smooth
n−manifold M is a smooth section of the vector bundle

q⊗
T ∗M ⊗

p⊗
TM =

︷ ︸︸ ︷
p times

TM ⊗ ...⊗ TM ⊗

︷ ︸︸ ︷
q times

T ∗M ⊗ ...⊗ T ∗M.

The coefficients of the tensor–field τ are Ck functions on U, with p indices
up and q indices down. The classical position of indices can be explained in
modern terms as follows. If (U, φ) is a chart at a point m ∈ M with local
coordinates

(
x1, ..., xn

)
, we have the holonomous frame field

∂xi1 ⊗ ∂xi2 ⊗ ...⊗ ∂xip ⊗ dxj1 ⊗ dxj2 ...⊗ dxjq ,

for i ∈ {1, ..., n}p, j = {1, ..., n}q, over U of this tensor bundle, and for any
(p, q)−tensor–field τ we have

τ |U = τ
i1...ip

j1...jq
∂xi1 ⊗ ∂xi2 ⊗ ...⊗ ∂xip ⊗ dxj1 ⊗ dxj2 ...⊗ dxjq .

For such tensor–fields the Lie derivative along any vector–field is de-
fined, and it is a derivation (i.e., both linearity and Leibniz rules hold) with
respect to the tensor product. This natural bundle admits many natural
transformations. For example, a ‘contraction’ like the trace T ∗M ⊗ TM =
L (TM,TM) →M ×R, but applied just to one specified factor of type T ∗M
and another one of type TM, is a natural transformation. And any ‘permu-
tation of the same kind of factors’ is a natural transformation.

The tangent bundle πM : TM → M of a manifold M is a vector bundle
over M such that, given an atlas {(Uα, ϕα)} of M , TM is provided with the
holonomic atlas

Ψ = {(Uα, ϕα = Tϕα)}.
The associated linear bundle coordinates are the induced coordinates (ẋλ) at
a point m ∈M with respect to the holonomic frames {∂λ} in tangent spaces
TmM . Their transition functions read (see Appendix)

ẋ′λ =
∂x′λ

∂xµ
ẋµ.

The tangent bundle TM is a fibre bundle with the structure group
GL(dimM,R).
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The cotangent bundle of M is the dual T ∗M of TM . It is equipped with
the induced coordinates (ẋλ) at a point m ∈ M with respect to holonomic
coframes {dxλ} dual of {∂λ}. Their transition functions read

ẋ′λ =
∂x′µ

∂xλ
ẋµ.

The tensor products

(
m
⊗TX)⊗ (

k
⊗T ∗X)

of the tangent and cotangent bundles are called tensor bundles.

The Natural Vector Bundle

In this section we mainly follow [Mic01, KMS93].
A vector bundle functor or natural vector bundle is a functor F which

associates a vector bundle (F(M), πM ,M) to each n−manifoldM and a vector
bundle homomorphism

M N�
ϕ

F(M) F(N)�F(ϕ)

�

πM

�

πN

to each ϕ : M → N in M, which covers ϕ and is fiberwise a linear isomor-
phism. Two common examples of the vector bundle functor F are tangent
bundle functor T (subsection 2.2.1) and cotangent bundle functor T ∗ (sub-
section 2.2.2).

The space of all smooth sections of the vector bundle (E, πM ,M) is de-
noted by Γ (E, πM ,M). Clearly, it is a vector space with fiberwise addition
and scalar multiplication.

Let F be a vector bundle functor on M. Let M be a smooth manifold and
let X ∈ X (M) be a vector–field on M . Then the flow Ft of X for fixed t, is a
diffeomorphism defined on an open subset of M . The map

M M�
Ft

F(M) F(M)�F(Ft)

�

πM

�

πM

is then a vector bundle isomorphism, defined over an open subset of M .
We consider a tensor–field τ (2.2.3), which is a section τ ∈ Γ (F(M)) of

the vector bundle (F(M), πM ,M) and we define for t ∈ R
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F ∗
t τ = F(F−t) ◦ τ ◦ Ft,

a local section of the bundle F(M). For each pointm ∈M the value F ∗
t τ(x) ∈

F(M)m is defined, if t is small enough (depending on x). So, in the vector
space F(M)m the expression d

dt |t=0 F
∗
t τ(x) makes sense and therefore the

section
LXτ =

d

dt
|t=0 F

∗
t τ

is globally defined and is an element of Γ (F(M)). It is called the Lie derivative
of the tensor–field τ along a vector–field X ∈ X (M) (see subsection 2.4.1, for
details on Lie derivative).

In this situation we have:

1. F ∗
t F

∗
r τ = F ∗

t+rτ , whenever defined.
2. d

dtF
∗
t τ = F ∗

t LXτ = LX (F ∗
t τ), so

[LX , F
∗
t ] = LX ◦ F ∗

t − F ∗
t ◦ LX = 0, whenever defined.

3. F ∗
t τ = τ for all relevant t iff LXτ = 0.

Let F1 and F2 be two vector bundle functors on M. Then the (fiberwise)
tensor product (F1 ⊗F2) (M) = F1(M) ⊗ F2(M) is again a vector bundle
functor and for τ i ∈ Γ (Fi(M)) with i = 1, 2, there is a section τ1 ⊗ τ2 ∈
Γ (F1 ⊗F2) (M), given by the pointwise tensor product.

Also in this situation, for X ∈ X (M) we have

LX (τ1 ⊗ τ2) = LX τ1 ⊗ τ2 + τ1 ⊗ LX τ2.

In particular, for f ∈ Ck(M,R) we have LX (f τ) = df(X) τ + f LX τ .
For any vector bundle functor F on M and X,Y ∈ X (M) we have:

[LX ,LY ] = LX ◦ LY − LY ◦ LX = L[X,Y ] : Γ (F(M)) → Γ (F(M)) .

The Pull–Back and Push–Forward

In this subsection we define two important operations, following [AMR88],
which will be used in the further text.

Let ϕ : M → N be a Ck map of manifolds and f ∈ Ck(N,R). Define the
pull–back of f by ϕ by

ϕ∗f = f ◦ ϕ ∈ Ck(M,R).

If f is a Ck diffeomorphism and X ∈ X k(M), the push–forward of X by
ϕ is defined by

ϕ∗X = Tϕ ◦X ◦ ϕ−1 ∈ X k(N).

If xi are local coordinates on M and yj local coordinates on N , the pre-
ceding formula gives the components of ϕ∗X by

(ϕ∗X)j(y) =
∂ϕj

∂xi
(x)Xi(x), where y = ϕ(x).
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We can interchange pull–back and push–forward by changing ϕ to ϕ−1,
that is, defining ϕ∗ (resp. ϕ∗) by ϕ∗ = (ϕ−1)∗ (resp. ϕ∗ = (ϕ−1)∗). Thus the
push–forward of a function f on M is ϕ∗f = f ◦ ϕ−1 and the pull–back of a
vector–field Y on N is ϕ∗Y = (Tϕ)−1 ◦ Y ◦ ϕ.

Notice that ϕ must be a diffeomorphism in order that the pull–back and
push–forward operations make sense, the only exception being pull–back of
functions. Thus vector–fields can only be pulled back and pushed forward by
diffeomorphisms. However, even when ϕ is not a diffeomorphism we can talk
about ϕ−related vector–fields as follows.

Let ϕ : M → N be a Ck map of manifolds. The vector–fields X ∈
X k−1(M) and Y∈ X k−1(N) are called ϕ−related, denoted X ∼ϕ Y , if
Tϕ ◦X = Y ◦ ϕ.

Note that if ϕ is diffeomorphism and X and Y are ϕ−related, then Y =
ϕ∗X. In general however, X can be ϕ−related to more than one vector–field
on N . ϕ−relatedness means that the following diagram commutes:

M N�
ϕ

TM TN�Tϕ

	
X

	
Y

The behavior of flows under these operations is as follows: Let ϕ : M → N
be a Ck−map of manifolds, X ∈ X k(M) and Y ∈ X k(N). Let Ft and Gt

denote the flows of X and Y respectively. Then X ∼ϕ Y iff ϕ ◦ Ft = Gt ◦ ϕ.
In particular, if ϕ is a diffeomorphism, then the equality Y = ϕ∗X holds iff
the flow of Y is ϕ ◦ Ft ◦ ϕ−1 (This is called the push–forward of Ft by ϕ
since it is the natural way to construct a diffeomorphism on N out of one on
M). In particular, (Ft)∗X = X. Therefore, the flow of the push–forward of a
vector–field is the push–forward of its flow.

2.2.4 Jet Bundles

Roughly speaking, two maps f, g : M → N are said to determine the same
r−jet at x ∈M , if they have the rth order contact at x [KMS93]. To make this
idea precise, we first define the rth order contact of two curves on a manifold.
We recall that a smooth function R → R is said to vanish to rth order at
a point, if all its derivatives up to order r vanish at this point. Two curves
γ, δ : R →M have the rth contact at zero, if for every smooth function ϕ on
M the difference ϕ ◦ γ − ϕ ◦ δ vanishes to rth order at 0 ∈ R. In this case
we write γ ∼r δ. Clearly, ∼ris an equivalence relation. For r = 0 this relation
means γ(0) = δ(0). If γ ∼r δ, then f ◦ γ ∼r f ◦ δ for every map f : M → N .

Two maps f, g : M → N are said to determine the same rjet at x ∈ M ,
if for every curve γ : R → M with γ(0) = x the curves f and g have the rth
order contact at zero. In such a case we write jrxf = jrxg or jrf(x) = jrg(x).



78 2 Geometric Basis of Human–Like Biomechanics

An equivalence class of this relation is called an rjet of M into N. The set
of all rjets of M into N is denoted by Jr(M,N). For X = jrxf ∈ Jr(M,N),
the point x = αX is the source of X and the point f(x) = βX is the target
of X. We denote by πr

s, 0 ≤ s ≤ r, the projection jrxf �→ jsxf of rjets into
sjets. By Jr

x(M,N) or Jr(M,N)y we mean the set of all rjets of M into N
with source x ∈ M or target y ∈ N , respectively, and we write Jr

x(M,N)y =
Jr

x(M,N) ∩ Jr(M,N)y. The map jrf : M → Jr(M,N) is called the rth jet
prolongation of f : M → N [KMS93].

Since the composition of maps is associative, the same holds for rjets.
Hence all rjets form a category J , the units of which are the rjets of the
identity maps of manifolds. Then also Jr is a jet bifunctor defined on the
product category Mn ×M, with the values in the category of fibre bundles
FB i.e., Jr : Mn ×M→ FB.

Next, we are going to describe the coordinate expression of r−jets. By

Dαf =
∂|α|f

(∂x1)α1 ...(∂xm)αm
,

where α = (α1, ..., αm) a multiindex of range m, we denote the partial deriva-
tive with respect to the multiindex α of a function f : U ⊂ R

m → R. Given a
local coordinate system xi onM in a neighborhood of x and a local coordinate
system yp on N in a neighborhood of f(x), two maps f, g : M → N satisfy
jrxf = jrxg iff all the partial derivatives up to order r of the components fp and
gp of their coordinate expressions coincide at x [KMS93]. If we have the curves
xi = ait with arbitrary ai, then the coordinate condition for f ◦ γ ∼r g ◦ γ
reads (Dαf

p(x))aα = (Dαg
p(x))aα.

Now, the auxiliary relation γ ∼r δ can be expressed in terms of r−jets,
namely two curves γ, δ : R →M satisfy γ ∼r δ iff jr0γ = jr0δ.

The elements of Lr
m,n = Jr

0 (Rm,Rn) can be identified with the rth order
Taylor expansions of the generating maps, i.e., with the ntuples of polynomials
of degree r in m variables without absolute term. Such an expression ap

αx
α

is called the polynomial representative of an rjet. Hence Lr
m,n is a numerical

space of the variables ap
α. dimLr

m,n = n

[(
m+ r
m

)

− 1
]

.

The projection πr
s : Lr

m,n → Ls
m,n consists in suppressing all terms of

degree > s. The jet composition Lr
m,n × Lr

n,q → Lr
m,q,also called truncated

polynomial composition, is evaluated by taking the composition of the poly-
nomial representatives and suppressing all terms of degree higher than r. The
sets Lr

m,n represent the sets of morphisms of a category Lr over non–negative
integers, the composition in which is the jet composition. The set of all in-
vertible elements of Lr

m,m with the jet composition is a Lie group Gr
m called

the rth differential group or the rth jet group in dimension m. For r = 1 the
group G1

m is identified with the general linear group GL(m,R) [KMS93]
The elements of the manifold T r

kM = Jr
0 (Rk,M) are said to be the

k−dimensional velocities of order r on M , in short (k, r)−velocities. The
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inclusion T r
kM ⊂ Jr(Rm,M) defines the structure of a smooth fibre bun-

dle on T r
kM → M . Every smooth map f : M → N is extended into an

FB−morphism T r
k f : T r

kM → T r
kN defined by T r

k f(j
r
0g) = jr0(f ◦ g). Hence

T r
k is a functor M → FB. Since every map R

k → M1 ×M2 coincides with
a pair of maps R

k → M1 and R
k → M2, functor T r

k preserves products. For
k = r = 1 we get another definition of the tangent functor T = T 1

1 [KMS93].
Analogously, the space T r∗

k M = Jr(M,Rk)0 is called the space of all
(k, r)−co-velocities on M . For k = 1 we write in short T r∗

k = T r∗. Since R
k

is a vector space, T r∗
k M → M is a vector bundle with jrxϕ(u) + jrxψ(u) =

jrx (ϕ(u) + ψ(u)) , u ∈ M , and kjrxϕ(u) = jrxkϕ(u), k ∈ R. Every local
diffeomorphism f : M → N is extended to a vector bundle morphism
T r∗

k f : T r∗
k M → T r∗

k N, j
r
xϕ �→ jrf(x)(ϕ◦f−1), where f−1 is constructed locally.

In this sense T r∗
k is a functor on Mn. For k = r = 1 we get the construction

of the cotangent bundles as a functor T 1∗
1 = T ∗ on Mn.

The projection πr
r−1 : T r∗M → T r−1∗M is a linear morphism of vec-

tor bundles. Its kernel is described by the following exact sequence of vector
bundles over M

0 → SrT ∗M → T r∗M
πr

r−1→ T r−1∗M → 0,

where Sr indicates the rth symmetric tensor power [KMS93].
Let ŷ denote the constant map ofM into y ∈ N . The subspace

(
πr

r−1

)−1 (jrxŷ)
⊂ Jr

x(M,N)y is canonically identified with TyN⊗SrT ∗
xM. For r = 1 we have a

distinguished element j1xŷ in every fibre of J1(M,N) →M×N . This identifies
J1(M,N) with TN ⊗ T ∗M [KMS93].

2.3 Sections of Biomechanical Bundles

In this section we introduce sections of biomechanical bundles, including vec-
tor (and tensor) fields and their flows, as well as exterior differential forms.

2.3.1 Biomechanical Evolution and Flow

As a motivational example, consider a biomechanical system that is capable
of assuming various states described by points in a set U . For example, U
might be R

3 ×R
3 and a state might be the positions and momenta (xi, pi) of

a particle moving under the influence of the central force field, with i = 1, 2, 3.
As time passes, the state evolves. If the state is γ0 ∈ U at time s and this
changes to γ at a later time t, we set

Ft,s(γ0) = γ,

and call Ft,s the evolution operator ; it maps a state at time s to what the
state would be at time t; that is, after time t − s. has elapsed. Determinism
is expressed by the Chapman–Kolmogorov law [AMR88]:
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Fτ,t ◦ Ft,s = Fτ,s, Ft,t = identity. (2.2)

The evolution laws are called time independent, or autonomous, when Ft,s

depends only on t− s. In this case the preceding law (2.2) becomes the group
property :

Ft ◦ Fs = Ft+s, F0 = identity. (2.3)

We call such an Ft a flow and Ft,s a time–dependent flow , or an evolution
operator. If the system is irreversible, that is, defined only for t ≥ s, we speak
of a semi–flow [AMR88].

Usually, instead of Ft,s the laws of motion are given in the form of ODEs
that we must solve to find the flow. These equations of motion have the form:

γ̇ = X(γ), γ(0) = γ0,

where X is a (possibly time–dependent) vector–field on U .
As a continuation of the previous example, consider the motion of a par-

ticle of mass m under the influence of the central force field (like gravity, or
Coulombic potential) F i (i = 1, 2, 3), described by the Newtonian equation of
motion:

mẍi = F i(x). (2.4)

By introducing momenta pi = mẋi, equation (6.13) splits into two Hamilto-
nian equations:

ẋi = pi/m, ṗi = Fi(x). (2.5)

Note that in Euclidean space we can freely interchange subscripts and super-
scripts. However, in general case of a Riemannian manifold, pi = mgij ẋ

j and
(2.5) properly reads

ẋi = gijpj/m, ṗi = Fi(x). (2.6)

The phase–space here is the Riemannian manifold (R3\{0})×R
3, that is, the

cotangent bundle of R
3\{0}, which is itself the manifold for the central force

field. The r.h.s of equations (2.6) define a Hamiltonian vector–field on this 6D
manifold by

X(x, p) =
(
(xi, pi), (pi/m,Fi(x))

)
. (2.7)

Integration of equations (2.6) produces trajectories (in this particular case,
planar conic sections ). These trajectories comprise the flow Ft of the vector–
field X(x, p) defined in (2.7).

2.3.2 Vector–Fields and Their Flows

Vector–Fields on M

A vector–field X on U, where U is an open chart in n−manifold M , is a
smooth function from U to M assigning to each point m ∈ U a vector at that
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point, i.e., X(m) = (m,X(m)). If X(m) is tangent to M for each m ∈M , X
is said to be a tangent vector–field on M . If X(m) is orthogonal to M (i.e.,
X(p) ∈ M⊥

m) for each X(m) ∈ M , X is said to be a normal vector–field on
M .

In other words, let M be a Ck−manifold. A Ck−vector–field on M is a
Ck−section of the tangent bundle TM of M . Thus a vector–field X on a
manifold M is a Ck−map X : M → TM such that X(m) ∈ TmM for all
points m ∈ M,and πM ◦X = IdM . Therefore, a vector–field assigns to each
point m of M a vector based (i.e., bound) at that point. The set of all Ck

vector–fields on M is denoted by X k(M).
A vector–field X ∈ X k(M) represents a field of direction indicators

[Thi79]: to every point m of M it assigns a vector in the tangent space TmM
at that point. If X is a vector–field on M and (U, φ) is a chart on M and
m ∈ U , then we have X(m) = X(m)φi ∂

∂φi . Following [KMS93], we write

X|U = X φi ∂
∂φi .

Let M be a connected n−manifold, and let f : U → R (U an open set
in M) and c ∈ R be such that M = f−1(c) (i.e., M is the level set of the
function f at height c) and ∇f(m) �= 0 for all m ∈ M . Then there exist on
M exactly two smooth unit normal vector–fields N1,2(m) = ± ∇f(m)

|∇f(m)| (here
|X| = (X ·X)1/2 denotes the norm or length of a vector X, and (·) denotes
the scalar product on M) for all m ∈M , called orientations on M .

Let ϕ : M → N be a smooth map. Recall that two vector–fields X ∈
X k(M) and Y ∈ X (N) are called ϕ−related, if Tϕ ◦X = Y ◦ ϕ holds, i.e., if
the following diagram commutes:

M N�
ϕ

TM TN�Tϕ

	
X

	
Y

In particular, a diffeomorphism ϕ : M → N induces a linear map between
vector–fields on two manifolds, ϕ∗ : X k(M) → X (N), such that ϕ∗X =
Tϕ ◦X ◦ ϕ−1 : N → TN , i.e., the following diagram commutes:

M N�
ϕ

TM TN�Tϕ

	
X

	
ϕ∗X

The correspondences M → TM and ϕ → Tϕ obviously define a functor
T : M ⇒ M from the category of smooth manifolds to itself. T is another
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special case of the vector bundle functor (2.2.3), and closely related to the
tangent bundle functor (2.2.1).

A Ck time–dependent vector–field is a Ck−map X : R ×M → TM such
that X(t,m) ∈ TmM for all (t,m) ∈ R×M, i.e., Xt(m) = X(t,m).

Integral Curves as Biomechanical Trajectories

Recall (2.2.1) that a curve γ at a point m of an n−manifold M is a C0−map
from an open interval I of R into M such that 0 ∈ I and γ(0) = m. For
such a curve we may assign a tangent vector at each point γ(t), t ∈ I, by
γ̇(t) = Ttγ(1).

Let X be a smooth tangent vector–field on the smooth n−manifold M ,
and let m ∈M . Then there exists an open interval I ⊂ R containing 0 and a
parameterized curve γ : I →M such that:

1. γ(0) = m;
2. γ̇(t) = X(γ(t)) for all t ∈ I; and
3. If β : Ĩ → M is any other parameterized curve in M satisfying (1) and

(2), then Ĩ ⊂ I and β(t) = γ(t) for all t ∈ Ĩ.
A parameterized curve γ : I →M satisfying condition (2) is called an integral
curve of the tangent vector–fieldX. The unique γ satisfying conditions (1)–(3)
is the maximal integral curve of X through m ∈M .

In other words, let γ : I → M, t �→ γ (t) be a smooth curve in a manifold
M defined on an interval I ⊆ R. γ̇(t) = d

dtγ(t) defines a smooth vector–field
along γ since we have πM ◦ γ̇ = γ. Curve γ is called an integral curve or flow
line of a vector–field X ∈ X k(M) if the tangent vector determined by γ equals
X at every point m ∈M , i.e.,

γ̇ = X ◦ γ,

or, if the following diagram commutes:

I M�
γ

TI TM�Tu

	

1

	

X

;

γ̇

�
�

�
�

��

On a chart (U, φ) with coordinates φ(m) =
(
x1(m), ..., xn(m)

)
, for which

ϕ ◦ γ : t �→ γi (t) and Tϕ ◦X ◦ ϕ−1 : xi �→
(
xi, Xi (m)

)
, this is written

γ̇i(t) = Xi (γ (t)) , for all t ∈ I ⊆ R, (2.8)

which is an ordinary differential equation of first order in n dimensions.
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The velocity γ̇ of the parameterized curve γ (t) is a vector–field along γ
defined by

γ̇(t) = (γ(t), ẋ1(t), . . . ẋn(t)).

Its length |γ̇| : I → R, defined by |γ̇|(t) = |γ̇(t)| for all t ∈ I, is a function
along α. |γ̇| is called speed of γ [Arn89].

Each vector–field X along γ is of the form X(t) = (γ(t), X1(t), . . . , Xn(t)),
where each component Xi is a function along γ. X is smooth if each Xi : I →
M is smooth. The derivative of a smooth vector–field X along a curve γ(t) is
the vector–field Ẋ along γ defined by

Ẋ(t) = (γ(t), Ẋ1(t), . . . Ẋn(t)).

Ẋ(t) measures the rate of change of the vector part (X1(t), . . . Xn(t)) of
X(t) along γ. Thus, the acceleration γ̈(t) of a parameterized curve γ(t) is the
vector–field along γ obtained by differentiating the velocity field γ̇(t).

Differentiation of vector–fields along parameterized curves has the follow-
ing properties. For X and Y smooth vector–fields on M along the parameter-
ized curve γ : I →M and f a smooth function along γ, we have:

1. d
dt (X + Y ) = Ẋ + Ẏ ;

2. d
dt (fX) = ḟX + fẊ; and

3. d
dt (X · Y ) = ẊY +XẎ .

A geodesic in M is a parameterized curve γ : I →M whose acceleration γ̈
is everywhere orthogonal to M ; that is, γ̈(t) ∈ M⊥

α(t) for all t ∈ I ⊂ R. Thus
a geodesic is a curve in M which always goes ‘straight ahead’ in the surface.
Its acceleration serves only to keep it in the surface. It has no component of
acceleration tangent to the surface. Therefore, it also has a constant speed
γ̇(t).

Let v ∈ Mm be a vector on M . Then there exists an open interval I ⊂ R

containing 0 and a geodesic γ : I →M such that:

1. γ(0) = m and γ̇(0) = v; and
2. If β : Ĩ → M is any other geodesic in M with β(0) = m and β̇(0) = v,

then Ĩ ⊂ I and β(t) = γ(t) for all t ∈ Ĩ.
The geodesic γ is now called the maximal geodesic in M passing through m
with initial velocity v.

By definition, a parameterized curve γ : I → M is a geodesic of M iff its
acceleration is everywhere perpendicular to M , i.e., iff γ̈(t) is a multiple of the
orientation N(γ(t)) for all t ∈ I, i.e., γ̈(t) = g(t)N(γ(t)), where g : I → R.
Taking the scalar product of both sides of this equation with N(γ(t)) we find
g = −γ̇Ṅ(γ(t)). Thus γ : I → M is geodesic iff it satisfies the differential
equation

γ̈(t) + Ṅ(γ(t))N(γ(t)) = 0.

This vector equation represents the system of second order component ODEs
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ẍi +Ni(x+ 1, . . . , xn)
∂Nj

∂xk
(x+ 1, . . . , xn) ẋj ẋk = 0.

The substitution ui = ẋi reduces this second order differential system (in n
variables xi) to the first order differential system

ẋi = ui, u̇i = −Ni(x+ 1, . . . , xn)
∂Nj

∂xk
(x+ 1, . . . , xn) ẋj ẋk

(in 2n variables xi and ui). This first order system is just the differential
equation for the integral curves of the vector–field X in U ×R (U open chart
in M), in which case X is called a geodesic spray .

Now, when an integral curve γ(t) is the path a biomechanical system Ξ
follows, i.e., the solution of the equations of motion, it is called a trajectory .
In this case the parameter t represents time, so that (2.8) describes motion of
the system Ξ on its configuration manifold M .

If Xi (m) is C0 the existence of a local solution is guaranteed, and a Lips-
chitz condition would imply that it is unique. Therefore, exactly one integral
curve passes through every point, and different integral curves can never cross.
As X ∈ X k(M) is Ck, the following statement about the solution with arbi-
trary initial conditions holds [Thi79, Arn89]:

Theorem. Given a vector–field X ∈ X (M), for all points p ∈ M , there
exist η > 0, a neighborhood V of p, and a function γ : (−η, η) × V → M ,(
t, xi (0)

)
�→ γ

(
t, xi (0)

)
such that

γ̇ = X ◦ γ, γ
(
0, xi (0)

)
= xi (0) for all xi (0) ∈ V ⊆M.

For all |t| < η, the map xi (0) �→ γ
(
t, xi (0)

)
is a diffeomorphism fX

t between
V and some open set of M . For proof, see [Die69], I, 10.7.4 and 10.8.

This theorem states that trajectories that are near neighbors cannot sud-
denly be separated. There is a well–known estimate (see [Die69], I, 10.5) ac-
cording to which points cannot diverge faster than exponentially in time if
the derivative of X is uniformly bounded.

An integral curve γ (t) is said to be maximal if it is not a restriction
of an integral curve defined on a larger interval I ⊆ R. It follows from the
existence and uniqueness theorems for ODEs with smooth r.h.s and from
elementary properties of Hausdorff spaces that for any point m ∈ M there
exists a maximal integral curve γm of X, passing for t = 0 through point m,
i.e., γ(0) = m.

Theorem (Local Existence, Uniqueness, and Smoothness) [AMR88]. Let
E be a Banach space, U ⊂ E be open, and suppose X : U ⊂ E → E is of
class Ck, k ≥ 1. Then

1. For each x0 ∈ U , there is a curve γ : I → U at x0 such that γ̇(t) =
X (γ(t)) for all t ∈ I.

2. Any two such curves are equal on the intersection of their domains.
3. There is a neighborhood U0 of the point x0 ∈ U , a real number a > 0,

and a Ck map F : U0 × I → E, where I is the open interval ] − a, a[ , such
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that the curve γu : I → E, defined by γu(t) = F (u, t) is a curve at u ∈ E
satisfying the ODEs γ̇u(t) = X (γu(t)) for all t ∈ I.

Proposition (Global Uniqueness). Suppose γ1 and γ2 are two integral
curves of a vector–field X at a pointm ∈M . Then γ1 = γ2 on the intersection
of their domains [AMR88].

If for every point m ∈ M the curve γm is defined on the entire real axis
R, then the vector–field X is said to be complete.

The support of a vector–field X defined on a manifold M is defined to be
the closure of the set {m ∈ M |X(m) = 0}. A Ck vector–field with compact
support on a manifold M is complete. In particular, a Ck vector–field on
a compact manifold is complete. Completeness corresponds to well–defined
dynamics persisting eternally.

Now, following [AMR88], for the derivative of a Ck function f : E → R in
the direction X we use the notation X[f ] = df ·X , where df stands for the
derivative map. In standard coordinates on R

n this is a standard gradient

df(x) = ∇f = (∂x1f, ..., ∂xnf), and X[f ] = Xi∂xif.

Let Ft be the flow of X. Then f (Ft(x)) = f (Fs(x)) if t ≥ s.
For example, Newtonian equations for a moving particle of mass m in a

potential field V in R
n are given by q̈i(t) = −(1/m)∇V

(
qi(t)

)
, for a smooth

function V : R
n → R. If there are constants a, b ∈ R, b ≥ 0 such that

(1/m)V (qi) ≥ a − b
∥
∥qi
∥
∥2
, then every solution exists for all time. To show

this, rewrite the second order equations as a first order system q̇i = (1/m) pi,
ṗi = −V (qi) and note that the energy E(qi, pi) = (1/2m) ‖ pi‖2 + V (q) is
a first integral of the motion. Thus, for any solution

(
qi(t), pi(t)

)
we have

E
(
qi(t), pi(t)

)
= E

(
qi(0), pi(0)

)
= V (q(0)).

Let Xt be a Ck time–dependent vector–field on an n−manifold M , k ≥ 1,
and let m0 be an equilibrium of Xt, that is, Xt(m0) = 0 for all t. Then for
any T there exists a neighborhood V of m0 such that any m ∈ V has integral
curve existing for time t ∈ [−T, T ].

Biomechanical Flows on M

Recall (2.3.1) that the flow Ft of a Ck vector–field X ∈ X k(M) is the one–
parameter group of diffeomorphisms Ft : M →M such that t �→ Ft (m) is the
integral curve of X with initial condition m for all m ∈ M and t ∈ I ⊆ R.
The flow Ft(m) is Ck by induction on k. It is defined as [AMR88]:

d

dt
Ft(x) = X(Ft(x)).

Existence and uniqueness theorems for ODEs guarantee that Ft is smooth
in m and t. From uniqueness, we get the flow property :

Ft+s = Ft ◦ Fs
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along with the initial conditions F0 = identity. The flow property generalizes
the situation where M = V is a linear space, X(x) = Ax for a (bounded)
linear operator A, and where Ft(x) = etAx – to the nonlinear case. Therefore,
the flow Ft(m) can be defined as a formal exponential

Ft(m) = exp(tX) = (I + tX +
t2

2
X2 + ...) =

∞∑

k=0

Xktk

k!
.

A time–dependent vector–field is a map X : M × R →TM such that
X(m, t) ∈ TmM for each point m ∈ M and t ∈ R. An integral curve of
X is a curve γ(t) in M such that

γ̇(t) = X (γ (t) , t) , for all t ∈ I ⊆ R.

In this case, the flow is the one–parameter group of diffeomorphisms Ft,s :
M →M such that t �→ Ft,s (m) is the integral curve γ(t) with initial condition
γ(s) = m at t = s. Again, the existence and uniqueness theorem from ODE–
theory applies here, and in particular, uniqueness gives the time–dependent
flow property, i.e., the Chapman–Kolmogorov law

Ft,r = Ft,s ◦ Fs,r.

If X happens to be time independent, the two notions of flows are related by
Ft,s = Ft−s (see [MR99]).

Categories of ODEs

Ordinary differential equations are naturally organized into their categories
(see [Koc81]). First order ODEs are organized into a category ODE1. A first
order ODE on a manifold–like object M is a vector–field X : M → TM , and
a morphism of vector–fields (M1, X1) → (M2, X2) is a map f : M1 → M2

such that the following diagram commutes

M1 M2
�

f

TM1 TM2
�Tf

	
X1

	
X2

A global solution of the differential equation (M,X), or a flow line of a vector–
field X, is a morphism from

(
R, ∂

∂x

)
to (M,X).

Similarly, second order ODEs are organized into a category ODE2. A
second order ODE on M is usually constructed as a vector–field on TM,
ξ : TM → TTM, and a morphism of vector–fields (M1, ξ1) → (M2, ξ2) is a
map f : M1 →M2 such that the following diagram commutes
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TM1 TM2
�

Tf

TTM1 TTM2
�TTf

	
ξ1

	
ξ2

Unlike solutions for first order ODEs, solutions for second order ODEs are not
in general homomorphisms from R, unless the second order ODE is a spray
[KR03].

2.3.3 Differential Forms on M

We are already familiar with the basic facts of exterior differential forms (see
Introduction). To give a more precise exposition, here we start with 1−forms,
which are dual to vector–fields, and after that introduce general k−forms.

1−Forms on M

Dual to the notion of a Ck vector–field X on an n−manifold M is a Ck

covector–field , or a Ck 1−form α, which is defined as a Ck−section of the
cotangent bundle T ∗M , i.e., α : M → T ∗M is smooth and π∗M ◦ X = IdM .
We denote the set of all Ck 1−forms by Ω1(M). A basic example of a 1−form
is the differential df of a real–valued function f ∈ Ck(M,R). With point wise
addition and scalar multiplication Ω1(M) becomes a vector space.

In other words, a Ck 1−form α on a Ck manifold M is a real–valued
function on the set of all tangent vectors to M , i.e., α : TM → R with the
following properties:

1. α is linear on the tangent space TmM for each m ∈M ;
2. For any Ck vector–field X ∈ X k(M), the function f : M → R is Ck.

Given a 1−form α, for each point m ∈ M the map α(m) : TmM → R is
an element of the dual space T ∗

mM. Therefore, the space of 1−forms Ω1(M)
is dual to the space of vector–fields X k(M).

In particular, the coordinate 1−forms dx1, ..., dxn are locally defined at any
point m ∈ M by the property that for any vector–field X =

(
X1, ..., Xn

)
∈

X k(M),
dxi(X) = Xi.

The dxi’s form a basis for the 1−forms at any point m ∈ M , with local
coordinates

(
x1, ..., xn

)
, so any other 1−form α may be expressed in the form

α = fi(m) dxi.

If a vector–field X on M has the form X(m) =
(
X1(m), ..., Xn(m)

)
, then

at any point m ∈M,
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αm(X) = fi(m)Xi(m),

where f ∈ Ck(M,R).
The 1−forms on M are part of an algebra, called the exterior algebra, or

Grassmann algebra on M . The multiplication ∧ in this algebra is called wedge
product (see (2.9) below), and it is skew–symmetric,

dxi ∧ dxj = −dxj ∧ dxi.

One consequence of this is that dxi ∧ dxi = 0.

k−Forms on M

A differential form, or an exterior form α of degree k, or a k−form for short, is
a section of the vector bundle ΛkT ∗M , i.e., α : M → ΛkT ∗M . In other words,
α(m) : TmM× ...×TmM → R (with k factors TmM) is a function that assigns
to each point m ∈ M a skew–symmetric k−multilinear map on the tangent
space TmM to M at m. Without the skew–symmetry assumption, α would be
called a (0, k)−tensor–field. The space of all k−forms is denoted by Ωk(M).
It may also be viewed as the space of all skew symmetric (0, k)−tensor–fields,
the space of all maps

Φ : X k(M)× ...×X k(M) → Ck(M,R),

which are k−linear and skew–symmetric (see (2.9) below). We put Ωk(M) =
Ck(M,R).

In particular, a 2−form ω on an n−manifold M is a section of the vector
bundle Λ2T ∗M. If (U, φ) is a chart at a point m ∈ M with local coordinates(
x1, ..., xn

)
let {e1, ..., en} = {∂x1 , ..., ∂xn} – be the corresponding basis for

TmM , and let
{
e1, ..., en

}
=
{
dx1, ..., dxn

}
– be the dual basis for T ∗

mM .
Then at each point m ∈M , we can write a 2−form ω as

ωm(v, u) = ωij(m) viuj , where ωij(m) = ωm(∂xi , ∂xj ).

If each summand of a differential form α ∈ Ωk(M) contains k basis
1−forms dxi’s, the form is called a k−form. Functions f ∈ Ck(M,R) are con-
sidered to be 0−forms, and any form on an n−manifold M of degree k > n
must be zero due to the skew–symmetry.

Any k−form α ∈ Ωk(M) may be expressed in the form

α = fI dx
i1 ∧ ... ∧ dxik = fI dx

I ,

where I is a multiindex I = (i1, ..., ik) of length k, and ∧ is the wedge product
which is associative, bilinear and anticommutative.

Just as 1−forms act on vector–fields to give real–valued functions, so
k−forms act on k−tuples of vector–fields to give real–valued functions.
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The wedge product of two differential forms, a k−form α ∈ Ωk(M) and an
l−form β ∈ Ωl(M) is a (k + l)−form α ∧ β defined as:

α ∧ β =
(k + l)!
k!l!

A(α⊗ β), (2.9)

whereA :Ωk(M)→Ωk(M),Aτ(e1, ..., ek) = 1
k!

∑
σ∈Sk

(signσ) τ(eσ(1), ..., eσ(k)),
where Sk is the permutation group on k elements consisting of all bijections
σ : {1, ..., k} → {1, ..., k}.

For any k− form α ∈ Ωk(M) and l−form β ∈ Ωl(M), the wedge product
is defined fiberwise, i.e., (α ∧ β)m = αx ∧ βm for each point m ∈ M . It is
also associative, i.e., (α ∧ β) ∧ γ = α ∧ (β ∧ γ), and graded commutative,
i.e., α ∧ β = (−1)klβ ∧ α. These properties are proved in multilinear algebra.
So M =⇒ Ωk(M) is a contravariant functor from the category M into the
category of real graded commutative algebras [KMS93].

Let M be an n−manifold, X ∈ X k(M), and α ∈ Ωk+1(M). The interior
product , or contraction, iXα = X�α ∈ Ωk(M) of X and α (with insertion
operator iX) is defined as

iXα(X1, ..., Xk) = α(X,X1, ..., Xk).

Insertion operator iX of a vector–field X ∈ X k(M) is natural with respect
to the pull–back F ∗ of a diffeomorphism F : M → N between two manifolds,
i.e., the following diagram commutes:

Ωk−1(N) Ωk−1(M)�
F ∗

Ωk(N) Ωk(M)�F ∗

�

iX

�

iF∗X

Similarly, insertion operator iX of a vector–field X ∈ Yk(M) is natural
with respect to the push–forward F∗ of a diffeomorphism F : M → N , i.e.,
the following diagram commutes:

Ωk−1(M) Ωk−1(N)�
F∗

Ωk(M) Ωk(N)�F∗

�

iY

�

iF∗Y

In case of Riemannian manifolds there is another exterior operation. Let
M be a smooth n−manifold with Riemannian metric g = 〈, 〉 and the corre-
sponding volume element µ (see section 2.5 below). The Hodge star operator
∗ : Ωk(M) → Ωn−k(M) on M is defined as (see Introduction)
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α ∧ ∗β = 〈α, β〉µ for α, β ∈ Ωk(M).

The Hodge star operator satisfies the following properties for α, β ∈ Ωk(M)
[AMR88]:

1. α ∧ ∗β = 〈α, β〉µ = β ∧ ∗α;
2. ∗1 = µ, ∗µ = (−1)Ind(g);
3. ∗ ∗ α = (−1)Ind(g)(−1)k(n−k)α;
4. 〈α, β〉 = (−1)Ind(g) 〈∗α, ∗β〉, where Ind(g) is the index of the metric g.

Exterior Differential Systems

Here we give an informal introduction to exterior differential systems (EDS,
for short), which are expressions involving differential forms related to any
manifold M . Later, when we fully develop the necessary differential geometric
as well as variational machinery (see (3.3.6) below), we will give a more precise
definition of EDS.

Central in the language of EDS is the notion of coframing , which is a
real finite–dimensional smooth manifold M with a given global cobasis and
coordinates, but without requirement for a proper topological and differential
structures. For example, M = R

3 is a coframing with cobasis {dx, dy, dz} and
coordinates {x, y, z}. In addition to the cobasis and coordinates, a coframing
can be given structure equations (2.5.2) and restrictions. For example, M =
R

2\{0} is a coframing with cobasis {e1, e2}, a single coordinate {r}, structure
equations {dr = e1, de1 = 0, de2 = e1 ∧ e2/r} and restrictions {r �= 0}.

A system S on M in EDS terminology is a list of expressions including
differential forms (e.g., S = {dz − ydx}).

Now, a simple EDS is a triple (S,Ω,M), where S is a system on M , and
Ω is an independence condition: either a decomposable k−form or a system
of k−forms on M . An EDS is a list of simple EDS objects where the various
coframings are all disjoint.

An integral element of an exterior system (S,Ω,M) is a subspace P ⊂
TmM of the tangent space at some point m ∈ M such that all forms in S
vanish when evaluated on vectors from P . Alternatively, an integral element
P ⊂ TmM can be represented by its annihilator P⊥ ⊂ T ∗

mM , comprising
those 1−forms at m which annul every vector in P . For example, with M =
R

3 = {(x, y, z)}, S = {dx ∧ dz} and Ω = {dx, dz}, the integral element
P = {∂x + ∂z, ∂y} is equally determined by its annihilator P⊥ = {dz − dx}.
Again, for S = {dz−ydx} and Ω = {dx}, the integral element P = {∂x+y∂z}
can be specified simply as {dy}.

Distributions and Nonholonomic Geometry

Let TM = ∪x∈MTxM , be the tangent bundle of a smooth nD biomechanical
manifold M . A sub–bundle V = ∪x∈MVx, where Vx is a vector subspace of
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TxM , smoothly dependent on points x ∈ M , is called the distribution. If the
manifold M is connected, dimVx is called the dimension of the distribution.
A vector–field X on M belongs to the distribution V if X(x) ⊂ Vx. A curve
γ is admissible relatively to V , if the vector–field γ̇ belongs to V . A differen-
tial system is a linear space of vector–fields having a structure of C∞(M) –
module. Vector–fields which belong to the distribution V form a differential
system N(V ). A kD distribution V is integrable if the manifold M is foliated
to kD sub-manifolds, having Vx as the tangent space at the point x. Accord-
ing to the Frobenius theorem, V is integrable iff the corresponding differential
system N(V ) is involutive, i.e., if it is a Lie sub–algebra of the Lie algebra
of vector–fields on M . The flag of a differential system N is a sequence of
differential systems: N0 = N, N1 = [N,N ], . . . , Nl = [Nl−1, N ], . . . .

The differential systems Ni are not always differential systems of some
distributions Vi, but if for every i, there exists Vi, such that Ni = N(Vi), then
there exists a flag of the distribution V : V = V0 ⊂ V1 . . . . Such distributions,
which have flags, will be called regular. It is clear that the sequence N(Vi) is
going to stabilize, and there exists a number r such that N(Vr−1) ⊂ N(Vr) =
N(Vr+1). If there exists a number r such that Vr = TM , the distribution
V is called completely nonholonomic, and minimal such r is the degree of
nonholonomicity of the distribution V .

Now, let us see the mechanical interpretation of these geometric objects.
Consider a nonholonomic mechanical system corresponding to a Riemannian
manifold (M, g), where g is a metric defined by the system’s kinetic energy
[DG03]. Suppose that the distribution V is defined by (n−m) one–forms ωα;
in local coordinates q = (q1, ..., qn) on M

ωρ(q)(q̇) = aρi(q) q̇i = 0, (ρ = m+ 1, . . . , n; i = 1, . . . , n).

A virtual displacement is a vector–field X on M , such that ωρ(X) = 0, i.e.,
X belongs to the differential system N(V ).

Differential equations of motion of a given mechanical system follow from
the D’Alambert–Lagrange principle: trajectory γ of the given system is a so-
lution of the equation

〈∇γ̇ γ̇ −Q,X〉 = 0, (2.10)

where X is an arbitrary virtual displacement, Q a vector–field of internal
forces, and ∇ is the affine Levi–Civita connection for the metric g.

The vector–field R(x) on M , such that R(x) ∈ V ⊥
x , V

⊥
x ⊕ Vx = TxM , is

called reaction of ideal nonholonomic connections. (2.10) can be rewritten as

∇γ̇ γ̇ −Q = R, ωα(γ̇) = 0. (2.11)

If the system is potential, by introducing L = T −U , where U is the potential
energy of the system (Q = − gradU), then in local coordinates q on M ,
equations (2.11) becomes the forced Lagrangian equation:

d

dt
Lq̇ − Lq = R̃, ωα(q̇) = 0.
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Now R̃ is a one–form in (V ⊥), and it can be represented as a linear combina-
tion of one–forms ωm+1, . . . , ωn which define the distribution, R̃ = λαωα.

Suppose e1, . . . , en are the vector–fields on M , such that e1(x), . . . , en(x)
form a base of the vector space TxM at every point x ∈ M , and e1, . . . , em
generate the differential system N(V ). Express them through the coordinate
vector–fields:

ei = Aj
i (q)∂qj , (i, j = 1, . . . , n).

Denote by p a projection p : TM → V orthogonal according to the metric
g. Corresponding homomorphism of C∞−modules of sections of TM and V
is

p∂qi = pa
i ea, (a = 1, . . . ,m, i = 1, . . . , n).

Projecting by p the equations (2.11), from R(x) ∈ V ⊥(x), we get p(R) = 0,
and denoting p(Q) = Q̃ we get

∇̃γ̇ γ̇ = Q̃,

where ∇̃ is the projected connection [DG03]. A relationship between standard
Christoffel symbols Γ k

ij and coefficients Γ̃ c
ab of the connection ∇̃, defined by

∇̃ea
eb = Γ̃ c

abec, is given by
Γ̃ c

ab = Γ k
ijA

i
aA

j
bp

c
k +Ai

a ∂qiAj
b p

c
j .

If the motion takes place under the inertia (Q = Q̃ = 0), the trajectories of
nonholonomic mechanical problem are the geodesics for ∇̃.

Now, let V be a distribution on M . Denote a C∞(M)− module of sections
on V by Γ (V ). A nonholonomic connection on the sub–bundle V of TM is
a map ∇ : Γ (V )× Γ (V ) → Γ (V ) with the properties:

∇X(Y + Z) = ∇XY +∇XZ, ∇X(f · Y ) = X(f)Y + f∇XY ,

∇fX+gY Z = f∇XZ + g∇Y Z, (X,Y, Z ∈ Γ (V ); f, g ∈ C∞(M)).

Having a morphism of vector bundles p0 : TM → V , formed by the pro-
jection on V , denote by q0 = 1TM − p0 the projection on W , V ⊕W = TM .

The tensor–field T∇ : Γ (V )× Γ (V ) → Γ (V ) defined by

T∇(X,Y ) = ∇XY −∇YX − p0[X,Y ] ; X,Y ∈ Γ (V )

is called the torsion tensor for the connection ∇.
Suppose there is a positively defined metric tensor g = gij on V . Given a

distribution V , with p0 and g, there exists a unique nonholonomic connection
∇ with the properties [DG03]

∇Xg(Y, Z) = X(g(Y, Z))− g(∇XY,Z)− g(Y,∇XZ) = 0, T∇ = 0.

These conditions can be rewritten in the form:
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∇XY = ∇YX + p0[X,Y ], Z(g(X,Y )) = g(∇ZX,Y ) + g(X,∇ZY ).

By cyclic permutation of X,Y, Z and summing we get:

g(∇XY, Z) =
1
2
{X(g(Y,Z)) + Y (g(Z,X))− Z(g(X,Y )) (2.12)

+ g(Z, p0[X,Y ]) + g(Y, p0[Z,X])− g(X, p0[Y, Z]}.

Let qi, (i = 1, . . . , n) be local coordinates on M , such that the first m co-
ordinate vector–fields ∂qj are projected by projection p0 into vector–fields
ea, (a = 1, . . . ,m), generating the distribution V : p0∂qj = pa

i (q)ea. Vector–
fields ea can be expressed in the basis ∂qj as ea = Bi

a∂qj , with Bi
ap

b
i = δb

a.
Now we give coordinate expressions for the coefficients of the connection Γ c

ab,
defined as ∇ea

eb = Γ c
abec. From (2.12) we get

Γ c
ab = {c

ab}+ gaeg
cdΩe

bd + gbeg
cdΩe

ad −Ωc
ab,

where Ω is obtained from p0[ea, eb] = −2Ωc
abec as

2Ωc
ab = pc

iea(Bi
b)− pc

ieb(B
i
a),

and {c
ab} = 1

2g
ce(ea(gbe) + eb(gae)− ee(gab)).

Exterior Derivative on M

The exterior derivative is an operation that takes k−forms to (k + 1)−forms
on a smooth manifold M . It defines a unique family of maps d : Ωk(U) →
Ωk+1(U), U open in M , such that (see [AMR88]):

1. d is a ∧−antiderivation; that is, d is R−linear and for two forms α ∈
Ωk(U), β ∈ Ωl(U),

d(α ∧ β) = dα ∧ β + (−1)kα ∧ dβ.

2. If f ∈ Ck(U,R) is a function on M , then df = ∂f
∂xi dx

i : M → T ∗M is the
differential of f , such that df(X) = iXdf = LXf − diXf = LXf = X[f ]
for any X ∈ X k(M).

3. d2 = d ◦ d = 0 (that is, dk+1(U) ◦ dk(U) = 0).
4. d is natural with respect to restrictions |U ; that is, if U ⊂ V ⊂ M are

open and α ∈ Ωk(V ), then d(α|U) = (dα)|U , or the following diagram
commutes:

Ωk+1(V ) Ωk+1(U)�
|U

Ωk(V ) Ωk(U)�|U

�
d

�
d
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5. d is natural with respect to the Lie derivative LX (2.2.3) along any vector–
field X ∈ X k(M); that is, for ω ∈ Ωk(M) we have LXω ∈ Ωk(M) and
dLXω = LXdω, or the following diagram commutes:

Ωk+1(M) Ωk+1(M)�
LX

Ωk(M) Ωk(M)�LX

�
d

�
d

6. Let ϕ : M → N be a Ck map of manifolds. Then ϕ∗ : Ωk(N) → Ωk(M) is
a homomorphism of differential algebras (with ∧ and d) and d is natural
with respect to ϕ∗ = F ∗; that is, ϕ∗dω = dϕ∗ω, or the following diagram
commutes:

Ωk+1(N) Ωk+1(M)�
ϕ∗

Ωk(N) Ωk(M)�ϕ∗

�
d

�
d

7. Analogously, d is natural with respect to diffeomorphism ϕ∗ = (F ∗)−1;
that is, ϕ∗dω = dϕ∗ω, or the following diagram commutes:

Ωk+1(N) Ωk+1(M)�
ϕ∗

Ωk(N) Ωk(M)�ϕ∗

�
d

�
d

8. LX = iX ◦ d+ d ◦ iX for any X ∈ X k(M) (a ‘magic’ formula of Cartan).
9. LX ◦ d = d ◦ LX , i.e., [LX , d] = 0 for any X ∈ X k(M).

10. [LX , iY ] = i[x,y]; in particular, iX ◦ LX = LX ◦ iX for all X,Y ∈ X k(M).

Given a k−form α = fI dx
I ∈ Ωk(M), the exterior derivative is defined in

local coordinates
(
x1, ..., xn

)
of a point m ∈M as

dα = d
(
fI dx

I
)

=
∂fI

∂xik
dxik ∧ dxI = dfI ∧ dxi1 ∧ ... ∧ dxik .

In particular, the exterior derivative of a function f ∈ Ck(M,R) is a
1−form df ∈ Ω1(M), with the property that for anym ∈M , andX ∈ X k(M),

dfm(X) = X(f),

i.e., dfm(X) is a Lie derivative of f at m in the direction of X. Therefore, in
local coordinates

(
x1, ..., xn

)
of a point m ∈M we have
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df =
∂f

∂xi
dxi.

For any two functions f, g ∈ Ck(M,R), exterior derivative obeys the Leib-
niz rule:

d(fg) = g df + f dg,

and the chain rule:
d (g(f)) = g′(f) df.

A k−form α ∈ Ωk(M) is called closed form if dα = 0, and it is called
exact form if there exists a (k − 1)−form β ∈ Ωk−1(M) such that α = dβ.
Since d2 = 0, every exact form is closed. The converse is only partially true
(Poincaré Lemma): every closed form is locally exact . This means that given
a closed k−form α ∈ Ωk(M) on an open set U ⊂M , any point m ∈ U has a
neighborhood on which there exists a (k − 1)−form β ∈ Ωk−1(U) such that
dβ = α|U .

The Poincaré lemma is a generalization and unification of two well–known
facts in vector calculus:

1. If curlF = 0, then locally F = grad f ;
2. If divF = 0, then locally F = curlG.

Poincaré lemma for contractible manifolds: Any closed form on a smoothly
contractible manifold is exact.

De Rham Complex and Homotopy Operators on M

Given a biomechanical manifoldM , let Ωp(M) denote the space of all smooth
p−forms on M . The differential d, mapping p−forms to (p+1)−forms, serves
to define the De Rham complex on M,

0 → Ω0(M) d0 � Ω1(M) d1 � ...
dn−1� Ωn(M) → 0. (2.13)

In general, a complex (see subsection (1.2.8) above) is defined as a sequence
of vector spaces, and linear maps between successive spaces, with the property
that the composition of any pair of successive maps is identically 0. In the
case of the de Rham complex (2.13), this requirement is a restatement of the
closure property for the exterior differential: d ◦ d = 0.

In particular, for n = 3, the De Rham complex on a biomechanical mani-
fold M reads

0 → Ω0(M) d0 � Ω1(M) d1 � Ω2(M) d2 � Ω3(M) → 0. (2.14)

If ω ≡ f(x, y, z) ∈ Ω0(M), then

d0ω ≡ d0f =
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz = gradω.
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If ω ≡ fdx+ gdy + hdz ∈ Ω1(M), then

d1ω ≡
(
∂g

∂x
− ∂f
∂y

)

dx∧dy+
(
∂h

∂y
− ∂g
∂z

)

dy∧dz+
(
∂f

∂z
− ∂h
∂x

)

dz∧dx = curlω.

If ω ≡ Fdy ∧ dz +Gdz ∧ dx+Hdx ∧ dy ∈ Ω2(M), then

d2ω ≡ ∂F

∂x
+
∂G

∂y
+
∂H

∂z
= divω.

Therefore, the De Rham complex (2.14) can be written as

0 → Ω0(M)
grad� →Ω1(M) curl� Ω2(M) div� Ω3(M) → 0.

Using the closure property for the exterior differential, d ◦ d = 0, we get the
standard identities from vector calculus

curl · grad = 0 and div · curl = 0.

The definition of the complex requires that the kernel of one of the linear
maps contains the image of the preceding map. The complex is exact if this
containment is equality. In the case of the De Rham complex (2.13), exactness
means that a closed p−form ω, meaning that dω = 0, is necessarily an exact
p−form, meaning that there exists a (p − 1)−form θ such that ω = dθ. (For
p = 0, it says that a smooth function f is closed, df = 0, iff it is constant).
Clearly, any exact form is closed, but the converse need not hold. Thus the
De Rham complex is not in general exact. The celebrated De Rham theorem
states that the extent to which this complex fails to be exact measures purely
topological information about the manifold M , its cohomology group.

On the local side, for special types of domains in Euclidean space R
m,

there is only trivial topology and we do have exactness of the De Rham com-
plex (2.13). This result, known as the Poincaré lemma, holds for star–shaped
domains M ⊂ R

m : Let M ⊂ R
m be a star–shaped domain. Then the De

Rham complex over M is exact.
The key to the proof of exactness of the De Rham complex lies in the

construction of suitable homotopy operators. By definition, these are linear
operators h : Ωp → Ωp−1, taking differential p−forms into (p−1)−forms, and
satisfying the basic identity [Olv86]

ω = dh(ω) + h(dω), (2.15)

for all p−forms ω ∈ Ωp. The discovery of such a set of operators immediately
implies exactness of the complex. For if ω is closed, dω = 0, then (2.15) reduces
to ω = dθ where θ = h(ω), so ω is exact.



2.3 Sections of Biomechanical Bundles 97

Stokes Theorem and De Rham Cohomology of M

Stokes theorem states that if α is an (n−1)−form on an orientable n−manifold
M , then the integral of dα over M equals the integral of α over ∂M , the
boundary ofM . The classical theorems of Gauss, Green, and Stokes are special
cases of this result.

A manifold with boundary is a setM together with an atlas of charts (U, φ)
with boundary on M . Define (see [AMR88]) the interior and boundary of M
respectively as

IntM =
⋃

U

φ−1 (Int (φ(U))) , and ∂M =
⋃

U

φ−1 (∂ (φ(U))) .

IfM is a manifold with boundary, then its interior IntM and its boundary
∂M are smooth manifolds without boundary. Moreover, if f : M → N is a
diffeomorphism, N being another manifold with boundary, then f induces, by
restriction, two diffeomorphisms

Int f : IntM → IntN, and ∂f : ∂M → ∂N.

If n = dimM , then dim(IntM) = n and dim(∂M) = n− 1.
To integrate a differential n−form over an n−manifold M , M must be

oriented. If IntM is oriented, we want to choose an orientation on ∂M com-
patible with it. As for manifolds without boundary a volume form on an
n−manifold with boundary M is a nowhere vanishing n−form on M . Fix an
orientation on R

n. Then a chart (U, φ) is called positively oriented if the map
Tmφ : TmM → R

n is orientation preserving for all m ∈ U .
Let M be a compact, oriented kD smooth manifold with boundary ∂M .

Let α be a smooth (k − 1)−form on M . Then the classical Stokes formula
holds ∫

M

dα =
∫

∂M

α.

If ∂M =Ø then
∫

M
dα = 0.

The quotient space

Hk(M) =
Ker

(
d : Ωk(M) → Ωk+1(M)

)

Im (d : Ωk−1(M) → Ωk(M))

is called the kth De Rham cohomology group of a manifold M . The De Rham
theorem states that these Abelian groups are isomorphic to the so–called sin-
gular cohomology groups of M defined in algebraic topology in terms of sim-
plices and that depend only on the topological structure of M and not on its
differentiable structure. The isomorphism is provided by integration; the fact
that the integration map drops to the preceding quotient is guaranteed by
Stokes’ theorem.

The exterior derivative commutes with the pull–back of differential forms.
That means that the vector bundle ΛkT ∗M is in fact the value of a functor,
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which associates a bundle over M to each manifold M and a vector bundle
homomorphism over ϕ to each (local) diffeomorphism ϕ between manifolds
of the same dimension. This is a simple example of the concept of a natural
bundle. The fact that the exterior derivative d transforms sections of ΛkT ∗M
into sections of Λk+1T ∗M for every manifold M can be expressed by saying
that d is an operator from ΛkT ∗M into Λk+1T ∗M . That the exterior derivative
d commutes with (local) diffeomorphisms now means, that d is a natural
operator from the functor ΛkT ∗ into functor Λk+1T ∗. If k > 0, one can show
that d is the unique natural operator between these two natural bundles up
to a constant. So even linearity is a consequence of naturality [KMS93].

Euler–Poincaré Characteristics of M

The Euler–Poincaré characteristics of a manifold M equals the sum of its
Betti numbers

χ(M) =
n∑

p=0

(−1)p bp.

In case of 2nD oriented compact Riemannian manifold M (Gauss–Bonnet
theorem) its Euler–Poincaré characteristics is equal

χ(M) =
∫

M

γ,

where γ is a closed 2n form on M , given by

γ =
(−1)n

(4π)nn!
ε1...2n
i1...i2n

Ωi1
i2
∧Ωi2n−1

i2n
,

where Ωi
j is the curvature 2−form of a Riemannian connection on M (see

Chapter 4 for more details).
Poincaré–Hopf theorem: The Euler–Poincaré characteristics χ(M) of a

compact manifold M equals the sum of indices of zeros of any vector–field
on M which has only isolated zeros.

Duality of Chains and Forms on M

In topology of finite–dimensional smooth (i.e., Cp+1 with p ≥ 0) manifolds,
a fundamental notion is the duality between p−chains C and p−forms (i.e.,
p−cochains) ω on the smooth manifold M , or domains of integration and
integrands – as an integral on M represents a bilinear functional (see [BM82,
DP97]) ∫

C

ω ≡ 〈C,ω〉 , (2.16)

where the integral is called the period of ω. Period depends only on the co-
homology class of ω and the homology class of C. A closed form (cocycle) is
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exact (coboundary) if all its periods vanish, i.e., dω = 0 implies ω = dθ. The
duality (2.16) is based on the classical Stokes formula

∫

C

dω =
∫

∂C

ω.

This is written in terms of scalar products on M as

〈C, dω〉 = 〈∂C, ω〉 ,

where ∂C is the boundary of the p−chain C oriented coherently with C. While
the boundary operator ∂ is a global operator, the coboundary operator, that
is, the exterior derivative d, is local, and thus more suitable for applications.
The main property of the exterior differential,

d2 = 0 implies ∂2 = 0,

can be easily proved by the use of Stokes’ formula
〈
∂2C,ω

〉
= 〈∂C, dω〉 =

〈
C, d2ω

〉
= 0.

The analysis of p–chains and p–forms on the finite–dimensional biome-
chanical manifold M is usually performed in (co)homology categories (see
[DP97, Die88]) related to M .

Let M• denote the category of cochains, (i.e., p–forms) on the smooth
manifold M . When C = M•, we have the category S•(M•) of generalized
cochain complexes A• in M•, and if A′ = 0 for n < 0 we have a subcategory
S•
DR(M•) of the De Rham differential complexes in M•

A•
DR : 0 → Ω0(M) d � Ω1(M) d � Ω2(M) · · · (2.17)

· · · d � Ωn(M) d � · · · .

Here A′ = Ωn(M) is the vector space over R of all p–forms ω on M (for
p = 0 the smooth functions on M) and dn = d : Ωn−1(M) → Ωn(M) is the
exterior differential. A form ω ∈ Ωn(M) such that dω = 0 is a closed form or
n–cocycle. A form ω ∈ Ωn(M) such that ω = dθ, where θ ∈ Ωn−1(M), is an
exact form or n–coboundary. Let Zn(M) = Ker(d) (resp. Bn(M) = Im(d))
denote a real vector space of cocycles (resp. coboundaries) of degree n. Since
dn+1 dn = d2 = 0, we have Bn(M) ⊂ Zn(M). The quotient vector space

Hn
DR(M) = Ker(d)/ Im(d) = Zn(M)/Bn(M)

is the De Rham cohomology group. The elements of Hn
DR(M) represent equiv-

alence sets of cocycles. Two cocycles ω1, ω2 belong to the same equivalence
set, or are cohomologous (written ω1 ∼ ω2) iff they differ by a coboundary
ω1 − ω2 = dθ. The De Rham cohomology class of any form ω ∈ Ωn(M) is
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[ω] ∈ Hn
DR(M). The De Rham differential complex (2.17) can be considered

as a system of second–order ODEs d2θ = 0, θ ∈ Ωn−1(M) having a solution
represented by Zn(M) = Ker(d).

Analogously let M• denote the category of chains on the smooth manifold
M . When C = M•, we have the category S•(M•) of generalized chain com-
plexes A• in M•, and if An = 0 for n < 0 we have a subcategory SC

• (M•) of
chain complexes in M•

A• : 0 ← C0(M) ∂←− C1(M) ∂←− C2(M) · · · ∂←− Cn(M) ∂←− · · · .

Here An = Cn(M) is the vector space over R of all finite chains C on the
manifold M and ∂n = ∂ : Cn+1(M) → Cn(M). A finite chain C such that
∂C = 0 is an n−cycle. A finite chain C such that C = ∂B is an n−boundary.
Let Zn(M) = Ker(∂) (resp. Bn(M) = Im(∂)) denote a real vector space of
cycles (resp. boundaries) of degree n. Since ∂n+1∂n = ∂2 = 0, we have
Bn(M) ⊂ Zn(M). The quotient vector space

HC
n (M) = Ker(∂)/ Im(∂) = Zn(M)/Bn(M)

is the n−homology group. The elements of HC
n (M) are equivalence sets of

cycles. Two cycles C1, C2 belong to the same equivalence set, or are homolo-
gous (written C1 ∼ C2), iff they differ by a boundary C1 − C2 = ∂B). The
homology class of a finite chain C ∈ Cn(M) is [C] ∈ HC

n (M).
The dimension of the n−cohomology (resp. n−homology) group equals the

nth Betti number bn (resp. bn) of the manifold M . Poincaré lemma says that
on an open set U ∈M diffeomorphic to R

N , all closed forms (cycles) of degree
p ≥ 1 are exact (boundaries). That is, the Betti numbers satisfy bp = 0 (resp.
bp = 0) for p = 1, . . . , n.

The De Rham theorem states the following. The map Φ : Hn × Hn → R

given by ([C], [ω]) → 〈C,ω〉 for C ∈ Zn,ω ∈ Zn is a bilinear nondegenerate
map which establishes the duality of the groups (vector spaces) Hn and Hn

and the equality bn = bn.

Other Exterior Operators on M

As the configuration manifold M is an oriented ND Riemannian manifold,
we may select an orientation on all tangent spaces TmM and all cotangent
spaces T ∗

mM , with the local coordinates xi = (qi, pi) at a point m ∈ M, in
a consistent manner. The simplest way to do that is to choose the Euclidean
orthonormal basis ∂1, ..., ∂N of R

N as being positive.
Since the manifold M carries a Riemannian structure g = 〈, 〉, we have a

scalar product on each T ∗
mM . So, we can define (as above) the linear Hodge

star operator
∗ : Λp(T ∗

mM) → ΛN−p(T ∗
mM),

which is a base point preserving operator
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∗ : Ωp(M) → ΩN−p(M), (Ωp(M) = Γ (Λp(M)))

(here Λp(V ) denotes the p-fold exterior product of any vector space V , Ωp(M)
is a space of all p−forms on M , and Γ (E) denotes the space of sections of the
vector bundle E). Also,

∗∗ = (−1)p(N−p) : Λp(T ∗
xM) → Λp(T ∗

mM).

As the metric on T ∗
mM is given by gij(x) = (gij(x))−1, we have the volume

form defined in local coordinates as

∗(1) =
√

det(gij)dx1 ∧ ... ∧ dxn,

and
vol(M) =

∫

M

∗(1).

For any to p−forms α, β ∈ Ωp(M) with compact support, we define the
(bilinear and positive definite) L2−product as

(α, β) =
∫

M

〈α, β〉 ∗ (1) =
∫

M

α ∧ ∗β.

We can extend the product (·, ·) to L2(Ωp(M)); it remains bilinear and positive
definite, because as usual, in the definition of L2, functions that differ only on
a set of measure zero are identified.

Using the Hodge star operator ∗, we can introduce the codifferential op-
erator δ, which is formally adjoint to the exterior derivative d : Ωp(M) →
Ωp+1(M) on ⊕N

p=0Ω
p(M) w.r.t. (·, ·). This means that for α ∈ Ωp−1(M), β ∈

Ωp(M)
(dα, β) = (α, δβ).

Therefore, we have δ : Ωp(M) → Ωp−1(M) and

δ = (−1)N(p+1)+1 ∗ d ∗ .

Now, the Laplace–Beltrami operator (or, Hodge Laplacian, see subsection
(4.3.1) below), ∆ on Ωp(M), is defined by relation similar to (2.15) above

∆ = dδ + δd : Ωp(M) → Ωp(M) (2.18)

and α ∈ Ωp(M) is called harmonic if ∆α = 0.
Let M be a compact, oriented Riemannian manifold, E a vector bundle

with a bundle metric 〈·, ·〉 over M ,

D = d+A : Ωp−1(AdE) → Ωp(AdE), with A ∈ Ω1(AdE)

– a tensorial and R−linear metric connection on E with curvature FD ∈
Ω2(AdE) (Here by Ωp(AdE) we denote the space of those elements of
Ωp(EndE) for which the endomorphism of each fibre is skew symmetric;
EndE denotes the space of linear endomorphisms of the fibers of E).
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2.4 Lie Categories in Human–Like Biomechanics

In this section we introduce Lie categories in biomechanics, as a unique frame-
work for the concepts of Lie derivative, Lie groups and their associated Lie
algebras, as well as more general Lie symmetries.

2.4.1 Lie Derivative in Biomechanics

Lie derivative is popularly called ‘fisherman’s derivative’. In continuum me-
chanics it is called Liouville operator. This is a central differential operator in
modern differential geometry and its physical and control applications.

Lie Derivative on Functions

To define how vector–fields operate on functions on anm−manifoldM , we will
use the directional derivative or Lie derivative (see (2.2.3)). Let f : M → R

so Tf : TM → TR = R× R. Following [AMR88] we write Tf acting on a
vector v ∈ TmM in the form

Tf · v = (f(m), df(m) · v) .

This defines, for each point m ∈M , the element df(m) ∈ T ∗
mM . Thus df is a

section of the cotangent bundle T ∗M , i.e., a 1−form. The 1−form df : M →
T ∗M defined this way is called the differential of f . If f is Ck, then df is
Ck−1.

If φ : U ⊂M → V ⊂ E is a local chart forM , then the local representative
of f ∈ Ck(M,R) is the map f : V → R defined by f = f ◦ φ−1. The local
representative of Tf is the tangent map for local manifolds,

Tf(x, v) = (f(x), Df(x) · v) .

Thus the local representative of df is the derivative of the local representative
of f . In particular, if (x1, ..., xn) are local coordinates on M , then the local
components of df are

(df)i = ∂xif.

The introduction of df leads to the following definition of the Lie derivative.
The directional or Lie derivative LX : Ck(M,R) → Ck−1(M,R) of a function
f ∈ Ck(M,R) along a vector–field X is defined by

LXf(m) = X[f ](m) = df(m) ·X(m),

for any m ∈ M . Denote by X[f ] = df(X) the map M � m �→ X[f ](m) ∈ R.
If f is F−valued, the same definition is used, but now X[f ] is F−valued.

If a local chart (U, φ) on an n−manifoldM has local coordinates (x1, ..., xn),
the local representative of X[f ] is given by the function
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LXf = X[f ] = Xi ∂xif.

Evidently if f is Ck and X is Ck−1 then X[f ] is Ck−1.
Let ϕ : M → N be a diffeomorphism. Then LX is natural with respect to

push–forward by ϕ. That is, for each f ∈ Ck(M,R),

Lϕ∗X(ϕ∗f) = ϕ∗LXf,

i.e., the following diagram commutes:

Ck(M,R) Ck(N,R)�
ϕ∗

Ck(M,R) Ck(N,R)�ϕ∗

�

LX

�

Lϕ∗X

Also, LX is natural with respect to restrictions. That is, for U open in M
and f ∈ Ck(M,R),

LX|U (f |U) = (LXf)|U,

where |U : Ck(M,R) → Ck(U,R) denotes restriction to U , i.e., the following
diagram commutes:

Ck(M,R) Ck(U,R)�
|U

Ck(M,R) Ck(U,R)�|U

�

LX

�

LX|U

Since ϕ∗ = (ϕ−1)∗ the Lie derivative is also natural with respect to pull–
back by ϕ. This has a generalization to ϕ−related vector–fields as follows:
Let ϕ : M → N be a Ck−map, X ∈ X k−1(M) and Y ∈ X k−1(N), k ≥ 1. If
X ∼ϕ Y , then

LX(ϕ∗f) = ϕ∗LY f

for all f ∈ Ck(N,R), i.e., the following diagram commutes:

Ck(N,R) Ck(M,R)�
ϕ∗

Ck(N,R) Ck(M,R)�ϕ∗

�

LY

�

LX

The Lie derivative map LX : Ck(M,R) → Ck−1(M,R) is a derivation, i.e.,
for two functions f, g ∈ Ck(M,R) the Leibniz rule is satisfied
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LX(fg) = gLXf + fLXg;

Also, Lie derivative of a constant function is zero, LX(const) = 0.
The connection between the Lie derivative LXf of a function f ∈ Ck(M,R)

and the flow Ft of a vector–field X ∈ X k−1(M) is given as:

d

dt
(F ∗

t f) = F ∗
t (LXf) .

Lie Derivative of Vector Fields

If X,Y ∈ X k(M), k ≥ 1 are two vector–fields on M , then

[LX ,LY ] = LX ◦ LY − LY ◦ LX

is a derivation map from Ck+1(M,R) to Ck−1(M,R). Then there is a unique
vector–field, [X,Y ] ∈ X k(M) of X and Y such that L[X,Y ] = [LX ,LY ] and
[X,Y ](f) = X (Y (f))− Y (X(f)) holds for all functions f ∈ Ck(M,R). This
vector–field is also denoted LXY and is called the Lie derivative (2.2.3) of Y
with respect to X, or the Lie bracket of X and Y . In a local chart (U, φ) at a
point m ∈M with coordinates (x1, ..., xn), for X|U = Xi∂xi and Y |U = Y i∂xi

we have [
Xi∂xi , Y j∂xj

]
=
(
Xi
(
∂xiY j

)
− Y i

(
∂xiXj

))
∂xj ,

since second partials commute. If, also X has flow Ft, then [AMR88]

d

dt
(F ∗

t Y ) = F ∗
t (LXY ) .

In particular, if t = 0, this formula becomes

d

dt
|t=0 (F ∗

t Y ) = LXY.

Then the unique Ck−1 vector–field LXY = [X,Y ] on M defined by

[X,Y ] =
d

dt
|t=0 (F ∗

t Y ) ,

is called the Lie derivative of Y with respect to X, or the Lie bracket of X
and Y, and can be interpreted as the leading order term that results from the
sequence of flows

F−Y
t ◦ F−X

t ◦ FY
t ◦ F−X

t (m) = ε2[X,Y ](m) +O(ε3), (2.19)

for some real ε > 0. Therefore a Lie bracket can be interpreted as a ‘new
direction’ in which the system can flow, by executing the sequence of flows
(2.19).

Lie bracket satisfies the following property:
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[X,Y ][f ] = X[Y [f ]]− Y [X[f ]],

for all f ∈ Ck+1(U,R), where U is open in M .
An important relationship between flows of vector–fields is given by the

Campbell–Baker–Hausdorff formula:

FY
t ◦ FX

t = F
X+Y + 1

2 [X,Y ]+ 1
12 ([X,[X,Y ]]−[Y,[X,Y ]])+...

t (2.20)

Essentially, if given the composition of multiple flows along multiple vector–
fields, this formula gives the one flow along one vector–field which results in
the same net flow. One way to prove the Campbell–Baker–Hausdorf formula
(2.20) is to expand the product of two formal exponentials and equate terms
in the resulting formal power series.

Lie bracket is the R−bilinear map [, ] : X k(M) × X k(M) → X k(M) with
the following properties:

1. [X,Y ] = −[Y,X], i.e., LXY = −LYX for all X,Y ∈ X k(M) – skew–
symmetry;

2. [X,X] = 0 for all X ∈ X k(M);
3. [X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0 for all X,Y, Z ∈ X k(M) – the

Jacobi identity;
4. [fX, Y ] = f [X,Y ] − (Y f)X, i.e., LfX(Y ) = f(LXY ) − (LY f)X for all
X,Y ∈ X k(M) and f ∈ Ck(M,R);

5. [X, fY ] = f [X,Y ] + (Xf)Y , i.e., LX(fY ) = f(LXY ) + (LXf)Y for all
X,Y ∈ X k(M) and f ∈ Ck(M,R);

6. [LX ,LY ] = L[x,y] for all X,Y ∈ X k(M).

The pair (X k(M), [, ]) is the prototype of a Lie algebra [KMS93]. In more
general case of a general linear Lie algebra gl(n), which is the Lie algebra as-
sociated to the Lie group GL(n), Lie bracket is given by a matrix commutator

[A,B] = AB −BA,

for any two matrices A,B ∈ gl(n).
Let ϕ : M → N be a diffeomorphism. Then LX : X k(M) → X k(M) is

natural with respect to push–forward by ϕ. That is, for each f ∈ Ck(M,R),

Lϕ∗X(ϕ∗Y ) = ϕ∗LXY,

i.e., the following diagram commutes:

X k(M) X k(N)�
ϕ∗

X k(M) X k(N)�ϕ∗

�

LX

�

Lϕ∗X
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Also, LX is natural with respect to restrictions. That is, for U open in M
and f ∈ Ck(M,R),

[X|U, Y |U ] = [X,Y ]|U,
where |U : Ck(M,R) → Ck(U,R) denotes restriction to U , i.e., the following
diagram commutes [AMR88]:

X k(M) X k(U)�
|U

X k(M) X k(U)�|U

�

LX

�

LX|U

If a local chart (U, φ) on an n−manifoldM has local coordinates (x1, ..., xn),
then the local components of a Lie bracket are

[X,Y ]j = Xi ∂xiY j − Y i ∂xiXj ,

that is, [X,Y ] = (X · ∇)Y − (Y · ∇)X.
Let ϕ : M → N be a Ck−map, X ∈ X k−1(M) and Y ∈ X k−1(N), k ≥ 1.

Then X ∼ϕ Y , iff
(Y [f ]) ◦ ϕ = X[f ◦ ϕ]

for all f ∈ Ck(V,R), where V is open in N.
For everyX ∈ X k(M), the operator LX is a derivation on

(
Ck(M,R),X k(M)

)
,

i.e., LX is R−linear.
For any two vector–fields X ∈ X k(M) and Y ∈ X k(N), k ≥ 1 with flows

Ft and Gt, respectively, if [X,Y ] = 0 then F ∗
t Y = Y and G∗

tX = X.

Derivative of the Evolution Operator

Recall (2.3.1) that the time–dependent flow or evolution operator Ft,s of a
vector–field X ∈ X k(M) is defined by the requirement that t �→ Ft,s(m) be
the integral curve of X starting at a point m ∈M at time t = s, i.e.,

d

dt
Ft,s(m) = X (t, Ft,s(m)) and Ft,t(m) = m.

By uniqueness of integral curves we have Ft,s ◦Fs,r = Ft,r (replacing the flow
property Ft+s = Ft + Fs) and Ft,t = identity.

Let Xt ∈ X k(M), k ≥ 1 for each t and suppose X(t,m) is continuous in
(t,m) ∈ R ×M . Then Ft,s is of class Ck and for f ∈ Ck+1(M,R) [AMR88],
and Y ∈ X k(M), we have

1. d
dtF

∗
t,s f = F ∗

t,s (LXt f) , and
2. d

dtF
∗
t,s f = F ∗

t,s([Xt, Y ]) = F ∗
t,s (LXt

Y ).

From the above theorem, the following identity holds:

d

dt
F ∗

t,s f = −Xt

[
F ∗

t,s f
]
.
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Lie Derivative of Differential Forms

Since F : M =⇒ ΛkT ∗M is a vector bundle functor on M, the Lie derivative
(2.2.3) of a k−form α ∈ Ωk(M) along a vector–field X ∈ X k(M) is defined
by

LXα =
d

dt
|t=0 F

∗
t α.

It has the following properties:

1. LX(α ∧ β) = LX α ∧ β + α ∧ LX β, so LX is a derivation.
2. [LX ,LY ] α = L[X,Y ] α.
3. d

dtF
∗
t α = F ∗

t LXα = LX (F ∗
t α).

Formula (3) holds also for time–dependent vector–fields in the sense that
d
dtF

∗
t,sα = F ∗

t,sLXα = LX

(
F ∗

t,sα
)

and in the expression LXα the vector–field
X is evaluated at time t.

Cartan magic formula (see [MR99]) states: the Lie derivative of a k−form
α ∈ Ωk(M) along a vector–field X ∈ X k(M) on a smooth manifold M is
defined as

LXα = diXα+ iXdα = d(X�α) +X�dα.
Also, the following identities hold [MR99, KMS93]:

1. LfXα = fLXα+ df ∧ ixα.
2. L[X,Y ]α = LXLY α− LY LXα.
3. i[X,Y ]α = LX iY α− iY LXα.
4. LXdα = dLXα, i.e., [LX , d] = 0.
5. LX iXα = iXLXα, i.e., [LX , iX ] = 0.
6. LX(α ∧ β) = LXα ∧ β + α ∧ LXβ.

Lie Derivative of Various Tensor Fields

In this subsection, we use local coordinates xi (i = 1, ..., n) on a biomechanical
n−manifold M , to calculate the Lie derivative LXi with respect to a generic
vector–field Xi. (As always, ∂xi ≡ ∂

∂xi ).

Lie Derivative of a Scalar Field

Given the scalar field φ, its Lie derivative LXiφ is given as

LXiφ = Xi∂xiφ = X1∂x1φ+X2∂x2φ+ ...+Xn∂xnφ.

Lie Derivative of Vector and Covector–Fields

Given a contravariant vector–field V i, its Lie derivative LXiV i is given as

LXiV i = Xk∂xkV i − V k∂xkXi ≡ [Xi, V i]− the Lie bracket.

Given a covariant vector–field (i.e., a one–form) ωi, its Lie derivative LXiωi

is given as
LXiωi = Xk∂xkωi + ωk∂xiXk.
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Lie Derivative of a Second–Order Tensor–Field

Given a (2, 0) tensor–field Sij , its Lie derivative LXiSij is given as

LXiSij = Xi∂xiSij − Sij∂xiXi − Sii∂xiXj .

Given a (1, 1) tensor–field Si
j , its Lie derivative LXiSi

j is given as

LXiSi
j = Xi∂xiSi

j − Si
j∂xiXi + Si

i∂xjXi.

Given a (0, 2) tensor–field Sij , its Lie derivative LXiSij is given as

LXiSij = Xi∂xiSij + Sij∂xiXi + Sii∂xjXi.

Lie Derivative of a Third–Order Tensor–Field

Given a (3, 0) tensor–field T ijk, its Lie derivative LXiT ijk is given as

LXiT ijk = Xi∂xiT ijk − T ijk∂xiXi − T iik∂xiXj − T iji∂xiXk.

Given a (2, 1) tensor–field T ij
k , its Lie derivative LXiT ij

k is given as

LXiT ij
k = Xi∂xiT ij

k − T ij
k ∂xiXi + T ij

i ∂xkXi − T ii
k ∂xiXj .

Given a (1, 2) tensor–field T i
jk, its Lie derivative LXiT i

jk is given as

LXiT i
jk = Xi∂xiT i

jk − T i
jk∂xiXi + T i

ik∂xjXi + T i
ji∂xkXi.

Given a (0, 3) tensor–field Tijk, its Lie derivative LXiTijk is given as

LXiTijk = Xi∂xiTijk + Tijk∂xiXi + Tiik∂xjXi + Tiji∂xkXi.

Lie Derivative of a Fourth–Order Tensor–Field

Given a (4, 0) tensor–field Rijkl, its Lie derivative LXiRijkl is given as

LXiRijkl = Xi∂xiRijkl−Rijkl∂xiXi−Riikl∂xiXj−Rijil∂xiXk−Rijki∂xiX l.

Given a (3, 1) tensor–field Rijk
l , its Lie derivative LXiRijk

l is given as

LXiRijk
l = Xi∂xiRijk

l −Rijk
l ∂xiXi +Rijk

i ∂xlXi −Riik
l ∂xiXj −Riji

l ∂xiXk.

Given a (2, 2) tensor–field Rij
kl, its Lie derivative LXiRij

kl is given as

LXiRij
kl = Xi∂xiRij

kl −R
ij
kl∂xiXi +Rij

il ∂xkXi +Rij
ki∂xlXi −Rii

kl∂xiXj .

Given a (1, 3) tensor–field Ri
jkl, its Lie derivative LXiRi

jkl is given as

LXiRi
jkl = Xi∂xiRi

jkl −Ri
jkl∂xiXi +Ri

ikl∂xjXi +Ri
jil∂xkXi +Ri

jki∂xlXi.
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Given a (0, 4) tensor–field Rijkl, its Lie derivative LXiRijkl is given as

LXiRijkl = Xi∂xiRijkl +Rijkl∂xiXi +Riikl∂xjXi +Rijil∂xkXi +Rijki∂xlXi.

Finally, recall that a spinor is a two–component complex column vector.
Physically, spinors can describe both bosons and fermions, while tensors can
describe only bosons. The Lie derivative of a spinor φ is defined by

LXφ(x) = lim
t→0

φ̄t(x)− φ(x)
t

,

where φ̄t is the image of φ by a one–parameter group of isometries with X
its generator. For a vector field Xa and a covariant derivative ∇a, the Lie
derivative of φ is given explicitly by

LXφ = Xa∇aφ−
1
8
(∇aXb −∇bXa) γaγbφ,

where γa and γb are Dirac matrices (see, e.g., [BM00]).

Lie Algebras

Recall from Introduction that an algebra A is a vector space with a product.
The product must have the property that

a(uv) = (au)v = u(av),

for every a ∈ R and u, v ∈ A. A map φ : A → A′ between algebras is called
an algebra homomorphism if φ(u · v) = φ(u) · φ(v). A vector subspace I of an
algebra A is called a left ideal (resp. right ideal) if it is closed under algebra
multiplication and if u ∈ A and i ∈ I implies that ui ∈ I (resp. iu ∈ I). A
subspace I is said to be a two–sided ideal if it is both a left and right ideal.
An ideal may not be an algebra itself, but the quotient of an algebra by a
two–sided ideal inherits an algebra structure from A.

A Lie algebra is an algebra A where the multiplication, i.e., the Lie bracket
(u, v) �→ [u, v], has the following properties:

LA 1. [u, u] = 0 for every u ∈ A, and
LA 2. [u, [v, w]] + [w, [u, v]] + [v, w, u]] = 0 for all u, v, w ∈ A.
The condition LA 2 is usually called Jacobi identity . A subspace E ⊂ A

of a Lie algebra is called a Lie subalgebra if [u, v] ∈ E for every u, v ∈ E. A
map φ : A → A′ between Lie algebras is called a Lie algebra homomorphism
if φ([u, v]) = [φ(u), φ(v)] for each u, v ∈ A.

All Lie algebras (over a given field K) and all smooth homomorphisms
between them form the category LAL, which is itself a complete subcategory
of the category AL of all algebras and their homomorphisms.
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2.4.2 Lie Groups in Human–Like Biomechanics

In the middle of the 19th century S. Lie made a far reaching discovery that
techniques designed to solve particular unrelated types of ODEs, such as sep-
arable, homogeneous and exact equations, were in fact all special cases of a
general form of integration procedure based on the invariance of the differ-
ential equation under a continuous group of symmetries. Roughly speaking a
symmetry group of a system of differential equations is a group that trans-
forms solutions of the system to other solutions. Once the symmetry group
has been identified a number of techniques to solve and classify these dif-
ferential equations becomes possible. In the classical framework of Lie, these
groups were local groups and arose locally as groups of transformations on
some Euclidean space. The passage from the local Lie group to the present
day definition using manifolds was accomplished by E. Cartan at the end of
the 19th century, whose work is a striking synthesis of Lie theory, classical
geometry, differential geometry and topology.

These continuous groups, which originally appeared as symmetry groups of
differential equations, have over the years had a profound impact on diverse
areas such as algebraic topology, differential geometry, numerical analysis,
control theory, classical mechanics, quantum mechanics etc. They are now
universally known as Lie groups.

Lie Groups and Their Associated Lie Algebras

Recall that a Lie group is a smooth (Banach) manifold M that has at the
same time a group G−structure consistent with its manifold M−structure in
the sense that group multiplication

µ : G×G→ G, (g, h) �→ gh (2.21)

and the inversion
ν : G→ G, g �→ g−1 (2.22)

are Ck−maps [Che55, AMR88, MR99, Put93]. A point e ∈ G is called the
group identity element.

For example, any finite–dimensional Banach vector space V is an Abelian
Lie group with group operations µ : V × V → V , µ(x, y) = x + y, and
ν : V → V , ν(x) = −x. The identity is just the zero vector. We call such a
Lie group a vector group.

Let G and H be two Lie groups. A map G→ H is said to be a morphism
of Lie groups (or their smooth homomorphism) if it is their homomorphism
as abstract groups and their smooth map as manifolds [Pos86].

All Lie groups and all their morphisms form the category LG (more pre-
cisely, there is a countable family of categories LG depending on Ck−smoothness
of the corresponding manifolds).
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Similarly, a group G which is at the same time a topological space is said to
be a topological group if maps (2.21–2.22) are continuous, i.e., C0−maps for it.
The homomorphism G→ H of topological groups is said to be continuous if it
is a continuous map. Topological groups and their continuous homomorphisms
form the category T G.

A topological group (as well as a smooth manifold) is not necessarily Haus-
dorff. A topological groupG is Hausdorff iff its identity is closed. As a corollary
we have that every Lie group is a Hausdorff topological group (see [Pos86]).

For every g in a Lie group G, the two maps,

Lg : G→ G, h �→ gh, and
Rh : G→ G, g �→ gh,

are called left and right translation maps. Since Lg ◦Lh = Lgh, and Rg ◦Rh =
Rgh, it follows that (Lg)

−1 = Lg−1 and (Rg)
−1 = Rg−1 , so both Lg and Rg are

diffeomorphisms. Moreover Lg ◦Rh = Rh ◦ Lg, i.e., left and right translation
commute.

A vector–fieldX on G is called left invariant vector–field if for every g ∈ G,
L∗

gX = X, that is, if (ThLg)X(h) = X(gh) for all h ∈ G, i.e., the following
diagram commutes:

G G�
Lg

TG TG�TLg

	
X

	
X

The correspondences G → TG and Lg → TLg obviously define a functor
F : LG ⇒ LG from the category G of Lie groups to itself. F is another special
case of the vector bundle functor (2.2.3).

Let XL(G) denote the set of left invariant vector–fields on G; it is a
Lie subalgebra of X (G), the set of all vector–fields on G, since L∗

g[X,Y ] =
[L∗

gX,L
∗
gY ] = [X,Y ], so the Lie bracket [X,Y ] ∈ XL(G).

Let e be the identity element of G. Then for each ξ on the tangent space
TeG we define a vector–field Xξ on G by

Xξ(g) = TeLg(ξ).

XL(G) and TeG are isomorphic as vector spaces. Define the Lie bracket on
TeG by

[ξ, η] = [Xξ, Xη] (e),

for all ξ, η ∈ TeG. This makes TeG into a Lie algebra. Also, by construction,
we have

[Xξ, Xη] = X[ξ,η],
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this defines a bracket in TeG via left extension. The vector space TeG with
the above algebra structure is called the Lie algebra of the Lie group G and
is denoted g.

For example, let V be a finite–dimensional vector space. Then TeV � V
and the left invariant vector–field defined by ξ ∈ TeV is the constant vector–
field Xξ(η) = ξ, for all η ∈ V . The Lie algebra of V is V itself.

Since any two elements of an Abelian Lie group G commute, it follows
that all adjoint operators Adg, g ∈ G, equal the identity. Therefore, the Lie
algebra g is Abelian; that is, [ξ, η] = 0 for all ξ, η ∈ g [MR99].

Recall (2.4.1) that Lie algebras and their smooth homomorphisms form
the category LAL. We can now introduce the fundamental Lie functor , F :
LG ⇒ LAL, from the category of Lie groups to the category of Lie algebras
[Pos86].

Let Xξ be a left invariant vector–field on G corresponding to ξ in g. Then
there is a unique integral curve γξ : R → G of Xξ starting at e, i.e.,

γ̇ξ(t) = Xξ

(
γξ(t)

)
, γξ(0) = e.

γξ(t) is a smooth one parameter subgroup of G, i.e.,

γξ(t+ s) = γξ(t) · γξ(s),

since, as functions of t both sides equal γξ(s) at t = 0 and both satisfy
differential equation

γ̇(t) = Xξ

(
γξ(t)

)

by left invariance of Xξ, so they are equal. Left invariance can be also used
to show that γξ(t) is defined for all t ∈ R. Moreover, if φ : R → G is a one
parameter subgroup of G, i.e., a smooth homomorphism of the additive group
R into G, then φ = γξ with ξ = φ̇(0), since taking derivative at s = 0 in the
relation

φ(t+ s) = φ(t) · φ(s) gives φ̇(t) = Xφ̇(0) (φ(t)) ,

so φ = γξ since both equal e at t = 0. Therefore, all one parameter subgroups
of G are of the form γξ(t) for some ξ ∈ g.

The map exp : g→ G, given by

exp(ξ) = γξ(1), exp(0) = e, (2.23)

is called the exponential map of the Lie algebra g ofG intoG. exp is a Ck–map,
similar to the projection π of tangent and cotangent bundles; exp is locally a
diffeomorphism from a neighborhood of zero in g onto a neighborhood of e in
G; if f : G→ H is a smooth homomorphism of Lie groups, then

f ◦ expG = expH ◦Tef .

Also, in this case (see [Che55, MR99, Pos86])
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exp(sξ) = γξ(s).

Indeed, for fixed s ∈ R, the curve t �→ γξ(ts), which at t = 0 passes through
e, satisfies the differential equation

d

dt
γξ(ts) = sXξ

(
γξ(ts)

)
= Xsξ

(
γξ(ts)

)
.

Since γsξ(t) satisfies the same differential equation and passes through e at
t = 0, it follows that γsξ(t) = γξ(st). Putting t = 1 yields exp(sξ) = γξ(s)
[MR99].

Hence exp maps the line sξ in g onto the one–parameter subgroup γξ(s)
of G, which is tangent to ξ at e. It follows from left invariance that the flow
F ξ

t of X satisfies F ξ
t (g) = g exp(sξ).

Globally, the exponential map exp, as given by (2.23), is a natural oper-
ation, i.e., for any morphism ϕ : G → H of Lie groups G and H and a Lie
functor F , the following diagram commutes [Pos86]:

G H�
ϕ

F(G) F(H)�F(ϕ)

�

exp

�

exp

Let G1 and G2 be Lie groups with Lie algebras g1 and g2. Then G1 ×G2

is a Lie group with Lie algebra g1 × g2, and the exponential map is given by
[MR99].

exp : g1 × g2 → G1 ×G2, (ξ1, ξ2) �→ (exp1(ξ1), exp2(ξ2)) .

For example, in case of a finite–dimensional vector space, or infinite–
dimensional Banach space, the exponential map is the identity.

The unit circle in the complex plane S1 = {z ∈ C : |z| = 1} is an Abelian
Lie group under multiplication. The tangent space TeS

1 is the imaginary
axis, and we identify R with TeS

1 by t �→ 2πit. With this identification, the
exponential map exp : R → S1 is given by exp(t) = e2πit.

The nD torus Tn = S1×···×S1 (n times) is an Abelian Lie group. The
exponential map exp : R

n → Tn is given by

exp(t1, ..., tn) = (e2πit1 , ..., e2πitn).

Since S1 = R/Z, it follows that

Tn = R
n/Zn,

the projection R
n → Tn being given by the exp map (see [MR99, Pos86]).

For every g ∈ G, the map
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Adg = Te

(
Rg−1 ◦ Lg

)
: g→ g

is called the adjoint map (or operator) associated with g.
For each ξ ∈ g and g ∈ G we have

exp (Adgξ) = g (exp ξ) g−1.

The relation between the adjoint map and the Lie bracket is the following:
For all ξ, η ∈ g we have

d

dt

∣
∣
∣
∣
t=0

Adexp(tξ)η = [ξ, η].

A Lie subgroup H of G is a subgroup H of G which is also a submanifold
of G. Then h is a Lie subalgebra of g and moreover h = {ξ ∈ g| exp(tξ) ∈ H,
for all t ∈ R}.

One can characterize Lebesgue measure up to a multiplicative constant
on R

n by its invariance under translations. Similarly, on a locally compact
group there is a unique (up to a nonzero multiplicative constant) left–invariant
measure, called Haar measure. For Lie groups the existence of such measures
is especially simple [MR99]: Let G be a Lie group. Then there is a volume
form Ub5, unique up to nonzero multiplicative constants, that is left invariant.
If G is compact, Ub5 is right invariant as well.

Actions of Lie Groups on M

Let M be a smooth manifold. An action of a Lie group G (with the unit
element e) on M is a smooth map φ : G×M → M, such that for all x ∈ M
and g, h ∈ G, (i) φ(e, x) = x and (ii) φ (g, φ(h, x)) = φ(gh, x). In other words,
letting φg : x ∈ M �→ φg(x) = φ(g, x) ∈ M , we have (i’) φe = idM and (ii’)
φg ◦ φh = φgh. φg is a diffeomorphism, since (φg)−1 = φg−1 . We say that
the map g ∈ G �→ φg ∈ Diff(M) is a homomorphism of G into the group
of diffeomorphisms of M . In case that M is a vector space and each φg is a
linear operator, the function of G on M is called a representation of G on M
[Put93]

An action φ of G onM is said to be transitive action, if for every x, y ∈M ,
there is g ∈ G such that φ(g, x) = y; effective action, if φg = idM implies
g = e, that is g �→ φg is one–to–one; and free action, if for each x ∈ M ,
g �→ φg(x) is one–to–one.

For example,

1. G = R acts on M = R by translations; explicitly,

φ : G×M →M, φ(s, x) = x+ s.

Then for x ∈ R, Ox = R. Hence M/G is a single point, and the action is
transitive and free.
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2. A complete flow φt of a vector–field X on M gives an action of R on M ,
namely

(t, x) ∈ R×M �→ φt(x) ∈M.
3. Left translation Lg : G → G defines an effective action of G on itself. It

is also transitive.
4. The coadjoint action of G on g∗ is given by

Ad∗ : (g, α) ∈ G× g∗ �→ Ad∗g−1(α) =
(
Te(Rg−1 ◦ Lg)

)∗
α ∈ g∗.

Let φ be an action of G on M . For x ∈M the orbit of x is defined by

Ox = {φg(x)|g ∈ G} ⊂M

and the isotropy group of φ at x is given by

Gx = {g ∈ G|φ(g, x) = x} ⊂ G.

An action φ of G on a manifold M defines an equivalence relation on M
by the relation belonging to the same orbit; explicitly, for x, y ∈M , we write
x ∼ y if there exists a g ∈ G such that φ(g, x) = y, that is, if y ∈ Ox. The set
of all orbits M/G is called the orbit space.

For example, letM = R
2\{0}, G = SO(2), the group of rotations in plane,

and the action of G on M given by
([

cos θ − sin θ
sin θ cos θ

]

, (x, y)
)

�−→ (x cos θ − y sin θ, x sin θ + y cos θ).

The action is always free and effective, and the orbits are concentric circles,
thus the orbit space is M/G � R

∗
+.

A crucial concept in mechanics is the infinitesimal description of an action.
Let φ : G×M →M be an action of a Lie group G on a smooth manifold M .
For each ξ ∈ g,

φξ : R×M →M, φξ(t, x) = φ (exp(tξ), x)

is an R–action on M . Therefore, φexp(tξ) : M → M is a flow on M ; the
corresponding vector–field on M , given by

ξM (x) =
d

dt

∣
∣
∣
∣
t=0

φexp(tξ)(x)

is called the infinitesimal generator of the action, corresponding to ξ in g.
The tangent space at x to an orbit Ox is given by

TxOx = {ξM (x)|ξ ∈ g}.

Let φ : G×M →M be a smooth G–action. For all g ∈ G, all ξ, η ∈ g and
all α, β ∈ R, we have:
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(Adgξ)M = φ∗g−1ξM , [ξM , ηM ] = − [ξ, η]M , and (αξ+βη)M = αξM +βηM .
Let M be a smooth manifold, G a Lie group and φ : G × M → M a

G–action on M . We say that a smooth map f : M → M is with respect to
this action if for all g ∈ G,

f ◦ φg = φg ◦ f .

Let f : M →M be an equivariant smooth map. Then for any ξ ∈ g we have

Tf ◦ ξM = ξM ◦ f.

Cohomology of Lie Groups

E. Cartan only studied real cohomology, using the De Rham theorems (see
Chapter 4). Let G be a compact Lie group, operating on the right on a Ck

manifold M by a Ck−operation (s, x) �→ x · s. Since there exists a measure ds
on G, invariant by left and right translations and of total mass 1, Hurewicz’s
idea of taking mean values on G of an arbitrary exterior p−form α on M may
be applied: for any point x ∈ M , the mean value m(α) of a p−form α takes
the value

m(α)(x) =
∫

G

α(x · s) ds.

Now m(α) is invariant under the action of G on M , and if α is closed (resp.
exact), then m(α) is also closed (resp. exact). Furthermore, α and m(α) are
cohomologous on M ; if H•

G(M) is the graded subspace of the real cohomology
space H•(M), consisting of the classes of the differential forms invariant under
the action of G, this defines an isomorphism

m∗ : H•(M) ∼→ H•
G(M).

Cartan’s interpretation of the real cohomology H•(G) of a compact Lie
group G is obtained as a corollary by consideration of the action ((s, t), x) �→
s−1xt of G × G on G. A p−form is invariant under the action if it is bi-
invariant, that is, invariant under both left and right translations in G. The
Lie–Cartan theory implies that for such a form α, dα = 0, so that when
one computes H•

G×G(G), all cochains are cocycles and all coboundaries are 0.
Hence the fundamental result that H•(G) is isomorphic to the graded algebra
b∗(G) of all bi–invariant differential forms.

The explicit determination of H•(G) is thus reduced to an algebraic prob-
lem. The group G operates on the dual g∗ of the Lie algebra g by the coadjoint
representation s �→ tAd(s); b∗(G) is the sum of the 1D subspaces of g∗ sta-
ble for that representation; for a compact group, they can in principle be
determined by Cartan’s method of highest weights.
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Basic Biomechanical Groups

Galilei Group

The Galilei group is the group of transformations in space and time that con-
nect those Cartesian systems that are termed ‘inertial frames’ in Newtonian
mechanics. The most general relationship between two such frames is the fol-
lowing. The origin of the time scale in the inertial frame S′ may be shifted
compared with that in S; the orientation of the Cartesian axes in S′ may
be different from that in S; the origin O of the Cartesian frame in S′ may
be moving relative to the origin O in S at a uniform velocity. The transition
from S to S′ involves ten parameters; thus the Galilei group is a ten param-
eter group. The basic assumption inherent in Galilei–Newtonian relativity is
that there is an absolute time scale, so that the only way in which the time
variables used by two different ‘inertial observers’ could possibly differ is that
the zero of time for one of them may be shifted relative to the zero of time
for the other.

Galilei space–time structure involves the following three elements:

1. World, as a 4D affine space A4. The points of A4 are called world points
or events. The parallel transitions of the world A4 form a linear (i.e.,
Euclidean) space R

4.
2. Time, as a linear map t : R

4 → R of the linear space of the world parallel
transitions onto the real ‘time axes’. Time interval from the event a ∈ A4

to b ∈ A4 is called the number t(b−a); if t(b−a) = 0 then the events a and b
are called synchronous. The set of all mutually synchronous events consists
a 3D affine space A3, being a subspace of the world A4. The kernel of the
mapping t consists of the parallel transitions of A4 translating arbitrary
(and every) event to the synchronous one; it is a linear 3D subspace R

3

of the space R
4.

3. Distance (metric) between the synchronous events,

ρ(a, b) =‖ a− b ‖, for all a, b ∈ A3,

given by the scalar product in R
3. The distance transforms arbitrary space

of synchronous events into the well known 3D Euclidean space E3.

The space A4, with the Galilei space–time structure on it, is called Galilei
space. Galilei group is the group of all possible transformations of the Galilei
space, preserving its structure. The elements of the Galilei group are called
Galilei transformations. Therefore, Galilei transformations are affine transfor-
mations of the world A4 preserving the time intervals and distances between
the synchronous events.

The direct product R× R
3, of the time axes with the 3D linear space R3

with a fixed Euclidean structure, has a natural Galilei structure. It is called
Galilei coordinate system.
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General Linear Group

The group of linear isomorphisms of R
n to R

n is a Lie group of dimension n2,
called the general linear group and denoted Gl(n,R). It is a smooth manifold,
since it is a subset of the vector space L(Rn,Rn) of all linear maps of R

n

to R
n, as Gl(n,R) is the inverse image of R\{0} under the continuous map

A �→ detA of L(Rn,Rn) to R. The group operation is composition

(A,B) ∈ Gl(n,R)×Gl(n,R) �→ A ◦B ∈ Gl(n,R)

and the inverse map is

A ∈ Gl(n,R) �→ A−1 ∈ Gl(n,R).

If we choose a basis in R
n, we can represent each element A ∈ Gl(n,R) by an

invertible (n× n)–matrix. The group operation is then matrix multiplication
and the inversion is matrix inversion. The identity is the identity matrix In.
The group operations are smooth since the formulas for the product and
inverse of matrices are smooth in the matrix components.

The Lie algebra of Gl(n,R) is gl(n), the vector space L(Rn,Rn) of all
linear transformations of R

n, with the commutator bracket

[A,B] = AB −BA.

For every A ∈ L(Rn,Rn),

γA : t ∈ R �→γA(t) =
∞∑

i=0

ti

i!
Ai ∈ Gl(n,R)

is a one parameter subgroup of Gl(n,R), because

γA(0) = I, and γ̇A(t) =
∞∑

i=0

ti−1

(i− 1)!
Ai = γA(t)A.

Hence γA is an integral curve of the left invariant vector–field XA. Therefore,
the exponential map is given by

exp : A ∈ L(Rn,Rn) �→ exp(A) ≡ eA = γA(1) =
∞∑

i=0

Ai

i!
∈ Gl(n,R).

For each A ∈ Gl(n,R) the corresponding adjoint map

AdA : L(Rn,Rn) → L(Rn,Rn)

is given by
AdAB = A ·B ·A−1.
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Groups of Joint Rotations

Local kinematics at each rotational robot or (synovial) human joint, is de-
fined as a group action of an nD constrained rotational Lie group SO(n) on
the Euclidean space R

n. In particular, there is an action of SO(2)–group in
uniaxial human joints (cylindrical, or hinge joints, like knee and elbow) and
an action of SO(3)–group in three–axial human joints (spherical, or ball–and–
socket joints, like hip, shoulder, neck, wrist and ankle). In both cases, SO(n)
acts, with its operators of rotation, on the vector x = {xµ}, (i = 1, 2, 3) of
external, Cartesian coordinates of the parent body–segment, depending, at
the same time, on the vector q = {qs}, (s = 1, · · · , n) on n group–parameters,
i.e., joint angles.

Each joint rotation R ∈ SO(n) defines a map

R : xµ �→ ẋµ, R(xµ, qs) = Rqsxµ,

where Rqs ∈ SO(n) are joint group operators. The vector v = {vs}, (s =
1, · · · , n) of n infinitesimal generators of these rotations, i.e., joint angular
velocities, given by

vs = −[
∂R(xµ, qs)

∂qs
]q=0

∂

∂xµ
,

constitute an nD Lie algebra so(n) corresponding to the joint rotation
group SO(n). Conversely, each joint group operator Rqs , representing a one–
parameter subgroup of SO(n), is defined as the exponential map of the cor-
responding joint group generator vs

Rqs = exp(qsvs). (2.24)

The exponential map (2.24) represents a solution of the joint operator differ-
ential equation in the joint group–parameter space {qs}

dRqs

dqs
= vsRqs .

Uniaxial Group of Joint Rotations

The uniaxial joint rotation in a single Cartesian plane around a perpendicular
axis, e.g., xy−plane about the z axis, by an internal joint angle θ, leads to
the following transformation of the joint coordinates

ẋ = x cos θ − y sin θ, ẏ = x sin θ + y cos θ.

In this way, the joint SO(2)−group, given by

SO(2) =
{

Rθ =
(

cos θ − sin θ
sin θ cos θ

)

|θ ∈ [0, 2π]
}

,

acts in a canonical way on the Euclidean plane R
2 by



120 2 Geometric Basis of Human–Like Biomechanics

SO(2) =
((

cos θ − sin θ
sin θ cos θ

)

,

(
x
w

))

�−→
(
x cos θ −y sin θ
x sin θ y cos θ

)

.

Its associated Lie algebra so(2) is given by

so(2) =
{(

0 −t
t 0

)

|t ∈ R

}

,

since the curve γθ ∈ SO(2) given by

γθ : t ∈ R �−→ γθ(t) =
(

cos tθ − sin tθ
sin tθ cos tθ

)

∈ SO(2),

passes through the identity I2 =
(

1 0
0 1

)

and then

d

dt

∣
∣
∣
∣
t=0

γθ(t) =
(

0 −θ
θ 0

)

,

so that I2 is a basis of so(2), since dim (SO(2)) = 1.
The exponential map exp : so(2) → SO(2) is given by

exp
(

0 −θ
θ 0

)

= γθ(1) =
(

cos tθ − sin tθ
sin tθ cos tθ

)

.

The infinitesimal generator of the action of SO(2) on R
2, i.e., joint angular

velocity v, is given by

v = −y ∂
∂x

+ x
∂

∂y
,

since

vR2 (x, y) =
d

dt

∣
∣
∣
∣
t=0

exp(tv) (x, y) =
d

dt

∣
∣
∣
∣
t=0

(
cos tv − sin tv
sin tv cos tv

)(
x
y

)

.

The momentum map (see subsection 2.6.3 below) J : T ∗
R

2 → R associated
to the lifted action of SO(2) on T ∗

R
2 � R

4 is given by

J (x, y, p1, p2) = xpy − ypx, since
J (x, y, px, py) (ξ) = (pxdx+ pydy)(vR2) = −vpxy +−vpyx.

The Lie group SO(2) acts on the symplectic manifold (R4, ω = dpx ∧dx+
dpy ∧ dx) by

φ

((
cos θ − sin θ
sin θ cos θ

)

, (x, y, px, py)
)

= (x cos θ − y sin θ, x sin θ + y cos θ, px cos θ − py sin θ, px sin θ + py cos θ) .
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Three–Axial Group of Joint Rotations

The three–axial SO(3)−group of human–like joint rotations depends on three
parameters, Euler joint angles qi = (ϕ,ψ, θ), defining the rotations about the
Cartesian coordinate triedar (x, y, z) placed at the joint pivot point. Each of
the Euler angles are defined in the constrained range (−π, π), so the joint
group space is a constrained sphere of radius π.

Let G = SO(3) = {A ∈ M3×3(R) : AtA = I3,det(A) = 1} be the group
of rotations in R

3. It is a Lie group and dim(G) = 3. Let us isolate its one–
parameter joint subgroups, i.e., consider the three operators of the finite joint
rotations Rϕ, Rψ, Rθ∈ SO(3), given by

Rϕ =




1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ



 , Rψ =




cosψ 0 sinψ

0 1 0
− sinψ 0 cosψ



 , Rθ =




cos θ − sin θ 0
sin θ cos θ 0

0 0 1





corresponding respectively to rotations about x−axis by an angle ϕ, about
y−axis by an angle ψ, and about z−axis by an angle θ.

The total three–axial joint rotation A is defined as the product of above
one–parameter rotations Rϕ, Rψ, Rθ, i.e., A = Rϕ· Rψ· Rθ is equal

A=




cosψ cosϕ− cos θ sinϕ sinψ cosψ cosϕ+ cos θ cosϕ sinψ sin θ sinψ
− sinψ cosϕ− cos θ sinϕ sinψ − sinψ sinϕ+ cos θ cosϕ cosψ sin θ cosψ

sin θ sinϕ − sin θ cosϕ cos θ



.

Rϕ, Rψ andRθ are curves in SO(3) starting from I3 =

(
1 0 0
0 1 0
0 0 1

)

. Their

derivatives in ϕ = 0, ψ = 0 and θ = 0 belong to the associated tangent
Lie algebra so(3). That is the corresponding infinitesimal generators of joint
rotations – joint angular velocities vϕ, vψ, vθ ∈ so(3) – are respectively given
by

vϕ =

[
0 0 0
0 0 −1
0 1 0

]

= −y ∂
∂z

+ z
∂

∂y
, vψ =

[
0 0 1
0 0 0
−1 0 0

]

= −z ∂
∂x

+ x
∂

∂z
,

vθ =

[
0 −1 0
1 1 0
0 0 0

]

= −x ∂
∂y

+ y
∂

∂x
.

Moreover, the elements are linearly independent and so

so(3) =









0 −a b
a 0 −γ
−b γ 0



 |a, b, γ ∈ R





.

the Lie algebra so(3) is identified with R
3 by associating to each v =

(vϕ, vψ, vθ) ∈ R
3 the matrix v ∈ so(3) given by v =

[
0 −a b
a 0 −γ
−b γ 0

]

. Then

we have the following identities:
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1. û× v = [û, v]; and
2. u·v = − 1

2 Tr(û · v).
The exponential map exp : so(3) → SO(3) is given by Rodrigues relation

exp(v) = I +
sin ‖v‖
‖v‖ v +

1
2

(
sin ‖v‖

2
‖v‖
2

)2

v2,

where the norm ‖v‖ is given by

‖v‖ =
√

(v1)2 + (v2)2 + (v3)2.

The the dual, cotangent Lie algebra so(3)∗, includes the three joint angular
momenta pϕ, pψ, pθ ∈ so(3)∗, derived from the joint velocities v by multiplying
them with corresponding moments of inertia.

Special Euclidean Groups of Total Joint Motions

Biomechanically realistic joint movement is predominantly rotational, plus
restricted translational (translational motion in human joints is observed after
reaching the limit of rotational amplitude). Gross translation in any human
joint means joint dislocation, which is a severe injury. Obvious models for
uniaxial and triaxial joint motions are special Euclidean groups of rigid body
motions, SE(2) and SE(3), respectively.

Special Euclidean Group in the Plane

The motion in uniaxial human joints is naturally modelled by the special
Euclidean group in the plane, SE(2). It consists of all transformations of R

2

of the form Az + a, where z, a ∈ R
2, and

A ∈ SO(2) =
{

matrices of the form
(

cos θ − sin θ
sin θ cos θ

)}

.

In other words [MR99], group SE(2) consists of matrices of the form:

(Rθ, a) =
(

Rθ a
0 I

)

, where a ∈ R
2 and Rθ is the rotation matrix:

Rθ =
(

cos θ − sin θ
sin θ cos θ

)

, while I is the 3×3 identity matrix. The inverse (Rθ, a)
−1

is given by

(Rθ, a)
−1 =

(
Rθ a
0 I

)−1

=
(
R−θ −R−θa

0 I

)

.

The Lie algebra se(2) of SE(2) consists of 3× 3 block matrices of the form
(
−ξJ v

0 0

)

, where J =
(

0 1
−1 0

)

, (JT = J−1 = −J),
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with the usual commutator bracket. If we identify se(2) with R
3 by the iso-

morphism (
−ξJ v

0 0

)

∈ se(2) �−→ (ξ, v) ∈ R
3,

then the expression for the Lie algebra bracket becomes

[(ξ, v1, v2), (ζ, w1, w2)] = (0, ζv2 − ξw2, ξw1 − ζv1) = (0, ξJTw − ζJT v),

where v = (v1, v2) and w = (w1, w2).
The adjoint group action of

(Rθ, a)
(
Rθ a
0 I

)

on (ξ, v) =
(
−ξJ v

0 0

)

is given by the group conjugation,
(
Rθ a
0 I

)(
−ξJ v

0 0

)(
R−θ −R−θa

0 I

)

=
(
−ξJ ξJa+Rθv

0 0

)

,

or, in coordinates [MR99],

Ad(Rθ,a)(ξ, v) = (ξ, ξJa+Rθv). (2.25)

In proving (2.25) we used the identity RθJ = JRθ. Identify the dual

algebra, se(2)∗, with matrices of the form
(

µ
2J 0
α 0

)

, via the nondegenerate

pairing given by the trace of the product. Thus, se(2)∗ is isomorphic to R
3

via (
µ
2J 0
α 0

)

∈ se(2)∗ �−→ (µ, α) ∈ R
3,

so that in these coordinates, the pairing between se(2)∗ and se(2) becomes

〈(µ, α), (ξ, v)〉 = µξ + α · v,

that is, the usual dot product in R
3. The coadjoint group action is thus given

by
Ad∗

(Rθ,a)−1(µ, α) = (µ−Rθα · Ja+Rθα). (2.26)

Formula (2.26) shows that the coadjoint orbits are the cylinders T ∗S1
α =

{(µ, α)| ‖α‖ = const} if α �= 0 together with the points are on the µ−axis.
The canonical cotangent bundle projection π : T ∗S1

α → S1
α is defined as

π(µ, α) = α.

Special Euclidean Group in the 3D Space

The most common group structure in human–like biomechanics is the special
Euclidean group in 3D space, SE(3). It is defined as a semidirect (noncom-
mutative) product of 3D rotations and 3D translations, SO(3) � R

3.
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The Heavy Top

As a starting point consider a rigid body (see (3.2.1) below) moving with
a fixed point but under the influence of gravity. This problem still has a
configuration space SO(3), but the symmetry group is only the circle group
S1, consisting of rotations about the direction of gravity. One says that gravity
has broken the symmetry from SO(3) to S1. This time, eliminating the S1

symmetry mysteriously leads one to the larger Euclidean group SE(3) of rigid
motion of R

3. Conversely, we can start with SE(3) as the configuration space
for the rigid–body and ‘reduce out’ translations to arrive at SO(3) as the
configuration space (see [MR99]).

The equations of motion for a rigid body with a fixed point in a gravi-
tational field provide an interesting example of a system that is Hamiltonian
(see (3.2.1)) relative to a Lie–Poisson bracket (see (3.2.3)). The underlying
Lie algebra consists of the algebra of infinitesimal Euclidean motions in R

3.
The basic phase–space we start with is again T ∗SO(3), parameterized by

Euler angles and their conjugate momenta. In these variables, the equations
are in canonical Hamiltonian form; however, the presence of gravity breaks
the symmetry, and the system is no longer SO(3) invariant, so it cannot be
written entirely in terms of the body angular momentum p. One also needs
to keep track of Γ , the ‘direction of gravity’ as seen from the body. This is
defined by Γ = A−1k, where k points upward and A is the element of SO(3)
describing the current configuration of the body. The equations of motion are

ṗ1 =
I2 − I3
I2I3

p2p3 +Mgl(Γ 2χ3 − Γ 3χ2),

ṗ2 =
I3 − I1
I3I1

p3p1 +Mgl(Γ 3χ1 − Γ 1χ3),

ṗ3 =
I1 − I2
I1I2

p1p2 +Mgl(Γ 1χ2 − Γ 2χ1),

and
Γ̇ = Γ ×Ω,

where Ω is the body angular velocity vector, I1, I2, I3 are the body’s principal
moments of inertia, M is the body’s mass, g is the acceleration of gravity, χ
is the body fixed unit vector on the line segment connecting the fixed point
with the body’s center of mass, and l is the length of this segment.

The Euclidean Group and Its Lie Algebra

An element of SE(3) is a pair (A, a) where A ∈ SO(3) and a ∈ R
3. The action

of SE(3) on R
3 is the rotation A followed by translation by the vector a and

has the expression
(A, a) · x = Ax+ a.

Using this formula, one sees that multiplication and inversion in SE(3) are
given by
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(A, a)(B, b) = (AB,Ab+ a) and (A, a)−1 = (A−1,−A−1a),

for A,B ∈ SO(3) and a, b ∈ R
3. The identity element is (l, 0).

The Lie algebra of the Euclidean group SE(3) is se(3) = R
3×R

3 with the
Lie bracket

[(ξ, u), (η, v)] = (ξ × η, ξ × v − η × u). (2.27)

The Lie algebra of the Euclidean group has a structure that is a spe-
cial case of what is called a semidirect product . Here it is the product of the
group of rotations with the corresponding group of translations. It turns out
that semidirect products occur under rather general circumstances when the
symmetry in T ∗G is broken.

The dual Lie algebra of the Euclidean group SE(3) is se(3)∗ = R
3 × R

3

with the same Lie bracket (2.27). For the further details on adjoint orbits in
se(3) as well as coadjoint orbits in se(3)∗ see [MR99].

Symplectic Group in Hamiltonian Mechanics

Let J =
(

0 I
−I 0

)

, with I the n×n identity matrix. Now, A ∈ L(R2n,R2n) is

called a symplectic matrix if ATJ A = J . Let Sp(2n,R) be the set of 2n× 2n
symplectic matrices. Taking determinants of the condition ATJ A = J gives
detA = ±1, and so A ∈ GL(2n,R). Furthermore, if A,B ∈ Sp(2n,R), then
(AB)TJ(AB) = BTATJAB = J . Hence, AB ∈ Sp(2n,R), and if ATJ A = J ,
then JA = (AT )−1J = (A−1)TJ , so J = (A− 1)T

JA−1, or A−1 ∈ Sp(2n,R).
Thus, Sp(2n,R) is a group [MR99].

The symplectic Lie group

Sp(2n,R) =
{
A ∈ GL(2n,R) : ATJ A = J

}

is a noncompact, connected Lie group of dimension 2n2 + n. Its Lie algebra

sp(2n,R) =
{
A ∈ L(R2n,R2n) : ATJ A = J = 0

}
,

called the symplectic Lie algebra, consists of the 2n×2n matrices A satisfying
ATJ A = 0 [MR99].

Consider a particle of mass m moving in a potential V (q), where qi =
(q1, q2, q3) ∈ R

3. Newtonian second law states that the particle moves along
a curve q(t) in R

3 in such a way that mq̈i = − gradV (qi). Introduce the
momentum pi = mq̇i, and the energy

H(q, p) =
1

2m

3∑

i=1

p2i + V (q).

Then
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∂H

∂qi
=
∂V

∂qi
= −mq̈i = −ṗi, and

∂H

∂pi
=

1
m
pi = q̇i, (i = 1, 2, 3),

and hence Newtonian law F = mq̈i is equivalent to Hamilton’s equations

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
.

Now, writing z = (qi, pi) [MR99],

J gradH(z) =
(

0 I
−I 0

)( ∂H
∂qi

∂H
∂pi

)

=
(
q̇i, ṗi

)
= ż,

so Hamilton’s equations read

ż = J gradH(z). (2.28)

Now let f : R
3×R

3 → R
3×R

3 and write w = f(z). If z(t) satisfies Hamilton’s
equations (2.28) then w(t) = f(z(t)) satisfies ẇ = AT ż, where AT = [∂wi/∂zj ]
is the Jacobian matrix of f . By the chain rule,

ẇ = ATJ grad
z
H(z) = ATJ A grad

w
H(z(w)).

Thus, the equations for w(t) have the form of Hamilton’s equations with en-
ergy K(w) = H(z(w)) iff ATJ A = J , that is, iff A is symplectic. A nonlinear
transformation f is canonical iff its Jacobian matrix is symplectic. Sp(2n,R)
is the linear invariance group of classical mechanics [MR99].

Now, before giving our main biomechanical applications of Lie groups, we
give an interesting application in the realm of dynamical games.

2.4.3 Dynamical Games on Lie Groups

In this section we propose a general approach to modelling conflict resolution
manoeuvres for land, sea and airborne vehicles, using dynamical games on
Lie groups. We use the generic name ‘vehicle’ to represent all planar vehicles,
namely land and sea vehicles, as well as fixed altitude motion of aircrafts (see,
e.g., [LGS, TPS98]). First, we elaborate on the two–vehicle conflict resolution
manoeuvres, and after that discuss the multi–vehicle manoeuvres.

We explore special features of the dynamical games solution when the un-
derlying dynamics correspond to left–invariant control systems on Lie groups.
We show that the 2D (i.e., planar) motion of a vehicle may be modelled as
a control system on the Lie group SE(2). The proposed algorithm surrounds
each vehicle with a circular protected zone, while the simplification in the



2.4 Lie Categories in Human–Like Biomechanics 127

derivation of saddle and Nash strategies follows from the use of symplectic
reduction techniques [MR99]. To model the two–vehicle conflict resolution,
we construct the safe subset of the state space for one of the vehicles using
zero–sum non–cooperative dynamic game theory [BO95] which we specialize
to the SE(2) group. If the underlying continuous dynamics are left–invariant
control systems, reduction techniques can be used in the computation of safe
sets.

Configuration Models for Planar Vehicles

The configuration of each individual vehicle is described by an element of the
Lie group SE(2) of rigid–body motions in R

2. Let gi ∈ SE(2) denote the
configurations of vehicles labelled i, with i = 1, 2. The motion of each vehicle
may be modelled as a left–invariant vector–field on SE(2):

ġi = giXi, (2.29)

where the vector–fields Xi belong to the vector space se(2), the Lie algebra
associated with the group SE(2).

Each gi ∈ SE(2) can be represented in standard local coordinates (xi, yi, θi)
as

gi =




cos θi − sin θi xi

sin θi cos θi yi

0 0 1



 ,

where xi, yi is the position of vehicle i and θi is its orientation, or heading.
The associated Lie algebra is se(2), with Xi ∈ se(2) represented as

Xi =




0 −ωi vi

ωi 0 0
0 0 0



 ,

where vi and ωi represent the translational (linear) and rotational (angular)
velocities, respectively.

Now, to determine dynamics of the relative configuration of two vehicles,
we perform a change (transformation) of coordinates, to place the identity
element of the group SE(2) on vehicle 1. If grel ∈ SE(2) denotes the relative
configuration of vehicle 2 with respect to vehicle 1, then

g2 = g1g
rel =⇒ grel = g−1

1 g2.

Differentiation with respect to time yields the dynamics of the relative con-
figuration:

ġrel = grelX2 −X1g
rel,

which expands into:

ẋrel = −v1 + v2 cos θrel + ω1y
rel,

ẏrel = v2 sin θrel − ω1x
rel,

θ̇
rel

= ω2 − ω1.
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Two–Vehicles Conflict Resolution Manoeuvres

Next, we seek control strategies for each vehicle, which are safe under (pos-
sible) uncertainty in the actions of neighbouring vehicle. For this, we expand
the dynamics of two vehicles (2.29),

ġ1 = g1X1, ġ2 = g2X2,

and write it in the matrix form as

ġ = gX, (2.30)

with

g =
[
g1 0
0 g2

]

, X =
[
X1 0
0 X2

]

,

in which g is an element in the configuration manifold M = SE(2)× SE(2),
while the vector–fieldsXi ∈ se(2)×se(2) are linearly parameterised by velocity
inputs (ω1, v1) ∈ R

2 and (ω2, v2) ∈ R
2.

The goal of each vehicle is to maintain safe operation, meaning that
(i) the vehicles remain outside of a specified target set T with boundary

∂T , defined by
T = {g ∈M |l(g) < 0},

where l(g) is a differentiable circular function,

l(g) = (x2 − x1)2 + (y2 − y1)2 − ρ2

(with ρ denoting the radius of a circular protected zone) defines the minimum
allowable lateral separation between vehicles; and

(ii)
dl(g) �= 0 on ∂T = {g ∈M |l(g) = 0},

where d represents the exterior derivative (a unique generalization of the
gradient, divergence and curl).

Now, due to possible uncertainty in the actions of vehicle 2, the safest
possible strategy of vehicle 1 is to drive along a trajectory which guarantees
that the minimum allowable separation with vehicle 2 is maintained regardless
of the actions of vehicle 2. We therefore formulate this problem as a zero–sum
dynamical game with two players: control vs. disturbance. The control is the
action of vehicle 1,

u = (ω1, v1) ∈ U,
and the disturbance is the action of vehicle 2,

d = (ω2, v2) ∈ D.

Here the control and disturbance sets, U and D, are defined as
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U = ([ωmin
1 , ωmax

1 ], [vmin
1 , vmax

1 ]),
D = ([ωmin

2 , ωmax
2 ], [vmin

2 , vmax
2 ])

and the corresponding control and disturbance functional spaces, U and D are
defined as:

U = {u(·) ∈ PC0(R2)|u(t) ∈ U, t ∈ R},
D = {d(·) ∈ PC0(R2)|d(t) ∈ U, t ∈ R},

where PC0(R2) is the space of piecewise continuous functions over R
2.

We define the cost of a trajectory g(t) which starts at state g at initial
time t ≤ 0, evolves according to (2.30) with input (u(·), d(·)), and ends at the
final state g(0) as:

J(g, u(·), d(·), t) : SE(2)× SE(2)× U ×D × R− → R,

such that J(g, u(·), d(·), t) = l(g(0)), (2.31)

where 0 is the final time (without loss of generality). Thus the cost depends
only on the final state g(0) (the Lagrangian, or running cost, is identically
zero). The game is won by vehicle 1 if the terminal state g(0) is either outside
T or on ∂T (i.e., J(g, 0) ≥ 0), and is won by vehicle 2 otherwise.

This two–player zero–sum dynamical game on SE(2) is defined as follows.
Consider the matrix system (2.30), ġ = gX, over the time interval [t, 0] where
t < 0 with the cost function J(g, u(·), d(·), t) defined by (2.31) As vehicle 1
attempts to maximize this cost assuming that vehicle 2 is acting blindly, the
optimal control action and worst disturbance actions are calculated as

u∗ = arg max
u∈U

min
d∈D

J(g, u(·), d(·), t), d∗ = arg min
d∈D

max
u∈U

J(g, u(·), d(·), t).

The game is said to have a saddle solution (u∗,d∗) if the resulting optimal
cost J∗(g, t) does not depend on the order of play, i.e., on the order in which
the maximization and minimization is performed:

J∗(g, t) = max
u∈U

min
d∈D

J(g, u(·), d(·), t) = min
d∈D

max
u∈U

J(g, u(·), d(·), t).

Using this saddle solution we calculate the ‘losing states’ for vehicle 1, called
the predecessor Pret(T ) of the target set T ,

Pret(T ) = {g ∈M |J(g, u∗(·), d(·), t) < 0}.

Symplectic Reduction and Dynamical Games on SE(2)

Since vehicles 1 and 2 have dynamics given by left–invariant control systems
on the Lie group SE(2), we have

X1 = ξ1ω1 + ξ2v1, X2 = ξ1ω2 + ξ2v2,
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with ξ1, ξ2 being two of the three basis elements for the tangent Lie algebra
se(2) given by

ξ1 =




0 −1 0
1 0 0
0 0 0



 , ξ2 =




0 0 1
1 0 0
0 0 0



 , ξ3 =




0 0 0
1 0 1
0 0 0



 .

If p1 (resp. p2) is a cotangent vector–field to SE(2) at g1 (resp. g2), belong-
ing to the cotangent (dual) Lie algebra se(2)∗, we can define the momentum
functions for both vehicles:

P 1
1 = < p1, g1ξ

1 >,P 2
1 =< p1, g1ξ2 >,P 3

1 =< p1, g1ξ3 >,
P 1

2 = < p2, g2ξ
1 >,P 2

2 =< p2, g2ξ2 >,P 3
2 =< p2, g2ξ3 >,

which can be compactly written as

P j
i =< pi, giξ

j > .

Defining p = (p1, p2) ∈ se(2)∗ × se(2)∗, the optimal cost for the two-player,
zero-sum dynamical game is given by

J∗(g, t) = max
u∈U

min
d∈D

J(g, u(·), d(·), t) = max
u∈U

min
d∈D

l(g(0)).

The Hamiltonian H(g, p, u, d) is given by

H(g, p, u, d) = P 1
1 ω1 + P 2

1 v1 + P 1
2 ω1 + P 2

2 v1

for control and disturbance inputs (ω1, v1) ∈ U and (ω2, v2) ∈ D as defined
above. It follows that the optimal Hamiltonian H∗(g, p), defined on the cotan-
gent bundle T ∗SE(2), is given by

H∗(g, p) = P 1
1

ωmax
1 + ωmin

1

2
+ P 1

2

ωmax
2 + ωmin

2

2
+ |P 1

1 |
ωmax

1 − ωmin
1

2

− |P 1
1 |
ωmax

2 − ωmin
2

2
+ P 2

1

vmax
1 + vmin

1

2
+ P 2

2

vmax
2 + vmin

2

2

+ |P 2
1 |
vmax
1 − vmin

1

2
− |P 2

1 |
vmax
2 − vmin

2

2

and the saddle solution (u∗, d∗) is given by

u∗ = arg max
u∈U

min
d∈D

H(g, p, u, d), d∗ = arg min
d∈D

max
u∈U

H(g, p, u, d). (2.32)

Note that H(g, p, u, d) and H∗(g, p) do not depend on the state g and costate
p directly, rather through the momentum functions P j

1 , P
j
2 . This is because

the dynamics are determined by left–invariant vector fields on the Lie group
and the Lagrangian is state independent [MR99].
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The optimal Hamiltonian H∗(g, p) determines a 12D Hamiltonian vector–
field XH∗ on the symplectic manifold T ∗M = SE(2)×SE(2)×se(2)∗×se(2)∗

(which is the cotangent bundle of the configuration manifold M), defined by
Hamilton’s equations

XH∗ : ġ =
∂H∗(g, p)

∂p
, ṗ = −∂H

∗(g, p)
∂g

,

with initial condition at time t being g(t) = g and final condition at time
0 being p(0) = dl(g(0)). In general, to solve for the saddle solution (2.32),
one needs to solve the ODE system for all states. However since the original
system onM = SE(2)×SE(2) is left–invariant, it induces generic symmetries
in the Hamiltonian dynamics on T ∗M , referred to as Marsden–Weinstein
reduction of Hamiltonian systems on symplectic manifolds, see [MR99]. In
general for such systems one only needs to solve an ODE system with half of
the dimensions of the underlying symplectic manifold.

For the two-vehicle case we only need to solve an ODE system with 6
states. That is exactly given by the dynamics of the 6 momentum functions

Ṗ j
i = LXH∗P

j
i = {P j

i , H
∗(g, p)}, (2.33)

for i, j = 1, 2, which is the Lie derivative of P j
i with respect to the Hamiltonian

vector–field XH∗ . In the equation (2.33), the bracket {·, ·} is the Poisson
bracket [IP01a], giving the commutation relations:

{P 1
1 , P

2
1 } = P 3

1 , {P 2
1 , P

3
1 } = 0, {P 3

1 , P
1
1 } = P 2

1 ,

{P 1
2 , P

2
2 } = P 3

2 , {P 2
2 , P

3
2 } = 0, {P 3

2 , P
1
2 } = P 2

2 .

Using these commutation relations, equation (2.33) can be written explicitly:

Ṗ 1
1 = P 3

1

(
vmax
1 + vmin

1

2
+ sign(P 2

1 )
vmax
1 + vmin

1

2

)

,

Ṗ 2
1 = P 3

1

(

−ω
max
1 + ωmin

1

2
− sign(P 1

1 )
ωmax

1 − ωmin
1

2

)

,

Ṗ 3
1 = P 2

1

(
ωmax

1 + ωmin
1

2
+ sign(P 1

1 )
ωmax

1 − ωmin
1

2

)

,

Ṗ 1
2 = P 3

2

(
vmax
2 + vmin

2

2
+ sign(P 2

2 )
vmax
2 + vmin

2

2

)

,

Ṗ 2
2 = P 3

2

(

−ω
max
2 + ωmin

2

2
− sign(P 1

2 )
ωmax

2 − ωmin
2

2

)

,

Ṗ 3
2 = P 2

2

(
ωmax

2 + ωmin
2

2
+ sign(P 1

2 )
ωmax

2 − ωmin
2

2

)

.

The final conditions for the variables P j
1 (t) and P j

2 (t) are obtained from the
boundary of the safe set as
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P j
1 (0) =< d1l(g), g1ξj >, P j

2 (0) =< d2l(g), g2ξj >,

where d1 is the derivative of l taken with respect to its first argument g1 only
(and similarly for d2). In this way, P j

1 (t) and P j
2 (t) are obtained for t ≤ 0. Once

this has been calculated, the optimal input u∗(t) and the worst disturbance
d∗(t) are given respectively as

u∗(t) =






ω∗
1(t) =

{
ωmax

1 if P 1
1 (t) > 0

ωmin
1 if P 1

1 (t) < 0

v∗1(t) =
{
vmax
1 if P 2

1 (t) > 0
vmin
1 if P 2

1 (t) < 0

d∗(t) =






ω∗
2(t) =

{
ωmax

2 if P 1
2 (t) > 0

ωmin
2 if P 1

2 (t) < 0

v∗2(t) =
{
vmax
2 if P 2

2 (t) > 0
vmin
2 if P 2

2 (t) < 0

.

Nash Solutions for Multi–Vehicle Manoeuvres

The methodology introduced in the previous sections can be generalized to
find conflict–resolutions for multi–vehicle manoeuvres. Consider the three–
vehicle dynamics:

ġ = gX, (2.34)

with

g =




g1 0 0
0 g2 0
0 0 g3



 , X =




X1 0 0
0 X2 0
0 0 X3



 ,

where g is an element in the configuration space M = SE(2)×SE(2)×SE(2)
and X ∈ se(2) × se(2) × se(2) is linearly parameterised by inputs (ω1, v1),
(ω2, v2) and (ω3, v3).

Now, the target set T is defined as

T = {g ∈M |l1(g) < 0 ∨ l2(g) < 0 ∨ l3(g) < 0},

where

l1(g) = min{(x2 − x1)2 + (y2 − y1)2 − ρ2, (x3 − x1)2 + (y3 − y1)2 − ρ2},
l2(g) = min{(x3 − x2)2 + (y3 − y2)2 − ρ2, (x1 − x2)2 + (y1 − y2)2 − ρ2},
l3(g) = min{(x2 − x3)2 + (y2 − y3)2 − ρ2, (x1 − x3)2 + (y1 − y3)2 − ρ2}.

The control inputs u = (u1, u2, u3) are the actions of vehicle 1, 2 and 3:

ui = (ωi, vi) ∈ Ui,

where Ui are defined as

Ui = ([ωmin
i , ωmax

i ], [vmin
i , vmax

i ]).
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Clearly, this can be generalized to N vehicles.
The cost functions Ji(g, {ui(·)}, t) are defined as

Ji(g, {ui(·)}, t) :
N∏

i=1

SEi(2)×
N∏

i=1

Ui × R− → R,

such that Ji(g, {ui(·)}, t) = li(g(0)).
The simplest non–cooperative solution strategy is aso–callednon–cooperative

Nash equilibrium (see e.g., [BO95]). A set of controls u∗i , (i = 1, ..., N) is said
to be a Nash strategy, if for each player modification of that strategy under
the assumption that the others play their Nash strategies results in a decrease
in his payoff, that is for i = 1, ..., N , and ∀ui(·),

Ji(u1, ..., ui, ..., uN ) ≤ Ji(u∗1, ..., u
∗
i , ..., u

∗
N ), (u �= u∗).

(Note that Nash equilibria may not be unique. It is also easy to see that for
the two–player zero–sum game, a Nash equilibrium is a saddle solution with
J = J1 = −J2.)

For N vehicles, the momentum functions are defined as in the two–vehicle
case:

P j
i =< pi, giξ

j >,

with pi ∈ se(2)∗ for i = 1, ..., N and ξj defined as above.
Then the Hamiltonian H(g, p, u1, ...uN ) is given by

H(g, p, u1, ...uN ) = P 1
i ωi + P 2

i vi.

The first case we consider is one in which all the vehicles are cooperating ,
meaning that each tries to avoid conflict assuming the others are doing the
same. In this case, the optimal Hamiltonian H∗(g, p) is

H∗(g, p) = max
ui∈Ui

H(g, p, u1, ...uN ).

For example, if N = 3, one may solve for (u∗1, u
∗
2, u

∗
3), on the 9D quotient

space T ∗M/M, so that the optimal control inputs are given as

u∗i (t) =






ω∗
i (t) =

{
ωmax

i if P 1
i (t) > 0

ωmin
i if P 1

i (t) < 0

v∗i (t) =
{
vmax

i if P 2
i (t) > 0

vmin
i if P 2

i (t) < 0

.

One possibility for the optimal Hamiltonian corresponding to the non–
cooperative case is

H∗(g, p) = max
u1∈U1

max
u2∈U2

max
u3∈U3

H(g, p, u1, u2, u3).
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2.4.4 Group Structure of the Biomechanical Manifold M

Purely Rotational Biomechanical Manifold

Kinematics of an n–segment human–body chain (like arm, leg or spine) is
usually defined as a map between external coordinates (usually, end–effector
coordinates) xr (r = 1, . . . , n) and internal joint coordinates qi (i = 1, . . . , N)
(see [IS01, Iva02, IP01b, IP01b, Iva05]). The forward kinematics are defined
as a nonlinear map xr = xr(qi) with a corresponding linear vector functions
dxr = ∂xr/∂qi dqi of differentials: and ẋr = ∂xr/∂qi q̇i of velocities. When
the rank of the configuration–dependent Jacobian matrix J ≡ ∂xr/∂qi is less
than n the kinematic singularities occur; the onset of this condition could be
detected by the manipulability measure. The inverse kinematics are defined
conversely by a nonlinear map qi = qi(xr) with a corresponding linear vector
functions dqi = ∂qi/∂xr dxr of differentials and q̇i = ∂qi/∂xr ẋr of velocities.
Again, in the case of redundancy (n < N), the inverse kinematic problem
admits infinite solutions; often the pseudo–inverse configuration–control is
used instead: q̇i = J∗ ẋr, where J∗ = JT (J JT )−1 denotes the Moore–Penrose
pseudo–inverse of the Jacobian matrix J .

Humanoid joints, that is, internal coordinates qi (i = 1, . . . , N), constitute
a smooth configuration manifold M , described as follows. Uniaxial, ‘hinge’
joints represent constrained, rotational Lie groups SO(2)i

cnstr, parameterized
by constrained angles qi

cnstr ≡ qi ∈ [qi
min, q

i
max]. Three–axial, ‘ball–and–

socket’ joints represent constrained rotational Lie groups SO(3)i
cnstr, param-

eterized by constrained Euler angles qi = q
φi
cnstr (in the following text, the

subscript ‘cnstr’ will be omitted, for the sake of simplicity, and always as-
sumed in relation to internal coordinates qi).

All SO(n)–joints are Hausdorff Ck–manifolds with atlases (Uα, uα); in
other words, they are paracompact and metrizable smooth manifolds, admit-
ting Riemannian metric.

Let A and B be two smooth manifolds described by smooth atlases
(Uα, uα) and (Vβ , vβ), respectively. Then the family (Uα × Vβ , uα × vβ :
Uα × Vβ → R

m × R
n)(α, β) ∈ A × B is a smooth atlas for the direct prod-

uct A × B. Now, if A and B are two Lie groups (say, SO(n)), then their
direct product G = A×B is at the same time their direct product as smooth
manifolds and their direct product as algebraic groups, with the product law

(a1, b1)(a2, b2) = (a1a2, b1b2), (a1,2 ∈ A, b1,2 ∈ B).

Generalizing the direct product to N rotational joint groups, we can draw
an anthropomorphic product–tree (see Figure 2.1) using a line segment ‘–’ to
represent direct products of human SO(n)–joints. This is our basic model of
the biomechanical configuration manifold M (see (3.2.1) below).

Let TqM be a tangent space to M at the point q. The tangent bundle TM
represents a union ∪q∈MTqM , together with the standard topology on TM
and a natural smooth manifold structure, the dimension of which is twice the
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Fig. 2.1. Purely rotational, whole–body biomechanical manifold, with a single
SO(3)−joint representing the whole spinal movability.

dimension of M . A vector–field X on M represents a section X : M → TM
of the tangent bundle TM .

Analogously let T ∗
qM be a cotangent space to M at q, the dual to its tan-

gent space TqM . The cotangent bundle T ∗M represents a union ∪q∈MT
∗
qM ,

together with the standard topology on T ∗M and a natural smooth manifold
structure, the dimension of which is twice the dimension of M . A 1−form θ
on M represents a section θ : M → T ∗M of the cotangent bundle T ∗M .

We refer to the tangent bundle TM of biomechanical configuration man-
ifold M as the velocity phase–space manifold, and to its cotangent bundle
T ∗M as the momentum phase–space manifold.

Reduction of the Rotational Biomechanical Manifold

The biomechanical configuration manifoldM (Figure 2.1) can be (for the sake
of the brain–like motor control) reduced to N–torus TN , in three steps, as
follows.

First, a single three–axial SO(3)−joint can be reduced to the direct prod-
uct of three uniaxial SO(2)−joints, in the sense that three hinge joints can
produce any orientation in space, just as a ball–joint can. Algebraically, this
means reduction (using symbol ‘�’) of each of the three SO(3) rotation ma-
trices to the corresponding SO(2) rotation matrices




1 0 0
0 cosφ − sinφ
0 sinφ cosφ



 �
(

cosφ − sinφ
sinφ cosφ

)
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


cosψ 0 sinψ
0 1 0

− sinψ 0 cosψ



 �
(

cosψ sinψ
− sinψ cosψ

)




cos θ − sin θ 0
sin θ cos θ 0

0 0 1



 �
(

cos θ − sin θ
sin θ cos θ

)

In this way we can set the reduction equivalence relation SO(3) � SO(2)�
SO(2)�SO(2), where ‘�’ denotes the noncommutative semidirect product (see
(2.4.2) above).

Second, we have a homeomorphism: SO(2) ∼ S1, where S1 denotes the
constrained unit circle in the complex plane, which is an Abelian Lie group.

Third, let IN be the unit cube [0, 1]N in R
N and ‘∼’ an equivalence relation

on R
N obtained by ‘gluing’ together the opposite sides of IN , preserving their

orientation. The manifold of human–body configurations (Figure 2.1) can be
represented as the quotient space of R

N by the space of the integral lattice
points in R

N , that is a constrained ND torus TN (4.2),

R
N/ZN = IN/ ∼∼=

N∏

i=1

S1
i ≡ {(qi, i = 1, . . . , N) : mod 2π} = TN . (2.35)

Since S1 is an Abelian Lie group, its N–fold tensor product TN is also an
Abelian Lie group, the toral group, of all nondegenerate diagonal N × N
matrices. As a Lie group, the biomechanical configuration space M ≡ TN has
a natural Banach manifold structure with local internal coordinates qi ∈ U ,
U being an open set (chart) in TN .

Conversely by ‘ungluing’ the configuration space we get the primary unit
cube. Let ‘∼∗’ denote an equivalent decomposition or ‘ungluing’ relation. By
the Tychonoff product–topology theorem, for every such quotient space there
exists a ‘selector’ such that their quotient models are homeomorphic, that is,
TN/ ∼∗≈ AN/ ∼∗. Therefore IN represents a ‘selector’ for the configura-
tion torus TN and can be used as an N–directional ‘command–space’ for the
topological control of human motion. Any subset of DOF on the configura-
tion torus TN representing the joints included in human motion has its simple,
rectangular image in the command space – selector IN . Operationally, this
resembles what the brain–motor–controller , the cerebellum, actually performs
on the highest level of human motor control (see Chapter 5).

The Complete Biomechanical Manifold

The full kinematics of a whole human–like body can be split down into five
kinematic chains: one for each leg and arm, plus one for spine with the head.
In all five chains internal joint coordinates, namely n1 constrained rotations
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xk
rt together with n2 of even more constrained translations xj

tr (see Figure
2.2), constitute a smooth nD anthropomorphic configuration manifold M ,
with local coordinates xi, (i = 1, . . . , n). That is, the motion space in each
joint is defined as a semidirect (noncommutative) product of the Lie group
SO(n) of constrained rotations and a corresponding Lie group R

n of even more
restricted translations. More precisely, in each movable human–like joint we
have an action of the constrained special Euclidean SE(3) group (see (2.4.2)
above). The joints themselves are linked by direct (commutative) products.

Fig. 2.2. A medium–resolution, whole–body biomechanical manifold, with just a
single SE(3)−joint representing the spinal movability.

Realistic Human Spine Manifold

The high–resolution human spine manifold is a dynamical chain consisting
of 25 constrained SE(3)− joints. Each movable spinal joint has 6 DOF: 3
dominant rotations, (performed first in any free spinal movement), restricted
to about 7 angular degrees and 3 secondary translations (performed after
reaching the limit of rotational amplitude), restricted to about 5 mm (see
Figure 2.3).

Now, SE(3) = SO(3) � R
3 is a non–compact group, so there is no any

natural metric given by the kinetic energy on SE(3), and consequently, no
natural controls in the sense of geodesics on SE(3). However, both of its
subgroups, SO(3) and R

3, are compact with quadratic metric forms defined
by standard line element gijdqidqj , and therefore admit optimal muscular–like
controls in the sense of geodesics (see section 2.5.1 below).
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Fig. 2.3. The high–resolution human spine manifold is a dynamical chain consisting
of 25 constrained SE(3)−joints.

2.4.5 Lie Symmetries in Biomechanics

Lie Symmetry Groups

Exponentiation of Vector Fields on M

Let x = (x1, ..., xr) be local coordinates at a point m on a smooth n−manifold
M. Recall that the flow generated by the vector–field

v = ξi(x) ∂xi ∈M,

is a solution of the system of ODEs

dxi

dε
= ξi(x1, ..., xm), (i = 1, ..., r).

The computation of the flow, or one–parameter group of diffeomorphisms,
generated by a given vector–field v (i.e., solving the system of ODEs) is often
referred to as exponentiation of the vector–field, denoted by exp(εv)x (see
[Olv86]).

If v, w ∈M are two vectors defined by

v = ξi(x) ∂xi and w = ηi(x) ∂xi ,

then
exp(εv) exp(θw)x = exp(θw) exp(εv)x,

for all ε, θ ∈ R,x ∈M, such that both sides are defined, iff they commute, i.e.,
[v, w] = 0 everywhere [Olv86].

A system of vector–fields {v1, ..., vr} on a smooth manifold M is in involu-
tion if there exist smooth real–valued functions hk

ij(x), x ∈M , i, j, k = 1, ..., r,
such that for each i, j,

[vi, vj ] = hk
ij · vk.
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Let v �= 0 be a right–invariant vector–field on a Lie group G. Then the
flow generated by v through the identity e, namely

gε = exp(εv) e ≡ exp(εv),

is defined for all ε ∈ R and forms a one–parameter subgroup of G, with

gε+δ = gε · gδ, g0 = e, g−1
ε = g−ε,

isomorphic to either R itself or the circle group SO(2). Conversely, any con-
nected 1D subgroup of G is generated by such a right–invariant vector–field
in the above manner [Olv86].

For example, let G = GL(n) with Lie algebra gl(n), the space of all n× n
matrices with commutator as the Lie bracket. If A ∈ gl(n), then the corre-
sponding right–invariant vector–field vA on GL(n) has the expression [Olv86]

vA = ai
kx

k
j ∂xi

j
.

The one–parameter subgroup exp(εvA) e is found by integrating the system
of n2 ordinary differential equations

dxi
j

dε
= ai

kx
k
j , xi

j(0) = δi
j , (i, j = 1, ..., n),

involving matrix entries of A. The solution is just the matrix exponential
X(ε) = eεA, which is the one–parameter subgroup of GL(n) generated by a
matrix A in gl(n).

Recall that the exponential map exp : g → G is obtained by setting ε = 1
in the one–parameter subgroup generated by vector–field v :

exp(v) ≡ exp(v) e.

Its differential at 0,
d exp : Tg|0 � g→ TG|e � g

is the identity map.

Lie Symmetry Groups and General Differential Equations

Consider a system S of general differential equations (DEs, to be distinguished
from ODEs) involving p independent variables x = (x1, ..., xp), and q depen-
dent variables u = (u1, ..., uq). The solution of the system will be of the
form u = f(x), or, in components, uα = fα(x1, ..., xp), α = 1, ..., q (so that
Latin indices refer to independent variables while Greek indices refer to de-
pendent variables). Let X = R

p, with coordinates x = (x1, ..., xp), be the
space representing the independent variables, and let U = R

q, with coordi-
nates u = (u1, ..., uq), represent dependent variables. A Lie symmetry group
G of the system S will be a local group of transformations acting on some
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open subset M ⊂ X × U in such way that G transforms solutions of S to
other solutions of S [Olv86].

More precisely, we need to explain exactly how a given transformation
g ∈ G, where G is a Lie group, transforms a function u = f(x). We firstly
identify the function u = f(x) with its graph

Γf ≡ {(x, f(x)) : x ∈ dom f ≡ Ω} ⊂ X × U,

where Γf is a submanifold of X ×U. If Γf ⊂Mg ≡ dom g, then the transform
of Γf by g is defined as

g · Γf = {(x̃, ũ) = g · (x, u) : (x, u) ∈ Γf} .

We write f̃ = g · f and call the function f̃ the transform of f by g.
For example, let p = 1 and q = 1, so X = R with a single independent

variable x, and U = R with a single dependent variable u, so we have a single
ODE involving a single function u = f(x). Let G = SO(2) be the rotation
group acting on X × U � R

2. The transformations in G are given by

(x̃, ũ) = θ · (x, u) = (x cos θ − u sin θ, x sin θ + u cos θ).

Let u = f(x) be a function whose graph is a subset Γf ⊂ X × U . The group
SO(2) acts on f by rotating its graph.

In general, the procedure for finding the transformed function f̃ = g · f is
given by [Olv86]:

g · f = [Φg ◦ (1× f)] ◦ [Ξg ◦ (1× f)]−1
, (2.36)

where Ξg = Ξg(x, u), Φg = Φg(x, u) are smooth functions such that

(x̃, ũ) = g · (x, u) = (Ξg(x, u), Φg(x, u)) ,

while 1 denotes the identity function of X, so 1(x) = x. Formula (2.36) holds
whenever the second factor is invertible.

Let S be a system of DEs. A symmetry group of the system S is a local
Lie group of transformations G acting on an open subset M ⊂ X × U of the
space X × U of independent and dependent variables of the system with the
property that whenever u = f(x) is a solution of S, and whenever g · f is
defined for g ∈ G, then u = g · f(x) is also a solution of the system.

For example, in the case of the ODE uxx = 0, the rotation group SO(2)
is obviously a symmetry group, since the solutions are all linear functions
and SO(2) takes any linear function to another linear function. Another easy
example is given by the classical heat equation ut = uxx. Here the group of
translations

(x, t, u) �→ (x+ εa, t+ εb, u), ε ∈ R,

is a symmetry group since u = f(x − εa, t − εb) is a solution to the heat
equation whenever u = f(x, t) is.
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Prolongations

Prolongations of Functions

Given a smooth real–valued function u = f(x) = f(x1, ..., xp) of p indepen-
dent variables, there is an induced function u(n) = pr(n)f(x), called the nth
prolongation of f [Olv86], which is defined by the equations

uJ = ∂Jf(x) =
∂kf(x)

∂xj1∂xj2...∂xjk
,

where the multi–index J = (j1, ..., jk) is an unordered k−tuple of integers,
with entries 1 ≤ jk ≤ p indicating which derivatives are being taken. More
generally, if f : X → U is a smooth function from X � R

p to U � R
q, so

u = f(x) = f(f1(x), ..., fq(x)), there are q · pk numbers

uα
J = ∂Jf

α(x) =
∂kfα(x)

∂xj1∂xj2...∂xjk
,

needed to represent all the different kth order derivatives of the components
of f at a point x. Thus pr(n)f : X → U (n) is a function from X to the space
U (n), and for each x ∈ X, pr(n)f(x) is a vector whose q ·p(n) entries represent
the values of f and al its derivatives up to order n at the point x.

For example, in the case p = 2, q = 1 we have X � R
2 with coordinates

(x1, x2) = (x, y), and U � R with the single coordinate u = f(x, y). The
second prolongation u(2) = pr(2)f(x, y) is given by [Olv86]

(u;ux, uy;uxx, uxy, uyy) =
(

f ;
∂f

∂x
,
∂f

∂y
;
∂2f

∂x2
,
∂2f

∂x∂y
,
∂2f

∂y2

)

, (2.37)

all evaluated at (x, y).
The nth prolongation pr(n)f(x) is also known as the n−jet of f . In other

words, the nth prolongation pr(n)f(x) represents the Taylor polynomial of
degree n for f at the point x, since the derivatives of order ≤ n determine the
Taylor polynomial and vice versa.

Prolongations of Differential Equations

A system S of nth order DEs in p independent and q dependent variables is
given as a system of equations [Olv86]

∆r(x, u(n)) = 0, (r = 1, ..., l), (2.38)

involving x = (x1, ..., xp), u = (u1, ..., uq) and the derivatives of u with respect
to x up to order n. The functions∆(x, u(n)) = (∆1(x, u(n)), ...,∆l(x, u(n))) are
assumed to be smooth in their arguments, so ∆ : X ×U (n) → R

l represents a
smooth map from the jet space X×U (n) to some lD Euclidean space. The DEs
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themselves tell where the given map ∆ vanishes on the jet space X × U (n),
and thus determine a submanifold

S∆ =
{

(x, u(n)) : ∆(x, u(n)) = 0
}
⊂ X × U (n) (2.39)

of the total the jet space X × U (n).
We can identify the system of DEs (2.38) with its corresponding submani-

fold S∆ (2.39). From this point of view, a smooth solution of the given system
of DEs is a smooth function u = f(x) such that [Olv86]

∆r(x,pr(n)f(x)) = 0, (r = 1, ..., l),

whenever x lies in the domain of f . This is just a restatement of the fact that
the derivatives ∂Jf

α(x) of f must satisfy the algebraic constraints imposed
by the system of DEs. This condition is equivalent to the statement that the
graph of the prolongation pr(n)f(x) must lie entirely within the submanifold
S∆ determined by the system:

Γ
(n)
f ≡

{
(x,pr(n)f(x))

}
⊂ S∆ =

{
∆(x, u(n)) = 0

}
.

We can thus take an nth order system of DEs to be a submanifold S∆ in the
n−jet space X ×U (n) and a solution to be a function u = f(x) such that the
graph of the nth prolongation pr(n)f(x) is contained in the submanifold S∆.

For example, consider the case of Laplace equation in the plane

uxx + uyy = 0 (remember, ux ≡ ∂xu).

Here p = 2 since there are two independent variables x and y, and q = 1 since
there is one dependent variable u. Also n = 2 since the equation is second
order, so S∆ ⊂ X×U (2) is given by (2.37). A solution u = f(x, y) must satisfy

∂2f

∂x2
+
∂2f

∂y2
= 0

for all (x, y). This is the same as requiring that the graph of the second
prolongation pr(2)f lie in S∆.

Prolongations of Group Actions

Let G be a local group of transformations acting on an open subsetM ⊂ X×U
of the space of independent and dependent variables. There is an induced local
action of G on the n−jet space M (n), called the nth prolongation pr(n)G of
the action of G on M. This prolongation is defined so that it transforms the
derivatives of functions u = f(x) into the corresponding derivatives of the
transformed function ũ = f̃(x̃) [Olv86].

More precisely, suppose (x0, u
(n)
0 ) is a given point in M (n). Choose any

smooth function u = f(x) defined in a neighborhood of x0, whose graph Γf

lies in M , and has the given derivatives at x0 :
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u
(n)
0 = pr(n)f(x0), i.e., uα

J0 = ∂Jf
α(x0).

If g is an element of G sufficiently near the identity, the transformed function
g ·f as given by (2.36) is defined in a neighborhood of the corresponding point
(x̃0, ũ0) = g · (x0, u0), with u0 = f(x0) being the zeroth order components of
u

(n)
0 . We then determine the action of the prolonged group of transformations

pr(n)g on the point (x0, u
(n)
0 ) by evaluating the derivatives of the transformed

function g · f at x̃0; explicitly [Olv86]

pr(n)g · (x0, u
(n)
0 ) = (x̃0, ũ

(n)
0 ),

where
ũ

(n)
0 ≡ pr(n)(g · f)(x̃0).

For example, let p = q = 1, so X × U � R
2, and consider the action

of the rotation group SO(2). To calculate its first prolongation pr(1)SO(2),
first note that X × U (1) � R

3, with coordinates (x, u, ux). given a function
u = f(x), the first prolongation is [Olv86]

pr(1)f(x) = (f(x), f ′(x)).

Now, given a point (x0, u0, u0
x) ∈ X × U (1), and a rotation in SO(2) charac-

terized by the angle θ as given above, the corresponding transformed point

pr(1)θ · (x0, u0, u0
x) = (x̃0, ũ0, ũ0

x)

(provided it exists). As for the first order derivative, we find

ũ0
x =

sin θ + ux cos θ
cos θ − ux sin θ

.

Now, applying the group transformations given above, and dropping the
0−indices, we find that the prolonged action pr(1)SO(2) on X ×U (1) is given
by

pr(1)θ · (x, u, ux) =
(

x cos θ − u sin θ, x sin θ + u cos θ,
sin θ + ux cos θ
cos θ − ux sin θ

)

,

which is defined for |θ| < | arccotux|. Note that even though SO(2) is a linear,
globally defined group of transformations, its first prolongation pr(1)SO(2) is
both nonlinear and only locally defined. This fact demonstrates the complexity
of the operation of prolonging a group of transformations.

In general, for any Lie group G, the first prolongation pr(1)G acts on the
original variables (x, u) exactly the same way that G itself does; only the
action on the derivative ux provides an new information. Therefore, pr(0)G
agrees with G itself, acting on M (0) = M.
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Prolongations of Vector Fields

Prolongation of the infinitesimal generators of the group action turn out to be
the infinitesimal generators of the prolonged group action [Olv86]. Let M ⊂
X×U be open and suppose v is a vector–field on M , with corresponding local
one–parameter group exp(εv). The nth prolongation of v, denoted pr(n)v, will
be a vector–field on the n−jet spaceM (n), and is defined to be the infinitesimal
generator of the corresponding prolonged on–parameter group pr(n)[exp(εv)].
In other words,

pr(n)v|(x,u(n)) =
d

dε

∣
∣
∣
∣
ε=0

pr(n)[exp(εv)](x, u(n)) (2.40)

for any (x, u(n)) ∈M (n).
For a vector–field v on M, given by

v = ξi(x, u)
∂

∂xi
+ φα(x, u)

∂

∂uα
, (i = 1, ..., p, α = 1, ..., q),

the nth prolongation pr(n)v is given by [Olv86]

pr(n)v = ξi(x, u)
∂

∂xi
+ φα

J (x, u(n))
∂

∂uα
J

,

with φα
0 = φα, and J a multiindex defined above.

For example, in the case of SO(2) group, the corresponding infinitesimal
generator is

v = −u ∂
∂x

+ x
∂

∂u
,

with
exp(εv)(x, u) = (x cos ε− u sin ε, x sin ε+ u cos ε) ,

being the rotation through angle ε. The first prolongation takes the form

pr(1)[exp(εv)](x, u, ux) =
(

x cos ε− u sin ε, x sin ε+ u cos ε,
sin ε+ ux cos ε
cos ε− ux sin ε

)

.

According to (2.40), the first prolongation of v is obtained by differentiating
these expressions with respect to ε and setting ε = 0, which gives

pr(1)v = −u ∂
∂x

+ x
∂

∂u
+ (1 + u2

x)
∂

∂ux
.

General Prolongation Formula

Let

v = ξi(x, u)
∂

∂xi
+ φα(x, u)

∂

∂uα
, (i = 1, ..., p, α = 1, ..., q), (2.41)
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be a vector–field defined on an open subsetM ⊂ X×U. The nth prolongation
of v is the vector–field [Olv86]

pr(n)v = v + φα
J (x, u(n))

∂

∂uα
J

, (2.42)

defined on the corresponding jet space M (n) ⊂ X × U (n). The coefficient
functions φα

J are given by the following formula:

φα
J = DJ

(
φα − ξiuα

i

)
+ ξiuα

J,i , (2.43)

where uα
i = ∂uα/∂xi, and uα

J,i = ∂uα
J/∂x

i. DJ is the total derivative with
respect to the multiindex J, i.e.,

DJ = Dj1Dj2 ...Djk
,

while the total derivative with respect to the ordinary index, Di, is defined as
follows. Let P (x, u(n)) be a smooth function of x, u and derivatives of u up to
order n, defined on an open subset M (n) ⊂ X × U (n). the total derivative of
P with respect to xi is the unique smooth function DiP (x, u(n)) defined on
M (n+1) and depending on derivatives of u up to order n+1, with the recursive
property that if u = f(x) is any smooth function then

DiP (x,pr(n+1)f(x)) = ∂xi{P (x,pr(n)f(x))}.
For example, in the case of SO(2) group, with the infinitesimal generator

v = −u ∂
∂x

+ x
∂

∂u
,

the first prolongation is (as calculated above)

pr(1)v = −u ∂
∂x

+ x
∂

∂u
+ φx ∂

∂ux
,

where
φx = Dx(φ− ξux) + ξuxx = 1 + u2

x.

Also,
φxx = Dxφ

x − uxxDxξ = 3uxuxx,

thus the infinitesimal generator of the second prolongation pr(2)SO(2) acting
on X × U (2) is

pr(2)v = −u ∂
∂x

+ x
∂

∂u
+ (1 + u2

x)
∂

∂ux
+ 3uxuxx

∂

∂uxx
.

Let v and w be two smooth vector–fields on M ⊂ X × U. Then their nth
prolongations, pr(n)v and pr(n)w respectively, have the linearity property

pr(n)(c1v + c2w) = c1pr(n)v + c2pr(n)w, (c1, c2 − constant),

and the Lie bracket property

pr(n)[v, w] = [pr(n)v,pr(n)w].
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Lie Symmetries of Special Biomechanical Equations

Here we consider two most important equations for human–like biomechanics:

1. The heat equation, which has been analyzed in muscular mechanics since
the early works of A.V. Hill ([Hil38]); and

2. The Korteweg–De Vries equation, the basic equation for solitary models of
muscular excitation–contraction dynamics (see subsection (3.2.3) below).

Suppose
S : ∆r(x, u(n)) = 0, (r = 1, ..., l),

is a system of DEs of maximal rank defined over M ⊂ X × U. If G is a local
group of transformations acting on M , and

pr(n)v[∆r(x, u(n))] = 0, whenever ∆(x, u(n)) = 0, (2.44)

(with r = 1, ..., l) for every infinitesimal generator v ofG, thenG is a symmetry
group of the system S [Olv86].

The Heat Equation

The (1+1)D heat equation (with the thermal diffusivity normalized to unity)

ut = uxx (2.45)

has two independent variables x and t, and one dependent variable u, so p = 2
and q = 1. Equation (A.30) has the second order, n = 2, and can be identified
with the linear submanifold M (2) ⊂ X ×U (2) determined by the vanishing of
∆(x, t, u(2)) = ut − uxx.

Let
v = ξ(x, t, u)

∂

∂x
+ τ(x, t, u)

∂

∂t
+ φ(x, t, u)

∂

∂u

be a vector–field on X × U . According to (2.44) we need to now the second
prolongation

pr(2)v = v + φx ∂

∂ux
+ φt ∂

∂ut
+ φxx ∂

∂uxx
+ φxt ∂

∂uxt
+ φtt ∂

∂utt

of v. Applying pr(2)v to (A.30) we find the infinitesimal criterion (2.44) to be

φt = φxx,

which must be satisfied whenever ut = uxx.
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The Korteweg–De Vries Equation

The Korteweg–De Vries equation

ut + uxxx + uux = 0 (2.46)

arises in physical systems in which both nonlinear and dispersive effects are
relevant. A vector–field

v = ξ(x, t, u)
∂

∂x
+ τ(x, t, u)

∂

∂t
+ φ(x, t, u)

∂

∂u

generates a one–parameter symmetry group iff

φt + φxxx + uφx + uxφ = 0,

whenever u satisfies (2.46), etc.

Generalized Lie Symmetries

Consider a vector–field (2.41) defined on an open subsetM ⊂ X×U. Provided
the coefficient functions ξi and φα depend only on x and u, v will generate a
(local) one–parameter group of transformations exp(εv) acting pointwise on
the underlying spaceM . A significant generalization of the notion of symmetry
group is obtained by relaxing this geometric assumption, and allowing the
coefficient functions ξi and φα to also depend on derivatives of u [Olv86].

A generalized vector–field is a (formal) expression

v = ξi[u]
∂

∂xi
+ φα[u]

∂

∂uα
, (i = 1, ..., p, α = 1, ..., q), (2.47)

in which ξi and φα are smooth functions. For example,

v = xux
∂

∂x
+ uxx

∂

∂u

is a generalized vector in the case p = q = 1.
According to the general prolongation formula (2.42), we can define the

prolonged generalized vector–field

pr(n)v = v + φα
J [u]

∂

∂uα
J

,

whose coefficients are as before determined by the formula (2.43). Thus, in
our previous example [Olv86],

pr(n)v = xux
∂

∂x
+ uxx

∂

∂u
+ [uxxx − (xuxx + ux)ux]

∂

∂ux
.
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Given a generalized vector–field v, its infinite prolongation (including all
the derivatives) is the formal expression

pr v = ξi ∂

∂xi
+ φα

J

∂

∂uα
J

.

Now, a generalized vector–field v is a generalized infinitesimal symmetry of a
system S of differential equations

∆r[u] = ∆r(x, u(n)) = 0, (r = 1, ..., l),

iff
pr v[∆r] = 0

for every smooth solution m u = f(x) [Olv86].
For example, consider the heat equation

∆[u] = ut − uxx = 0.

The generalized vector–field v = ux
∂

∂u has prolongation

pr v = ux
∂

∂u
+ uxx

∂

∂ux
+ uxt

∂

∂ut
+ uxxx

∂

∂uxx
+ ...

Thus
pr v(∆) = uxt − uxxx = Dx(ut − uxx) = Dx∆,

and hence v is a generalized symmetry of the heat equation.

Noether Symmetries

Here we present some results about Noether symmetries, in particular for the
first order Lagrangians L(q, q̇) (see [BGG89, PSS96]). We start with a Noether
Lagrangian symmetry ,

δL = Ḟ ,

and we will investigate the conversion of this symmetry to the Hamiltonian
formalism. Defining

G = (∂L/∂q̇i) δqi − F,
we can write

δiLδq
i + Ġ = 0, (2.48)

where δiL is the Euler–Lagrange functional derivative of L,

δiL = αi −Wik q̈
k,

where

Wik ≡
∂2L

∂q̇i∂q̇k
and αi ≡ −

∂2L

∂q̇i∂qk
q̇k +

∂L

∂qi
.
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We consider the general case where the mass matrix, or Hessian (Wij), may
be a singular matrix. In this case there exists a kernel for the pull–back FL∗

of the Legendre map, i.e., fiber–derivative FL, from the velocity phase–space
TM (tangent bundle of the biomechanical manifold M) to the momentum
phase–space T ∗M (cotangent bundle of M). This kernel is spanned by the
vector–fields

Γµ = γi
µ

∂

∂q̇i
,

where γi
µ are a basis for the null vectors of Wij . The Lagrangian time–

evolution differential operator can therefore be expressed as:

X = ∂t + q̇k ∂

∂qk
+ ak(q, q̇)

∂

∂q̇k
+ λµΓµ ≡ Xo + λµΓµ,

where ak are functions which are determined by the formalism, and λµ are
arbitrary functions. It is not necessary to use the Hamiltonian technique to
find the Γµ, but it does facilitate the calculation:

γi
µ = FL∗

(
∂φµ

∂pi

)

, (2.49)

where the φµ are the Hamiltonian primary first class constraints.
Notice that the highest derivative in (2.48), q̈i, appears linearly. Because

δL is a symmetry, (2.48) is identically satisfied, and therefore the coefficient
of q̈i vanishes:

Wikδq
k − ∂G

∂q̇i
= 0. (2.50)

We contract with a null vector γi
µ to find that

ΓµG = 0.

It follows that G is projectable to a function GH in T ∗Q; that is, it is the
pull–back of a function (not necessarily unique) in T ∗Q:

G = FL∗(GH).

This important property is valid for any conserved quantity associated
with a Noether symmetry. Observe that GH is determined up to the addition
of linear combinations of the primary constraints. Substitution of this result
in (2.50) gives

Wik

[

δqk − FL∗
(
∂GH

∂pk

)]

= 0,

and so the brackets enclose a null vector of Wik:

δqi − FL∗
(
∂GH

∂pi

)

= rµγi
µ, (2.51)
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for some rµ(t, q, q̇).
We shall investigate the projectability of variations generated by diffeomor-

phisms in the following section. Assume that an infinitesimal transformation
δqi is projectable:

Γµδq
i = 0.

If δqi is projectable, so must be rµ, so that rµ = FL∗(rµH). Then, using (2.49)
and (2.51), we see that

δqi = FL∗
(
∂(GH + rµHφµ)

∂pi

)

.

We now redefine GH to absorb the piece rµHφµ, and from now on we will have

δqi = FL∗
(
∂GH

∂pi

)

.

Define
p̂i =

∂L

∂q̇i
;

after eliminating (2.50) times q̈i from (2.48), we get
(
∂L

∂qi
− q̇k ∂p̂i

∂qk

)

FL∗(
∂GH

∂pi
) + q̇i ∂

∂qi
FL∗(GH) + FL∗∂tGH = 0,

which simplifies to

∂L

∂qi
FL∗(

∂GH

∂pi
) + q̇i

FL∗(
∂GH

∂qi
) + FL∗∂tGH = 0. (2.52)

Now let us invoke two identities [BGG89] that are at the core of the connection
between the Lagrangian and the Hamiltonian equations of motion. They are

q̇i = FL∗(
∂H

∂pi
) + vµ(q, q̇)FL∗(

∂φµ

∂pi
),

and
∂L

∂qi
= −FL∗(

∂H

∂qi
)− vµ(q, q̇)FL∗(

∂φµ

∂qi
);

whereH is any canonical Hamiltonian, so that FL∗(H) = q̇i(∂L/∂q̇i)−L = Ê,
the Lagrangian energy, and the functions vµ are determined so as to render
the first relation an identity. Notice the important relation

Γµv
ν = δν

µ,

which stems from applying Γµ to the first identity and taking into account
that

Γµ ◦ FL∗ = 0.
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Substitution of these two identities into (2.52) yields (where { , } denotes the
Poisson bracket)

FL∗{GH, H}+ vµ
FL∗{GH, φµ}+ FL∗∂tGH = 0.

This result can be split through the action of Γµ into

FL∗{GH, H}+ FL∗∂tGH = 0,

and
FL∗{GH, φµ} = 0;

or equivalently,
{GH, H}+ ∂tGH = pc,

and
{GH, φµ} = pc,

where pc stands for any linear combination of primary constraints. In this
way, we have arrived at a neat characterization for a generator GH of Noether
transformations in the canonical formalism.

Lie–Invariant Differential Forms

Robot Kinematics

Recall that a typical motion planning problem in robotics consists in a collec-
tion of objects moving around obstacles from an initial to a final configuration
(see [BL92, Pry96]). This may include in particular, solving the collision de-
tection problem.

When a solid object undergoes a rigid motion, the totality of points
through which it passed constitutes a region in space called the swept vol-
ume. To describe the geometric structure of the swept volume we pose this
problem as one of geometric study of some manifold swept by surface points
using powerful tools from both modern differential geometry and nonlinear dy-
namical systems theory [Ric93, LP94, Pry96, GJ94] on manifolds. For some
special cases of the Euclidean motion in the space R

3 one can construct a
very rich hydrodynamic system [BL92] modelling a sweep flow, which ap-
pears to be a completely integrable Hamiltonian system having a special Lax
type representation. To describe in detail these and other properties of swept
volume dynamical systems, we develop Cartan’s theory of Lie–invariant geo-
metric objects generated by closed ideals in the Grassmann algebra, following
[BPS98].

Let a Lie group G act on an analytical manifold Y in the transitive way,
that is the action G× Y ρ→ Y generates some nonlinear exact representation
of the Lie group G on the manifold Y . In the frame of the Cartan’s theory,
the representation G × Y ρ→ Y can be described by means of a system of
differential 1–forms (see section 3.3.6 below)
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β̄
j = dyj + ξj

i ω̄
i(a, da) (2.53)

in the Grassmann algebra Λ(Y ×G) on the product Y ×G, where ω̄i(a, da) ∈
T ∗

a (G), i = 1, ..., r = dimG is a basis of left invariant Cartan’s forms of the
Lie group G at a point a ∈ G, y = {yj : j = 1, ..., n = dimY } ∈ Y and
ξj

i : Y ×G→ R are some smooth real valued functions.
The following Cartan theorem is basic in describing a geometric object

invariant with respect to the mentioned above group action G×Y ρ→ Y : The
system of differential forms (2.53) is a system of an invariant geometric object
iff the following conditions are fulfilled:

1. The coefficients ξj
i ∈ Ck(Y ;R) for all i = 1, ..., r, j = 1, ..., n, are some

analytical functions on Y ; and
2. The differential system(2.53) is completely integrable within the Frobenius–

Cartan criterion.

The Cartan’s theorem actually says that the differential system (2.53) can
be written down as

β̄
j = dyj + ξj

i (y)ω̄
i(a, da), (2.54)

where 1–forms {ω̄i(a, da) : i = 1, ..., r} satisfy the standard Maurer–Cartan
equations

Ω̄j = dω̄j +
1
2
cjikω̄

i ∧ ω̄k = 0, (2.55)

for all j = 1, ..., r on G, coefficients cjik ∈ R, i, j, k = 1, ..., r, being the corre-
sponding structure constants of the Lie algebra g of the Lie group G.

Maurer–Cartan 1–Forms

Consider a Lie group G with the Lie algebra g � Te(G), whose basis is a set
{Ai ∈ g : i = 1, ..., r}, where r = dim G ≡ dim g. Let also a set U0 ⊂ {ai ∈
R : i = 1, ..., r} be some open neighborhood of the zero point in R

r. The
exponential mapping exp : U0 → G0, where by definition [BPS98]

R
r ⊃ U0 � (a1, . . . , ar) :

exp� exp
(
aiAi

)
= a ∈ G0 ⊂ G, (2.56)

is an analytical mapping of the whole U0 on some open neighborhoodG0 of the
unity element e ∈ G. From (2.56) it is easy to find that Te(G) = Te(G0) � g,
where e = exp(0) ∈ G. Define now the following left invariant g−valued
differential 1–form on G0 ⊂ G:

ω̄(a, da) = a−1da = ω̄j(a, da)Aj , (2.57)

where Aj ∈ g, ω̄j(a, da) ∈ T ∗
a (G), a ∈ G0, j = 1, ..., r. To build effectively

the unknown forms {ω̄j(a, da) : j = 1, ..., r}, let us consider the follow-
ing analytical one–parameter 1–form ω̄t(a, da) = ω̄(at; dat) on G0, where
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at = exp
(
taiAi

)
, t ∈ [0, 1], and differentiate this form with respect to the

parameter t ∈ [0, 1]. We will get [BPS98]

dω̄t/dt = −ajAja
−1
t dat + a−1

t atda
jAj + a−1

t data
jAj = −aj [Aj , ω̄t] +Ajdaj .

(2.58)
Having used the Lie identity, [Aj , Ak] = cijkAi, j, k = 1, ..., r, and the r.h.s of
(2.57) in form

ω̄j(a, da) = ω̄j
k(a)dak, (2.59)

we finally get
d

dt
(tω̄j

i (ta)) = Aj
ktω̄

k
i (ta) + δji , (2.60)

with
Ak

i = ckija
j . (2.61)

The series solution of (2.60) is [BPS98]

ω̄j
k(a) = W j

k (t)
∣
∣
∣
t=1

=
∞∑

n=1

1
n!
An−1. (2.62)

General Structure of Integrable One–Forms

Given 2−forms generating a closed ideal I(α) in the Grassmann algebra Λ(M),
we will denote by I(α, β) an augmented ideal in Λ(M ;Y ), where the manifold
Y will be called in further the representation space of some adjoint Lie group
G action: G× Y ρ→ Y . In this way, we can define the set of 1–forms {β} and
2–forms {α}

{α} = {αi ∈ Λ2(M) : i = 1, ...,mα},
{β} = {βj ∈ Λ1(M × Y ) : j = 1, ..., n = dimY },

(2.63)

satisfying [BPS98]:

dαi = ai
k(α) ∧ αk, dβj = f j

kα
k + ωj

s ∧ βs, (2.64)

where ai
k(α) ∈ Λ1(M), f j

k ∈ Λ0(M × Y ) and ωj
s ∈ Λ1(M × Y ) for all i, k =

1, ...,mα, j, s = 1, ..., n. Since the identity d2βj ≡ 0 takes place for all j =
1, ..., n, from (2.64) it follows that

(
dωj

k + ωj
s ∧ ωs

k

)
∧ βk +

(
df j

s + ωj
kf

k
s + f j

l a
l
s(α)

)
∧ αs ≡ 0. (2.65)

From (2.65) we get [BPS98]

dωj
k + ωj

s ∧ ωs
k ∈ I(α, β), df j

s + ωj
kf

k
s + f j

l a
l
s(α) ∈ I(α, β) (2.66)

for all j, k = 1, ..., n, s = 1, ...,mα. The second inclusion in (2.66) gives a
possibility to define the 1–forms θj

s = f j
l a

l
s(α) satisfying the inclusion
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dθj
s + ωj

k ∧ θk
s ∈ I(α, β)⊕ f j

l c
l
s(α), (2.67)

which we got using the identities d2αj ≡ 0, j = 1, ...,mα, in the form cjs(α) ∧
αs ≡ 0,

cjs(α) = daj
s(α) + aj

l (α) ∧ al
s(α), (2.68)

following from (2.64). Further, if s = s0 the 2–forms cjs0
(α) ≡ 0 for all j =

1, ...,mα, then as s = s0, we can define a set of 1–forms θj = θj
s0
∈ Λ1(M ×

Y ), j = 1, ..., n, satisfying the exact inclusions

dθj + ωj
k ∧ θk = Θj ∈ I(α, β), (2.69)

together with a set of inclusions for 1–forms ωj
k ∈ Λ1(M × Y )

dωj
k + ωj

s ∧ ωs
k = Ωj

k ∈ I(α, β). (2.70)

Using the general theory of connections on the fibered frame space P (M ;GL(n))
over a base manifold M (see [SW72]), we can interpret the equations (2.70) as
defining the curvature 2–forms Ωj

k ∈ Λ2(P ), and (2.69) as defining the torsion
2–forms Θj ∈ Λ2(P ). Since I(α) = 0 = I(α, β) upon the integral subman-
ifold M̄ ⊂ M , the reduced fibered frame space P (M̄ ;GL(n)) will have the
flat curvature and be torsion free, being as a result, completely trivialized on
M̄ ⊂M .

Lax Integrable Dynamical Systems

Consider some set {β} defining a Cartan’s Lie group G invariant object on a
manifold M × Y :

βj = dyj + ξj
k(y)bk(z), (2.71)

where i = 1, ..., n = dimY, r = dim G. (2.71) defines a set {ξ} of vector–fields
on Y , giving a representation ρ : g → {ξ} of a given Lie algebra g. In other
words, for the vector–fields ξs = ξj

s(y)
∂

∂yj ∈ {ξ}, s = 1, ..., rthe following Lie
algebra g relationships are valid

[ξs, ξl] = ckslξk, (s, l, k = 1, ..., r). (2.72)

Now, we can compute the differentials dβj ∈ Λ2(M × Y ), j = 1, ..., n, using
(2.71) and (2.72) as [BPS98]:

dβj =
∂ξj

k(y)
∂yl

(βl − ξl
s(y)b

s(z)) ∧ bk(z) + ξj
k(y)dbk(z), (2.73)

which is equal to

∂ξj
k(y)
∂yl

βl ∧ bk(z) + ξj
l (db

l(z) +
1
2
clksdb

k(z) ∧ dbs(z)),

where {α} ⊂ Λ2(M) is some a‘priori given integrable system of 2–forms on
M , vanishing upon the integral submanifold M̄ ⊂M .
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Example: Burgers Dynamical System

Consider the Burgers dynamical system on a functional manifold M ⊂
Ck(R; R):

ut = uux + uxx, (2.74)

where u ∈ M and t ∈ R is an evolution (time) parameter. The flow of (2.74)
onM can be recast into a set of 2–forms {α} ⊂ Λ2(J(R2; R)) upon the adjoint
jet–manifold J(R2; R) (see section 3.3.6 below) as follows [BPS98]:

{α} =
{
du(0) ∧ dt− u(1)dx ∧ dt = α1, du(0) ∧ dx+ u(0)du(0) ∧ dt

+du(1) ∧ dt = α2 :
(
x, t;u(0), u(1)

)τ ∈M4 ⊂ J1(R2; R)
}
,

(2.75)

where M4 is some finite–dimensional submanifold in J1(R2; R)) with coordi-
nates (x, t, u(0) = u, u(1) = ux). The set of 2–forms (2.75) generates the closed
ideal I(α), since

dα1 = dx ∧ α2 − u(0)dx ∧ α1, dα2 = 0, (2.76)

the integral submanifold M̄ = {x, t ∈ R} ⊂M4 being defined by the condition
I(α) = 0. We now look for a reduced ‘curvature’ 1–form Γ ∈ Λ1(M4) ⊗ g,
belonging to some (not yet determined) Lie algebra g. This 1–form can be
represented using (2.75), as follows:

Γ = b(x)(u(0), u(1))dx+ b(t)(u(0), u(1))dt, (2.77)

where elements b(x), b(t) ∈ g satisfy [BPS98]

∂b(x)

∂u(0) = g2,
∂b(x)

∂u(1) = 0, ∂b(t)

∂u(0) = g1 + g2u(0),
∂b(t)

∂u(1) = g2, [b(x), b(t)] = −u(1)g1.
(2.78)

The set (2.78) has the following unique solution

b(x) = A0 +A1u
(0), b(t) = u(1)A1 +

u(0)2

2
A1 + [A1, A0]u(0) +A2, (2.79)

where Aj ∈ g, j = 0, 2, are some constant elements on M of a Lie algebra g
under search, satisfying the next Lie structure equations:

[A0, A2] = 0,

[A0, [A1, A0]] + [A1, A2] = 0,

[A1, [A1, A0]] + 1
2 [A0, A1] = 0.

(2.80)

From (2.78) one can see that the curvature 2–form Ω ∈ span
R
{A1, [A0, A1] :

Aj ∈ g, j = 0, 1}. Therefore, reducing via the Ambrose–Singer theorem the
associated principal fibered frame space P (M ;G = GL(n)) to the principal
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fibre bundle P (M ;G(h)), where G(h) ⊂ G is the corresponding holonomy Lie
group of the connection Γ on P , we need to satisfy the following conditions
for the set g(h) ⊂ g to be a Lie subalgebra in g : ∇m

x ∇n
t Ω ∈ g(h) for all

m,n ∈ Z+.
Let us try now to close the above procedure requiring that [BPS98]

g(h) = g(h)0 = span
R
{∇m

x ∇n
xΩ ∈ g : m+ n = 0} (2.81)

This means that
g(h)0 = span

R
{A1, A3 = [A0, A1]}. (2.82)

To satisfy the set of relations (2.80) we need to use expansions over the basis
(2.82) of the external elements A0, A2 ∈ g(h):

A0 = q01A1 + q13A3, A2 = q21A1 + q23A3. (2.83)

Substituting expansions (2.83) into (2.80), we get that q01 = q23 = λ, q21 =
−λ2/2 and q03 = −2 for some arbitrary real parameter λ ∈ R, that is g(h) =
span

R
{A1, A3}, where

[A1, A3] = A3/2; A0 = λA1 − 2A3, A2 = −λ2A1/2 + λA3. (2.84)

As a result of (2.84) we can state that the holonomy Lie algebra g(h) is a real
2D one, assuming the following (2× 2)−matrix representation [BPS98]:

A1 =
(

1/4 0
0 −1/4

)

, A3 =
(

0 1
0 0

)

,

A0 =
(
λ/4 −2
0 −λ/4

)

, A2 =
(
−λ2/8 λ

0 λ2/8

)

.
(2.85)

Thereby from (2.77), (2.79) and (2.85) we get the reduced curvature 1–form
Γ ∈ Λ1(M)⊗ g,

Γ = (A0 + uA1)dx+ ((ux + u2/2)A1 − uA3 +A2)dt, (2.86)

generating parallel transport of vectors from the representation space Y of the
holonomy Lie algebra g(h):

dy + Γy = 0, (2.87)

upon the integral submanifold M̄ ⊂ M4 of the ideal I(α), generated by the
set of 2–forms (2.75). The result (2.87) means also that the Burgers dynamical
system (2.74) is endowed with the standard Lax type representation, having
the spectral parameter λ ∈ R necessary for its integrability in quadratures.

2.5 Riemannian Geometry in Human–Like Biomechanics

In this section we develop the basic techniques of Riemannian geometry on
the biomechanical manifold M , from both local and global perspective. We
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start with the local Riemannian notions of metric, geodesics and curvature
on M , including the first variation formula and parallel transport along the
vector–fields on M . After that we move to the global Riemannian notions on
M , including the second variation and Gauss–Bonnet formulae, as well as the
global Ricci flow on M . The last part of the section presents the structure
equations on M , the basics of Morse theory (as a preparation for the next
Chapter), and the basics of (co)bordism theory.

2.5.1 Local Riemannian Geometry on M

An important class of problems in Riemannian geometry is to understand the
interaction between the curvature and topology on a differentiable manifold
[CC99]. A prime example of this interaction is the Gauss–Bonnet formula on
a closed surface M2, which says

∫

M

K dA = 2π χ(M), (2.88)

where dA is the area element of a metric g on M , K is the Gaussian curvature
of g, and χ(M) is the Euler characteristic of M.

To study the geometry of a differentiable manifold we need an additional
structure: the Riemannian metric. The metric is an inner product on each
of the tangent spaces and tells us how to measure angles and distances in-
finitesimally. In local coordinates (x1, x2, · · · , xn), the metric g is given by
gij(x) dxi ⊗ dxj , where (gij(x)) is a positive definite symmetric matrix at
each point x. For a differentiable manifold one can differentiate functions.
A Riemannian metric defines a natural way of differentiating vector–fields:
covariant differentiation. In Euclidean space, one can change the order of dif-
ferentiation. On a Riemannian manifold the commutator of twice covariant
differentiating vector–fields is in general nonzero and is called the Riemann
curvature tensor , which is a 4−tensor–field on the manifold.

For surfaces, the Riemann curvature tensor is equivalent to the Gaussian
curvature K, a scalar function. In dimensions 3 or more, the Riemann cur-
vature tensor is inherently a tensor–field. In local coordinates, it is denoted
by Rijkl, which is anti-symmetric in i and k and in j and l, and symmetric
in the pairs {ij} and {kl}. Thus, it can be considered as a bilinear form on
2−forms which is called the curvature operator . We now describe heuristically
the various curvatures associated to the Riemann curvature tensor . Given a
point x ∈Mn and 2-plane Π in the tangent space of M at x, we can define a
surface S in M to be the union of all geodesics passing through x and tangent
to Π. In a neighborhood of x, S is a smooth 2D submanifold of M. We define
the sectional curvature K(Π) of the 2−plane to be the Gauss curvature of S
at x:

K(Π) = KS(x).

Thus the sectional curvature K of a Riemannian manifold associates to each
2-plane in a tangent space a real number. Given a line L in a tangent space, we
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can average the sectional curvatures of all planes through L to get the Ricci
curvature Rc(L). Likewise, given a point x ∈ M, we can average the Ricci
curvatures of all lines in the tangent space of x to get the scalar curvature
R(x). In local coordinates, the Ricci tensor is given by Rik = gjlRijkl and the
scalar curvature is given by R = gikRik, where (gij) = (gij)−1 is the inverse
of the metric tensor (gij).

Riemannian Metric on M

In this subsection we mainly follow [Pet99, Pet98].
Riemann in 1854 observed that around each point m ∈ M one can

pick a special coordinate system (x1, . . . , xn) such that there is a symmet-
ric (0, 2)−tensor–field gij(m) called the metric tensor defined as

gij(m) = g(∂xi , ∂xj ) = δij , ∂xkgij(m) = 0.

Thus the metric, at the specified point m ∈ M , in the coordinates
(x1, . . . , xn) looks like the Euclidean metric on R

n. We emphasize that these
conditions only hold at the specified point m ∈ M. When passing to differ-
ent points it is necessary to pick different coordinates. If a curve γ passes
through m, say, γ(0) = m, then the acceleration at 0 is simply defined by
firstly, writing the curve out in our special coordinates

γ(t) = (γ1(t), . . . , γn(t)),

secondly, defining the tangent, velocity vector–field, as

γ̇ = γ̇i(t) · ∂xi ,

and finally, the acceleration vector–field as

γ̈(0) = γ̈i(0) · ∂xi .

Here, the background idea is that we have a connection.
A vector–field X along a parameterized curve α : I →M in M is tangent

to M along α if X(t) ∈Mα(t) for all for t ∈ I ⊂ R. The derivative Ẋ of such a
vector–field is, however, generally not tangent toM . We can, nevertheless, get
a vector–field tangent to M by projecting Ẋ(t) orthogonally onto Mα(t) for
each t ∈ I. This process of differentiating and then projecting onto the tangent
space to M defines an operation with the same properties as differentiation,
except that now differentiation of vector–fields tangent to M yields vector–
fields tangent to M . This operation is called covariant differentiation.

Let γ : I → M be a parameterized curve in M , and let X be a smooth
vector–field tangent to M along α. The absolute covariant derivative of X is
the vector–field ˙̄X tangent to M along α, defined by ˙̄X = Ẋ(t) − [Ẋ(t) ·
N(α(t))]N(α(t)), whereN is an orientation onM . Note that ˙̄X is independent
of the choice of N since replacing N by −N has no effect on the above formula.
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Lie bracket (2.4.1) defines a symmetric affine connection ∇ on any mani-
fold M :

[X,Y ] = ∇XY −∇YX.

In case of a Riemannian manifold M , the connection ∇ is also compatible
with the Riemannian metrics g on M and is called the Levi–Civita connection
on TM .

For a function f ∈ Ck(M,R) and a vector a vector–field X ∈ X k(M) we
always have the Lie derivative (2.4.1)

LXf = ∇Xf = df(X).

But there is no natural definition for ∇XY, where Y ∈ X k(M), unless one
also has a Riemannian metric. Given the tangent field γ̇, the acceleration can
then be computed by using a Leibniz rule on the r.h.s, if we can make sense of
the derivative of ∂xi in the direction of γ̇. This is exactly what the covariant
derivative ∇XY does. If Y ∈ TmM then we can simply write Y = ai∂xi , and
therefore

∇XY = LXa
i∂xi . (2.89)

Since there are several ways of choosing these coordinates, one must check that
the definition does not depend on the choice. Note that for two vector–fields
we define (∇YX)(m) = ∇Y (m)X. In the end we get a connection

∇ : X k(M)×X k(M) → X k(M),

which satisfies (for all f ∈ Ck(M,R) and X,Y, Z ∈ X k(M)):

1. Y → ∇YX is tensorial, i.e., linear and ∇fYX = f∇YX.
2. X → ∇YX is linear.
3. ∇X(fY ) = (∇Xf)Y (m) + f(m)∇XY .
4. ∇XY −∇YX = [X,Y ].
5. LXg(Z, Y ) = g(∇XZ, Y ) + g(Z,∇XY ).

A semicolon is commonly used to denote covariant differentiation with
respect to a natural basis vector. If X = ∂xi , then the components of ∇XY
in (2.89) are denoted

Y k
; i = ∂xiY k + Γ k

ij Y
j , (2.90)

where Γ k
ij are Christoffel symbols defined in (2.91) below. Similar relations

hold for higher–order tensor–fields (with as many terms with Christoffel sym-
bols as is the tensor valence).

Therefore, no matter which coordinates we use, we can now define the
acceleration of a curve in the following way:

γ(t) = (γ1(t), . . . , γn(t)),
γ̇(t) = γ̇i(t)∂xi ,

γ̈(t) = γ̈i(t)∂xi + γ̇i(t)∇γ̇(t)∂xi .
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We call γ a geodesic if γ(t) = 0. This is a second order nonlinear ODE in
a fixed coordinate system (x1, . . . , xn) at the specified point m ∈ M . Thus
we see that given any tangent vector X ∈ TmM, there is a unique geodesic
γX(t) with γ̇X(0) = X. If the manifold M is closed, the geodesic must exist
for all time, but in case the manifold M is open this might not be so. To see
this, simply take as M any open subset of Euclidean space with the induced
metric.

Given an arbitrary vector–field Y (t) along γ, i.e., Y (t) ∈ Tγ(t)M for all t,
we can also define the derivative Ẏ ≡ dY

dt in the direction of γ̇ by writing

Y (t) = ai(t)∂xi ,

Ẏ (t) = ȧi(t)∂xi + ai(t)∇γ̇(t)∂xi .

Here the derivative of the tangent field γ̇ is simply the acceleration γ. The
field Y is said to be parallel iff Ẏ = 0. The equation for a field to be parallel
is a first order linear ODE, so we see that for any X ∈ Tγ(t0)M there is a
unique parallel field Y (t) defined on the entire domain of γ with the property
that Y (t0) = X. Given two such parallel fields Y, Z ∈ X k(M), we have that

ġ(Y, Z) = Dγ̇g(Y, Z) = g(Ẏ , Z) + g(Y, Ż) = 0.

Thus X and Y are both of constant length and form constant angles along γ.
Hence, ‘parallel translation’ along a curve defines an orthogonal transforma-
tion between the tangent spaces to the manifold along the curve. However, in
contrast to Euclidean space, this parallel translation will depend on the choice
of curve.

An infinitesimal distance between the two nearby local points m and n on
M is defined by an arc–element

ds2 = gij dx
idxj ,

and realized by the curves xi(s) of shortest distance, called geodesics, ad-
dressed by the Hilbert 4th problem. In local coordinates (x1(s), ..., xn(s)) at a
point m ∈M , the geodesic defining equation is a second order ODE,

ẍi + Γ i
jk ẋ

j ẋk = 0,

where the overdot denotes the derivative with respect to the affine parame-
ter s, ẋi(s) = d

dsx
i(s) is the tangent vector to the base geodesic, while the

Christoffel symbols Γ i
jk = Γ i

jk(m) (see Appendix) of the affine connection
(Levi–Civita) ∇ at the point m ∈M are defined as

Γ k
ij = gklΓijl, with gij = (gij) and (2.91)

Γijk =
1
2
(∂xigjk xjgki + ∂xkgij).

The torsion tensor–field T of the connection∇ is the function T : X k(M)×
X k(M) → X k(M) given by

∂

−1

−
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T (X,Y ) = ∇XY −∇YX − [X,Y ].

From the skew symmetry ([X,Y ] = −[Y,X]) of the Lie bracket, follows the
skew symmetry (T (X,Y ) = −T (Y,X)) of the torsion tensor. The mapping T
is said to be f−bilinear since it is linear in both arguments and also satisfies
T (fX, Y ) = fT (X,Y ) for smooth functions f . Since [∂xi , ∂xj ] = 0 for all
1 ≤ i, j ≤ n, it follows that

T (∂xi , ∂xj ) = (Γ k
ij − Γ k

ji)∂xk . (2.92)

Consequently, torsion T is a (1, 2) tensor–field, locally given by

T = T k
i j dx

i ⊗ ∂xk ⊗ dxj , (2.93)

where the torsion components T k
i j are given by

T k
i j = Γ k

ij − Γ k
ji. (2.94)

Therefore, the torsion tensor provides a measure of the nonsymmetry of the
connection coefficients. Hence, T = 0 if and only if these coefficients are
symmetric in their subscripts. A connection ∇ with T = 0 is said to be
torsion free or symmetric.

The connection also enables us to define many other classical concepts
from calculus in the setting of Riemannian manifolds. Suppose we have a
function f ∈ Ck(M,R). If the manifold is not equipped with a Riemannian
metric, then we have the differential of f defined by df(X) = LXf, which is a
1−form. The dual concept, the gradient of f, is supposed to be a vector–field.
But we need a metric g to define it. Namely, ∇f is defined by the relationship

g(∇f,X) = df(X).

Having defined the gradient of a function on a Riemannian manifold, we can
then use the connection to define the Hessian as the linear map

∇2f : TM → TM, ∇2f(X) = ∇X∇f.

The corresponding bilinear map is then defined as

∇2f(X,Y ) = g(∇2f(X), Y ).

One easily checks that this is a symmetric bilinear form. The Laplacian of f ,
∆f, is now defined as the trace of the Hessian

∆f = Tr(∇2f(X)) = Tr(∇X∇f),

which is a linear map. It is also called the Laplace–Beltrami operator , since
Beltrami first considered this operator on Riemannian manifolds.
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Riemannian metric has the following mechanical interpretation. Let M
be a closed Riemannian manifold with the mechanical metric g = gijv

ivj ≡
〈v, v〉, with vi = ẋi. Consider the Lagrangian function

L : TM → R, (x, v) �→ 1
2
〈v, v〉 − U(x) (2.95)

where U(x) is a smooth function on M called the potential . On a fixed level
of energy E, bigger than the maximum of U , the Lagrangian flow generated
by (2.95) is conjugate to the geodesic flow with metric ḡ = 2(e− U(x))〈v, v〉.
Moreover, the reduced action of the Lagrangian is the distance for g = 〈v, v〉
[Arn89, AMR88]. Both of these statements are known as the Maupertius action
principle (see subsection 3.3.5 below).

Geodesics on M

For a Ck, k ≥ 2 curve γ : I →M, we define its length on I as

L (γ, I) =
∫

I

|γ̇| dt =
∫

I

√
g (γ̇, γ̇)dt.

This length is independent of our parametrization of the curve γ. Thus the
curve γ can be reparameterized, in such a way that it has unit velocity. The
distance between two points m1 and m2 onM, d (m1,m2) , can now be defined
as the infimum of the lengths of all curves from m1 to m2, i.e.,

L (γ, I) → min .

This means that the distance measures the shortest way one can travel from
m1 to m2.

If we take a variation V (s, t) : (−ε, ε) × [0, !] → M of a smooth curve
γ (t) = V (0, t) parameterized by arc–length L and of length !, then the first
derivative of the arc–length function

L(s) =
∫ �

0

|V̇ | dt, is given by

dL(0)
ds

≡ L̇(0) = g (γ̇, X)|�0 −
∫ �

0

g (γ,X) dt, (2.96)

where X (t) = ∂V
∂s (0, t) is the so–called variation vector–field . Equation (2.96)

is called the first variation formula. Given any vector–field X along γ, one
can produce a variation whose variational field is X. If the variation fixes the
endpoints, X (a) = X (b) = 0, then the second term in the formula drops
out, and we note that the length of γ can always be decreased as long as the
acceleration of γ is not everywhere zero. Thus the Euler–Lagrange equation for
the arc–length functional is simply the equation for a curve to be a geodesic.
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In local coordinates xi ∈ U , where U is an open subset in the Riemannian
manifoldM , the geodesics are defined by the geodesic equation (see Appendix)

ẍi + Γ i
jkẋ

j ẋk = 0, (2.97)

where overdot means derivative upon the line parameter s, while Γ i
jk are

Christoffel symbols of the affine Levi–Civita connection ∇ on M . From (6.18)
it follows that the linear connection homotopy ,

Γ̄ i
jk = sΓ i

jk + (1− s)Γ i
jk, (0 ≤ s ≤ 1),

determines the same geodesics as the original Γ i
jk.

Riemannian Curvature on M

The Riemann curvature tensor is a rather ominous tensor of type (1, 3); i.e.,
it has three vector variables and its value is a vector as well. It is defined
through the Lie bracket (2.4.1) as

R (X,Y )Z =
(
∇[X,Y ] − [∇X ,∇Y ]

)
Z = ∇[X,Y ]Z −∇X∇Y Z +∇Y∇XZ.

This turns out to be a vector valued (1, 3)−tensor–field in the three variables
X,Y, Z ∈ X k(M). We can then create a (0, 4)−tensor,

R (X,Y, Z,W ) = g
(
∇[X,Y ]Z −∇X∇Y Z +∇Y∇XZ,W

)
.

Clearly this tensor is skew–symmetric in X and Y , and also in Z and W ∈
X k(M). This was already known to Riemann, but there are some further,
more subtle properties that were discovered a little later by Bianchi. The
Bianchi symmetry condition reads

R(X,Y, Z,W ) = R(Z,W,X, Y ).

Thus the Riemannian curvature tensor is a symmetric curvature operator

R : Λ2TM → Λ2TM.

The Ricci tensor is the (1, 1)− or (0, 2)−tensor defined by

Ric(X) = R(∂xi , X)∂xi , Ric(X,Y ) = g(R(∂xi , X)∂xi , Y ),

for any orthonormal basis (∂xi). In other words, the Ricci curvature is simply
a trace of the curvature tensor. Similarly one can define the scalar curvature
as the trace

scal(m) = Tr (Ric) = Ric(∂xi , ∂xi).

When the Riemannian manifold has dimension 2, all of these curvatures
are essentially the same. Since dimΛ2TM = 1 and is spanned by X∧Y where
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X,Y ∈ X k(M) form an orthonormal basis for TmM, we see that the curvature
tensor depends only on the scalar value

K(m) = R(X,Y,X, Y ),

which also turns out to be the Gaussian curvature. The Ricci tensor is a
homothety

Ric(X) = K(m)X, Ric(Y ) = K(m)Y,

and the scalar curvature is twice the Gauss curvature. In dimension 3 there are
also some redundancies as dimTM = dimΛ2TM = 3. In particular, the Ricci
tensor and the curvature tensor contain the same amount of information.

The sectional curvature is a kind of generalization of the Gauss curvature
whose importance Riemann was already aware of. Given a 2−plane π ⊂ TmM
spanned by an orthonormal basis X,Y ∈ X k(M) it is defined as

sec(π) = R(X,Y,X, Y ).

The remarkable observation by Riemann was that the curvature operator is
a homothety, i.e., looks like R = kI on Λ2TmM iff all sectional curvatures
of planes in TmM are equal to k. This result is not completely trivial, as
the sectional curvature is not the entire quadratic form associated to the
symmetric operator R. In fact, it is not true that sec ≥ 0 implies that the
curvature operator is nonnegative in the sense that all its eigenvalues are
nonnegative. What Riemann did was to show that our special coordinates
(x1, . . . , xn) at m can be chosen to be normal at m, i.e., satisfy the condition

xi = δi
jx

j , (δi
jx

j = gij)

on a neighborhood of m. One can easily show that such coordinates are ac-
tually exponential coordinates together with a choice of an orthonormal basis
for TmM so as to identify TmM with R

n. In these coordinates one can then
expand the metric as follows:

gij = δij −
1
3
Rikjlx

kxl +O
(
r3
)
.

Now the equations xi = gijx
j evidently give conditions on the curvatures

Rijkl at m.
If Γ i

jk(m) = 0, the manifold M is flat at the point m. This means that the
(1, 3) curvature tensor, defined locally at m ∈M as

Rl
ijk = ∂xjΓ l

ik − ∂xkΓ l
ij + Γ l

rjΓ
r
ik − Γ l

rkΓ
r
ij ,

also vanishes at that point, i.e., Rl
ijk(m) = 0.

Now, the rate of change of a vector–field Ak on the manifold M along the
curve xi(s) is properly defined by the absolute covariant derivative
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D

ds
Ak = ẋi∇iA

k = ẋi
(
∂xiAk + Γ k

ij A
j
)

= Ȧk + Γ k
ij ẋ

iAj .

By applying this result to itself, we can get an expression for the second
covariant derivative of the vector–field Ak along the curve xi(s):

D2

ds2
Ak =

d

ds

(
Ȧk + Γ k

ij ẋ
iAj

)
+ Γ k

ij ẋ
i(Ȧj + Γ j

mn ẋ
mAn).

In the local coordinates (x1(s), ..., xn(s)) at a pointm ∈M, if δxi = δxi(s)
denotes the geodesic deviation, i.e., the infinitesimal vector describing perpen-
dicular separation between the two neighboring geodesics, passing through two
neighboring points m,n ∈ M , then the Jacobi equation of geodesic deviation
on the manifold M holds:

D2δxi

ds2
+Ri

jkl ẋ
j δxk ẋl = 0. (2.98)

This equation describes the relative acceleration between two infinitesimally
close facial geodesics, which is proportional to the facial curvature (measured
by the Riemann tensor Ri

jkl at a point m ∈M), and to the geodesic deviation
δxi. Solutions of equation (6.19) are called Jacobi fields.

In particular, if the manifold M is a 2D–surface in R
3, the Riemann cur-

vature tensor simplifies into

Ri
jmn =

1
2
Rgik(gkm gjn − gkn gjm),

where R denotes the scalar curvature. Consequently the equation of geodesic
deviation (6.19) also simplifies into

D2

ds2
δxi +

R

2
δxi − R

2
ẋi(gjk ẋ

j δxk) = 0. (2.99)

This simplifies even more if we work in a locally Cartesian coordinate sys-
tem; in this case the covariant derivative D2

Ds2 reduces to an ordinary derivative
d2

ds2 and the metric tensor gij reduces to identity matrix Iij , so our 2D equa-
tion of geodesic deviation (6.20) reduces into a simple second order ODE in
just two coordinates xi (i = 1, 2)

ẍi +
R

2
δxi − R

2
ẋi(Ijk ẋ

j δxk) = 0.

2.5.2 Global Riemannian Geometry on M

The Second Variation Formula

Cartan also establishes another important property of manifolds with nonpos-
itive curvature. First he observes that all spaces of constant zero curvature
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have torsion–free fundamental groups. This is because any isometry of finite
order on Euclidean space must have a fixed point (the center of mass of any
orbit is necessarily a fixed point). Then he notices that one can geometri-
cally describe the L∞ center of mass of finitely many points {m1, . . . ,mk} in
Euclidean space as the unique minimum for the strictly convex function

x→ max
i=1,··· ,k

1
2

{
(d (mi, x))

2
}
.

In other words, the center of mass is the center of the ball of smallest radius
containing {m1, . . . ,mk} . Now Cartan’s observation from above was that the
exponential map is expanding and globally distance nondecreasing as a map:

(TmM, Euclidean metric) → (TmM, with pull–back metric) .

Thus distance functions are convex in nonpositive curvature as well as in
Euclidean space. Hence the above argument can in fact be used to conclude
that any Riemannian manifold of nonpositive curvature must also have torsion
free fundamental group.

Now, let us set up the second variation formula and explain how it is used.
We have already seen the first variation formula and how it can be used to
characterize geodesics. Now suppose that we have a unit speed geodesic γ (t)
parameterized on [0, !] and consider a variation V (s, t) , where V (0, t) = γ (t).
Synge then shows that (L̈ ≡ d2L

ds2 )

L̈(0) =
∫ �

0

{g(Ẋ, Ẋ)− (g(Ẋ, γ̇))2 − g(R(X, γ̇)X, γ̇)}dt+ g(γ̇, A)|�0 ,

where X (t) = ∂V
∂s (0, t) is the variational vector–field, Ẋ = ∇γ̇X, and A (t) =

∇ ∂V
∂s
X. In the special case where the variation fixes the endpoints, i.e., s →

V (s, a) and s→ V (s, b) are constant, the term with A in it falls out. We can
also assume that the variation is perpendicular to the geodesic and then drop
the term g

(
Ẋ, γ̇

)
. Thus, we arrive at the following simple form:

L̈(0) =
∫ �

0

{g(Ẋ, Ẋ)− g (R (X, γ̇)X, γ̇)}dt =
∫ �

0

{|Ẋ|2 − sec(γ̇, X) |X|2}dt.

Therefore, if the sectional curvature is nonpositive, we immediately observe
that any geodesic locally minimizes length (that is, among close–by curves),
even if it does not minimize globally (for instance γ could be a closed geodesic).
On the other hand, in positive curvature we can see that if a geodesic is too
long, then it cannot minimize even locally. The motivation for this result
comes from the unit sphere, where we can consider geodesics of length > π.
Globally, we of course know that it would be shorter to go in the opposite
direction. However, if we consider a variation of γ where the variational field
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looks like X = sin
(
t · π

�

)
E and E is a unit length parallel field along γ which

is also perpendicular to γ, then we get

L̈(0) =
∫ �

0

{∣
∣
∣Ẋ
∣
∣
∣
2

− sec (γ̇, X) |X|2
}

dt

=
∫ �

0

{(π
!

)2

· cos2
(
t · π
!

)
− sec (γ̇, X) sin2

(
t · π
!

)}

dt

=
∫ �

0

((π
!

)2

· cos2
(
t · π
!

)
− sin2

(
t · π
!

))

dt = − 1
2!
(
!2 − π2

)
,

which is negative if the length ! of the geodesic is greater than π. Therefore,
the variation gives a family of curves that are both close to and shorter than
γ. In the general case, we can then observe that if sec ≥ 1, then for the same
type of variation we get

L̈(0) ≤ − 1
2!
(
!2 − π2

)
.

Thus we can conclude that, if the space is complete, then the diameter must be
≤ π because in this case any two points are joined by a segment, which cannot
minimize if it has length > π. With some minor modifications one can now
conclude that any complete Riemannian manifold (M, g) with sec ≥ k2 > 0
must satisfy diam(M, g) ≤ π·k−1. In particular,M must be compact. Since the
universal covering ofM satisfies the same curvature hypothesis, the conclusion
must also hold for this space; hence M must have compact universal covering
space and finite fundamental group.

In odd dimensions all spaces of constant positive curvature must be ori-
entable, as orientation reversing orthogonal transformation on odd–dimensional
spheres have fixed points. This can now be generalized to manifolds of varying
positive curvature. Synge did it in the following way: SupposeM is not simply
connected (or not orientable), and use this to find a shortest closed geodesic in
a free homotopy class of curves (that reverses orientation). Now consider par-
allel translation around this geodesic. As the tangent field to the geodesic is
itself a parallel field, we see that parallel translation preserves the orthogonal
complement to the geodesic. This complement is now odd dimensional (even
dimensional), and by assumption parallel translation preserves (reverses) the
orientation; thus it must have a fixed point. In other words, there must exist
a closed parallel field X perpendicular to the closed geodesic γ. We can now
use the above second variation formula

L̈(0) =
∫ �

0

{|Ẋ|2 − |X|2 sec (γ̇, X)}dt+ g (γ̇, A)|�0 = −
∫ �

0

|X|2 sec (γ̇, X) dt.

Here the boundary term drops out because the variation closes up at the
endpoints, and Ẋ = 0 since we used a parallel field. In case the sectional
curvature is always positive we then see that the above quantity is negative.
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But this means that the closed geodesic has nearby closed curves which are
shorter. This is, however, in contradiction with the fact that the geodesic was
constructed as a length minimizing curve in a free homotopy class.

In 1941 Myers generalized the diameter bound to the situation where
one only has a lower bound for the Ricci curvature. The idea is simply that
Ric(γ̇, γ̇) =

∑n−1
i=1 sec (Ei, γ̇) for any set of vector–fields Ei along γ such that

γ̇, E1, . . ., En−1 forms an orthonormal frame. Now assume that the fields are
parallel and consider the n− 1 variations coming from the variational vector–
fields sin

(
t · π

�

)
Ei. Adding up the contributions from the variational formula

applied to these fields then yields

n−1∑

i=1

L̈(0) =
n−1∑

i=1

∫ �

0

{(π
!

)2

· cos2
(
t · π
!

)
− sec (γ̇, Ei) sin2

(
t · π
!

)}

dt

=
∫ �

0

{

(n− 1)
(π
!

)2

· cos2
(
t · π
!

)
− Ric (γ̇, γ̇) sin2

(
t · π
!

)}

dt.

Therefore, if Ric(γ̇, γ̇) ≥ (n− 1) k2 (this is the Ricci curvature of Sn
k ), then

n−1∑

i=1

L̈(0) ≤ (n− 1)
∫ �

0

{(π
!

)2

· cos2
(
t · π
!

)
− k2 sin2

(
t · π
!

)}

dt

= − (n− 1)
1
2!
(
!2k2 − π2

)
,

which is negative when ! > π · k−1 (the diameter of Sn
k ). Thus at least one of

the contributions d2Li

ds2 (0) must be negative as well, implying that the geodesic
cannot be a segment in this situation.

Gauss–Bonnet Formula

In 1926 Hopf proved that in fact there is a Gauss–Bonnet formula for all even–
dimensional hypersurfaces H2n ⊂ R

2n+1. The idea is simply that the deter-
minant of the differential of the Gauss map G : H2n → S2n is the Gaussian
curvature of the hypersurface. Moreover, this is an intrinsically computable
quantity. If we integrate this over the hypersurface, we get,

1
volS2n

∫

H

det (DG) = deg (G) ,

where deg (G) is the Brouwer degree of the Gauss map. Note that this can also
be done for odd–dimensional surfaces, in particular curves, but in this case
the degree of the Gauss map will depend on the embedding or immersion of
the hypersurface. Instead one gets the so–called winding number. Hopf then
showed, as Dyck had earlier done for surfaces, that deg (G) is always half the
Euler characteristic of H, thus yielding
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2
volS2n

∫

H

det (DG) = χ (H) . (2.100)

Since the l.h.s of this formula is in fact intrinsic, it is natural to conjecture
that such a formula should hold for all manifolds.

Ricci Flow on M

Ricci flow , or the parabolic Einstein equation, was introduced by R. Hamilton
in 1982 [Ham82] in the form

∂tgij = −2Rij . (2.101)

Now, because of the minus sign in the front of the Ricci tensor Rij in this
equation, the solution metric gij to the Ricci flow shrinks in positive Ricci
curvature direction while it expands in the negative Ricci curvature direction.
For example, on the 2−sphere S2, any metric of positive Gaussian curvature
will shrink to a point in finite time. Since the Ricci flow (2.101) does not
preserve volume in general, one often considers the normalized Ricci flow
defined by

∂tgij = −2Rij +
2
n
rgij , (2.102)

where r =
∫
RdV

/ ∫
dV is the average scalar curvature. Under this normal-

ized flow, which is equivalent to the (unnormalized) Ricci flow (2.101) by
reparameterizing in time t and scaling the metric in space by a function of
t, the volume of the solution metric is constant in time. Also that Einstein
metrics (i.e., Rij = cgij) are fixed points of (2.102).

Hamilton [Ham82] showed that on a closed Riemannian 3−manifold M3

with initial metric of positive Ricci curvature, the solution g(t) to the nor-
malized Ricci flow (2.102) exists for all time and the metrics g(t) converge
exponentially fast, as time t tends to the infinity, to a constant positive sec-
tional curvature metric g∞ on M3.

Since the Ricci flow lies in the realm of parabolic partial differential equa-
tions, where the prototype is the heat equation, here is a brief review of the
heat equation [CC99].

Let (Mn, g) be a Riemannian manifold. Given a C2 function u : M → R,
its Laplacian is defined in local coordinates

{
xi
}

to be

∆u = Tr
(
∇2u

)
= gij∇i∇ju,

where ∇i = ∇∂xi is its associated covariant derivative (Levi–Civita connec-
tion). We say that a C2 function u : Mn × [0, T ) → R, where T ∈ (0,∞], is a
solution to the heat equation if

∂tu = ∆u.
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One of the most important properties satisfied by the heat equation is the
maximum principle, which says that for any smooth solution to the heat
equation, whatever pointwise bounds hold at t = 0 also hold for t > 0. Let
u : Mn × [0, T ) → R be a C2 solution to the heat equation on a complete
Riemannian manifold. If C1 ≤ u (x, 0) ≤ C2 for all x ∈M, for some constants
C1, C2 ∈ R, then C1 ≤ u (x, t) ≤ C2 for all x ∈M and t ∈ [0, T ) [CC99].

Now, given a differentiable manifoldM, a one–parameter family of metrics
g (t) , where t ∈ [0, T ) for some T > 0, is a solution to the Ricci flow if (2.101)
is valid at all x ∈ M and t ∈ [0, T ). The minus sign in the equation (2.101)
makes the Ricci flow a forward heat equation [CC99] (with the normalization
factor 2).

In local geodesic coordinates {xi}, we have [CC99]

gij(x) = δij −
1
3
Ripjqx

pxq +O
(
|x|3

)
, therefore, ∆gij (0) = −1

3
Rij ,

where ∆ is the standard Euclidean Laplacian. Hence the Ricci flow is like the
heat equation for a Riemannian metric

∂tgij = 6∆gij .

The practical study of the Ricci flow is made possible by the following
short–time existence result: Given any smooth compact Riemannian manifold
(M, go), there exists a unique smooth solution g(t) to the Ricci flow defined
on some time interval t ∈ [0, ε) such that g(0) = go [CC99].

Now, given that short–time existence holds for any smooth initial metric,
one of the main problems concerning the Ricci flow is to determine under
what conditions the solution to the normalized equation exists for all time
and converges to a constant curvature metric. Results in this direction have
been established under various curvature assumptions, most of them being
some sort of positive curvature. Since the Ricci flow (2.101) does not preserve
volume in general, one often considers, as we mentioned in the Introduction,
the normalized Ricci flow (2.102). Under this flow, the volume of the solution
g(t) is independent of time.

To study the long–time existence of the normalized Ricci flow, it is im-
portant to know what kind of curvature conditions are preserved under the
equation. In general, the Ricci flow tends to preserve some kind of positivity
of curvatures. For example, positive scalar curvature is preserved in all di-
mensions. This follows from applying the maximum principle to the evolution
equation for scalar curvature R, which is

∂tR = ∆R+ 2 |Rij |2 .

In dimension 3, positive Ricci curvature is preserved under the Ricci flow. This
is a special feature of dimension 3 and is related to the fact that the Riemann
curvature tensor may be recovered algebraically from the Ricci tensor and
the metric in dimension 3. Positivity of sectional curvature is not preserved



2.5 Riemannian Geometry in Human–Like Biomechanics 171

in general. However, the stronger condition of positive curvature operator is
preserved under the Ricci flow. Recall that the Riemann curvature tensor may
be considered as a self–adjoint map Rm : ∧2M → ∧2M. We say that a metric
g has positive (non–negative) curvature operator if the eigenvalues of Rm
are positive (non–negative). We remark that positivity of curvature operator
implies the positivity of the sectional curvature (and in dimension 3, the two
conditions are equivalent).

Although the condition of positive scalar curvature is preserved in all di-
mensions, no convergence results are known for metrics satisfying this condi-
tion except in dimension 2.

Structure Equations on M

Let {Xa}m
a=1, {Yi}n

i=1 be local orthonormal framings on M , N respectively
and {ei}n

i=1 be the induced framing on E defined by ei = Yi ◦ φ, then there
exist smooth local coframings {ωa}m

a=1, {ηi}n
i=1 and {φ∗ηi}n

i=1 on TM , TN
and E respectively such that (locally)

g =
m∑

a=1

ω2
a and h =

n∑

i=1

η2
i .

The corresponding first structure equations are [Mus99]:

dωa = ωb ∧ ωba, ωab = −ωba,

dηi = ηj ∧ ηji, ηij = −ηji,

d(φ∗ηi) = φ∗ηj ∧ φ∗ηji, φ∗ηij = −φ∗ηji,

where the unique 1–forms ωab, ηij , φ
∗ηij are the respective connection forms.

The second structure equations are

dωab = ωac ∧ ωcb +ΩM
ab , dηij = ηik ∧ ηkj +ΩN

ij ,

d(φ∗ηij) = φ∗ηik ∧ φ∗ηkj + φ∗ΩN
ij ,

where the curvature 2–forms are given by

ΩM
ab = −1

2
RM

abcdωc ∧ ωd and ΩN
ij = −1

2
RN

ijklηk ∧ ηl.

The pull back map φ∗ and the push forward map φ∗ can be written as
[Mus99]

φ∗ηi = fiaωa

for unique functions fia on U ⊂M , so that

φ∗ = ei ⊗ φ∗ηi = fiaei ⊗ ωa.

Note that φ∗ is a section of the vector bundle φ−1TN ⊗ T ∗M .
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The covariant differential operators are represented as

∇MXa = ωab ⊗Xb, ∇NYi = ηij ⊗ Yj , ∇∗ωa = −ωca ⊗ ωc,

where ∇∗ is the dual connection on the cotangent bundle T ∗M .
Furthermore, the induced connection ∇φ on E is

∇φei =
(
ηij(Yk) ◦ φ

)
ej ⊗ fkaωa.

The components of the Ricci tensor and scalar curvature are defined re-
spectively by

RM
ab = RM

acbc and RM = RM
aa.

Given a function f : M → , there exist unique functions fcb = fbc such that

dfc − fbωcb = fcbωb , (2.103)

where fc = df(Xc) for a local orthonormal frame {Xc}m
c=1. To prove this we

take the exterior derivative of df =
∑m

c=1 fcωc and using structure equations,
we have

0 = [dfc ∧ ωc + fbcωb ∧ ωbc] = [(dfc − fbωcb) ∧ ωc] .

Hence by Cartan’s lemma (cf. [Wil93]), there exist unique functions fcb = fbc

such that
dfc − fbωcb = fcbωb.

The Laplacian of a function f on M is given by

∆f = −Tr(∇df),

that is, negative of the usual Laplacian on functions.

Basics of Morse Theory

At the same time the variational formulae were discovered, a related technique,
called Morse theory , was introduced into Riemannian geometry. This theory
was developed by Morse, first for functions on manifolds in 1925, and then in
1934, for the loop space. The latter theory, as we shall see, sets up a very nice
connection between the first and second variation formulae from the previous
section and the topology of M. It is this relationship that we shall explore at
a general level here. In section 5 we shall then see how this theory was applied
in various specific settings.

If we have a proper function f : M → R, then its Hessian (as a quadratic
form) is in fact well defined at its critical points without specifying an un-
derlying Riemannian metric. The nullity of f at a critical point is defined as
the dimension of the kernel of ∇2f, while the index is the number of negative
eigenvalues counted with multiplicity. A function is said to be a Morse func-
tion if the nullity at any of its critical points is zero. Note that this guarantees
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in particular that all critical points are isolated. The first fundamental theo-
rem of Morse theory is that one can determine the topological structure of a
manifold from a Morse function. More specifically, if one can order the critical
points x1, . . . , xk so that f (x1) < · · · < f (xk) and the index of xi is denoted
λi, then M has the structure of a CW complex with a cell of dimension λi

for each i. Note that in case M is closed then x1 must be a minimum and so
λ1 = 0, while xk is a maximum and λk = n. The classical example of Milnor
of this theorem in action is a torus in 3–space and f the height function.

We are now left with the problem of trying to find appropriate Morse func-
tions. While there are always plenty of such functions, there does not seem to
be a natural way of finding one. However, there are natural choices for Morse
functions on the loop space to a Riemannian manifold. This is, somewhat
inconveniently, infinite–dimensional. Still, one can develop Morse theory as
above for suitable functions, and moreover the loop space of a manifold deter-
mines the topology of the underlying manifold.

If m, p ∈M , then we denote by Ωmp the space of all Ck paths from m to
p. The first observation about this space is that

πi+1 (M) = πi (Ωmp) .

To see this, just fix a path from m to q and then join this path to every curve
in Ωmp. In this way Ωmp is identified with Ωm, the space of loops fixed at m.
For this space the above relationship between the homotopy groups is almost
self-evident.

On the space Ωmp we have two naturally defined functions, the arc–length
and energy functionals:

L (γ, I) =
∫

I

|γ̇| dt, and E (γ, I) =
1
2

∫

I

|γ̇|2 dt.

While the energy functional is easier to work with, it is of course the arc–
length functional that we are really interested in. In order to make things
work out nicely for the arc–length functional, it is convenient to parameterize
all curves on [0, 1] and proportionally to arc–length. We shall think of Ωmp as
an infinite–dimensional manifold. For each curve γ ∈ Ωmp the natural choice
for the tangent space consists of the vector–fields along γ which vanish at the
endpoints of γ. This is because these vector–fields are exactly the variational
fields for curves through γ in Ωmp, i.e., fixed endpoint variations of γ. An
inner product on the tangent space is then naturally defined by

(X,Y ) =
∫ 1

0

g (X,Y ) dt.

Now the first variation formula for arc–length tells us that the gradient for L
at γ is −∇γ̇ γ̇. Actually this cannot be quite right, as −∇γ̇ γ̇ does not vanish
at the endpoints. The real gradient is gotten in the same way we find the
gradient for a function on a surface in space, namely, by projecting it down
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into the correct tangent space. In any case we note that the critical points for
L are exactly the geodesics from m to p. The second variation formula tells
us that the Hessian of L at these critical points is given by

∇2L (X) = Ẍ +R (X, γ̇) γ̇,

at least for vector–fields X which are perpendicular to γ. Again we ignore the
fact that we have the same trouble with endpoint conditions as above. We
now need to impose the Morse condition that this Hessian is not allowed to
have any kernel. The vector–fields J for which J̈ + R (J, γ̇) γ̇ = 0 are called
Jacobi fields. Thus we have to figure out whether there are any Jacobi fields
which vanish at the endpoints of γ. The first observation is that Jacobi fields
must always come from geodesic variations. The Jacobi fields which vanish
at m can therefore be found using the exponential map expm . If the Jacobi
field also has to vanish at p, then p must be a critical value for expm . Now
Sard’s theorem asserts that the set of critical values has measure zero. For
given m ∈M it will therefore be true that the arc–length functional on Ωmp

is a Morse function for almost all p ∈ M. Note that it may not be possible
to choose p = m, the simplest example being the standard sphere. We are
now left with trying to decide what the index should be. This is of course the
dimension of the largest subspace on which the Hessian is negative definite.
It turns out that this index can also be computed using Jacobi fields and is
in fact always finite. Thus one can compute the topology of Ωmp, and hence
M, by finding all the geodesics from m to p and then computing their index.

In geometric situations it is often unrealistic to suppose that one can com-
pute the index precisely, but as we shall see it is often possible to given lower
bounds for the index. As an example, note that if M is not simply connected,
then Ωmp is not connected. Each curve of minimal length in the path compo-
nents is a geodesic from m to p which is a local minimum for the arc–length
functional. Such geodesics evidently have index zero. In particular, if one can
show that all geodesics, except for the minimal ones from m to p, have index
> 0, then the manifold must be simply connected. We continue the exposition
of Morse theory on M in section (4.2.1) below.

Basics of (Co)Bordism Theory

(Co)bordism appeared as a revival of Poincaré’s unsuccessful 1895 attempts
to define homology using only manifolds. Smooth manifolds (without bound-
ary) are again considered as ‘negligible’ when they are boundaries of smooth
manifolds–with–boundary. But there is a big difference, which keeps defini-
tion of ‘addition’ of manifolds from running into the difficulties encountered
by Poincaré; it is now the disjoint union. The (unoriented) (co)bordism re-
lation between two compact smooth manifolds M1,M2 of same dimension n
simply means that their disjoint union ∂W = M1 ∪M2 is the boundary ∂W
of an (n + 1)D smooth manifold–with–boundary W . This is an equivalence
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relation, and the classes for that relation of nD manifolds form a commutative
group Nn in which every element has order 2. The direct sum N• = ⊕n≥0Nn

is a ring for the multiplication of classes deduced from the Cartesian product
of manifolds.

More precisely, a manifold M is said to be a (co)bordism from A to B
if exists a diffeomorphism from a disjoint sum, ϕ ∈ diff(A∗ ∪ B, ∂M). Two
(co)bordisms M(ϕ) and M ′(ϕ′) are equivalent if there is a Φ ∈ diff(M,M ′)
such that ϕ′ = Φ ◦ ϕ. The equivalence class of (co)bordisms is denoted by
M(A,B) ∈ Cob(A,B) [Sto68].

Composition cCob of (co)bordisms comes from gluing of manifolds [BD95].
Let ϕ′ ∈ diff(C∗∪D, ∂N). One can glue (co)bordismM with N by identifying
B with C∗, (ϕ′)−1 ◦ ϕ ∈ diff(B,C∗). We obtain the glued (co)bordism
(M ◦N)(A,D) and a semigroup operation,

c(A,B,D) : Cob(A,B)× Cob(B,D) −→ Cob(A,D).

A surgery is an operation of cutting a manifoldM and gluing to cylinders.
A surgery gives new (co)bordism: from M(A,B) into N(A,B). The disjoint
sum ofM(A,B) with N(C,D) is a (co)bordism (M∪N)(A∪C,B∪D).We got
a 2–graph of (co)bordism Cob with Cob0 = Mand, Cob1 = Mand+1, whose
2–cells from Cob2 are surgery operations.

There is an n−category of (co)bordisms BO [Lei03] with:

• 0−cells: 0−manifolds, where ‘manifold’ means ‘compact, smooth, oriented
manifold’. A typical 0−cell is • • • • .

• 1−cells: 1−manifolds with corners, i.e., (co)bordisms between 0−manifolds,

such as (this being a 1−cell from the 4−point mani-
fold to the 2−point 0−manifold).

• 2−cells: 2−manifolds with corners, such as
• 3−cells, 4−cells,... are defined similarly;
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• Composition is gluing of manifolds.

The (co)bordisms theme was taken a step further by by Baez and Dolan
in [BD95], when when they started a programme to understand the subtle
relations between certain TMFT models for manifolds of different dimensions,
frequently referred to as the dimensional ladder. This programme is based on
higher–dimensional algebra, a generalization of the theory of categories and
functors to n−categories and n−functors. In this framework a topological
quantum field theory (TMFT) becomes an n−functor from the n−category
BO of n−cobordisms to the n−category of n−Hilbert spaces.

2.5.3 Complex and Kähler Manifolds

Just as a smooth manifold has enough structure to define the notion of differ-
entiable functions, a complex manifold is one with enough structure to define
the notion of holomorphic (or, analytic) functions f : X → C. Namely, if we
demand that the transition functions φj ◦ φ−1

i in the charts Ui on M (see
Figure 2.4) satisfy the Cauchy–Riemann equations

∂xu = ∂yv, ∂yu = −∂xv,

then the analytic properties of f can be studied using its coordinate repre-
sentative f ◦ φ−1

i with assurance that the conclusions drawn are patch inde-
pendent. Introducing local complex coordinates in the charts Ui on M , the φi

can be expressed as maps from Ui to an open set in C
n
2 , with φj ◦ φ−1

i being
a holomorphic map from C

n
2 to C

n
2 . Clearly, n must be even for this to make

sense. In local complex coordinates, we recall that a function h : C
n
2 → C

n
2 is

holomorphic if h(z1, z̄1, ..., z
n
2 , z̄

n
2 ) is actually independent of all the z̄j .

In a given patch on any even–dimensional manifold, we can always in-
troduce local complex coordinates by, for instance, forming the combinations
zj = xj +ix

n
2 +j , where the xj are local real coordinates on M . The real test is

whether the transition functions from one patch to another — when expressed
in terms of the local complex coordinates — are holomorphic maps. If they
are, we say that M is a complex manifold of complex dimension d = n/2. The
local complex coordinates with holomorphic transition functions provide M
with a complex structure [Gre96].

Given a smooth manifold with even real dimension n, it can be a difficult
question to determine whether or not a complex structure exists. On the
other hand, if some differentiable manifoldM does admit a complex structure,
we are not able to decide whether it is unique, i.e., there may be numerous
inequivalent ways of defining complex coordinates on M [Gre96].

Now, in the same way as a homeomorphism defines an equivalence between
topological manifolds, and a diffeomorphism defines an equivalence between
smooth manifolds, a biholomorphism defines an equivalence between complex
manifolds. IfM and N are complex manifolds, we consider them to be equiva-
lent if there is a map φ : M → N which in addition to being a diffeomorphism,
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Fig. 2.4. The charts for a complex manifold M have the complex coordinates.

is also a holomorphic map. That is, when expressed in terms of the complex
structures on M and N respectively, φ is holomorphic. It is not hard to show
that this necessarily implies that φ−1 is holomorphic as well and hence φ is
known as a biholomorphism. Such a map allows us to identify the complex
structures on M and N and hence they are isomorphic as complex manifolds.

These definitions are important because there are pairs of smooth mani-
folds M and N which are homeomorphic but not diffeomorphic, as well as,
there are complex manifolds M and N which are diffeomorphic but not bi-
holomorphic. This means that if one simply ignored the fact that M and N
admit local complex coordinates (with holomorphic transition functions), and
one only worked in real coordinates, there would be no distinction between
M and N . The difference between them only arises from the way in which
complex coordinates have been laid down upon them.

Again, recall that a tangent space to a manifoldM at a point p is the closest
flat approximation to M at that point. A convenient basis for the tangent
space of M at p consists of the n linearly independent partial derivatives,

TpM : {∂x1 |p, ..., ∂xn |p}. (2.104)

A vector v ∈ TpM can then be expressed as v = vα∂xα |p.
Also, a convenient basis for the dual, cotangent space T ∗

pM , is the basis of
one–forms, which is dual to (2.104) and usually denoted by

T ∗
pM : {dx1|p, ..., dxn|p}, (2.105)

where, by definition, dxi : TpM → R is a linear map with dxi
p(∂xj |p) = δi

j .
Now, if M is a complex manifold of complex dimension d = n/2, there is a

notion of the complexified tangent space of M , denoted by TpM
C, which is the

same as the real tangent space TpM except that we allow complex coefficients
to be used in the vector space manipulations. This is often denoted by writing
TpM

C = TpM⊗C. We can still take our basis to be as in (2.104) with an arbi-
trary vector v ∈ TpM

C being expressed as v = vα ∂
∂xα |p, where the vα can now

be complex numbers. In fact, it is convenient to rearrange the basis vectors in
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(2.104) to more directly reflect the underlying complex structure. Specifically,
we take the following linear combinations of basis vectors in (2.104) to be our
new basis vectors:

TpM
C : {(∂x1 + i∂xd+1)|p, ..., (2.106)
(∂xd + i∂x2d)|p, (∂x1 − i∂xd+1)|p, ..., (∂xd − i∂x2d)|p}.

In terms of complex coordinates we can write the basis (2.106) as

TpM
C : {∂z1 |p, ..., ∂zd |p, ∂z̄1 |p, ..., ∂z̄d |p}.

From the point of view of real vector spaces, ∂xj |p and i∂xj |p would be con-
sidered linearly independent and hence TpM

C has real dimension 4d.
In exact analogy with the real case, we can define the dual to TpM

C, which
we denote by T ∗

pM
C = T ∗

pM ⊗ C, with the one–forms basis

T ∗
pM

C : {dz1|p, ..., dzd|p, dz̄1|p, ..., dz̄d|p}.

For certain types of complex manifolds M , it is worthwhile to refine the def-
inition of the complexified tangent and cotangent spaces, which pulls apart
the holomorphic and anti–holomorphic directions in each of these two vector
spaces. That is, we can write

TpM
C = TpM

(1,0) ⊕ TpM
(0,1),

where TpM
(1,0) is the vector space spanned by {∂z1 |p, ..., ∂zd |p} and TpM

(0,1)

is the vector space spanned by {∂z̄1 |p, ..., ∂z̄d |p}. Similarly, we can write

T ∗
pM

C = T ∗
pM

(1,0) ⊕ T ∗
pM

(0,1),

where T ∗
pM

(1,0) is the vector space spanned by {dz1|p, ..., dzd|p} and T ∗
pM

(0,1)

is the vector space spanned by {dz̄1|p, ..., dz̄d|p}. We call TpM
(1,0) the holo-

morphic tangent space; it has complex dimension d and we call T ∗
pM

1,0 the
holomorphic cotangent space. It also has complex dimension d. Their com-
plements are known as the anti–holomorphic tangent and cotangent spaces
respectively [Gre96].

Now, a complex vector bundle is a vector bundle π : E → M whose fiber
bundle π−1(x) is a complex vector space. It is not necessarily a complex man-
ifold, even if its base manifold M is a complex manifold. If a complex vector
bundle also has the structure of a complex manifold, and is holomorphic, then
it is called a holomorphic vector bundle.

A Hermitian metric on a complex vector bundle assigns a Hermitian inner
product to every fiber bundle. The basic example is the trivial bundle π :
U×C

2 → U , where U is an open set in R
n. Then a positive definite Hermitian

matrix H defines a Hermitian metric by

〈v, w〉 = vTHw̄,
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where w̄ is the complex conjugate of w. By a partition of unity, any complex
vector bundle has a Hermitian metric.

In the special case of a complex manifold, the complexified tangent bundle
TM⊗C may have a Hermitian metric, in which case its real part is a Rieman-
nian metric and its imaginary part is a nondegenerate alternating multilinear
form ω. When ω is closed, i.e., in this case a symplectic form, then ω is a
Kähler form.

On a holomorphic vector bundle with a Hermitian metric h, there is a
unique connection compatible with h and the complex structure. Namely, it
must be ∇ = ∂ + ∂̄.

A Kähler structure on a complex manifold M combines a Riemannian
metric on the underlying real manifold with the complex structure. Such a
structure brings together geometry and complex analysis, and the main ex-
amples come from algebraic geometry. When M has n complex dimensions,
then it has 2n real dimensions. A Kähler structure is related to the unitary
group U(n), which embeds in SO(2n) as the orthogonal matrices that preserve
the almost complex structure (multiplication by i). In a coordinate chart, the
complex structure of M defines a multiplication by i and the metric defines
orthogonality for tangent vectors. On a Kähler manifold, these two notions
(and their derivatives) are related.

A Kähler manifold is a complex manifold for which the exterior deriva-
tive of the fundamental form ω associated with the given Hermitian metric
vanishes, so dω = 0. In other words, it is a complex manifold with a Kähler
structure. It has a Kähler form, so it is also a symplectic manifold. It has a
Kähler metric, so it is also a Riemannian manifold.

The simplest example of a Kähler manifold is a Riemann surface, which
is a complex manifold of dimension 1. In this case, the imaginary part of any
Hermitian metric must be a closed form since all 2−forms are closed on a real
two–dimensional manifold.

A Kähler form is a closed two–form ω on a complex manifold M which is
also the negative imaginary part of a Hermitian metric h = g − iw is called a
Kähler form. In this case,M is called a Kähler manifold and g, the real part of
the Hermitian metric, is called a Kähler metric. The Kähler form combines the
metric and the complex structure, g(X,Y ) = ω(X, JY ),where J is the almost
complex structure induced by multiplication by i. Since the Kähler form comes
from a Hermitian metric, it is preserved by J , since h(X,Y ) = h(JX, JY ).
The equation dω = 0 implies that the metric and the complex structure are
related. It gives M a Kähler structure, and has many implications.

On C
2, the Kähler form can be written as

ω = −1
2
i
(
dz1 ∧ dz1 + dz2 ∧ dz2

)
= dx1 ∧ dy1 + dx2 ∧ dy2,

where zn = xn +yn. In general, the Kähler form can be written in coordinates

ω = gij dzi ∧ dzj ,
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where gij is a Hermitian metric, the real part of which is the Kähler metric.
Locally, a Kähler form can be written as ∂∂̄f , where f is a function called a
Kähler potential . The Kähler form is a real (1, 1)−complex form. The Kähler
potential is a real–valued function f on a Kähler manifold for which the Kähler
form ω can be written as ω = i∂∂̄f , where,

∂ = ∂zk
dzk and ∂̄ = ∂z̄k

dz̄k.

Since the Kähler form ω is closed, it represents a cohomology class in the
De Rham cohomology. On a compact manifold, it cannot be exact because
ωn/n! �= 0 is the volume form determined by the metric. In the special case of
a projective variety, the Kähler form represents an integral cohomology class.
That is, it integrates to an integer on any one–dimensional submanifold, i.e.,
an algebraic curve. The Kodaira embedding theorem says that if the Kähler
form represents an integral cohomology class on a compact manifold, then it
must be a projective variety. There exist Kähler forms which are not projective
algebraic, but it is an open question whether or not any Kähler manifold can
be deformed to a projective variety (in the compact case).

A Kähler form satisfies Wirtinger’s inequality,

|ω(X,Y )| ≤ |X ∧ Y | ,

where the r.h.s is the volume of the parallelogram formed by the tangent
vectors X and Y . Corresponding inequalities hold for the exterior powers of
ω. Equality holds iff X and Y form a complex subspace. Therefore, there is
a calibration form, and the complex submanifolds of a Kähler manifold are
calibrated submanifolds. In particular, the complex submanifolds are locally
volume minimizing in a Kähler manifold. For example, the graph of a holo-
morphic function is a locally area–minimizing surface in C

2 = R
4.

Kähler identities is a collection of identities which hold on a Kähler mani-
fold, also called the Hodge identities. Let ω be a Kähler form, d = ∂+ ∂̄ be the
exterior derivative, [A,B] = AB −BA be the commutator of two differential
operators, and A∗ denote the formal adjoint of A. The following operators
also act on differential forms α on a Kähler manifold:

L(α) = α ∧ ω, Λ(α) = L∗(α) = α�ω, dc = −JdJ,

where J is the almost complex structure, J = −I, and � denotes the interior
product. Then

[L, ∂̄] = [L, ∂] = 0, [Λ, ∂̄∗] = [Λ, ∂∗] = 0,
[L, ∂̄∗] = −i∂, [L, ∂∗] = i∂̄, [Λ, ∂̄] = −i∂∗, [Λ, ∂] = −i∂̄.

These identities have many implications. For instance, the two operators

∆d = dd∗ + d∗d and ∆∂̄ = ∂̄∂̄∗ + ∂̄∗∂̄
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(called Laplacians because they are elliptic operators) satisfy

∆d = 2∆∂̄ .

At this point, assume that M is also a compact manifold. Along with Hodge’s
theorem, this equality of Laplacians proves the Hodge decomposition. The
operators L and Λ commute with these Laplacians. By Hodge’s theorem (see
Chapter 4 below), they act on cohomology, which is represented by harmonic
forms. Moreover, defining

H = [L,Λ] =
∑

(p+ q − n)Πp,q,

where Πp,q is projection onto the (p, q)−Dolbeault cohomology, they satisfy

[L,Λ] = H, [H,L] = −2L, [H,Λ] = 2L.

In other words, these operators provide a group representation of the special
linear Lie algebra sl2(C) on the complex cohomology of a compact Kähler
manifold (Lefschetz theorem).

2.5.4 Conformal Killing–Riemannian Geometry

In this subsection we present some basic facts from conformal Killing–
Riemannian geometry . In mechanics (see Chapter 3) it is well–known that
symmetries of Lagrangian or Hamiltonian result in conservation laws, that
are used to deduce constants of motion for the trajectories (geodesics) on the
configuration manifold M . The same constants of motion are obtained using
geometric language, where a Killing vector–field is the standard tool for the
description of symmetry [MTW73]. A Killing vector–field ξi is a vector–field
on a Riemannian manifold M with metrics g, which in coordinates xj ∈ M
satisfies the Killing equation

ξi;j + ξj;i = ξ(i;j) = 0, or Lξigij = 0, (2.107)

where semicolon denotes the covariant derivative on M (as in (2.90) above),
the indexed bracket denotes the tensor symmetry, and L is the Lie derivative.

The conformal Killing vector–fields are, by definition, infinitesimal con-
formal symmetries i.e., the flow of such vector–fields preserves the conformal
class of the metric. The number of linearly–independent conformal Killing
fields measures the degree of conformal symmetry of the manifold . This num-
ber is bounded by 1

2 (n+ 1)(n+ 2), where n is the dimension of the manifold.
It is the maximal one if the manifold is conformally flat [Bau00].

Now, to properly initialize our conformal geometry, recall that conformal
twistor spinor–fields ϕ were introduced by R. Penrose into physics (see [Pen67,
PR86]) as solutions of the conformally covariant twistor equation

∇S
Xϕ+

1
n
X ·Dϕ = 0,
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for each vector–fields X on a Riemannian manifold (M, g), where D is the
Dirac operator . Each twistor spinor–field ϕ on (M, g) defines a conformal
vector–field Vϕ on M by

g(Vϕ, X) = ik+1 〈X · ϕ,ϕ〉.

Also, each twistor spinor–field ϕ that satisfies the Dirac equation on (M, g),

Dϕ = µϕ,

is called a Killing spinor–field . Each twistor spinor–field without zeros on
(M, g) can be transformed by a conformal change of the metric g into a Killing
spinor–field [Bau00].

Conformal Killing Vector–Fields and Forms on M

The space of all conformal Killing vector–fields forms the Lie algebra of the
isometry group of a Riemannian manifold (M, g) and the number of linearly
independent Killing vector–fields measures the degree of symmetry of M . It
is known that this number is bounded from above by the dimension of the
isometry group of the standard sphere and, on compact manifolds, equality is
attained if and only if the manifold M is isometric to the standard sphere or
the real projective space. Slightly more generally one can consider conformal
vector–fields, i.e., vector–fields with a flow preserving a given conformal class
of metrics. There are several geometric conditions which force a conformal
vector–field to be Killing [Sem02].

A natural generalization of conformal vector–fields are the conformal
Killing forms [Yan52], also called twistor forms [MS03]. These are p−forms α
satisfying for any vector–fieldX on the manifoldM the Killing–Yano equation

∇X α − 1
p+1 X � dα + 1

n−p+1 X
∗ ∧ d∗α = 0, (2.108)

where n is the dimension of the manifold (M, g), ∇ denotes the covariant
derivative of the Levi–Civita connection on M , X∗ is 1−form dual to X
and � is the operation dual to the wedge product on M . It is easy to see
that a conformal Killing 1−form is dual to a conformal vector–field. Coclosed
conformal Killing p−forms are called Killing forms. For p = 1 they are dual
to Killing vector–fields.

Let α be a Killing p−form and let γ be a geodesic on (M, g), i.e., ∇ γ̇ γ̇ =
0. Then

∇γ̇ (γ̇�α) = (∇γ̇ γ̇)�α + γ̇�∇γ̇ α = 0,

i.e., γ̇�α is a (p− 1)–form parallel along the geodesic γ and in particular its
length is constant along γ.

The l.h.s of equation (2.108) defines a first order elliptic differential opera-
tor T , the so–caled twistor operator . Equivalently one can describe a conformal
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Killing form as a form in the kernel of twistor operator T . From this point
of view conformal Killing forms are similar to Penrose’s twistor spinors in
Lorentzian spin geometry . One shared property is the conformal invariance of
the defining equation. In particular, any form which is parallel for some metric
g, and thus a Killing form for trivial reasons, induces non–parallel conformal
Killing forms for metrics conformally equivalent to g (by a non–trivial change
of the metric) [Sem02].

Conformal Killing Tensors and Laplacian Symmetry on M

In an nD Riemannian manifold (M, g), a Killing tensor–field (of order 2) is a
symmetric tensor Kab satisfying (generalizing (2.107))

K(ab;c) = 0. (2.109)

A conformal Killing tensor–field (of order 2) is a symmetric tensor Qab satis-
fying

Q(ab;c) = q(agbc), with qa = (Q,a + 2Qa;d
d )/(n+ 2), (2.110)

where comma denotes partial derivative and Q = Qd
d. When the associated

conformal vector qa is nonzero, the conformal Killing tensor will be called
proper and otherwise it is a (ordinary) Killing tensor. If qa is a Killing vector,
Qab is referred to as a homothetic Killing tensor . If the associated conformal
vector qa = q,a is the gradient of some scalar field q, then Qab is called a
gradient conformal Killing tensor . For each gradient conformal Killing tensor
Qab there is an associated Killing tensor Kab given by

Kab = Qab − qgab, (2.111)

which is defined only up to the addition of a constant multiple of the inverse
metric tensor gab.

Some authors define a conformal Killing tensor as a trace–free tensor P ab

satisfying P (ab;c) = p(agbc). Note that there is no contradiction between the
two definitions: if P ab is a trace–free conformal Killing tensor then for any
scalar field λ, P ab + λgab is a conformal Killing tensor and conversely if Qab

is a conformal Killing tensor, its trace–free part Qab − 1
nQg

ab is a trace–free
Killing tensor [REB03].

Killing tensor–fields are of importance owing to their connection with
quadratic first integrals of the geodesic equations: if pa is tangent to an affinely
parameterized geodesic (i.e., pa

;bp
b = 0) it is easy to see that Kabp

apb is con-
stant along the geodesic. For conformal Killing tensors Qabp

apb is constant
along null geodesics and here, only the trace–free part of Qab contributes to
the constants of motion. Both Killing tensors and conformal Killing tensors
are also of importance in connection with the separability of the Hamilton–
Jacobi equations [CH64] (as well as other PDEs).
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A Killing tensor is said to be reducible if it can be written as a constant
linear combination of the metric and symmetrised products of Killing vectors,

Kab = a0gab + aIJξI(aξ|J|b), (2.112)

where ξI for I = 1 . . . N are the Killing vectors admitted by the manifold
(M, g) and a0 and aIJ for 1 ≤ I ≤ J ≤ N are constants. Generally one is
interested only in Killing tensors which are not reducible since the quadratic
constant of motion associated with a reducible Killing tensor is simply a con-
stant linear combination of papa and of pairwise products of the linear con-
stants of motion ξIap

a [REB03].
More generally, any linear differential operator on a Riemannian manifold

(M, g) may be written in the form [EG91, Eas02]

D = V bc···d∇b∇c · · · ∇d + lower order terms,

where V bc···d is symmetric in its indices, and ∇a = ∂/∂xa (differentiation in
coordinates). This tensor is called the symbol of D. We shall write φ(ab···c) for
the symmetric part of φab···c.

Now, a conformal Killing tensor on (M, g) is a symmetric trace–free tensor
field, with s indices, satisfying

the trace–free part of ∇(aV bc···d) = 0, (2.113)

or, equivalently,
∇(aV bc···d) = g(abT c···d), (2.114)

for some tensor field T c···d or, equivalently,

∇(aV bc···d) = s
n+2s−2g

(ab∇eV
c···d)e, (2.115)

where ∇a = gab∇b (the standard convention of raising and lowering indices
with the metric tensor gab). When s = 1, these equations define a conformal
Killing vector.

M. Eastwood proved the following theorem: Any symmetry D of the Lapla-
cian ∆ = ∇a∇a on a Riemannian manifold (M, g) is canonically equivalent
to one whose symbol is a conformal Killing tensor [EG91, Eas02].

2.6 Symplectic Geometry in Human–Like Biomechanics

In this section we develop the basic techniques of symplectic geometry on the
biomechanical manifold M [Iva04].
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2.6.1 Symplectic Algebra

Symplectic algebra works in the category of symplectic vector spaces Vi and
linear symplectic mappings t ∈ L(Vi, Vj) [Put93].

Let V be a nD real vector space and L2(V,R) the space of all bilinear maps
from V × V to R. We say that a bilinear map ω ∈ L2(V,R) is nondegenerate,
i.e., if ω(v1, v2) = 0 for all v2 ∈ V implies v1 = 0.

If {e1, ..., en} is a basis of V and {e1, ..., en} is the dual basis, ωij = ω(ei, ej)
is the matrix of ω. A bilinear map ω ∈ L2(V,R) is nondegenerate iff its matrix
ωij is nonsingular. The transpose ωt of ω is defined by ωt(ei, ej) = ω(ej , ei).
ω is symmetric if ωt = ω, and skew–symmetric if ωt = −ω.

Let A2(V ) denote the space of skew–symmetric bilinear maps on V . An
element ω ∈ A2(V ) is called a 2−form on V . If ω ∈ A2(V ) is nondegenerate

then in the basis {e1, ..., en} its matrix ω(ei, ej) has the form J =
(

0 In

−In 0

)

.

A symplectic form on a real vector space V of dimension 2n is a nondegen-
erate 2−form ω ∈ A2(V ). The pair (V, ω) is called a symplectic vector space. If
(V1, ω1) and (V2, ω2) are symplectic vector spaces, a linear map t ∈ L(V1, V2)
is a symplectomorphism (i.e., a symplectic mapping) iff t∗ω2 = ω1. If (V, ω)
is a symplectic vector space, we have an orientation Ωω on V given by

Ωω =
(−1)

n(n−1)
2

n!
ωn.

Let (V, ω) be a 2nD symplectic vector space and t ∈ L(V, V ) a symplecto-
morphism. Then t is volume preserving, i.e., t∗(Ωω) = Ωω, and detΩω

(t) = 1.
The set of all symplectomorphisms t : V → V of a 2nD symplectic vector

space (V, ω) forms a group under composition, called the symplectic group,
denoted by Sp(V, ω).

In matrix notation, there is a basis of V in which the matrix of ω is

J =
(

0 In

−In 0

)

, such that J−1 = J t = −J , and J2 = −I. For t ∈ L(V, V )

with matrix T = [T i
j ] relative to this basis, the condition t ∈ Sp(V, ω), i.e.,

t∗ω = ω, becomes
T tJT = J.

In general, by definition a matrix A ∈M2n×2n(R) is symplectic iff AtJA = J .
Let (V, ω) be a symplectic vector space, t ∈ Sp(V, ω) and λ ∈ C an eigen-

value of t. Then λ−1, λ̄ and λ̄−1 are eigenvalues of t.

2.6.2 Symplectic Geometry on M

Symplectic geometry is a globalization of symplectic algebra [Put93]; it works
in the category Symplec of symplectic manifolds M and symplectic diffeo-
morphisms f . The phase–space of a conservative dynamical system is a sym-
plectic manifold, and its time evolution is a one–parameter family of symplec-
tic diffeomorphisms.
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A symplectic form or a symplectic structure on a smooth (i.e., Ck) mani-
fold M is a nondegenerate closed 2−form ω on M , i.e., for each x ∈ M ω(x)
is nondegenerate, and dω = 0. A symplectic manifold is a pair (M,ω) where
M is a smooth 2nD manifold and ω is a symplectic form on it. If (M1, ω1)
and (M2, ω2) are symplectic manifolds then a smooth map f : M1 → M2 is
called symplectic map or canonical transformation if f∗ω2 = ω1.

For example, any symplectic vector space (V, ω) is also a symplectic man-
ifold; the requirement dω = 0 is automatically satisfied since ω is a constant
map. Also, any orientable, compact surface Σ is a symplectic manifold; any
nonvanishing 2−form (volume element) ω on Σ is a symplectic form on Σ.

If (M,ω) is a symplectic manifold then it is orientable with the standard
volume form

Ωω =
(−1)

n(n−1)
2

n!
ωn,

If f : M →M is a symplectic map, then f is volume preserving, detΩω (f) = 1
and f is a local diffeomorphism.

In general, if (M,ω) is a 2nD compact symplectic manifold then ωn is a
volume element onM , so the De Rham cohomology class [ωn] ∈ H2n(M,R) is
nonzero. Since [ωn] = [ω]n, [ω] ∈ H2(M,R) and all of its powers through the
nth must be nonzero as well. The existence of such an element ofH2(M,R) is a
necessary condition for the compact manifold to admit a symplectic structure.

However, if M is a 2nD compact manifold without boundary, then there
does not exist any exact symplectic structure, ω = dθ on M , as its total
volume is zero (by Stokes’ theorem),

∫

M

Ωω =
(−1)

n(n−1)
2

n!

∫

M

ωn =
(−1)

n(n−1)
2

n!

∫

M

d(θ ∧ ωn−1) = 0.

For example, spheres S2n do not admit a symplectic structure for n ≥ 2, since
the second De Rham group vanishes, i.e., H2(S2n,R) = 0. This argument
applies to any compact manifold without boundary and havingH2(M,R) = 0.

In mechanics, the phase–space is the cotangent bundle T ∗M of a config-
uration space M . There is a natural symplectic structure on T ∗M that is
usually defined as follows. Let M be a smooth nD manifold and pick local
coordinates {dq1, ..., dqn}. Then {dq1, ..., dqn} defines a basis of the tangent
space T ∗

qM , and by writing θ ∈ T ∗
qM as θ = pidq

i we get local coordinates
{q1, ..., qn, p1, ..., pn} on T ∗M . Define the canonical symplectic form ω on T ∗M
by

ω = dpi ∧ dqi.

This 2−form ω is obviously independent of the choice of coordinates {q1, ..., qn}
and independent of the base point {q1, ..., qn, p1, ..., pn} ∈ T ∗

qM ; therefore, it
is locally constant, and so dω = 0.

The canonical 1−form θ on T ∗M is the unique 1−form with the property
that, for any 1−form β which is a section of T ∗M we have β∗θ = θ.
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Let f : M → M be a diffeomorphism. Then T ∗f preserves the canonical
1−form θ on T ∗M , i.e., (T ∗f)∗θ = θ. Thus T ∗f is symplectic diffeomorphism.

If (M,ω) is a 2nD symplectic manifold then about each point x ∈M there
are local coordinates {q1, ..., qn, p1, ..., pn} such that ω = dpi ∧ dqi. These
coordinates are called canonical or symplectic. By the Darboux theorem, ω is
constant in this local chart, i.e., dω = 0.

2.6.3 Momentum Map and Symplectic Reduction of M

Let (M,ω) be a connected symplectic manifold and φ : G × M → M a
symplectic action of the Lie group G on M , that is, for each g ∈ G the map
φg : M → M is a symplectic diffeomorphism. If for each ξ ∈ g there exists a
globally defined function Ĵ(ξ) : M → R such that ξM = XĴ(ξ), then the map
J : M → g∗, given by

J : x ∈M �→ J(x) ∈ g∗, J(x)(ξ) = Ĵ(ξ)(x)

is called the momentum map for φ [MR99, Put93].
Since φ is symplectic, φexp(tξ) is a one parameter family of canonical trans-

formations, i.e., φ∗exp(tξ)ω = ω, hence ξM is locally Hamiltonian and not gen-
erally Hamiltonian. That is why not every symplectic action has a momentum
map. φ : G ×M → M is Hamiltonian iff Ĵ : g → Ck (M,R) is a Lie algebra
homomorphism.

Let H : M → R be G–invariant, that is H
(
φg(x)

)
= H(x) for all x ∈ M

and g ∈ G. Then Ĵ(ξ) is a constant of motion for dynamics generated by H.
Let φ be a symplectic action of G on (M,ω) with the momentum map J .

Suppose H : M → R is G–invariant under this action. Then the Noether’s
theorem states that J is a constant of motion of H, i.e., J ◦ φt = J , where φt

is the flow of XH .
A Hamiltonian action is a symplectic action with an Ad∗–equivariant mo-

mentum map J , i.e.,
J
(
φg(x)

)
= Ad∗g−1 (J(x)) ,

for all x ∈M and g ∈ G.
Let φ be a symplectic action of a Lie group G on (M,ω). Assume that

the symplectic form ω on M is exact, i.e., ω = dθ, and that the action φ of
G on M leaves the one form θ ∈ M invariant. Then J : M → g∗ given by
(J(x)) (ξ) =

(
iξM

θ
)
(x) is an Ad∗–equivariant momentum map of the action.

In particular, in the case of the cotangent bundle (M = T ∗M, ω = dθ) of
a mechanical configuration manifold M , we can lift up an action φ of a Lie
group G on M to obtain an action of G on T ∗M. To perform this lift, let G
act on M by transformations φg : M → M and define the lifted action to
the cotangent bundle by (φg)∗ : T ∗M → T ∗M by pushing forward one forms,
(φg)∗(α) · v = α

(
Tφ−1

g v
)
,where α ∈ T ∗

qM and v ∈ Tφg(q)M . The lifted action
(φg)∗ preserves the canonical one form θ on T ∗M and the momentum map
for (φg)∗ is given by



188 2 Geometric Basis of Human–Like Biomechanics

J : T ∗M → g∗, J (αq) (ξ) = αq (ξM (q)) .

For example, let M = R
n, G = R

n and let G act on R
n by translations:

φ : (t, q) ∈ R
n × R

n �→ t+ q ∈ R
n.

Then g = R
n and for each ξ ∈ g we have ξ

Rn(q) = ξ.
In case of the group of rotations in R

3, M = R
3, G = SO(3) and let

G act on R
3 by φ(A, q) = A · q. Then g � R

3 and for each ξ ∈ g we have
ξ

R3(q) = ξ × q.
Let G act transitively on (M,ω) by a Hamiltonian action. Then J(M) =

{Ad∗g−1 (J(x)) |g ∈ G} is a coadjoint orbit.
Now, let (M,ω) be a symplectic manifold, G a Lie group and φ : G×M →

M a Hamiltonian action of G onM with Ad∗–equivariant momentum map J :
M → g∗. Let µ ∈ g∗ be a regular value of J ; then J−1(µ) is a submanifold of
M such that dim

(
J−1(µ)

)
= dim (M)−dim (G). Let Gµ = {g ∈ G|Ad∗gµ = µ}

be the isotropy subgroup of µ for the coadjoint action. By Ad∗–equivariance, if
x ∈ J−1(µ) then φg(x) = J−1(µ) for all g ∈ G, i.e., J−1(µ) is invariant under
the induced Gµ–action and we can form the quotient spaceMµ = J−1(µ)/Gµ,
called the reduced phase–space at µ ∈ g∗.

Let (M,ω) be a symplectic 2nD manifold and let f1, ..., fk be k functions
in involution, i.e., {fi, fj}ω = 0, i = 1, ..., k. Because the flow of Xfi

and Xfj

commute, we can use them to define a symplectic action of G = R
k on M .

Here µ ∈ R
k is in the range space of f1 × ...× fk and J = f1 × ...× fk is the

momentum map of this action. Assume that {df1, ..., dfk} are independent at
each point, so µ is a regular value for J . Since G is Abelian, Gµ = G so we
get a symplectic manifold J−1(µ)/G of dimension 2n− 2k. If k = n we have
integrable systems.

For example, let G = SO(3) and (M,ω) =
(
R

6,
∑3

i=1 dpi ∧ dqi
)
, and the

action of G on R
6 is given by φ : (R, (q, p)) �→ (Rq, Rp). Then the momentum

map is the well known angular momentum and for each µ ∈ g∗ � R
3µ �= 0,

Gµ � S1 and the reduced phase–space (Mµ, ωµ) is (T ∗
R, ω = dpi ∧ dqi), so

that dim (Mµ) = dim (M)−dim (G)−dim (Gµ). This reduction is in celestial
mechanics called by Jacobi ’the elimination of the nodes’.

The equations of motion: ḟ = {f,H}ω on M reduce to the equations of
motion: ḟµ = {fµ, Hµ}ωµon Mµ (see [MR99]).

2.7 The Covariant Force Functor

We summarize this geometrical Chapter by stating that our central construct,
the covariant force law , Fi = mgija

j (see subsection A.1.4 in Appendix), in
categorical language represents the covariant force functor F∗ defined by the
following commutative diagram:
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TT ∗M TTM�F∗

	
Fi = ṗi

	
ai = ˙̄vi

T ∗M = {xi, pi} TM = {xi, vi}

M = {xi}

pi

�
�

�
��

vi = ẋi

�
�

�
��

saying that the force 1–form–field Fi = ṗi, defined on the mixed tangent–
cotangent bundle TT ∗M , causes the acceleration vector–field ai = ˙̄vi, defined
on the second tangent bundle TTM of the configuration manifold M .

The Lie biomechanical functors (defined in the section 3.5 below) represent
special versions of the fundamental force functor F∗ : TT ∗M −→ TTM .

The corresponding contravariant acceleration functor is defined as its in-
verse map F∗ : TTM −→ TT ∗M .




