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Nonlinear Control in Human–Like
Biomechanics

In this Chapter we develop the basics of nonlinear control theory as is used in
modern human–like biomechanics. It includes control variations on the central
theme of our covariant force law , Fi = mgija

j , and its associated covariant
force functor F∗ : TT ∗M −→ TTM (see section 2.7 above).

5.1 The Basics of Classical Control and Stability

In this section we present the basics of classical control and stability theory,
to be used in the subsequent sections.

5.1.1 Brief Introduction into Feedback Control

The basic formula of feedback control reads

Sensing + Computation+Actuation = Feedback Control (5.1)

The formula (5.1) implies the basic premise of control engineering :

• Given a system to be controlled and the specifications of its desired be-
havior, construct a feedback control law to make the closed–loop system
display its desired behavior.

The three basic goals of feedback control are (see [Mur97]):

1. Stability , which states that bounded inputs produce bounded outputs;
2. Performance, which defines how to achieve desired response; and
3. Robustness, which balances stability versus performance in the presence

of unknown dynamics.

For example, consider the popular problem of stabilization of an inverted
pendulum (see Figure 5.1), in which dynamics is governed by the Newtonian–
like equation
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Fig. 5.1. An inverted pendulum (see text for explanation).

Jθ̈ −mgl sin θ = τ ,

and we want to start from a large angle, say θ(0) = 60◦ and move to the
vertical upright position, θ = 0.

One choice of a stabilizer is (see [Wil00])

τ = −kdθ̇ − kpθ −mgl sin θ,
where τ is the stabilizing torque, while kd and kp are positive constants. In
this case closed loop dynamics is given by

Jθ̈ + kdθ̇ + kpθ = 0,

which is globally stable and linear.
An alternative controller is given by

τ = −kdθ̇ − 2mgl sin θ,

leading to the globally stable nonlinear closed–loop dynamics

Jθ̈ + kdθ̇ +mgl sin θ = 0.

This example shows how the feedback and feedforward control amounts to
modifying the dynamics of the plant into a desired form. It is further expanded
as a difficult nonholonomic problem of a unicycle (5.2.2) below.

To summarize, the basic components of a feedback control system are (see
Figure 5.2):

1. Plant, including (bio)physical system, actuation and sensing;
2. Controller, including state estimator and regulator; and
3. Feedback, including interconnection between plant output and controller

input.

Control systems are usually represented using:

• Linear or nonlinear ODEs; and
• Block diagrams with transfer functions (Laplace transform based).

Historically, four periods can be distinguished in control theory (see
[Mur97]):
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Fig. 5.2. The basic components of a feedback control system (see text for explana-
tion).

1. Classical control (1940–1960). This period is characterized by:
• Frequency domain based tools; stability via gain and phase margins;
• Mainly useful for single–input, single–output (SISO) systems;
• Control is one of the main tools for the practicing engineer.

2. Modern control (1940–1960). In this period:
• The so–called state–space approach was developed for linear control

theory;
• It works both for SISO and multi–input, multi–output (MIMO) sys-

tems;
• Performance and robustness measures are often not made explicit.

3. Post–modern control (1940–1960). This period:
• Generalizes ideas in classical control to MIMO context; and
• Uses operator theory at its core, but can be easily interpreted in fre-

quency domain.
4. Nonlinear control (1990–). This period is characterized by specialized tech-

niques for control of nonlinear plants.

Now, as already stated, the goal of a control system is to enhance automa-
tion within a system while providing improved performance and robustness.
For instance, we may develop a cruise control system for an automobile to
release drivers from the tedious task of speed regulation while they are on long
trips. In this case, the output of the plant is the sensed vehicle speed, y, and
the input to the plant is the throttle angle, u. Typically, control systems are
designed so that the plant output follows some reference input (the driver–
specified speed in the case of our cruise control example) while achieving
some level of disturbance rejection. For the cruise control problem, a distur-
bance would be a road grade variation or wind. Clearly we would want our



316 5 Nonlinear Control in Human–Like Biomechanics

cruise controller to reduce the effects of such disturbances on the quality of
the speed regulation that is achieved [SMO02].

In the area of robust control the focus is on the development of controllers
that can maintain good performance even if we only have a poor model of the
plant or if there are some plant parameter variations. In the area, of adap-
tive control , to reduce the effects of plant parameter variations, robustness
is achieved by adjusting (i.e., adapting) the controller on–line. For instance,
an adaptive controller for the cruise control problem would seek to achieve
good speed tracking performance even if we do not have a good model of the
vehicle and engine dynamics, or if the vehicle dynamics change over time (e.g.,
via a weight change that results from the addition of cargo, or due to engine
degradation over time). At the same time it would try to achieve good distur-
bance rejection. Clearly, the performance of a good cruise controller should
not degrade significantly as your automobile ages or if there are reasonable
changes in the load the vehicle is carrying [SMO02].

We use adaptive mechanisms within the control laws when certain parame-
ters within the plant dynamics are unknown. An adaptive controller is used to
improve the closed–loop system robustness while meeting a set of performance
objectives. If the plant uncertainty cannot be expressed in terms of unknown
parameters, one may be able to reformulate the problem by expressing the
uncertainty in terms of a fuzzy system, neural network, or some other pa-
rameterized nonlinear system, like an adaptive Lie–derivative controller. The
uncertainty then becomes recast in terms of a new set of unknown parameters
that may be adjusted using adaptive techniques.

When developing a robust control design, the focus is on maintaining sta-
bility even in the presence of unmodelled plant dynamics or external distur-
bances. The approach in robust control is to accept a‘priori that there will be
model uncertainty, and try to cope with it.

The issue of robustness has been studied extensively in the control litera-
ture [SMO02]. When working with linear systems, one may define phase and
gain margins which quantify the range of uncertainty a closed–loop system
may withstand before becoming unstable. In the world of nonlinear control
design, we often investigate the stability of a closed–loop system by studying
the behavior of a Lyapunov function candidate. The Lyapunov function can-
didate is a mathematical function designed to provide a simplified measure
of the control objectives allowing complex nonlinear systems to be analyzed
using a scalar differential equation. When a controller is designed that drives
the Lyapunov function to zero, the control objectives are met. If some system
uncertainty tends to drive the Lyapunov candidate away from zero, we often
simply add an additional stabilizing term to the control algorithm that dom-
inates the effect of the uncertainty, thereby making the closed–loop system
more robust.

Now, by adding a static term in the control law that simply dominates
the plant uncertainty, it is often easy to simply stabilize an uncertain plant,
however, driving the system error to zero may be difficult if not impossible.
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Consider the case when the plant is defined by [SMO02]

ẋ = θx+ u, (5.2)

where x ∈ R is the plant state that we wish to drive to the point x = 1, u ∈ R

is the plant input, and θ is an unknown constant. Since θ is unknown, one
may not define a static controller that causes x = 1 to be a stable equilibrium
point. In order for x = 1 to be a stable equilibrium point, it is necessary that
ẋ = 0 when x = 1, so u(x) = −θ when x = 1. Since θ is unknown, however, we
may not define such a controller. In this case, the best that a static nonlinear
controller may do is to keep x bounded in some region around x = 1. If
dynamics are included in the nonlinear controller, then it turns out that one
may define a control system that does drive x→ 1 even if θ is unknown.

On the other hand, an adaptive controller can be designed so that it es-
timates some uncertainty within the system, then automatically designs a
controller for the estimated plant uncertainty. In this way the control system
uses information gathered on–line to reduce the model uncertainty, that is, to
figure out exactly what the plant is at the current time so that good control
can be achieved. Considering the system defined by (A.19), an adaptive con-
troller may be defined so that an estimate of θ is generated, which we denote
by θ̂. If θ were known, then including a term −θx in the control law would
cancel the effects of the uncertainty. If θ̂ → θ over time, then including the
term −θ̂x in the control law would also cancel the effects of the uncertainty
over time. This approach is referred to as indirect adaptive control [SMO02].

An indirect approach to adaptive control is made up of an approximator
(often referred to as an identifier in the adaptive control literature) that is used
to estimate unknown plant parameters and a certainty equivalence control
scheme in which the plant controller is designed, assuming that the parameter
estimates are their true values. Here the adjustable approximator is used to
model some component of the system. Since the approximation is used in the
control law, it is possible to determine if we have a good estimate of the plant
dynamics. If the approximation is good (i.e., we know how the plant should
behave), then it is easy to meet our control objectives. If, on the other hand,
the plant output moves in the wrong direction, then we may assume that our
estimate is incorrect and should be adjusted accordingly.

As an example of an indirect adaptive controller, consider the cruise con-
trol problem where we have an approximator that is used to estimate the
vehicle mass and aerodynamic drag. Assume that the vehicle dynamics may
be approximated by

mẋ = −ρx2 + u,

where m is the vehicle mass, ρ is the coefficient of aerodynamic drag, x is
the vehicle velocity, and u is the plant input. Assume that an approximator
has been defined so that estimates of the mass and drag are found such that
m̂→ m and ρ̂→ ρ. Then the control law

u = ρ̂x2 + m̂v(t)
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may be used so that ẋ = v(t) when m̂ = m and ρ̂ = ρ. Here v(t) may be
considered a new control input that is defined to drive x to any desired value
[SMO02].

5.1.2 Linear Stationary Systems and Operators

Basics of Kalman State–Space Theory

It is well–known that linear multiple input–multiple output (MIMO) control
systems can always be put into Kalman canonical state–space form of order
n, with m inputs and k outputs. In the case of continual time systems we
have the state and output equations of the form1

ẋ = A(t)x(t) + B(t)u(t), (5.3)
y(t) = C(t)x(t) + D(t)u(t),

while in case of discrete time systems we have the state and output equations
of the form

x(n+ 1) = A(n)x(n) + B(n)u(n), (5.4)
y(n) = C(n)x(n) + D(n)u(n).

Both in (5.3) and in (5.4) the variables have the following meaning:
x(t) ∈ X is an n−vector of state variables belonging to the state space

X ⊂ R
n;

u(t) ∈ U is an m−vector of inputs belonging to the input space U ⊂ R
m;

y(t) ∈ Y is a k−vector of outputs belonging to the output space Y ⊂ R
k;

A(t) : X → X is an n× n matrix of state dynamics;
B(t) : U → X is an n×m matrix of input map;
C(t) : X → Y is an k × n matrix of output map;
D(t) : U → Y is an k ×m matrix of input–output transform.

Input u(t) ∈ U can be empirically determined by trial and error; it is
properly defined by optimization process called Kalman regulator , or more
generally (in the presence of noise), by Kalman filter (even better, extended
Kalman filter to deal with stochastic nonlinearities) [Kal60].

Now, the most common special case of the general Kalman model (5.3),
with constant state, input and output matrices (and relaxed boldface vector–
matrix notation), is the so–called stationary linear model Such systems fre-
quently serve as a baseline, against which other control systems are measured.
1 In our covariant form, (5.4) reads

ẋi = ai
jx

j + bi
kuk, yi = ci

jx
j + di

kuk, (i, j = 1, ..., n; k = 1, ..., m).
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We follow a common notational convention and let u denote the vector of in-
puts, y the vector of outputs and assume that they can be related through an
intermediary state variable x according to the equations

ẋ = Ax+Bu, y = Cx. (5.5)

We refer to this as the deterministic stationary linear model. The stationary
linear system (5.5) defines a variety of operators, in particular those related to:
(i) regulators, (ii) end point controls, (iii) servomechanisms, and (iv) repetitive
modes (see [Bro01]).

Regulator Problem and the Steady State Operator

Consider a variable, or set of variables, associated with a dynamical system.
They are to be maintained at some desired values in the face of changing
circumstances. There exist a second set of parameters that can be adjusted so
as to achieve the desired regulation. The effecting variables are usually called
inputs and the affected variables called outputs. Specific examples include the
regulation of the thrust of a jet engine by controlling the flow of fuel, as well
as the regulation of the oxygen content of the blood using the respiratory rate.

Now, there is the steady state operator of particular relevance for the
regulator problem. It is

y∞ = −CA−1Bu∞,

which describes the map from constant values of u to the equilibrium value of
y. It is defined whenever A is invertible but the steady state value will only be
achieved by a real system if, in addition, the eigenvalues of A have negative
real parts. Only when the rank of CA−1B equals the dimension of y can we
steer y to an arbitrary steady state value and hold it there with a constant u.
A nonlinear version of this problem plays a central role in robotics where it is
called the inverse kinematics problem (see, e.g., [MLS94]).

End Point Control Problem and the Adjustment Operator

Here we have inputs, outputs and trajectories. In this case the shape of the
trajectory is not of great concern but rather it is the end point that is of
primary importance. Standard examples include rendezvous problems such as
one has in space exploration.

Now, the operator of relevance for the end point control problem, is the
operator

x(T ) =
∫ T

0

exp[A(T − σ)]Bu(σ) dσ.

If we consider this to define a map from the mD L2 space Lm
2 [0, T ] (where u

takes on its values) into R
m then, if it is an onto map, it has a Moore–Penrose

(least squares) inverse
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u(σ) = BT exp[AT (T − σ)] (W [0, T ])−1 (x(T )− exp(AT )x(0)) ,

with the symmetric positive definite matrix W , the controllability Gramian,
being given by

W [0, T ] =
∫ T

0

exp[A(T − σ)]BBT exp[AT (T − σ)] dσ.

Servomechanism Problem and the Corresponding Operator

Here we have inputs, outputs and trajectories, as above, and an associated
dynamical system. In this case, however, it is desired to cause the outputs
to follow a trajectory specified by the input. For example, the control of an
airplane so that it will travel along the flight path specified by the flight
controller.

Now, because we have assumed that A, B and C are constant

y(t) = C exp(At)x(0) +
∫ t

0

C exp[A(T − τ)]Bu(τ) dτ ,

and, as usual, the Laplace transform L, defined as a pair of inverse maps
L = {F, f} : R � C,

F (s) = {Lf(t)}(s) =
∫ ∞

0

e−stf(t) dt, (t ∈ R, s ∈ C)

f(t) = {L−1F (s)}(t) =
1

2πi

∫ γ+i∞

γ−i∞
estF (s) ds,

– can be used to convert convolution to multiplication. This brings out the
significance of the Laplace transform pair

C exp(At)B L⇐⇒ C(Is−A)−1B (5.6)

as a means of characterizing the input–output map of a linear model with
constant coefficients.

Repetitive Mode Problem and the Corresponding Operator

Here again one has some variable, or set of variables, associated with a dy-
namical system and some inputs which influence its evolution. The task has
elements which are repetitive and are to be done efficiently. Examples from
biology include the control of respiratory processes, control of the pumping
action of the heart, control of successive trials in practicing a athletic event.

The relevant operator is similar to the servomechanism operator, however
the constraint that u and x are periodic means that the relevant diagonaliza-
tion is provided by Fourier series, rather than the Laplace transform. Thus,
in the Fourier domain, we are interested in a set of complex matrices
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G(iwi) = C(iwi −A)−1B, (wi = 0, w0, 2w0, ...)

More general, but still deterministic, models of the input–state–output
relation are afforded by the nonlinear affine control system (see, e.g., [Isi89])

ẋ(t) = f(x(t)) + g(x(t))u(t), y(t) = h(x(t));

and the still more general fully nonlinear control system

ẋ(t) = f(x(t), u(t)), y(t) = h(x(t)).

Feedback Changes the Operator

No idea is more central to automatic control than the idea of feedback. When
an input is altered on the basis of the difference between the actual output of
the system and the desired output, the system is said to involve feedback. Man
made systems are often constructed by starting with a basic element such as
a motor, a burner, a grinder, etc. and then adding sensors and the hardware
necessary to use the measurement generated by the sensors to regulate the
performance of the basic element. This is the essence of feedback control .
Feedback is often contrasted with open loop systems in which the inputs to
the basic element is determined without reference to any measurement of the
trajectories. When the word feedback is used to describe naturally occurring
systems, it is usually implicit that the behavior of the system can best be
explained by pretending that it was designed as one sees man made systems
being designed [Bro01].

In the context of linear systems, the effect of feedback is easily described. If
we start with the stationary linear system (5.5) with u being the controls and
y being the measured quantities, then the effect of feedback is to replace u by
u−Ky with K being a matrix of feedback gains. The closed–loop equations
are then

ẋ = (A−BKC)x+Bu, y = Cx.

Expressed in terms of the Laplace transform pairs (5.6), feedback effects the
transformation
(
C exp(At)B;C(Is−A)−1B

)
�−→ C exp(A−BKC)tB;C(Is−A+BKC)−1B.

Using such a transformation, it is possible to alter the dynamics of a system
in a significant way. The modifications one can effect by feedback include
influencing the location of the eigenvalues and consequently the stability of
the system. In fact, if K is m by p and if we wish to select a gain matrix K
so that A−BKC has eigenvalues λ1, λ2, ..., λn, it is necessary to insure that

det
(
C(Iλ1 −A)−1B −I

I K

)

= 0, (i = 1, 2, ..., n).
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Now, if CB is invertible then we can use the relationship Cẋ = CAx+CBu
together with y = Cx to write ẏ = CAx+ CBu. This lets us solve for u and
recast the system as

ẋ = (A−B(CB)−1CA)x+B(CB)−1ẏ,

u = (CB)−1ẏ − (CB)−1CAx.

Here we have a set of equations in which the roles of u and y are reversed.
They show how a choice of y determines x and how x determines u [Bro01].

5.1.3 Stability and Boundedness

Let a time–varying dynamical system may be expressed as

ẋ(t) = f(t, x(t)), (5.7)

where x ∈ R
n is an nD vector and f : R

+×D → R
n with D = R

n or D = Bh

for some h > 0, where Bh = {x ∈ R
n : |x| < h} is a ball centered at the origin

with a radius of h. If D = R
n then we say that the dynamics of the system

are defined globally, whereas if D = Bh they are only defined locally. We do
not consider systems whose dynamics are defined over disjoint subspaces of R.
It is assumed that f(t, x) is piecemeal continuous in t and Lipschitz in x for
existence and uniqueness of state solutions. As an example, the linear system
ẋ(t) = Ax(t) fits the form of (5.7) with D = R

n [SMO02].
Assume that for every x0 the initial value problem

ẋ(t) = f(t, x(t)), x(t0) = x0,

possesses a unique solution x(t, t0, x0); it is called a solution to (5.7) if
x(t, t0, x0) = x0 and d

dtx(t, t0, x0) = f(t, x(t, t0, x0)) [SMO02].
A point xe ∈ R

n is called an equilibrium point of (5.7) if f(t, xe) = 0 for all
t ≥ 0. An equilibrium point xe is called an isolated equilibrium point if there
exists an ρ > 0 such that the ball around xe, Bρ(xe) = {x ∈ R

n : |x− xe| <
ρ}, contains no other equilibrium points besides xe [SMO02].

The equilibrium xe = 0 of (5.7) is said to be stable in the sense of Lya-
punov if for every ε > 0 and any t0 ≥ 0 there exists a δ(ε, t0) > 0 such that
|x(t, t0, x0)| < ε for all t ≥ t0 whenever |x0| < δ(ε, t0) and x(t, t0, x0) ∈ Bh(xe)
for some h > 0. That is, the equilibrium is stable if when the system (5.7)
starts close to xe, then it will stay close to it. Note that stability is a property
of an equilibrium, not a system. A system is stable if all its equilibrium points
are stable. Stability in the sense of Lyapunov is a local property. Also, notice
that the definition of stability is for a single equilibrium xe ∈ R

n but actu-
ally such an equilibrium is a trajectory of points that satisfy the differential
equation in (5.7). That is, the equilibrium xe is a solution to the differential
equation (5.7), x(t, t0, x0) = xe for t ≥ 0. We call any set such that when the
initial condition of (5.7) starts in the set and stays in the set for all t ≥ 0,
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an invariant set. As an example, if xe = 0 is an equilibrium, then the set
containing only the point xe is an invariant set, for (5.7) [SMO02].

If δ is independent of t0, that is, if δ = δ(ε), then the equilibrium xe is said
to be uniformly stable. If in (5.7) f does not depend on time (i.e., f(x)), then
xe being stable is equivalent to it being uniformly stable. Uniform stability is
also a local property.

The equilibrium xe = 0 of (5.7) is said to be asymptotically stable if it is sta-
ble and for every t0 ≥ 0 there exists η(t0) > 0 such that limt→∞ |x(t, t0, x0)| =
0 whenever |x0| < η(t0). That is, it is asymptotically stable if when it starts
close to the equilibrium it will converge to it. Asymptotic stability is also a
local property. It is a stronger stability property since it requires that the
solutions to the ordinary differential equation converge to zero in addition to
what is required for stability in the sense of Lyapunov.

The equilibrium xe = 0 of (5.7) is said to be uniformly asymptotically
stable if it is uniformly stable and for every ε > 0 and and t0 ≥ 0, there
exist a δ0 > 0 independent of t0 and ε, and a T (ε) > 0 independent of t0,
such that |x(t, t0, x0)− xe| ≤ ε for all t ≥ t0 + T (ε) whenever |x0 − xe| <
δ(ε). Again, if in (5.7) f does not depend on time (i.e., f(x)), then xe being
asymptotically stable is equivalent to it being uniformly asymptotically stable.
Uniform asymptotic stability is also a local property.

The set Xd ⊂ R
n of all x0 ∈ R

n such that |x(t, t0, x0)| → 0 as t → ∞
is called the domain of attraction of the equilibrium xe = 0 of (5.7). The
equilibrium xe = 0 is said to be asymptotically stable in the large if Xd ⊂ R

n.
That is, an equilibrium is asymptotically stable in the large if no matter
where the system starts, its state converges to the equilibrium asymptotically.
This is a global property as opposed to the earlier stability definitions that
characterized local properties. This means that for asymptotic stability in the
large, the local property of asymptotic stability holds for Bh(xe) with h = ∞
(i.e., on the whole state–space).

The equilibrium xe = 0 is said to be exponentially stable if there ex-
ists an α > 0 and for every ε > 0 there exists a δ(ε) > 0 such that
|x(t, t0, x0)| ≤ εe−α(t−t0), whenever |x0| < δ(ε) and t ≥ t0 ≥ 0. The con-
stant α is sometimes called the rate of convergence. Exponential stability is
sometimes said to be a ‘stronger’ form of stability since in its presence we know
that system trajectories decrease exponentially to zero. It is a local property;
here is its global version. The equilibrium point xe = 0 is exponentially stable
in the large if there exists α > 0 and for any β > 0 there exists ε(β) > 0 such
that |x(t, t0, x0)| ≤ ε(β)e−α(t−t0), whenever |x0| < β and t ≥ t0 ≥ 0.

An equilibrium that is not stable is called unstable.
Closely related to stability is the concept of boundedness, which is, how-

ever, a global property of a system in the sense that it applies to trajecto-
ries (solutions) of the system that can be defined over all of the state–space
[SMO02].

A solution x(t, t0, x0) of (5.7) is bounded if there exists a β > 0, that may
depend on each solution, such that |x(t, t0, x0)| < β for all t ≥ t0 ≥ 0. A
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system is said to possess Lagrange stability if for each t0 ≥ 0 and x0 ∈ R
n,

the solution x(t, t0, x0) is bounded. If an equilibrium is asymptotically stable
in the large or exponentially stable in the large then the system for which the
equilibrium is defined is also Lagrange stable (but not necessarily vice versa).
Also, if an equilibrium is stable, it does not imply that the system for which
the equilibrium is defined is Lagrange stable since there may be a way to pick
x0 such that it is near an unstable equilibrium and x(t, t0, x0) →∞ as t→∞.

The solutions x(t, t0, x0) are uniformly bounded if for any α > 0 and t0 ≥
0, there exists a β(α) > 0 (independent of t0) such that if |x0| < α, then
|x(t, t0, x0)| < β(α) for all t ≥ t0 ≥ 0. If the solutions are uniformly bounded
then they are bounded and the system is Lagrange stable.

The solutions x(t, t0, x0) are said to be uniformly ultimately bounded if
there exists some B > 0, and if corresponding to any α > 0 and t0 > 0
there exists a T (α) > 0 (independent of t0) such that |x0| < α implies that
|x(t, t0, x0)| < B for all t ≥ t0 +T (α). Hence, a system is said to be uniformly
ultimately bounded if eventually all trajectories end up in a B−neighborhood
of the origin.

5.1.4 Lyapunov’s Stability Method

A. M. Lyapunov invented two methods to analyze stability [SMO02]. In his
indirect method he showed that if we linearize a system about an equilibrium
point, certain conclusions about local stability properties can be made (e.g.,
if the eigenvalues of the linearized system are in the left half plane then the
equilibrium is stable but if one is in the right half plane it is unstable).

In his direct method the stability results for an equilibrium xe = 0 of (5.7)
depend on the existence of an appropriate Lyapunov function V : D → R

where D = R
n for global results (e.g., asymptotic stability in the large) and

D = Bh for some h > 0, for local results (e.g., stability in the sense of
Lyapunov or asymptotic stability). If V is continuously differentiable with
respect to its arguments then the derivative of V with respect to t along the
solutions of (5.7) is

V̇ (t, x) = ∂tV + ∂xV f(t, x).
As an example, suppose that (5.7) is autonomous, and let V (x) is a quadratic
form V (x) = xTPx where x ∈ R

n and P = PT . Then, V̇ (x) = ∂V
∂x f(t, x) =

ẋTPx+ xTPẋ = 2xTPẋ [SMO02].
Lyapunov’s direct method provides for the following ways to test for sta-

bility. The first two are strictly for local properties while the last two have
local and global versions.

- Stable: If V (t, x) is continuously differentiable, positive definite, and
V̇ (t, x) ≤ 0, then xe = 0 is stable.

- Uniformly stable: If V (t, x) is continuously differentiable, positive defi-
nite, decrescent2, and V (t, x) ≤ 0, then xe = 0 is uniformly stable.
2 A C0−function V (t, x) : R

+ × Bh → R(V (t, x) : R
+ × R

n → R) is said to be
decrescent if there exists a strictly increasing function γ defined on [0, r) for some
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- Uniformly asymptotically stable: If V (t, x) is continuously differentiable,
positive definite, and decrescent, with negative definite V̇ (t, x), then xe = 0 is
uniformly asymptotically stable (uniformly asymptotically stable in the large
if all these properties hold globally).

- Exponentially stable: If there exists a continuously differentiable V (t, x)
and c, c1, c2, c3 > 0 such that

c1 |x|c ≤ V (t, x) ≤ c2 |x|c , V̇ (t, x) ≤ −c31 |x|c , (5.8)

for all x ∈ Bh and t ≥ 0, then xe = 0 is exponentially stable. If there exists a
continuously differentiable function V (t, x) and equations (5.8) hold for some
c, c1, c2, c3 > 0 for all x ∈ R

n and t ≥ 0, then xe = 0 is exponentially stable
in the large [SMO02].

5.2 The Basis of Modern Geometric Control

In this section we present the basics of modern geometric control, as currently
used in modern biomechanics.

5.2.1 Feedback Linearization

Exact Feedback Linearization

The idea of feedback linearization is to algebraically transform the nonlinear
system dynamics into a fully or partly linear one so that the linear control
techniques can be applied. Note that this is not the same as a conventional
linearization using Jacobians. In this subsection we will present the modern,
geometric, Lie–derivative based techniques for exact feedback linearization of
nonlinear control systems.

The Lie Derivative and Lie Bracket in Control Theory

Recall (see (2.4.1) above) that given a scalar function h(x) and a vector–field
f(x), we define a new scalar function, Lfh = ∇hf , which is the Lie derivative
of h w.r.t. f , i.e., the directional derivative of h along the direction of the
vector f . Repeated Lie derivatives can be defined recursively:

L0
fh = h, Li

fh = Lf

(
Li−1

f h
)

= ∇
(
Li−1

f h
)
f, (for i = 1, 2, ...)

Or given another vector–field, g, then LgLfh(x) is defined as

LgLfh = ∇ (Lfh) g.

r > 0 (defined on [0,∞)) such that V (t, x) ≤ γ(|x|) for all t ≥ 0 and x ∈ Bh for
some h > 0.
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For example, if we have a control system

ẋ = f(x), y = h(x),

with the state x = x(t) and the the output y, then the derivatives of the
output are:

ẏ =
∂h

∂x
ẋ = Lfh, and ÿ =

∂Lfh

∂x
ẋ = L2

fh.

Also, recall that the curvature of two vector–fields, g1, g2, gives a non–zero
Lie bracket (2.4.1), [g1, g2] (see Figure 5.3). Lie bracket motions can generate
new directions in which the system can move.

Fig. 5.3. ‘Lie bracket motion’ is possible by appropriately modulating the control
inputs (see text for explanation).

In general, the Lie bracket of two vector–fields, f(x) and g(x), is defined
by

[f, g] = Adfg = ∇gf −∇fg =
∂g

∂x
f − ∂f

∂x
g,

where ∇f = ∂f/∂x is the Jacobian matrix. We can define Lie brackets recur-
sively,

Ad0fg = g, Adi
fg = [f,Adi−1

f g], (for i = 1, 2, ...)

Lie brackets have the properties of bilinearity, skew–commutativity and Jacobi
identity.

For example, if

f =
(

cosx2

x1

)

, g =
(
x1

1

)

,

then we have

[f, g] =
(

1 0
0 0

)(
cosx2

x1

)

−
(

0 − sinx2

1 0

)(
x1

1

)

=
(

cosx2 + sinx2

−x1

)

.
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Input/Output Linearization

Given a single–input single–output (SISO) system

ẋ = f(x) + g(x)u, y = h(x), (5.9)

we want to formulate a linear–ODE relation between output y and a new
input v. We will investigate (see [Isi89, SI89, Wil00]):

• How to generate a linear input/output relation.
• What are the internal dynamics and zero–dynamics associated with the

input/output linearization?
• How to design stable controllers based on the I/O linearization.

This linearization method will be exact in a finite domain, rather than
tangent as in the local linearization methods, which use Taylor series ap-
proximation. Nonlinear controller design using the technique is called exact
feedback linearization.

Algorithm for Exact Feedback Linearization

We want to find a nonlinear compensator such that the closed–loop system is
linear (see Figure 5.4). We will consider only affine SISO systems of the type
(5.9), i.e, ẋ = f(x) + g(x)u, y = h(x), and we will try to construct a control
law of the form

u = p(x) + q(x) v, (5.10)

where v is the setpoint, such that the closed–loop nonlinear system

ẋ = f(x) + g(x) p(x) + g(x) q(x) v, y = h(x),

is linear from command v to y.

Fig. 5.4. Feedback linearization (see text for explanation).

The main idea behind the feedback linearization construction is to find
a nonlinear change of coordinates which transforms the original system into
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one which is linear and controllable, in particular, a chain of integrators. The
difficulty is finding the output function h(x) which makes this construction
possible.

We want to design an exact nonlinear feedback controller. Given the non-
linear affine system, ẋ = f(x) + g(x), y = h(x),.we want to find the controller
functions p(x) and q(x). The unknown functions inside our controller (5.10)
are given by:

p(x) =
−
(
Lr

fh(x) + β1Lr−1
f h(x) + ...+ βr−1Lfh(x) + βrh(x)

)

LgLr−1
f h(x)

,

q(x) =
1

LgLr−1
f h(x)

, (5.11)

which are comprised of Lie derivatives, Lfh(x). Here, the relative order , r, is
the smallest integer r such that LgLr−1

f h(x) �= 0. For linear systems r is the
difference between the number of poles and zeros.

To obtain the desired response, we choose the r parameters in the β poly-
nomial to describe how the output will respond to the setpoint, v (pole–
placement).

dry

dtr
+ β1

dr−1y

dtr−1
+ ...+ βr−1

dy

dt
+ βry = v.

Here is the proposed algorithm [Isi89, SI89, Wil00]):

1. Given nonlinear SISO process, ẋ = f(x, u), and output equation y = h(x),
then:

2. Calculate the relative order, r.
3. Choose an rth order desired linear response using pole–placement tech-

nique (i.e., select β). For this could be used a simple rth order low–pass
filter such as a Butterworth filter.

4. Construct the exact linearized nonlinear controller (5.11), using Lie deriva-
tives and perhaps a symbolic manipulator (Mathematica or Maple).

5. Close the loop and obtain a linear input–output black–box (see Figure
5.4).

6. Verify that the result is actually linear by comparing with the desired
response.

Relative Degree

A nonlinear SISO system

ẋ = f(x) + g(x)u, y = h(x),

is said to have relative degree r at a point xo if (see [Isi89, NS90])

1. LgL
k
fh(x) = 0 for all x in a neighborhood of xo and all k < r − 1; and
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2. LgL
r−1
f h(xo) �= 0.

For example, controlled Van der Pol oscillator has the state space form

ẋ = f(x) + g(x)u =
[

x2

2ωζ (1− µx2
1)x2 − ω2x1

]

+
[

0
1

]

u.

Suppose the output function is chosen as y = h(x) = x1. In this case we have

Lgh(x) =
∂h

∂x
g(x) =

[
1 0
]
[

0
1

]

= 0, and

Lfh(x) =
∂h

∂x
f(x) =

[
1 0
]
[

x2

2ωζ (1− µx2
1)x2 − ω2x1

]

= x2.

Moreover

LgLfh(x) =
∂(Lfh)
∂x

g(x) =
[
0 1
]
[

0
1

]

= 1,

and thus we see that the Vand der Pol oscillator system has relative degree 2
at any point xo.

However, if the output function is, for instance y = h(x) = sinx2, then
Lgh(x) = cosx2. The system has relative degree 1 at any point xo, provided
that (xo)2 �= (2k+1)π/2. If the point xo is such that this condition is violated,
no relative degree can be defined.

As another example, consider a linear system in the state space form

ẋ = Ax+B u, y = C x.

In this case, since f(x) = Ax, g(x) = B, h(x) = C x, it is easily seen that

Lk
fh(x) = C Ak x, and therefore,

LgL
k
fh(x) = C Ak B.

Thus, the integer r is characterized by the conditions

C Ak B = 0, for all k < r − 1
C Ar−1B �= 0, otherwise.

It is well–known that the integer satisfying these conditions is exactly equal
to the difference between the degree of the denominator polynomial and the
degree of the numerator polynomial of the transfer function

H(s) = C (sI −A)−1B

of the system.
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Approximative Feedback Linearization

Consider a SISO system
ẋ = f(x) + g(x)u, (5.12)

where f and g are smooth vector–fields defined on a compact contractible
region M of R

n containing the origin. (Typically, M is a closed ball in R
n.)

We assume that f(0) = 0, i.e., that the origin is an equilibrium for ẋ = f(x).
The classical problem of feedback linearization can be stated as follows: find
in a neighborhood of the origin a smooth change of coordinates z = Φ(x) (a
local diffeomorphism) and a smooth feedback law u = k(x) + l(x)unew such
that the closed–loop system in the new coordinates with new control is linear,

ż = Az +B unew,

and controllable (see [BH96]). We usually require that Φ(0) = 0. We assume
that the system (5.12) has the linear controllability property

dim(span{g,Adfg, ..., Ad
n−1
f g}) = n, for all x ∈M (5.13)

(where Adi
f are iterated Lie brackets of f and g). We define the characteristic

distribution for (5.12)

D = span{g,Adfg, ..., Ad
n−2
f g},

which is an (n − 1)D smooth distribution by assumption of linear controlla-
bility (5.13). We call any nowhere vanishing 1−form ω annihilating D a char-
acteristic 1−form for (5.12). All the characteristic 1−forms for (5.12) can be
represented as multiples of some fixed characteristic 1−form ω0 by a smooth
nowhere vanishing function (zero–form) β. Suppose that there is a nonvanish-
ing β so that βω0 is exact, i.e., βω0 = dα for some smooth function α, where
d denotes the exterior derivative. Then ω0 is called integrable and is called an
integrating factor for ω0. The following result is standard in nonlinear control:
Suppose that the system (5.12) has the linear controllability property (5.13)
on M . Let D be the characteristic distribution and ω0 be a characteristic
1−form for (5.12). The following statements are equivalent:

1. Equation (5.12) is feedback linearizable in a neighborhood of the origin in
M ;

2. D is involutive in a neighborhood of the origin in M ; and
3. ω0 is integrable in a neighborhood of the origin in M .

As is well known, a generic nonlinear system is not feedback linearizable
for n > 2. However, in some cases, it may make sense to consider approximate
feedback linearization.

Namely, if one can find a feedback linearizable system close to (5.12),
there is hope that a control designed for the feedback linearizable system and
applied to (5.12) will give satisfactory performance if the feedback linearizable
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system is close enough to (5.12). The first attempt in this direction goes back
to [Kre84], where it was proposed to apply to (5.12) a change of variables and
feedback that yield a system of the form

ż = Az +B unew +O(z, unew),

where the term O(z, unew) contains higher–order terms. The aim was to make
O(z, unew) of as high order as possible. Then we can say that the system
(5.12) is approximately feedback linearized in a small neighborhood of the
origin. Later [HT93] introduced a new algorithm to achieve the same goal
with fewer steps.

Another idea has been investigated in [HSK92]. Roughly speaking, the
idea was to neglect nonlinearities in (5.12) responsible for the failure of the
involutivity condition in above theorem. This approach happened to be suc-
cessful in the ball–and–beam system, when neglect of centrifugal force act-
ing on ball yielded a feedback linearizable system. Application of a control
scheme designed for the system with centrifugal force neglected to the origi-
nal system gave much better results than applying a control scheme based on
classical Jacobian linearization. This approach has been further investigated
in [XH94, XH95] for the purpose of approximate feedback linearization about
the manifold of constant operating points. However, a general approach to de-
ciding which nonlinearities should be neglected to get the best approximation
has not been set forth.

All of the above–mentioned work dealt with applying a change of coor-
dinates and a preliminary feedback so that the resulting system looks like
linearizable part plus nonlinear terms of highest possible order around an
equilibrium point or an equilibrium manifold. However, in many applications
one requires a large region of operation for the nonlinearizable system. In
such a case, demanding the nonlinear terms to be neglected to be of highest
possible order may, in fact, be quite undesirable. One might prefer that the
nonlinear terms to be neglected be small in a uniform sense over the region
of operation. In tis section we propose an approach to approximate feedback
linearization that uses a change of coordinates and a preliminary feedback to
put a system (5.12) in a perturbed Brunovsky form,

ż = Az +B unew + P (z) +Q(z)unew), (5.14)

where P (z) and Q(z) vanish at z = 0 and are ‘small’ on M . We obtain
upper bounds on uniform norms of P and Q (depending on some measures of
noninvolutivity of D) on any compact, contractible M .

A different, indirect approach was presented in [BH96]. In this section, the
authors present an approach for finding feedback linearizable systems that
approximate a given SISO nonlinear system on a given compact region of
the state–space. First, they it is shown that if the system is close to being
involutive, then it is also close to being linearizable. Rather than working di-
rectly with the characteristic distribution of the system, the authors work with
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characteristic 1−forms, i.e., with the 1−forms annihilating the characteristic
distribution. It is shown that homotopy operators can be used to decompose
a given characteristic 1−form into an exact and an antiexact part. The ex-
act part is used to define a change of coordinates to a normal form that
looks like a linearizable part plus nonlinear perturbation terms. The nonlin-
ear terms in this normal form depend continuously on the antiexact part, and
they vanish whenever the antiexact part does. Thus, the antiexact part of a
given characteristic 1−form is a measure of nonlinearizability of the system.
If the nonlinear terms are small, by neglecting them we get a linearizable sys-
tem approximating the original system. One can design control for the original
system by designing it for the approximating linearizable system and applying
it to the original one. We apply this approach for design of locally stabilizing
feedback laws for nonlinear systems that are close to being linearizable.

Let us start with approximating characteristic 1−forms by exact forms
using homotopy operators (compare with (2.15) above). Namely, on any con-
tractible region M one can define a linear operator H that satisfies

ω = d(Hω) +Hdω (5.15)

for any form ω. The homotopy identity (5.15) allows to decompose any given
1−form into the exact part d(Hω) and an ‘error part’ ε = Hdω, which we call
the antiexact part of ω. For given ω0 annihilating D and a scaling factor β
we define αβ = Hβw0 and εβ = Hdβw0. The 1−form εβ measures how exact
ωβ = βw0 is. If it is zero, then ωβ is exact and the system (5.12) is linearizable,
and the zero–form αβ and its first n − 1 Lie derivatives along f are the new
coordinates. In the case that ω0 is not exactly integrable, i.e., when no exact
integrating factor β exists, we choose β so that dβw0 is smallest in some sense
(because this also makes εβ small). We call this β an approximate integrating
factor for ω0. We use the zero–form αβ and its first n−1 Lie derivatives along
f as the new coordinates as in the linearizable case. In those new coordinates
the system (5.12) is in the form

ż = Az +Bru+Bp+ Eu,

where r and p are smooth functions, r �= 0 around the origin, and the term
E (the obstruction to linearizablity) depends linearly on εβ and some of its
derivatives. We choose u = r−1(unew−p), where unew is a new control variable.
After this change of coordinates and control variable the system is of the form
(5.14) with Q = r−1E, P = −r−1pE. We obtain estimates on the uniform
norm of Q and P (via estimates on r, p, and E) in terms of the error 1−form
εβ , for any fixed β, on any compact, contractible manifoldM . Most important
is that Q and P depend in a continuous way on εβ and some of its derivatives,
and they vanish whenever ε does (see [BH96]).
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5.2.2 Controllability

Linear Controllability

A system is controllable if the set of all states it can reach from initial state
x0 = x(0) at the fixed time t = T contains a ball B around x0. Again, a system
is small time locally controllable (STLC) iff the ball B for t ≤ T contains a
neighborhood of x0.3

In the case of a linear system in the standard state–space form (see sub-
section (3.5.2) above)

ẋ = Ax+Bu, (5.16)

where A is the n × n state matrix and B is the m × n input matrix, all
controllability definitions coincide, i.e.,

0 → x(T ), x(0) → 0, x(0) → x(T ),

where T is either fixed or free.
Rank condition states: System (5.16) is controllable iff the matrix

Wn =
(
BAB ... An−1B

)
has full rank.

In the case of nonlinear systems the corresponding result is obtained using
the formalism of Lie brackets, as Lie algebra is to nonlinear systems as matrix
algebra is to linear systems.

Nonlinear Controllability

Nonlinear MIMO–systems are generally described by differential equations of
the form (see [Isi89, NS90, Goo98]):

ẋ = f(x) + gi(x)ui, (i = 1, ..., n), (5.17)

defined on a smooth n−manifold M , where x ∈M represents the state of the
control system, f(x) and gi(x) are vector–fields on M and the ui are control
inputs, which belong to a set of admissible controls, ui ∈ U . The system
(5.17) is called driftless, or kinematic, or control linear if f(x) is identically
zero; otherwise, it is called a system with drift, and the vector–field f(x) is
called the drift term. The flow φg

t (x0) represents the solution of the differential
equation ẋ = g(x) at time t starting from x0. Geometric way to understand
the controllability of the system (5.17) is to understand the geometry of the
vector–fields f(x) and gi(x).

3 The above definition of controllability tells us only whether or not something can
reach an open neighborhood of its starting point, but does not tell us how to do
it. That is the point of the trajectory generation.
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Example: Car–Parking Using Lie Brackets

In this popular example, the driver has two different transformations at his
disposal. He can turn the steering wheel, or he can drive the car forward
or back. Here, we specify the state of a car by four coordinates: the (x, y)
coordinates of the center of the rear axle, the direction θ of the car, and
the angle φ between the front wheels and the direction of the car. L is the
constant length of the car. Therefore, the configuration manifold of the car is
4D, M = (x, y, θ, φ).

Using (5.17), the driftless car kinematics can be defined as:

ẋ = g1(x)u1 + g2(x)u2, (5.18)

with two vector–fields g1, g2 ∈ X k(M).
The infinitesimal transformations will be the vector–fields

g1(x) ≡ drive = cos θ
∂

∂x
+ sin θ

∂

∂y
+

tanφ
L

∂

∂θ
≡







cos θ
sin θ

1
L tanφ

0





 ,

and g2(x) ≡ steer =
∂

∂φ
≡







0
0
0
1





 .

Now, steer and drive do not commute; otherwise we could do all your
steering at home before driving of on a trip. Therefore, we have a Lie bracket

[g2, g1] ≡ [steer,drive] =
1

L cos2 φ
∂

∂θ
≡ rotate.

The operation [g2, g1] ≡ rotate ≡ [steer,drive] is the infinitesimal version
of the sequence of transformations: steer, drive, steer back, and drive back,
i.e.,

{steer,drive, steer−1,drive−1}.
Now, rotate can get us out of some parking spaces, but not tight ones:
we may not have enough room to rotate out. The usual tight parking space
restricts the drive transformation, but not steer. A truly tight parking space
restricts steer as well by putting your front wheels against the curb.

Fortunately, there is still another commutator available:

[g1, [g2, g1]] ≡ [drive, [steer,drive]] = [[g1, g2], g1] ≡

[drive,rotate] =
1

L cos2 φ

(

sin θ
∂

∂x
− cos θ

∂

∂y

)

≡ slide.

The operation [[g1, g2], g1] ≡ slide ≡ [drive,rotate] is a displacement at
right angles to the car, and can get us out of any parking place. We just need
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to remember to steer, drive, steer back, drive some more, steer, drive back,
steer back, and drive back:

{steer,drive, steer−1,drive, steer,drive−1, steer−1,drive−1}.

We have to reverse steer in the middle of the parking place. This is not intu-
itive, and no doubt is part of the problem with parallel parking.

Thus from only two controls u1 and u2 we can form the vector–fields drive
≡ g1, steer ≡ g2, rotate ≡ [g2, g1], and slide ≡ [[g1, g2], g1], allowing
us to move anywhere in the configuration manifold M . The car kinematics
ẋ = g1u1 + g2u2 is thus expanded as:







ẋ
ẏ

θ̇

φ̇





 = drive · u1 + steer · u2 ≡







cos θ
sin θ

1
L tanφ

0





 · u1 +







0
0
0
1





 · u2 .

The parking theorem says: One can get out of any parking lot that is larger
than the car.

Fig. 5.5. The unicycle problem (see text for explanation).

The Unicycle Example

Now, consider the unicycle example (see Figure 5.5). Here we have

g1 =




cosx3

sinx3

0



 , g2 =




0
0
1



 , [g1, g2] =




sinx3

− cosx3

0



 .

The unicycle system is full rank and therefore controllable.

Controllability Condition

Nonlinear controllability is an extension of linear controllability. The nonlinear
MIMO system
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ẋ = f(x) + g(x)u is controllable

if the set of vector–fields {g, [f, g], ..., [fn−1, g]} is independent.
For example, for the kinematic car system of the form (5.18), the nonlinear

controllability criterion reads: If the Lie bracket tree:
g1, g2, [g1, g2], [[g1, g2], g1], [[g1, g2], g2], [[[g1, g2], g1], g1], [[[g1, g2], g1], g2],

[[[g1, g2], g2], g1], [[[g1, g2], g2], g2], ...
– has full rank then the system is controllable [Isi89, NS90, Goo98]. In this
case the combined input

(u1, u2) =






(1, 0), t ∈ [0, ε]
(0, 1), t ∈ [ε, 2ε]

(−1, 0), t ∈ [2ε, 3ε]
(0,−1), t ∈ [3ε, 4ε]

gives the motion x(4ε) = x(0)+ ε2 [g1, g2]+O(ε3), with the flow given by (see
(2.20) below)

F
[g1,g2]
t = lim

n→∞

(

F−g2√
t/n
F−g1√

t/n
F g2√

t/n
F g1√

t/n

)n

.

Distributions

In control theory, the set of all possible directions in which the system can
move, or the set of all points the system can reach, is of obvious fundamental
importance. Geometrically, this is related to distributions.

A distribution ∆ ⊂ X k(M) on the manifoldM is a subbundle of its tangent
bundle TM , which assigns a subspace of the tangent space TxM to each point
x ∈ M in a smooth way. The dimension of ∆(x) over R at a point x ∈ M is
called the rank of ∆ at x.

A distribution ∆ is involutive if, for any two vector–fields X,Y ∈ ∆, their
Lie bracket [X,Y ] ∈ ∆.

A function f ∈ Ck(M) is called an integral of ∆ if df(x) ∈ ∆0(x) for
each x ∈ M . An integral manifold of ∆ is a submanifold N of M such that
TxN ⊂ ∆(x) for each x ∈ N . A distribution ∆ is integrable if, for any x ∈M ,
there is a submanifold N ⊂M, whose dimension is the same as the rank of ∆
at x,.containing x such that the tangent bundle, TN , is exactly ∆ restricted
to N , i.e., TN = ∆|N . Such a submanifold is called the maximal integral
manifold through x.

It is natural to consider distributions generated by the vector–fields ap-
pearing in the sequence of flows (2.19). In this case, consider the distribution
defined by

∆ = span{f ; g1...gm},
where the span is taken over the set of smooth real–valued functions. Denote
by ∆̄ the involutive closure of the distribution ∆, which is the closure of ∆
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under bracketing. Then, ∆̄ is the smallest subalgebra of X k(M) which contains
{f ; g1...gm}. We will often need to ‘add’ distributions. Since distributions are,
pointwise, vector spaces, define the sum of two distributions,

(∆1 +∆2)(x) = ∆1(x) +∆2(x).

Similarly, define the intersection

(∆1 ∩∆2)(x) = ∆1(x) ∩∆2(x).

More generally, we can arrive at a distribution via a family of vector–fields,
which is simply a subset V ⊂ X k(M). Given a family of vector–fields V, we
may define a distribution on M by

∆V(x) = 〈X(x)|X ∈ V〉R.
Since X k(M) is a Lie algebra, we may ask for the smallest Lie subalgebra

of X k(M) which contains a family of vector–fields V. It will be denoted as
Lie(V), and will be represented by the set of vector–fields on M generated
by repeated Lie brackets of elements in V. Let V(0) = V and then iteratively
define a sequence of families of vector–fields by

V(i+1) = V(i) ∪ {[X,Y ]|X ∈ V(0) = V and Y ∈ V(i)}.
Now, every element of Lie(V) is a linear combination of repeated Lie brackets
of the form

[Zk, [Zk−1, [· · ·, [Z2, Z1] · ··]]]
where Zi ∈ V for i = 1, ..., k.

Foliations

Related to integrable distributions are foliations.
Frobenius’ theorem asserts that integrability and involutivity are equiv-

alent, at least locally. Thus, associated with an involutive distribution is a
partition Φ of M into disjoint connected immersed submanifolds called leaves.
This partition Φ is called a foliation. More precisely, a foliation F of a smooth
manifold M is a collection of disjoint immersed submanifolds of M whose
disjoint union equals M . Each connected submanifold of F is called a leaf of
the foliation. Given an integrable distribution ∆, the collection of maximal
integral manifolds for ∆ defines a foliation on M , denoted by FD.

A foliation F of M defines an equivalence relation on M whereby two
points in M are equivalent if they lie in the same leaf of F . The set of equiva-
lence classes is denoted M/F and is called the leaf space of F . A foliation F is
said to be simple if M/F inherits a manifold structure so that the projection
from M to M/F is a surjective submersion.

In control theory, foliation leaves are related to the set of points that a
control system can reach starting from a given initial condition. A foliation
Φ of M defines an equivalence relation on M whereby two points in M are
equivalent if they lie in the same leaf of Φ. The set of equivalence classes is
denoted M/Φ and is called the leaf space of Φ.
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Philip Hall Basis

Given a set of vector–fields {g1...gm}, define the length of a Lie product as

l(gi) = 1, l([A,B]) = l(A) + l(B), (for i = 1, ...,m),

where A and B may be Lie products. A Philip Hall basis is an ordered set of
Lie products H = {Bi} satisfying:

1. gi ∈ H, (i = 1, ...,m);
2. If l(Bi) < l(Bj), then Bi < Bj ; and
3. [Bi, Bj ] ∈ H iff

(a) Bi, Bj ∈ H and Bi < Bj , and
(b) either Bj = gk for some k or Bj = [Bl, Br] with Bl, Br ∈ H and

Bl ≤ Bi.

Essentially, the ordering aspect of the Philip Hall basis vectors accounts
for skew symmetry and Jacobi identity to determine a basis.

5.3 Modern Control Techniques for Mechanical Systems

In this section we present modern control techniques for mechanical systems,
as used in modern biomechanics research. Much of the existing work on con-
trol of mechanical systems has relied on the presence of specific structure.
The most common examples of the types of structure assumed are symme-
try (conservation laws) and constraints. While it may seem counter–intuitive
that constraints may help in control theory, this is sometimes in fact the case.
The reason is that the constraints provide extra forces (forces of constraint)
which can be used to advantage. probably, the most interesting work is done
from the Lagrangian (respectively Hamiltonian) perspective where we study
systems whose Lagrangians are ‘kinetic energy minus potential energy’ (resp.
‘kinetic energy plus potential energy’). For these simple mechanical control
systems, the controllability questions are different than those typically asked
in nonlinear control theory. In particular, one is often more interested in what
happens to configurations rather than states, which are configurations and
velocities (resp. momenta) for these systems (see [Lew95, LM97]).

5.3.1 Abstract Control System

In general, a nonlinear control system Σ can be represented as a triple
(Σ,M, f), where M is the system’s state–space manifold with the tangent
bundle TM and the general fibre bundle E, and f is a smooth map, such that
the following bundle diagram commutes [Man98]
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where ψ : (x, u) �→ (x, f(x, u)), πM is the natural projection of TM on M, the
projection π : E →M is a smooth fibre bundle, and the fibers of E represent
the input spaces. If one chooses fibre–respecting coordinates (x, u) for E, then
locally this definition reduces to ψ : (x, u) �→ (x, ψ(x, u)), i.e.,

ẋ = ψ(x, u).

The specific form of the map ψ, usually used in nonlinear control, is ψ :
(x, u) �→ (x, f(x) + g(x, u)), with g(x, 0) = 0, producing standard nonlinear
system equation

ẋ = f(x) + g(x, u).

5.3.2 Controllability of a Linear Control System

Consider a linear biomechanical control system:

ẋ(t) = Ax(t) +Bu(t), (5.19)

where x ∈ R
n , u ∈ R

m , A ∈ L(Rn ,Rn ), and B ∈ L(Rm ,Rn ). One should
think of t �→ u(t) as being a specified input signal, i.e., a function on the
certain time interval, [0, T ]. Now, control theory wants to design the signal to
make the state t �→ x(t) do what we want. What this is may vary, depending
on the situation at hand. For example, one may want to steer from an initial
state xi to a final state xf , perhaps in an optimal way. Or, one may wish to
design u : R

n → R
m so that some state, perhaps x = 0, is stable for the

dynamical system ẋ(t) = Ax + Bu(x), which is called state feedback (often
one asks that u be linear). One could also design u to be a function of both x
and t, etc.

One of the basic control questions is controllability, which comes in many
guises. Basically we are asking for ‘reachable’ points. In particular,

R(0) = span
R
{[B|AB|...|An−1B]},

which is the smallest A−invariant subspace containing Im(B), denotes the set
of points reachable from 0 ∈ R

n . For the linear system (5.19), the basic con-
trollability questions have definite answers. We want to do something similar
for a class of simple mechanical systems [Lew95, LM97].
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5.3.3 Affine Control System and Local Controllability

The nonlinear control system that we most often consider in human–like
biomechanics has state–space M , a smooth n−manifold, and is affine in the
controls. Thus it has the form (see [Lew95, LM97])

ẋ = f(x) + uaga(x), (x ∈M), (5.20)

where f, g1, ..., gm are vector–fields on M . The drift vector–field f = f(x)
describes how the system would evolve in the absence of any inputs. Each of
the control vector–fields g1, ..., gm specifies a direction in which one can supply
actuation. To fully specify the control system properly, one should also specify
the type of control action to be considered. Here we consider our controls to be
taken from the set: U = {u : R → R

m |u is piecewise constant}. This class of
controls is sufficient to deal with all analytic control systems. More generally,
one may wish to consider measurable functions which take their values in a
subset of R

m.
Given an affine control system (5.20), it is possible to define a family of

vector–fields on M by: VΣ = {f + uaga |u ∈ R
m}.

A solution of the system (5.20) is a pair (γ, u), where γ : [0, T ] → M is a
piecewise smooth curve on M and u ∈ U such that

γ̇(t) = f(γ(t)) + ua(t) ga(γ(t)), for each t ∈ [0, T ].

The reachable set from x0 in time T is

R(x0, T ) = {x|∃γ : [0, T ] →M and
u : [0, T ] → R

m satisfying (5.20)
with γ(0) = x0 and γ(T ) = x}.

Note that since the system has drift f , when we reach the point γ(T ) we
will not remain there if this is not an equilibrium point for f . Also, we have,
R(x0,≤ T ) = ∪0<t≤TR(x0, T ).

Let x0 ∈ M , let V be a neighborhood of x0, and let T > 0. We say
that equation (5.20) represents a locally accessible system at x0 if R(x0,≤ T )
contains an open subset of M for each V and for each T sufficiently small.
Furthermore, we say that the system (5.20) is small–time local controllability
(STLC, see [Sus83, Sus87]), if it is locally accessible and if x0 is in the interior
of R(x0,≤ T ) for each V and for each T sufficiently small.

5.3.4 Lagrangian Control Systems

Simple Mechanical Control Systems

As a motivation/prototype of a simple mechanical control system, consider a
simple robotic leg (see Figure 5.6), in which inputs are: (1) an internal torque



5.3 Modern Control Techniques for Mechanical Systems 341

F 1 moving the leg relative to the body and (2) a force F 2 extending the
leg. This system is ‘controllable’ in the sense that, starting from rest, one
can reach any configuration from a given initial configuration. However, as a
traditional control system, it is not controllable because of conservation of an-
gular momentum. If one asks for the states (i.e., configurations and velocities)
reachable from configurations with zero initial velocity, one finds that not all
states are reachable. This is a consequence of the fact that angular momentum
is conserved, even with inputs. Thus if one starts with zero momentum, the
momentum will remain zero (this is what enables one to treat the system as
nonholonomic). Nevertheless, all configurations are accessible. This suggests
that the question of controllability is different depending on whether one is
interested in configurations or states. We will be mainly interested in reach-
able configurations. Considering the system with just one of the two possible
input forces is also interesting. In the case where we are just allowed to use
F 2, the possible motions are quite simple; one can only move the ball on the
leg back and forth. With just the force F 1 available, things are a bit more
complicated. But, for example, one can still say that no matter how you apply
the force, the ball with never move ‘inwards’ [Lew95, LM97].

Fig. 5.6. A simple robotic leg (see text for explanation).

In general, simple mechanical control systems are characterized by:

• An nD configuration manifold M ;
• A Riemannian metric g on M ;
• A potential energy function V on M ; and
• m linearly independent 1−forms, F 1, ..., Fm on M (input forces; e.g., in

the case of the simple robotic leg, F 1 = dθ − dψ and F 2 = dr).

When we say these systems are not amenable to liberalization–based meth-
ods, we mean that their liberalizations at zero velocity are not controllable,
and that they are not feedback linearizable. This makes simple mechanical
control systems a non–trivial class of nonlinear control systems, especially
from the point of view of control design.

As a basic example to start with, consider a planar rigid body (see Figure
5.7), with coordinates (x, y, θ). Inputs are (1) force pointing towards center of
mass, F 1 = cos θdx + sin θdy, (2) force orthogonal to line to center of mass,
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F 2 = − sin θdx + cos θdy − hdθ, and (3) torque at center of mass F 3 = dθ.
The planar rigid body, although seemingly quite simple, can be actually in-
teresting. Clearly, if one uses all three inputs, the system is fully actuated, and
so boring for investigating reachable configurations. But if one takes various
combinations of one or two inputs, one gets a pretty nice sampling of what
can happen for these systems. For example, all possible combinations of two
inputs allow one to reach all configurations. Using F 1 or F 3 alone give simple,
1D reachable sets, similar to using F 2 for the robotic leg (as we are always
starting with zero initial velocity). However, if one is allowed to only use F 2,
then it is not quite clear what to expect, at least just on the basis of intuition.

Fig. 5.7. Coordinate systems of a planar rigid body.

It turns out that our simplifying assumptions, i.e., zero initial velocity and
restriction of our interest to configurations (i.e., as all problem data is on
M , we expect answers to be describable using data on M), makes our task
much simpler. In fact, the computations without these assumptions have been
attempted, but have yet to yield coherent answers.

Now, we are interested in how do the input 1−forms F 1, ..., Fm interact
with the unforced mechanics of the system as described by the kinetic energy
Riemannian metric. That is, what is the analogue of linear system’s ‘the small-
est A−invariant subspace containing Im(B)’ – for simple mechanical control
systems?

Motion and Controllability in Affine Connections

If we start with the local Riemannian metric form g �−→ gij(q) dqidqj , then
we have a kinetic energy Lagrangian L(q, v) = gij(q) q̇iq̇j , and consequently
the Euler–Lagrange equations (3.4) are given as [Lew98]

d

dt

(
∂L

∂q̇i

)

− ∂L

∂qi
≡ gij q̈j +

(
∂gij
∂qk

− 1
2
∂gjk

∂qi

)

q̇j q̇k = uaF
a
i , (i = 1, ..., n).

Now multiply this by gli and take the symmetric part of the coefficient of q̇j q̇k

to get q̈l +Γ l
jk q̇

j q̇k = uaY l
a , l = 1, ..., n, where Γ i

jkare the Christoffel symbols
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(3.9) for the Levi–Civita connection ∇ (see (2.5.1) above). So, the equations
of motion are

∇γ̇(t)γ̇(t) = ua(t)Ya (γ(t)) ,

where Ya = (F a)�, a = 1, ...,m. Here � : T ∗M → TM is the ‘musical’ isomor-
phism associated with the Riemannian metric g.

Now, there is nothing to be gained by using a Levi–Civita connection,
or by assuming that the vector–fields come from 1−forms. At this point, per-
haps the generalization to an arbitrary affine connection seems like a senseless
abstraction. However, as we shall see, this abstraction allows us to include an-
other large class of mechanical control systems. So we will study the control
system

∇γ̇(t)γ̇(t) = ua(t)Ya (γ(t)) [+Y0 (γ(t))] , (5.21)

with ∇ a general affine connection on M , and Y1..., Ym linearly independent
vector–fields on M . The ‘optional’ term Y0 = Y0 (γ(t)) in (5.21) indicates
how potential energy may be added. In this case Y0 = − gradV (however,
one looses nothing by considering a general vector–field instead of a gradient)
[Lew98].

A solution to (5.21) is a pair (γ, u) satisfying (5.21) where γ : [0, T ] →M
is a curve and u : [0;T ] → R

m is bounded and measurable.
Let U be a neighborhood of q0 ∈M and denote by RU

M (q0, T ) those points
in M for which there exists a solution (γ, u) with the following properties:

1. γ(t) ∈ U for t ∈ [0, T ];
2. γ̇(0) = 0q; and
3. γ(T ) ∈ TqM .

Also RU
M (q0,≤ T ) = ∪0≤t≤TRU

M (q0, t). Now, regarding the local control-
lability, we are only interested in points which can be reached without taking
‘large excursions’. Control problems which are local in this way have the ad-
vantage that they can be characterized by Lie brackets. So, we want to describe
our reachable set RU

M (q,≤ T ) for the simple mechanical control system (5.21).
The system (5.21) is locally configuration accessible (LCA) at q if there exists
T > 0 so that RU

M (q,≤ t) contains a non–empty open subset of M for each
neighborhood U of q and each t ∈]0, T ]. Also, (5.21) is locally configuration
controllable (LCC) at q if there exists T > 0 so that RU

M (q,≤ t) contains a
neighborhood of q for each neighborhood U of q and each t ∈]0, T ]. Although
sound very similar, the notions of local configuration accessibility and local
configuration controllability are genuinely different (see Figure 5.8). Indeed,
one need only look at the example of the robotic leg with the F 1 input. In
this example one may show that the system is LCA, but is not LCC [Lew98].

Local Configuration Accessibility

The accessibility problem is solved by looking at Lie brackets. For this we
need to recall the definition of the vertical lift [Lew98]:
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Fig. 5.8. Difference between the notions of local configuration accessibility (a), and
local configuration controllability (b).

verlift(Y (vq)) =
d

dt

∣
∣
∣
∣
t=0

(vq + tY (q)),

in local coordinates, if Y = Y i∂qi , then verlift(Y ) = Y i∂vi . Now we can
rewrite (5.21) in the first–order form:

v̇ = Z(v) + ua verlift(Ya(v)),

where Z is the geodesic spray for ∇.
We evaluate all brackets at 0q (recall that T0qTM � TqM ⊕ TqM). Here,

the first component we think of as being the ‘horizontal’ bit which is tangent
to the zero section in TM , and we think of the second component as being
the ‘vertical’ bit which is the tangent space to the fibre of τM : TM →M .

To get an answer to the local configuration accessibility problem, we em-
ploy standard nonlinear control techniques involving Lie brackets. Doing so
gives us our first look at the symmetric product , 〈X : Y 〉 = ∇XY + ∇YX.
Our sample brackets suggest that perhaps the only things which appear in
the bracket computations are symmetric products and Lie brackets of the
input vector–fields Y1, ..., Ym.

Here are some sample brackets:

(i) [Z, verlift(Ya)](0q) = (−Ya(q), 0);
(ii) [verlift(Ya), [Z, verlift(Yb)]](0q) = (0, 〈Ya : Yb〉 (q));
(iii) [[Z, verlift(Ya)], [Z, verlift(Yb)]](0q) = ([Ya, Yb](q), 0).

Now, let Cver be the closure of span{Y1, ..., Ym} under symmetric product.
Also, let Chor be the closure of Cver under Lie bracket. So, we assume Cver

and Chor to be distributions (i.e., of constant rank) on M . The closure of
span{Z, verlift(Y1), ..., verlift(Ym)} under Lie bracket, when evaluated at 0q,
is then the distribution

q �→ Chor(q)⊕ Cver(q) ⊂ TqM ⊕ TqM.
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Proving that the involutive closure of span{Z, verlift(Y1), ..., verlift(Ym)} is
equal at 0q to Chor(q) ⊕ Cver(q) is a matter of computing brackets, samples
of which are given above, and seeing the patterns to suggest an inductive
proof. The brackets for these systems are very structured. For example, the
brackets of input vector–fields are identically zero. Many other brackets vanish
identically, and many more vanish when evaluated at 0q.
Chor is integrable: let Λq be the maximal integral manifold through q ∈

M . Then, RU
M (q,≤ T ) is contained in Λq, and RU

M (q,≤ T ) contains a non–
empty open subset of Λq. In particular, if rank(Chor) = n then (5.21) is LCA
[Lew95, LM97]. This theorem gives a ‘computable’ description of the reachable
sets (in the sense that we can compute Λq by solving some over–determined
nonlinear PDE’s). But it does not give the kind of insight that we had with
the ‘smallest A−invariant subspace containing Im(B)’.

Recall that a submanifold N of M is totally geodesic if every geodesic
with initial velocity tangent to N remains on N . This can be weakened to
distributions: a distribution D on M is geodesically invariant if for every
geodesic γ : [0, T ] →M , γ̇(0) ∈ Dγ(0) implies γ̇(t) ∈ Dγ(t) for t ∈]0, T ].
D is geodesically invariant i it is closed under symmetric product [Lew98].

This theorem says that the symmetric product plays for geodesically invariant
distributions the same role the Lie bracket plays for integrable distributions.
This result was key in providing the geometric description of the reachable
configurations.

An integrable distribution is geodesically generated distribution if it is the
involutive closure of a geodesically invariant distribution. This basically means
that one may reach all points on a leaf with geodesics lying in some subdis-
tribution. The picture one should have in mind with the geometry of the
reachable sets is a foliation of M by geodesically generated (immersed) sub-
manifolds onto which the control system restricts if the initial velocity is zero.
The idea is that when we start with zero velocity we remain on leaves of the
foliation defined by Chor [LM97]. Note that for cases when the affine con-
nection possesses no geodesically invariant distributions, the system (5.21) is
automatically LCA. This is true, for example, of S2 with the affine connection
associated with its round metric.

Clearly Cver is the smallest geodesically invariant distribution containing
span{Y1, ..., Ym}. Also, Chor is geodesically generated by span span{Y1, ..., Ym}.
Thus RU

M is contained in, and contains a non–empty open subset of, the dis-
tribution geodesically generated by span{Y1, ..., Ym}. Note that the pretty
decomposition we have for systems with no potential energy does not exist at
this point for systems with potential energy.

Local Configuration Controllability

The problem of configuration controllability is harder than the one of config-
uration accessibility. Following [LM99], we will call a symmetric product in
{Y1, ..., Ym} bad if it contains an even number of each of the input vector–fields.
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Otherwise we will call it good. The degree is the total number of vector–fields.
For example, 〈〈Ya : Yb〉 : 〈Ya : Yb〉〉 is bad and of degree 4, and 〈Ya : 〈Yb : Yb〉〉
is good and of degree 3. If each bad symmetric product at q is a linear com-
bination of good symmetric products of lower degree, then (5.21) is LCC at
q.

Now, the single–input case can be solved completely: The system (5.21)
with m = 1 is LCC iff dim(M) = 1 [LM99].

Systems With Nonholonomic Constraints

Let us now add to the data a distribution D defining nonholonomic con-
straints. One of the interesting things about this affine connection approach
is that we can easily integrate into our framework systems with nonholonomic
constraints. As a simple example, consider a rolling disk (see Figure 5.9),
with two inputs: (1) a ‘rolling’ torque, F 1 = dθ and (2) a ‘spinning’ torque,
F 2 = dφ. It can be analyzed as a nonholonomic system (see [Lew99]).

Fig. 5.9. Rolling disk problem (see text for explanation).

The control equations for a simple mechanical control system with con-
straints are:

∇γ̇(t)γ̇(t) = λ(t) + ua(t)Ya (γ(t)) [− gradV (γ(t))] , γ̇(t) ∈ Dγ(t),

where λ(t) ∈ D⊥
γ(t) are Lagrange multipliers.

Examples

1. Recall that for the simple robotic leg (Figure 5.6) above, Y1 was internal
torque and Y2 was extension force. Now, in the following three cases:
(i) both inputs active – this system is LCA and LCC (satisfies sufficient con-
dition);
(ii) Y1 only, it is LCA but not LCC; and
(iii) Y2 only, it is not LCA.
In theses three cases, Chor is generated by the following linearly independent
vector–fields:
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(i) both inputs: {Y1, Y2, [Y1, Y2]};
(ii) Y1 only: {Y1, 〈Y1 : Y1〉 , 〈Y1 : 〈Y1 : Y1〉〉}; and
(iii) Y2 only: 〈Y2〉.
Recall that with both inputs the system was not accessible in TM as a con-
sequence of conservation of angular momentum. With the input Y2 only, the
control system behaves very simply when given zero initial velocity. The ball
on the end of the leg just gets moved back and forth. This reflects the foliation
of M by the maximal integral manifolds of Chor, which are evidently 1D in
this case. With the Y1 input, recall that the ball will always go ‘outwards’
no matter what one does with the input. Thus the system is not LCC. But
apparently (since rank(Chor) = dim(M)) one can reach a non–empty open
subset of M . The behavior exhibited in this case is typical of what one can
expect for single–input systems with no potential energy.

2. For the planar rigid body (Figure 5.7) above, we have the following five
cases:
(i) Y1 and Y2 active, this system is LCA and LCC (satisfies sufficient condi-
tion);
(ii) Y1 and Y3, it is LCA and LCC (satisfies sufficient condition);
(iii) Y1 only or Y3 only, not LCA;
(iv) Y2 only, LCA but not LCC; and
(v) Y2 and Y3: LCA and LCC (fails sufficient condition).

Now, with the inputs Y1 or Y3 alone, the motion of the system is simple. In
the first case the body moves along the line connecting the point of application
of the force and the center of mass, and in the other case the body simply
rotates. The equations in (x, y, θ) coordinates are

ẍ =
cos θ
m

u1 − sin θ
m
u2, ÿ =

sin θ
m
u1 +

cos θ
m

u2, θ̈ =
1
J

(
u3 − hu2

)
,

which illustrates that the θ−equation decouples when only Y3 is applied. We
make a change of coordinates for the case where we have only Y1: (ξ, η, ψ) =
(x cos θ + y sin θ,−x sin θ + y cos θ, θ). In these coordinates we have

ξ̈ − 2η̇ψ̇ − ξψ̇2
=

1
m
u1, η̈ + 2ξ̇ψ̇ − ηψ̇2

= 0, ψ̇ = 0,

which illustrates the decoupling of the ξ−equation in this case.
Chor has the following generators:

(i) Y1 and Y2: {Y1, Y2, [Y1, Y2]};
(ii) Y1 and Y3: {Y1, Y3, [Y1, Y3]};
(iii) Y1 only or Y3 only: {Y1} or {Y3};
(iv) Y2 only: {Y2, 〈Y2 : Y2〉 , 〈Y2 : 〈Y2 : Y2〉〉};
(v) Y2 and Y3 {Y2, Y3, [Y2, Y3]}.

3. Recall that for the rolling disk (Figure 5.9) above, Y1 was ‘rolling’ input
and Y2 was ‘spinning’ input. Now, in the following three cases:
(i) Y1 and Y2 active, this system is LCA and LCC (satisfies sufficient condi-
tion);
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(ii) Y1 only: not LCA; and
(iii) Y2 only: not LCA.
In theses three cases, Chor has generators:
(i) Y1 and Y2: {Y1, Y2, [Y1, Y2], [Y2, [Y1, Y2]]};
(ii) Y1 only: {Y1}; and
(iii) Y2 only: {Y2}.
The rolling disk passes the good/bad symmetric product test. Another way to
show that it is LCC is to show that the inputs allow one to follow any curve
which is admitted by the constraints. Local configuration controllability then
follows as the constraint distribution for the rolling disk has an involutive
closure of maximal rank [Lew99].

Categorical Structure of Control Affine Systems

Control affine systems make a category CAS (see [Elk99]). The category CAS
has the following data:

• An object in CAS is a pair
∑

= (M,F = {f0, f1, ..., fm}) where F is a
family of vector–fields

ẋ(t) = f0(x(t)) + ua(t)fa(x(t))

on the manifold M.
• A morphism sending

∑
= (M,F = {f0, f1, ..., fm}) to

∑′ = (M ′,F′ =
{f ′0, f ′1, ..., f ′m′}) is a triple (ψ, λ0, Λ) where ψ : M → M ′, λ0 : M → R

m′
,

and Λ : M → L(Rm,Rm′
) are smooth maps satisfying:

1. Txψ(fa(x)) = Λα
a (x)f ′α(ψ(x)), a ∈ {1, ...,m}, and

2. Txψ(f0(x)) = f ′0(ψ(x)) + λα
0 f

′
α(ψ(x)).

This corresponds to a change of state–input by

(x, u) �−→ (ψ(x), λ0(x) + Λ(x)u).

Elkin [Elk99] discusses equivalence, inclusion, and factorization in the cat-
egory CAS. Using categorical language, he considers local equivalence for var-
ious classes of nonlinear control systems, including single–input systems, sys-
tems with involutive input distributions, and systems with three states and
two inputs.

5.3.5 Lie–Adaptive Control in Human–Like Biomechanics

In this subsection we develop the concept of machine learning in the frame-
work of Lie derivative control formalism (see (5.2.1) above). Consider an nD,
SISO system in the standard affine form (5.9), rewritten here for convenience:

ẋ(t) = f(x) + g(x)u(t), y(t) = h(x), (5.22)
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As already stated, the feedback control law for the system (5.22) can be
defined using Lie derivatives Lfh and Lgh of the system’s output h along the
vector–fields f and g.

If the SISO system (5.22) is a relatively simple (quasilinear) system with
relative degree r = 1 it can be rewritten in a quasilinear form

ẋ(t) = γi(t) fi(x) + dj(t) gj(x)u(t), (5.23)

where γi (i = 1, ..., n) and dj (j = 1, ...,m) are system’s parameters, while fi

and gj are smooth vector–fields.
In this case the feedback control law for tracking the reference signal yR =

yR(t) is defined as (see [Isi89, NS90])

u =
−Lfh+ ẏR + α (yR − y)

Lgh
, (5.24)

where α denotes the feedback gain.
Obviously, the problem of reference signal tracking is relatively simple

and straightforward if we know all the system’s parameters γi(t) and dj(t)
of (5.23). The question is can we apply a similar control law if the system
parameters are unknown?

Now we have much harder problem of adaptive signal tracking . However,
it appears that the feedback control law can be actually cast in a similar form
(see [SI89],[Gom94]):

û =
−L̂fh+ ẏR + α (yR − y)

L̂gh
, (5.25)

where Lie derivatives Lfh and Lgh of (5.24) have been replaced by their
estimates L̂fh and L̂gh, defined respectively as

L̂fh = γ̂i(t)Lfi
h, L̂gh = d̂j(t)Lgi

h,

in which γ̂i(t) and d̂j(t) are the estimates for γi(t) and dj(t).
Therefore, we have the straightforward control law even in the uncertain

case, provided that we are able to estimate the unknown system parameters.
Probably the best known parameter update law is based on the so–called
Lyapunov criterion (see [SI89]) and given by

ψ̇ = −γ εW, (5.26)

where ψ = {γi − γ̂i, dj − d̂j} is the parameter estimation error, ε = y − yR is
the output error, and γ is a positive constant, while the matrix W is defined
as:

W =
[
WT

1 W
T
2

]T
, with

W1 =






Lf1h
...

Lfnh




 , W2 =






Lg1h
...

Lgmh




 ·
−L̂fh+ ẏR + α (yR − y)

L̂gh
.
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The proposed adaptive control formalism (5.25–5.26) can be efficiently
applied wherever we have a problem of tracking a given signal with an output
of a SISO–system (5.22–5.23) with unknown parameters.

5.3.6 Intelligent Robot Control: Interaction with Environment

Here we show a dynamic model of the robot interacting with the environ-
ment [KV98, KV03a, KV03b]. The robot dynamics is described by a vector
differential equation

H(q) q̈ + h(q, q̇) + JT (q)F = τ ,

where, q = q(t) is an nD vector of robot generalized coordinates; H(q) is
an n × n positive definite matrix of inertia moments of the manipulation
mechanics; h(q, q̇) is an nD nonlinear function of centrifugal, Coriolis, and
gravitational moments; τ = τ(t) is an nD vector of input control; JT (q) is an
n×n Jacobian matrix connecting the velocities of robot end–effector and the
velocities of robot generalized coordinates; and F = F (t) is an mD vector of
generalized forces, or, of generalized forces and moments from the environment
acting on the end–effector.

In the frame of robot joint coordinates, the model of environment dynamics
can be presented in the form

M(q) q̈ + L(q, q̇) = ST (q)F,

where M(q) ∈ R
n×n is a nonsingular matrix; L(q, q̇) ∈ R

n is a nonlinear
vector function; and ST (q) ∈ R

n×n is the matrix with rank(S) = n.
The end–effector of the manipulator is constrained on static geometric

surfaces, Φ(q) = 0, where Φ(q) ∈ R
m is the holonomic constraint function.

In practice, it is convenient to adopt a simplified model of the environment,
taking into account the dominant effects, such as stiffness, F = K ′(x−x0), or
an environment damping during the tool motion, F = B′x, where K ′ ∈ R

n×n,
B′ ∈ R

n×n are semidefinite matrices describing the environment stiffness and
damping, respectively, and x0 ∈ R

n denotes the coordinate vector in Cartesian
coordinates of the point of contact between the end–effector (tool) and a
constraint surface. However, it is more appropriate to adopt the relationship
defined by specification of the target impedance

F = M ′∆ẍ+B′∆ẋ+K ′∆x, where ∆x = x−x0,

andM ′ is a positive definite inertia matrix. The matricesM ′, B′,K ′ define the
target impedance which can be selected to correspond to various objectives
of the given manipulation task.

In the case of contact with the environment, the robot control task can be
described as robot motion along a programmed trajectory qp(t) representing a
twice continuously differentiable function, when a desired force of interaction
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Fp(t) acts between the robot and the environment. Thus, the programmed
motion qp(t) and the desired interaction force Fp(t) must satisfy the following
relation

Fp(t) ≡ f (qp(t), q̇p(t), q̈p(t)) .

The control problem for robot interacting with dynamic environment is to
define the control τ(t) for t ≥ t0, that satisfies the target conditions

lim
t→∞ q(t) → qp(t), lim

t→∞F (t) → Fp(t).

As a first example, the control algorithm based on stabilization of the
robot motion with a preset quality of transient responses is considered, which
has the form

τ = H(q)[q̈p −KPη −KDη̇] + h(q, q̇) + JT (q)F.

The familly of desired transient responses is specified by the vector differential
equation

η̈ = −KPη −KDη̇, η(t) = q(t)− qp(t), (5.27)

where KP ∈ R
n×n is the diagonal matrix of position feedback gains, and

KD ∈ Rn×n is the diagonal matrix of velocity feedback gains. The right side
of (5.27), i.e., PD–regulator is chosen such that the system defined by (5.27)
is asymptotically stable in the whole. The values of matrices KP and KD
can be chosen according to algebraic stability conditions.

The proposed control law represents a version of the well–known computed
torque method including force term which uses dynamic robot model and the
available on–line information from the position, velocity and force sensors.
Here the model of robot environment does not have any influence on the
performance of the control algorithm.

As the second example, control algorithm based on stabilization of the
interaction force with a preset quality of transient responses is considered,
which has the form

τ = H(q)M−1(q) [−L(q, q̇) + ST (q)F ] + h(q, q̇)

+ JT (q)
{

Fp −
∫ t

t0

[

KFP µ(ω) +KFI
∫ t

t0

µ(ω) dt
]

dω

}

,

where µ(t) = F (t)− Fp(t); KFP ∈ R
n×n is the matrix of proportional force

feedback gains; and KFI ∈ R
n×n is the matrix of integral force feedback

gains. Here, it has been assumed that the interaction force in transient process
should behave according to the following differential equation

µ̇(t) = Q(µ), Q(µ) = −KFP µ−KFI
∫ t

t0

µdt. (5.28)
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PI force regulator (continuous vector function of Q) is chosen such that the
system defined by (5.28) is asymptotically stable in the whole. IN this case,
environment dynamics model has explicit influence on the performance of con-
tact control algorithm, also having influence on PI force local gains. It is clear
that without knowing a sufficiently accurate environment model (parameters
of matrices M(q), L(q, q̇), S(q)) it is not possible to determine the nominal
contact force Fp(t).

5.4 Neural Path Integral Motion Controller

Recall that human motion is naturally driven by synergistic action of more
than 600 skeletal muscles. While the muscles generate driving torques in
the moving joints, subcortical neural system performs both local and global
(loco)motion control: first reflexly controlling contractions of individual mus-
cles, and then orchestrating all the muscles into synergetic actions in order
to produce efficient movements. While the local reflex control of individual
muscles is performed on the spinal control level , the global integration of all
the muscles into coordinated movements is performed within the cerebellum.

All hierarchical subcortical neuro–muscular physiology, from the bottom
level of a single muscle fiber, to the top level of cerebellar muscular synergy,
acts as a temporal < out|in > reaction, in such a way that the higher level
acts as a command/control space for the lower level, itself representing an
abstract image of the lower one:

1. At the muscular level , we have excitation–contraction dynamics [Hat78,
Hat77b], in which < out|in > is given by the following sequence of
nonlinear diffusion processes (see Appendix for details): neural-action-
potential�synaptic-potential�muscular-action-potential�excitation-con-
traction-coupling�muscle-tension-generating [Iva91]. Its purpose is the
generation of muscular forces, to be transferred into driving torques within
the joint anatomical geometry.

2. At the spinal level , < out|in > is given by autogenetic–reflex stimulus–
response control [Hou79]. Here we have a neural image of all individual
muscles. The main purpose of the spinal control level is to provide both
positive and negative feedbacks to stabilize generated muscular forces
within the ‘homeostatic’ (or, more appropriately, ‘homeokinetic’) limits.
The individual muscular actions are combined into flexor–extensor (or
agonist–antagonist) pairs, mutually controlling each other. This is the
mechanism of reciprocal innervation of agonists and inhibition of antago-
nists. It has a purely mechanical purpose to form the so–called equivalent
muscular actuators (EMAs), which would generate driving torques Ti(t)
for all movable joints.

3. At the cerebellar level , < out|in > is given by sensory–motor integration
[HBB96]. Here we have an abstracted image of all autogenetic reflexes.
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The main purpose of the cerebellar control level is integration and fine
tuning of the action of all active EMAs into a synchronized movement, by
supervising the individual autogenetic reflex circuits. At the same time,
to be able to perform in new and unknown conditions, the cerebellum
is continuously adapting its own neural circuitry by unsupervised (self–
organizing) learning. Its action is subconscious and automatic, both in
humans and in animals.

Naturally, we can ask the question: Can we assign a single < out|in >
measure to all these neuro–muscular stimulus–response reactions? We think
that we can do it; so in this Letter, we propose the concept of adaptive sensory–
motor transition amplitude as a unique measure for this temporal < out|in >
relation. Conceptually, this < out|in > −amplitude can be formulated as the
‘neural path integral ’ (see Appendix for details):

< out|in >≡ 〈motor|sensory〉
amplitude

=
∫
D[w, x] ei S[x]. (5.29)

Here, the integral is taken over all activated (or, ‘fired’) neural pathways
xi = xi(t) of the cerebellum, connecting its input sensory−state with its out-
put motor−state, symbolically described by adaptive neural measure D[w, x],
defined by the weighted product (of discrete time steps)

D[w, x] = lim
n−→∞

n∏

t=1

wi(t) dxi(t), (5.30)

in which the synaptic weights wi = wi(t), included in all active neural path-
ways xi = xi(t), are updated by the unsupervised Hebbian–like learning rule
[Heb49]:

wi(t+ 1) = wi(t) +
σ

η
(wi

d(t)− wi
a(t)), (5.31)

where σ = σ(t), η = η(t) represent local neural signal and noise amplitudes,
respectively, while superscripts d and a denote desired and achieved neural

nal neural network . Practically, in a computer simulation we can use 107≤ n≤
108, roughly corresponding to the number of neurons in the cerebellum.

The exponent term S[x] in equation (5.29) represents the autogenetic–
reflex action, describing reflexly–induced motion of all active EMAs, from
their initial stimulus−state to their final response−state, along the family of
extremal (i.e., Euler–Lagrangian) paths xi

min(t). (S[x] is properly derived in
(5.34–5.35) below.)

5.4.1 Spinal Autogenetic Reflex Control

Recall (from Introduction) that at the spinal control level we have the autoge-
netic reflex motor servo [Hou79], providing the local, reflex feedback loops for

states, respectively. Theoretically, equations (5.29–6.7) define an∞−dimensio-
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individual muscular contractions. A voluntary contraction force F of human
skeletal muscle is reflexly excited (positive feedback +F−1) by the responses
of its spindle receptors to stretch and is reflexly inhibited (negative feedback
−F−1) by the responses of its Golgi tendon organs to contraction. Stretch
and unloading reflexes are mediated by combined actions of several autoge-
netic neural pathways, forming the motor servo.

In other words, branches of the afferent fibers also synapse with with in-
terneurons that inhibit motor neurons controlling the antagonistic muscles
– reciprocal inhibition. Consequently, the stretch stimulus causes the antago-
nists to relax so that they cannot resists the shortening of the stretched muscle
caused by the main reflex arc. Similarly, firing of the Golgi tendon receptors
causes inhibition of the muscle contracting too strong and simultaneous re-
ciprocal activation of its antagonist. Both mechanisms of reciprocal inhibition
and activation performed by the autogenetic circuits +F−1 and −F−1, serve
to generate the well–tuned EMA–driving torques Ti.

Now, once we have properly defined the symplectic musculo–skeletal
dynamics [Iva04] on the biomechanical (momentum) phase–space manifold
T ∗MN , we can proceed in formalizing its hierarchical subcortical neural con-
trol. By introducing the coupling Hamiltonians Hm = Hm(q, p), selectively
corresponding only to the M ≤ N active joints, we define the affine Hamil-
tonian control function Haff : T ∗MN → R, in local canonical coordinates on
T ∗MN given by (adapted from [NS90] for the biomechanical purpose)

Haff (q, p) = H0(q, p)−Hm(q, p)Tm, (5.32)
(m = 1, . . . , M ≤ N),

where Tm = Tm(t, q, p) are now feedback torque one–forms (different from the
initial driving torques Ti acting in all the joints). Using the affine Hamiltonian
function (5.32), we get the affine Hamiltonian servo–system [Iva04],

q̇i =
∂H0(q, p)
∂pi

− ∂H
m(q, p)
∂pi

Tm, (5.33)

ṗi = −∂H0(q, p)
∂qi

+
∂Hm(q, p)

∂qi
Tm,

qi(0) = qi
0, pi(0) = p0i , (i = 1, . . . , N ; m = 1, . . . , M ≤ N).

The affine Hamiltonian control system (5.33) gives our formal description for
the autogenetic spinal motor–servo for all M ≤ N activated (i.e., working)
EMAs.

5.4.2 Cerebellum – the Comparator

Having, thus, defined the spinal reflex control level, we proceed to model the
top subcortical commander/controller, the cerebellum. It is a brain region
anatomically located at the bottom rear of the head (the hindbrain), directly
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above the brainstem, which is important for a number of subconscious and
automatic motor functions, including motor learning. It processes information
received from the motor cortex, as well as from proprioceptors and visual and
equilibrium pathways, and provides ‘instructions’ to the motor cortex and
other subcortical motor centers (like the basal nuclei), which result in proper
balance and posture, as well as smooth, coordinated skeletal movements, like
walking, running, jumping, driving, typing, playing the piano, etc. Patients
with cerebellar dysfunction have problems with precise movements, such as
walking and balance, and hand and arm movements. The cerebellum looks
similar in all animals, from fish to mice to humans. This has been taken
as evidence that it performs a common function, such as regulating motor
learning and the timing of movements, in all animals. Studies of simple forms
of motor learning in the vestibulo–ocular reflex and eye–blink conditioning are
demonstrating that timing and amplitude of learned movements are encoded
by the cerebellum.

The cerebellum is responsible for coordinating precisely timed < out|in >
activity by integrating motor output with ongoing sensory feedback (see Fig-
ure 5.10). It receives extensive projections from sensory–motor areas of the
cortex and the periphery and directs it back to premotor and motor cortex
[Ghe90]. This suggests a role in sensory–motor integration and the timing
and execution of human movements. The cerebellum stores patterns of motor
control for frequently performed movements, and therefore, its circuits are
changed by experience and training. It was termed the adjustable pattern gen-
erator in the work of J. Houk and collaborators [HBB96]. Also, it has become
the inspiring ‘brain–model’ in the recent robotic research [SA98, Sch98].

Fig. 5.10. Schematic < out|in > organization of the primary cerebellar circuit.
In essence, excitatory inputs, conveyed by collateral axons of Mossy and Climbing
fibers activate directly neurones in the Deep cerebellar nuclei. The activity of these
latter is also modulated by the inhibitory action of the cerebellar cortex, mediated
by the Purkinje cells.
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Comparing the number of its neurons (107 − 108), to the size of conven-
tional neural networks, suggests that artificial neural nets cannot satisfactorily
model the function of this sophisticated ‘super–bio–computer’, as its dimen-
sionality is virtually infinite. Despite a lot of research dedicated to its structure
and function (see [HBB96] and references there cited), the real nature of the
cerebellum still remains a ‘mystery’.

5.4.3 Hamiltonian Action and Neural Path Integral

Here, we propose a quantum–like adaptive control approach to modelling the
‘cerebellar mystery’. Corresponding to the affine Hamiltonian control function
(5.32) we define the affine Hamiltonian control action,

Saff [q, p] =
∫ tout

tin

dτ
[
piq̇

i −Haff (q, p)
]
. (5.34)

From the affine Hamiltonian action (5.34) we further derive the associ-
ated expression for the neural phase–space path integral (in normal units),
representing the cerebellar sensory–motor amplitude < out|in >,

〈
qi
out, p

out
i |qi

in, p
in
i

〉
=
∫
D[w, q, p] ei Saff [q,p] (5.35)

=
∫
D[w, q, p] exp

{

i
∫ tout

tin

dτ
[
piq̇

i −Haff (q, p)
]
}

,

with
∫
D[w, q, p] =

∫ n∏

τ=1

wi(τ)dpi(τ)dqi(τ)
2π

,

where wi = wi(t) denote the cerebellar synaptic weights positioned along
its neural pathways, being continuously updated using the Hebbian–like self–
organizing learning rule (6.7). Given the transition amplitude < out|in >
(5.35), the cerebellar sensory–motor transition probability is defined as its
absolute square, | < out|in > |2.

In (5.35), qi
in = qi

in(t), qiout = qi
out(t); p

in
i = pin

i (t), pout
i = pout

i (t); tin ≤
t ≤ tout, for all discrete time steps, t = 1, ..., n −→ ∞, and we are allow-
ing for the affine Hamiltonian Haff (q, p) to depend upon all the (M ≤ N)
EMA–angles and angular momenta collectively. Here, we actually systemat-
ically took a discretized differential time limit of the form tσ − tσ−1 ≡ dτ

(both σ and τ denote discrete time steps) and wrote (qi
σ−qi

σ−1)

(tσ−tσ−1)
≡ q̇i. For

technical details regarding the path integral calculations on Riemannian and
symplectic manifolds (including the standard regularization procedures), see
[Kla97, Kla00].

Now, motor learning occurring in the cerebellum can be observed using
functional MR imaging, showing changes in the cerebellar action potential,
related to the motor tasks (see, e.g., [Mas02]). To account for these electro–
physiological currents, we need to add the source term Ji(t)qi(t) to the affine
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Hamiltonian action (5.34), (the current Ji = Ji(t) acts as a source JiA
i of the

cerebellar electrical potential Ai = Ai(t)),

Saff [q, p, J ] =
∫ tout

tin

dτ
[
piq̇

i −Haff (q, p) + Jiq
i
]
,

which, subsequently gives the cerebellar path integral with the action potential
source, coming either from the motor cortex or from other subcortical areas.

Note that the standard Wick rotation: t �→ it (see [Kla97, Kla00]), makes
all our path integrals real, i.e.,

∫
D[w, q, p] ei Saff [q,p] Wick−−−→

∫
D[w, q, p] e−Saff [q,p],

while their subsequent discretization gives the standard thermodynamic par-
tition functions,

Z =
∑

j

e−wjEj/T , (5.36)

where Ej is the energy eigenvalue corresponding to the affine Hamiltonian
Haff (q, p), T is the temperature–like environmental control parameter, and
the sum runs over all energy eigenstates (labelled by the index j). From (6.16),
we can further calculate all statistical and thermodynamic system properties
(see [Fey72]), as for example, transition entropy S = kB lnZ, etc.

5.5 Brain–Like Control Functor in Human–Like
Biomechanics

In this final section we propose our most recent model [IB05] of the complete
biomechanical brain–like control functor . This is a neuro–dynamical reflection
on our covariant force law , Fi = mgija

j , and its associated covariant force
functor F∗ : TT ∗M → TTM (see section 2.7 above).

Traditional hierarchical robot control (see, e.g., [VS82]) consists of three
levels: the executive control–level (at the bottom) performs tracking of nom-
inal trajectories in internal–joint coordinates, the strategic control–level (at
the top) performs ‘planning’ of trajectories of an end–effector in external–
Cartesian coordinates, and the tactical control–level (in the middle) connects
other two levels by means of inverse kinematics.

The modern version of the hierarchical robot control includes decision–
making done by the neural (or, neuro–fuzzy) classifier to adapt the (manipu-
lator) control to dynamically changing environment.

On the other hand, the so–called ‘intelligent’ approach to robot control
typically represents a form of function approximation, which is itself based on
some combination of neuro–fuzzy–genetic computations. Many special issues
and workshops focusing on physiological models for robot control reflect the
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increased attention for the development of cerebellar models [Sma99, SA98,
Sch99, Sch98, Arb98] for learning robot control with functional decomposition,
where the main result could be formulated as: the cerebellum is more then just
the function approximator.

In this section we try to fit between these three approaches for humanoid
control, emphasizing the role of muscle–like robot actuators. We propose a
new, physiologically based, tensor–invariant, hierarchical force control (FC,
for short) for the physiologically realistic biomechanics. We consider the mus-
cular torque one–forms Fi as the most important component of human–like
motion; therefore we propose the sophisticated hierarchical system for the sub-
tle Fi–control: corresponding to the spinal, the cerebellar and cortical levels
of human motor control. Fi are first set–up as testing input–signals to biome-
chanics, and then covariantly updated as feedback 1−forms ui on each FC–
level. On the spinal FC–level the nominal joint–trajectory tracking is proposed
in the form of affine Hamiltonian control; here the driving torques are given
corrections by spinal–reflex controls. On the cerebellar FC–level, the relation
is established between canonical joint coordinates qi, pi and gradient neural–
image coordinates xi, yi, representing bidirectional, self–organized, associative
memory machine; here the driving torques are given the cerebellar corrections.
On the cortical FC–level the topological ‘hyper–joystick’ is proposed as the
central FC command–space, selector, with the fuzzy–logic feedback–control
map defined on it, giving the cortical corrections to the driving torques.

The model of the spinal FC–level formulated here resembles autogenetic
motor servo, acting on the spinal–reflex level of the human locomotor con-
trol. The model of the cerebellar FC–level formulated here mimics the self–
organizing, associative function of the excitatory granule cells and the in-
hibitory Purkinje cells of the cerebellum [HBB96]. The model of the cortical
FC–level presented in this section mimics the synergistic regulation of loco-
motor conditioned reflexes by the cerebellum [HBB96].

We believe that (already mentioned) extremely high order of the driving
force redundancy in biomechanics justifies the formulation of the three–level
force control system. Also, both brain–like control systems can be easily ex-
tended to provide SE(3)−based force control for moving inverse kinematics
(IK) chains of legs and arms.

Functor Control Machine

In this subsection we define the functor control–machine (compare with sec-
tion (3.5) above), for the learning control with functional decomposition, by
a two–step generalization of the Kalman’s theory of linear MIMO–feedback
systems. The first generalization puts the Kalman’s theory into the pair of
mutually dual linear categories Vect and Vect∗ of vector spaces and linear
operators, with a ‘loop–functor’ representing the closed–loop control, thus
formulating the unique, categorical formalism valid both for the discrete and
continual MIMO–systems.
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We start with the unique, feedforward continual–sequential state equation

ẋ(t+ 1) = Ax(t) +Bu(t), y(t) = Cx(t), (5.37)

where the finite–dimensional vector spaces of state X � x, input U � u, and
output Y � y have the corresponding linear operators, respectively A : X →
X, B : U → X, and C : X → Y . The modular system theory comprises the
system dynamics, given by a pair (X,A), together with a reachability map
e : U → X of the pair (B,A), and an observability map m : X → Y of
the pair (A,C). If the reachability map e is surjection the system dynamics
(X,A) is called reachable; if the observability map m is injection the system
dynamics (X,A) is called observable. If the system dynamics (X,A) is both
reachable and observable, a composition r = m ◦ e : U → Y defines the total
system’s response, which is given by solution of equation (5.37). If the unique
solution to the continual–sequential state equation exists, it gives the answer
to the (minimal) realization problem: find the system S that realizes the given
response r = m ◦ e : U → Y (in the smallest number of discrete states and in
the shortest time).

The inverse map r−1 = e−1 ◦m−1 : Y → U of the total system’s response
r : U → Y defines the linear feedback operator K : Y → U , given by standard
feedback equation

u(t) = Ky(t). (5.38)

In categorical language, the feedforward system dynamics in the category
Vect is a pair (X,A), where X ∈ Ob(Vect) is an object in Vect and A :
X → X ∈ Mor(Vect) is a Vect–morphism. A feedforward decomposable system
in Vect is such a sixtuple S ≡ (X,A,U,B, Y, C) that (X,A) is the system
dynamics in Vect, a Vect–morphism B : U → X is an input map, and a Vect–
morphism C : X → Y is an output map. Any object in Vect is characterized
by mutually dual notions of its degree (a number of its input morphisms) and
its codegree (a number of its output morphisms). Similarly, any decomposable
system S in Vect has a reachability map given by an epimorphism e = A◦B :
U → X and its dual observability map given by a monomorphism m = C ◦A :
X → Y ; their composition r = m ◦ e : U → Y in Mor(Vect) defines the
total system’s response in Vect given by the unique solution of the continual–
sequential state equation (5.37) [IS01].

The dual of the total system’s response, defined by the feedback equation
(5.38), is the feedback morphism K = e−1 ◦m−1 : Y → U belonging to the
dual category Vect∗.

In this way, the linear, closed–loop, continual–sequential MIMO–system
(5.37–5.38) represents the linear iterative loop functor L : Vect⇒ Vect∗.

Our second generalization represents a natural system process Ξ[L], that
transforms the linear loop functor L : Vect⇒ Vect∗ – into the nonlinear loop
functor NL : CAT ⇒ CAT ∗ between two mutually dual nonlinear categories
CAT and CAT ∗. We apply the natural process Ξ, separately
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1. To the feedforward decomposable system
S ≡ (X,A,U,B, Y, C) in Vect, and

2. To the feedback morphism K = e−1 ◦m−1 : Y → U in Vect∗.

Under the action of the natural process Ξ, the linear feedforward system
dynamics (X,A) in Vect transforms into a nonlinear feedforward Ξ–dynamics
(Ξ[X], Ξ[A]) in CAT , represented by a nonlinear feedforward decomposable
system, Ξ[S] ≡ (Ξ[X], Ξ[A], Ξ[U ], Ξ[B], Ξ[Y ], Ξ[C]).

The reachability map transforms into the input process Ξ[e] = Ξ[A] ◦
Ξ[B] : Ξ[U ] −→ Ξ[X], while its dual, observability map transforms into the
output process Ξ[m] = Ξ[C] ◦ Ξ[A] : Ξ[X] −→ Ξ[Y ]. In this way the total
response of the linear system r = m ◦ e : U → Y in Mor(Vect) transforms
into the nonlinear system behavior, Ξ[r] = Ξ[m] ◦ Ξ[e] : Ξ[U ] −→ Ξ[Y ] in
Mor(CAT ). Obviously, Ξ[r], if exists, is given by a nonlinear Ξ–transform of
the linear state equations (5.37–5.38).

Analogously, the linear feedback morphism K = e−1 ◦ m−1 : Y → U in
Mor(Vect∗) transforms into the nonlinear feedback morphism Ξ[K] = Ξ[e−1]◦
Ξ[m−1] : Ξ[Y ] → Ξ[U ] in Mor(CAT ∗).

In this way, the natural system process Ξ : L � NL is established. That
means that the nonlinear loop functor L = Ξ[L] : CAT ⇒ CAT ∗ is defined
out of the linear, closed–loop, continual–sequential MIMO–system (5.37).

In this section we formulate the nonlinear loop functor L = Ξ[L] : CAT ⇒
CAT ∗ for various hierarchical levels of muscular–like FC.

Spinal Control Level

Our first task is to establish the nonlinear loop functor L = Ξ[L] : EX ⇒ EX ∗

on the category EX of spinal FC–level.
Recall that our dissipative, driven δ−Hamiltonian biomechanical system

on the configuration manifold M is, in local canonical–symplectic coordi-
nates qi, pi ∈ Up on the momentum phase–space manifold T ∗M, given by
autonomous equations

q̇i =
∂H0

∂pi
+
∂R

∂pi
, (i = 1, . . . , N) (5.39)

ṗi = Fi −
∂H0

∂qi
+
∂R

∂qi
, (5.40)

qi(0) = qi
0, pi(0) = p0i , (5.41)

including contravariant equation (5.39) – the velocity vector–field, and covari-
ant equation (5.40) – the force 1−form, together with initial joint angles qi

0

and momenta p0i . Here the physical Hamiltonian function H0 : T ∗M → R rep-
resents the total biomechanical energy function, in local canonical coordinates
qi, pi ∈ Up on T ∗M given by

H0(q, p) =
1
2
gij pi pj + V (q),
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where gij = gij(q,m) denotes the contravariant material metric tensor.
Now, the control Hamiltonian function Hγ : T ∗M → R of FC is in local

canonical coordinates on T ∗M defined by [NS90]

Hγ(q, p, u) = H0(q, p)− qi ui, (i = 1, . . . , N) (5.42)

where ui = ui(t, q, p) are feedback–control 1−forms, representing the spinal
FC–level u−corrections to the covariant torques Fi = Fi(t, q, p).

Using δ−Hamiltonian biomechanical system (5.39–5.41) and the control
Hamiltonian function (5.42), control γδ−Hamiltonian FC–system can be de-
fined as

q̇i =
∂Hγ(q, p, u)

∂pi
+
∂R(q, p)
∂pi

,

ṗi = Fi −
∂Hγ(q, p, u)

∂qi
+
∂R(q, p)
∂qi

,

oi = −∂Hγ(q, p, u)
∂ui

, (i = 1, . . . , N)

qi(0) = qi
0, pi(0) = p0i ,

where oi = oi(t) represent FC natural outputs which can be different from
commonly used joint angles.

If nominal reference outputs oi
R = oi

R(t) are known, the simple PD
stiffness–servo [Whi87] could be formulated, via error function e(t) = oj−oj

R,
in covariant form

ui = Koδij(oj − oj
R) +Kȯδij(ȯj − ȯj

R), (5.43)

where Ks are the control–gains and δij is the Kronecker tensor.
If natural outputs oi actually are the joint angles and nominal canoni-

cal trajectories
(
qi
R = qi

R(t), pR
i = pR

i (t)
)

are known, then the stiffness–servo
(5.43) could be formulated in canonical form as

ui = Kqδij(qi − qi
R) +Kp(pi − pR

i ).

Now, using the fuzzified µ−Hamiltonian biomechanical system with fuzzy
system numbers (i.e, imprecise segment lengths, masses and moments of in-
ertia, joint dampings and muscular actuator parameters)

q̇i =
∂H0(q, p, σµ)

∂pi
+
∂R

∂pi
, (5.44)

ṗi = F̄i −
∂H0(q, p, σµ)

∂qi
+
∂R

∂qi
, (5.45)

qi(0) = q̄i
0, pi(0) = p̄0i , (i = 1, . . . , N), (5.46)

(see 3.5.4 above) and the control Hamiltonian function (5.42), γµ−Hamiltonian
FC–system can be defined as
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q̇i =
∂Hγ(q, p, u, σµ)

∂pi
+
∂R(q, p)
∂pi

,

ṗi = F̄i −
∂Hγ(q, p, u, σµ)

∂qi
+
∂R(q, p)
∂qi

,

ōi = −∂Hγ(q, p, u, σµ)
∂ui

, qi(0) = q̄i
0, pi(0) = p̄0i ,

where ōi = ōi(t) represent the fuzzified natural outputs.
Finally, applying stochastic forces (diffusion fluctuations Bij [qi(t), t] and

discontinuous jumps in the form of ND Wiener process W j(t)), i.e., using the
fuzzy–stochastic [µσ]−Hamiltonian biomechanical system

dqi =
(
∂H0(q, p, σµ)

∂pi
+
∂R

∂pi

)

dt, (5.47)

dpi = Bij [qi(t), t] dW j(t) +
(

F̄i −
∂H0(q, p, σµ)

∂qi
+
∂R

∂qi

)

dt, (5.48)

qi(0) = q̄i
0, pi(0) = p̄0i . (5.49)

(see 3.5.4 above), and the control Hamiltonian function (5.42),γµσ−Hamiltonian
FC–system can be defined as

dqi =
(
∂Hγ(q, p, u, σµ)

∂pi
+
∂R(q, p)
∂pi

)

dt,

dpi = Bij [qi(t), t] dW j(t) +
(

F̄i −
∂Hγ(q, p, u, σµ)

∂qi
+
∂R(q, p)
∂qi

)

dt,

dōi = −∂Hγ(q, p, u, σµ)
∂ui

dt, (i = 1, . . . , N)

qi(0) = q̄i
0, pi(0) = p̄0i .

If we have the case that not all of the configuration joints on the config-
uration manifold M are active in the specified robot task, we can introduce
the coupling Hamiltonians Hj = Hj(q, p), j = 1, . . . , M ≤ N , correspond-
ing to the system’s active joints, and we come to affine Hamiltonian function
Ha : T ∗M → R, in local canonical coordinates on T ∗M given as [NS90]

Ha(q, p, u) = H0(q, p)−Hj(q, p)uj . (5.50)

Using δ−Hamiltonian biomechanical system (5.39–5.41) and the affine
Hamiltonian function (5.50), affine aδ−Hamiltonian FC–system can be de-
fined as
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q̇i =
∂H0(q, p)
∂pi

− ∂H
j(q, p)
∂pi

uj +
∂R

∂pi
, (5.51)

ṗi = Fi −
∂H0(q, p)
∂qi

+
∂Hj(q, p)
∂qi

uj +
∂R

∂qi
, (5.52)

oi = −∂Ha(q, p, u)
∂ui

= Hj(q, p), (5.53)

qi(0) = qi
0, pi(0) = p0i , (5.54)

(i = 1, . . . , N ; j = 1, . . . , M ≤ N).

Using the Lie–derivative exact feedback linearization (see (5.2.1) above),
and applying the constant relative degree r (see [Isi89, SI89]) to all N joints of
the affine aδ−Hamiltonian FC–system (5.51–5.54), the control law for asymp-
totic tracking the reference outputs oj

R could be formulated as

uj =
ȯ
(r)j
R − L(r)

f Hj +
∑r

s=1 γs−1(o
(s−1)j
R − L(s−1)

f Hj)

LgL(r−1)
f Hj

,

where standard MIMO–vector–fields f and g are given by

f =
(
∂H0

∂pi
, −∂H0

∂qi

)

, g =
(

−∂H
j

∂pi
,
∂Hj

∂qi

)

and γs−1 are the coefficients of linear differential equation of order r for the
error function e(t) = oj − oj

R

e(r) + γr−1e
(r−1) + · · ·+ γ1e

(1) + γ0e = 0.

Using the fuzzified µ−Hamiltonian biomechanical system (5.44–5.46) and
the affine Hamiltonian function (5.50), affine aµ−Hamiltonian FC–system can
be defined as

q̇i =
∂H0(q, p, σµ)

∂pi
− ∂H

j(q, p, σµ)
∂pi

uj +
∂R(q, p)
∂pi

,

ṗi = F̄i −
∂H0(q, p, σµ)

∂qi
+
∂Hj(q, p, σµ)

∂qi
uj +

∂R(q, p)
∂qi

,

ōi = −∂Ha(q, p, u, σµ)
∂ui

= Hj(q, p, σµ),

qi(0) = q̄i
0, pi(0) = p̄0i , (i = 1, . . . , N ; j = 1, . . . , M ≤ N).

Using the fuzzy–stochastic [µσ]−Hamiltonian biomechanical system (5.47–
5.49) and the affine Hamiltonian function (5.50), affine aµσ−Hamiltonian FC–
system can be defined as
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dqi =
(
∂H0(q, p, σµ)

∂pi
− ∂H

j(q, p, σµ)
∂pi

uj +
∂R(q, p)
∂pi

)

dt,

dpi = Bij [qi(t), t] dW j(t) +
(

F̄i −
∂H0(q, p, σµ)

∂qi
+
∂Hj(q, p, σµ)

∂qi
uj +

∂R(q, p)
∂qi

)

dt,

dōi = −∂Ha(q, p, u, σµ)
∂ui

dt = Hj(q, p, σµ) dt,

qi(0) = q̄i
0, pi(0) = p̄0i , (i = 1, . . . , N ; j = 1, . . . , M ≤ N).

Being high–degree and highly nonlinear, all of these affine control systems
are extremely sensitive upon the variation of parameters, inputs, and initial
conditions. The sensitivity function S of the affine Hamiltonian Ha(q, p, u)
upon the parameters βi (representing segment lengths Li, masses mi, mo-
ments of inertia Ji and joint dampings bi, see [IS01, Iva91]), is in the case of
aδ−Hamiltonian FC–system defined as

S(H,β) =
βi

Ha(q, p, u)
∂Ha(q, p, u)

∂βi

,

and similarly in other two aµ− and aµσ− cases.
The three affine FC–level systems aδ, aµ and aµσ, resemble (in a fuzzy–

stochastic–Hamiltonian form), Houk’s autogenetic motor servo of muscle spin-
dle and Golgi tendon proprioceptors [Hou79], correcting the covariant driving
torques Fi = Fi(t, q, p) by local ‘reflex controls’ ui(t, q, p). They form the
nonlinear loop functor L = Ξ[L] : EX ⇒ EX ∗.

Cerebellar Control Level

Our second task is to establish the nonlinear loop functor L = Ξ[L] : T A ⇒
T A∗ on the category T A of the cerebellar FC–level. Here we propose an os-
cillatory neurodynamical (x, y,ω)–system (adapted from [IJB99a]), a bidirec-
tional, self–organized, associative–memory machine, resembling the function
of a set of excitatory granule cells and inhibitory Purkinje cells in the middle
layer of the cerebellum (see [EIS67, HBB96]). The neurodynamical (x, y,ω)–
system acts on neural–image manifold MN

im of the configuration manifoldMN

as a pair of smooth, ‘1− 1’ and ‘onto’ maps (Ψ, Ψ−1), where Ψ : MN →MN
im

represents the feedforward map, and Ψ−1 : MN
im → MN represents the feed-

back map. Locally, it is defined in Riemannian neural coordinates xi, yi ∈ Vy

on MN
im, which are in bijective correspondence with symplectic joint coordi-

nates qi, pi ∈ Up on T ∗M .
The (x, y,ω)–system is formed out of two distinct, yet nonlinearly–coupled

neural subsystems, with Ai(q) (A.37) and Bi(p) (5.58) as system inputs, and
the feedback–control 1−forms ui (5.63) as system outputs:
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1. Granule cells excitatory (contravariant) and Purkinje cells inhibitory (co-
variant) activation (x, y)–dynamics (A.35–5.58), defined respectively by a
vector–field xi = xi(t) : M → TM , representing a cross–section of the
tangent bundle TM , and a 1−form yi = yi(t) : M → T ∗M , representing
a cross–section of the cotangent bundle T ∗M ; and

2. Excitatory and inhibitory unsupervised learning (ω)–dynamics (5.58–
5.60) generated by random differential Hebbian learning process (5.61–
5.63), defined respectively by contravariant synaptic tensor–field ωij =
ωij(t) : M → TTMN

im and covariant synaptic tensor–field ωij = ωij(t) :
M → T ∗T ∗M, representing cross–sections of contravariant and covariant
tensor bundles, respectively.

The system equations are defined as

ẋi = Ai(q) + ωij fj(y)− xi, (5.55)

ẏi = Bi(p) + ωij f
j(x)− yi, (5.56)

Ai(q) = Kq(qi − qi
R), (5.57)

Bi(p) = Kp(pR
i − pi), (5.58)

ω̇ij = −ωij + Iij(x, y), (5.59)
ω̇ij = −ωij + Iij(x, y), (5.60)

Iij = f i(x) f j(y) + ḟ i(x) ḟ j(y) + σij , (5.61)

Iij = fi(x) fj(y) + ḟi(x) ḟj(y) + σij , (5.62)

ui =
1
2
(δij x

i + yi), (i, j = 1, . . . , N). (5.63)

Here ω is a symmetric 2nd order synaptic tensor–field; Iij = Iij(x, y, σ)
and Iij = Iij(x, y, σ) respectively denote contravariant–excitatory and covariant–
inhibitory random differential Hebbian innovation–functions with tensorial
Gaussian noise σ (in both variances); fs and ḟs denote sigmoid activation
functions (f = tanh(.)) and corresponding signal velocities (ḟ = 1 − f2),
respectively in both variances;
Ai(q) and Bi(p) are contravariant–excitatory and covariant–inhibitory

neural inputs to granule and Purkinje cells, respectively; ui are the correc-
tions to the feedback–control 1−forms on the cerebellar FC–level.

Nonlinear activation (x, y)–dynamics (A.35–5.58), describes a two–phase
biological neural oscillator field, in which excitatory neural field excites in-
hibitory neural field, which itself reciprocally inhibits the excitatory one.
(x, y)–dynamics represents a nonlinear extension of a linear, Lyapunov–stable,
conservative, gradient system, defined in local neural coordinates xi, yi ∈ Vy

on T ∗M as

ẋi = − ∂Φ
∂yi

= ωijyj − xi, ẏi = − ∂Φ
∂xi

= ωijx
j − yi. (5.64)
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The gradient system (5.64) is derived from scalar, neuro-synaptic action po-
tential Φ : T ∗M → R, given by a negative, smooth bilinear form in xi, yi ∈ Vy

on T ∗M as

− 2Φ = ωijx
ixj + ωijyiyj − 2xiyi, (i, j = 1, . . . , N), (5.65)

which itself represents a Ψ–image of the Riemannian metrics g : TM → R on
the configuration manifold M .

The nonlinear oscillatory activation (x, y)–dynamics (A.35–5.58) is ob-
tained from the linear conservative dynamics (5.64) by adding configura-tion–
dependent inputs Ai and Bi, as well as sigmoid activation functions fj and f j ,
respectively. It represents an interconnected pair of excitatory and inhibitory
neural fields.

Both variant–forms of learning (ω)–dynamics (5.59–5.60) are given by gen-
eralized unsupervised (self–organizing) Hebbian learning scheme (see [Kos92])
in which ω̇ij (resp. ω̇ij) denotes the new–update value, −ωij (resp. −ωij) cor-
responds to the old value and Iij(xi, yj) (resp. Iij(xi, yj)) is the innovation
function of the symmetric 2nd order synaptic tensor-field ω. The nonlinear
innovation functions Iij and Iij are defined by random differential Hebbian
learning process (5.61–5.62). As ω is symmetric and zero-trace coupling synap-
tic tensor, the conservative linear activation dynamics (5.64) is equivalent to
the rule that the state of each neuron (in both neural fields) is changed in time
iff the scalar action potential Φ (5.65), is lowered. Therefore, the scalar action
potential Φ represents the monotonically decreasing Lyapunov function (such
that Φ̇ ≤ 0) for the conservative linear dynamics (5.64), which converges to a
local minimum or ground state of Φ. That is to say, the system (5.64) moves
in the direction of decreasing the scalar action potential Φ, and when both
ẋi = 0 and ẏi = 0 for all i = 1, . . . , N , the steady state is reached.

In this way, the neurodynamical (x, y,ω)−system acts as tensor–invariant
self–organizing (excitatory / inhibitory) associative memory machine, resem-
bling the set of granule and Purkinje cells of cerebellum [HBB96].

The feedforward map Ψ : M → M is realized by the inputs Ai(q) and
Bi(p) to the (x, y,ω)–system, while the feedback map Ψ−1 : M → M is
realized by the system output, i.e., the feedback–control 1−forms ui(x, y).
These represent the cerebellar FC–level corrections to the covariant torques
Fi = Fi(t, q, p).

The tensor–invariant form of the oscillatory neurodynamical (x, y,ω)–
system (A.35–5.63) resembles the associative action of the granule and Purk-
inje cells in the tunning of the limb cortico–rubro–cerebellar recurrent network
[HBB96], giving the cerebellar correction ui(x, y) to the covariant driving
torques Fi = Fi(t, q, p). In this way (x, y,ω)–system forms the nonlinear loop
functor L = Ξ[L] : T A ⇒ T A∗.
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Cortical Control Level

Our third task is to establish the nonlinear loop functor L = Ξ[L] : ST ⇒
ST ∗ on the category ST of the cortical FC–level.

Recall that for the purpose of cortical control, the purely rotational biome-
chanical manifold M could be firstly reduced to N–torus and subsequently
transformed to N–cube (‘hyper–joystick’), using the following geometric tech-
niques (see (2.4.4) above).

Denote by S1 the constrained unit circle in the complex plane. This is an
Abelian Lie group. We have two reduction homeomorphisms

SO(3) � SO(2) � SO(2) � SO(2), and SO(2) ≈ S1,

where ‘�’ denotes the noncommutative semidirect product.
Next, let IN be the unit cube [0, 1]N in R

N and ‘∼’ an equivalence relation
on R

N obtained by ‘gluing’ together the opposite sides of IN , preserving their
orientation. Therefore, M can be represented as the quotient space of R

N by
the space of the integral lattice points in R

N , that is a constrained torus TN :

R
N/ZN = IN/ ∼∼=

N∏

i=1

S1
i ≡ {(qi, i = 1, . . . , N) : mod 2π} = TN .

In the same way, the momentum phase–space manifold T ∗M can be repre-
sented by T ∗TN .

Conversely by ‘ungluing’ the configuration space we get the primary unit
cube. Let ‘∼∗’ denote an equivalent decomposition or ‘ungluing’ relation. By
the Tychonoff product–topology theorem, for every such quotient space there
exists a ‘selector’ such that their quotient models are homeomorphic, that is,
TN/ ∼∗≈ AN/ ∼∗. Therefore IN

q represents a ‘selector’ for the configuration
torus TN and can be used as an N–directional ‘q̂–command–space’ for FC.
Any subset of DOF on the configuration torus TN representing the joints
included in the general biomechanics has its simple, rectangular image in
the rectified q̂–command space – selector IN

q , and any joint angle qi has its
rectified image q̂i.

In the case of an end–effector, q̂i reduces to the position vector in external–
Cartesian coordinates zr (r = 1, . . . , 3). If orientation of the end–effector can
be neglected, this gives a topological solution to the standard inverse kine-
matics problem.

Analogously, all momenta p̂i have their images as rectified momenta p̂i in
the p̂–command space – selector IN

p . Therefore, the total momentum phase–

space manifold T ∗TN obtains its ‘cortical image’ as the (̂q, p)–command space,
a trivial 2ND bundle IN

q × IN
p .

Now, the simplest way to perform the feedback FC on the cortical (̂q, p)–
command space IN

q × IN
p , and also to mimic the cortical–like behavior [1,2],
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is to use the 2ND fuzzy–logic controller, in pretty much the same way as in
popular ‘inverted pendulum’ examples [Kos92, Kos96].

We propose the fuzzy feedback–control map Ξ that maps all the rectified
joint angles and momenta into the feedback–control 1−forms

Ξ : (q̂i(t), p̂i(t)) �→ ui(t, q, p), (5.66)

so that their corresponding universes of discourse, M̂ i = (q̂i
max − q̂i

min), P̂i =
(p̂max

i − p̂min
i ) and Ui = (umax

i − umin
i ), respectively, are mapped as

Ξ :
N∏

i=1

M̂M i ×
N∏

i=1

P̂i →
N∏

i=1

Ui. (5.67)

The 2N–D map Ξ (5.66–5.67) represents a fuzzy inference system, defined
by (adapted from [IJB99b]):

1. Fuzzification of the crisp rectified and discretized angles, momenta and
controls using Gaussian–bell membership functions

µk(χ) = exp[− (χ−mk)2

2σk
], (k = 1, 2, . . . , 9),

where χ ∈ D is the common symbol for q̂i, p̂i and ui(q, p) and D is the
common symbol for M i, P̂i and i; the mean values mk of the seven parti-
tions of each universe of discourseD are defined asmk = λkD+χmin, with
partition coefficients λk uniformly spanning the range of D, correspond-
ing to the set of nine linguistic variables L = {NL,NB,NM,NS,ZE, PS,
PM,PB,PL}; standard deviations are kept constant σk = D/9. Using
the linguistic vector L, the 9× 9 FAM (fuzzy associative memory) matrix
(a ‘linguistic phase–plane’), is heuristically defined for each human joint,
in a symmetrical weighted form

µkl = %kl exp{−50[λk + u(q, p)]2}, (k, l = 1, 2, . . . , 9)

with weights %kl ∈ {0.6, 0.6, 0.7, 0.7, 0.8, 0.8, 0.9, 0.9, 1.0}.
2. Mamdani inference is used on each FAM–matrix µkl for all human joints:

(i) µ(q̂i) and µ(p̂i) are combined inside the fuzzy IF–THEN rules using
AND (Intersection, or Minimum) operator,

µk[ūi(q, p)] = min
l
{µkl(q̂

i), µkl(p̂i)}.

(ii) the output sets from different IF–THEN rules are then combined us-
ing OR (Union, or Maximum) operator, to get the final output, fuzzy–
covariant torques,

µ[ui(q, p)] = max
k
{µk[ūi(q, p)]}.
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3. Defuzzification of the fuzzy controls µ[ui(q, p)] with the ‘center of gravity’
method

ui(q, p) =
∫
µ[ui(q, p)] dui∫

dui
,

to update the crisp feedback–control 1−forms ui = ui(t, q, p). These rep-
resent the cortical FC–level corrections to the covariant torques Fi =
Fi(t, q, p).

Operationally, the construction of the cortical (̂q, p)–command space IN
q ×

IN
p and the 2ND feedback map Ξ (5.66–5.67), mimic the regulation of loco-

motor conditioned reflexes by the motor cortex [HBB96], giving the cortical
correction to the covariant driving torques Fi. Together they form the nonlin-
ear loop functor NL = Ξ[L] : ST ⇒ ST ∗.

A sample output from the leading human–motion simulator, Human Bio-
dynamics Engine (developed by the authors in Defence Science & Technology
Organisation, Australia), is given in Figure 5.5, giving the sophisticated 264
DOF analysis of adult male running with the speed of 5 m/s.

Fig. 5.11. Sample output from the Human Biodynamics Engine: running with the
speed of 5 m/s.




