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Covariant Biophysics of Electro–Muscular
Stimulation

In this Chapter we develop covariant biophysics of electro–muscular stimu-
lation, as an externally induced generator of our covariant muscular forces,
Fi = mgija

i. The so–called functional electrical stimulation (FES) of human
skeletal muscles is used in rehabilitation and in medical orthotics to externally
stimulate the muscles with damaged neural control (see, e.g., [VHI87]). How-
ever, the repetitive use of electro–muscular stimulation, besides functional,
causes also structural changes in the stimulated muscles, giving the physio-
logical effect of muscular training.

6.1 Basics of Electrical Muscular Stimulation

The use of low and very low frequency impulses in the body, delivered through
electrodes, is known as transcutaneous stimulation of the nerves, electro–
acupuncture and electro–stimulation. Here, an electromagnetic field accom-
panies the passage of the electric current through the conductive wire. This
is generally known as the term ‘electromagnetic therapy’.

In the original sense acupuncture meant the inserting of needles in specific
regions of the body. Electro–acupuncture supplies the body with low–volt im-
pulses through the medium of surface electrodes to specific body regions or
by non specific electrodes. Transcutaneous electric stimulation of the nerves
(TENS) has for years been a well known procedure in conventional medicine.
The impulses that are produced with this type of stimulation, are almost
identical with those of electro–stimulation, yet many doctors still assume,
that they are two different therapies. This has resulted in TENS being consid-
ered as a daily therapy, while electro–acupuncture or electro–stimulation were
treated as ‘alternative therapy’. Apart from the fact, that electro–acupuncture
electro–impulses are delivered through needles, both therapies should be con-
sidered identical. Patients, who have reservations about the use of needles, can
by the use of electric impulses over surface electrodes on the skin, have a sat-
isfactory alternative (see Figure 6.1). We choose the term electro–stimulation,
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Fig. 6.1. Schematic of electrical muscular stimulation EMS.

because the acupuncture system is not included in all therapies. Clinical tests
have showed that there are two specific types of reactions:

• The first reaction is spontaneous and dependent on the choice of body
region. The stimulation of this part of the body results in an unloading,
that can be compared with that of a battery. Normally this goes hand
in hand with an immediate improvement in the patient. This effect of
unloading may also be reached by non–specific electric stimulation.

• The second normal reaction is of a delayed nature, that results in relax-
ation and control of pain. Moreover two other important effects follow,
that begin between 10 and 20 minutes after the start of the treatment.
This reaction is associated (combined) with different chemicals, such as
beta–endorphins and 5–hydrocytryptamins. When using low and very low
frequency stimulations, the second effect is obtained by the utilization of
specific frequencies on the body. This is independent of the choice of a
specific part of the body, because the connected electromagnet makes the
induction of secondary electric current in the whole body possible.

Now, when cosmetic surgeons perform electrical muscular stimulation
(EMS, for short) on the human face or body (as schematically depicted on
Figure 6.1), they usually take for granted half–a–dozen biophysical processes
that are actually involved in this apparently simple stimulus–response–type
action.

When the surface electrical muscular stimulation EMS pads are applied to
the certain place of the human face or body, the first considerable tissue reac-
tion is depolarization of sarcolemma, close to the electrodes. Muscular ability
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Fig. 6.2. Surface EMS performed on the human leg, together with anatomy of the
stimulated leg muscles.

(similar to the neural one, but about ten times slower) to produce an action
potential as a response to the stimulation, is termed ‘excitability’. By means
of the EMS, current is passed across a membrane to produce a transient de-
polarization of the resting potential of sarcolemma, which, if it is of sufficient
duration and magnitude, can initiate the train of events that produces mus-
cular action potential (see Figure 6.1). The minimum necessary intensity of
stimulus is called the threshold stimulus. The term ‘threshold’ is commonly
used to refer either to the absolute magnitude of the muscle–cell membrane
potential at which an action potential is initiated or to the magnitude of depo-
larization from resting potential (in which the membrane naturally polarizes
sodium and potassium ions) required to initiate an action potential. A stimu-
lus of less than threshold intensity is refereed to as subthreshold, one of greater
than threshold intensity as super–threshold. The threshold potential for exci-
tation is not a fixed parameter. The thresholds of different muscle–membranes
may vary considerably. Furthermore, the threshold of a single cell can change,
either rapidly, as after a train of impulses produced by the EMStotal, or more
slowly, in response to metabolic or hormonal influences.

On the other hand, in view of modern biophysics, there are six distinc-
tive phases of electrical muscular stimulation, as usually performed using the
surface pads (like those on Figures 6.1 and 6.1):
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1. Electrodynamic stimulation fields, consisting of:
a) External Maxwell electrodynamics (smooth, causal, unique and fully

predictive); and
b) Internal cellular bio–quantum electrodynamics (rapidly fluctuating,

uncertain and stochastic, allowing only probabilistic approach).
2. Muscular contraction paths, consisting of:

a) Anatomical external muscular mechanics; and
b) Myofibrillar internal cellular bio–quantum mechanics.

3. Geometric face & body shapes and curvatures, consisting of:
a) Smooth 2D external skin geometry; and
b) Coarse–grained and fractal, internal nD cellular muscle–fat geometry.

Combined together, these six electro–mechano–geometric faces of electro–
muscular stimulation generate the three–link EMS−transition functor :

ELECTRICAL

STIMUL ⇒
MUSCULAR

CONTRACT ⇒
FACE or BODY

SHAPE

Fig. 6.3. Surface EMS performed on the human face, together with anatomy of
the stimulated facial muscles (elaborated further in Table 6.5.1).

The EMS transition functor is based on Feynman–like experimental ap-
proach to electrical muscular stimulation (see Figure 6.2): the flow of elec-
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tric current from the negative surface pad A� to the positive pad B⊕

can be approximated by the vector sum of complex vectors
∑

k ρk eiθk =
ρk(cos θk + i sin θk), (in the complex plane), where θk are proportional to the
time taken by each vector ρk. This vector sum will be developed into the
proper Feynman path integral (see [Fey98]).

The purpose of this Chapter is a modern and rigorous description of the
above transition map, by elaboration of the six electro–mechano–geometric
facets of the surface electro–muscular stimulation. All relevant classical bio-
physical theories are given in Appendix.

6.2 EMS Functor

Biophysically, electrical muscular stimulation represents a union of external
electrical stimulation fields, internal myofibrillar excitation–contraction paths,
and dissipative skin & fat geometries, formally written as

EMStotal = EMSfields

⋃
EMSpaths

⋃
EMSgeom. (6.1)

Following the current trends of the XXI century biophysics, corresponding to
each of the three EMS–phases in (6.1) we formulate:

1. The least action principle (see section 3.3 above), to model a unique,
external–anatomical, predictive and smooth, macroscopic EMS field–
path–geometry; and

2. Associated Feynman path integral (see subsection 3.3.7 above), to model
an ensemble of rapidly and stochastically fluctuating, internal, micro-
scopic, fields–paths–geometries of the cellular EMS, to which the external–
anatomical macro–level represents both time and ensemble average.1

In the proposed formalism, muscular excitation–contraction paths xi(t) are
caused by electrodynamic stimulation fields F k(t), while they are both affected
by dissipative and noisy skin & fat shapes and curvatures, defined by the local
Riemannian metric tensor gij .

In the following text, we first formulate the global model for the EMStotal,
to set up the general formalism to be specialized subsequently for each of the
three EMS–phases.

6.2.1 Global macro–level of EMStotal

In general, at the macroscopic EMS–level we first formulate the total action
S[Φ], our central quantity, which can be described through physical dimensions
of Energy× Time = Effort (which is also the dimension of the Planck con-
stant � (= 1 in normal units) (see, e.g., [DEF99]). This total action quantity

1 Recall that ergodic hypothesis equates time average with ensemble average.
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Fig. 6.4. Simplified Feynman–like experimental approach to electrical muscular
stimulation: the flow of electric current from the negative surface pad A� to the
positive pad B⊕ can be approximated by the vector sum of complex vectors ρk eiθk ,
where θk are proportional to the time taken by each vector ρk; this vector sum will
be further developed into Feynman integral (see [Fey98]).

has immediate biophysical ramifications: the greater the action – the higher
the stimulation effect on the new shape. The action S[Φ] depends on macro-
scopic fields, paths and geometries, commonly denoted by an abstract field
symbol Φi. The action S[Φ] is formally defined as a temporal integral from
the initial time instant tini to the final time instant tfin,

S[Φ] =
∫ tfin

tini

L[Φ] dt, (6.2)

with Lagrangian density , given by

L[Φ] =
∫
dnxL(Φi, ∂xjΦi),

where the integral is taken over all n coordinates xj = xj(t) of the EMS,
and ∂xjΦi are time and space partial derivatives of the Φi−variables over
coordinates.

Second, we formulate the least action principle as a minimal variation δ
of the action S[Φ]

δS[Φ] = 0, (6.3)

which, using variational Euler–Lagrangian equations (see section 3.3 above),
derives field–motion–geometry of the unique and smooth EMS−transition
functor

T : STIMULtini
⇒ CONTRACTtmid

⇒ SHAPEtfin
,

acting at a macro–level from some initial time tini to the final time tfin (via
the intermediate time tmid).

Here, we have in place n−categorical Lagrangian–field structure on the
muscular Riemannian configuration manifold M ,
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Φi : [0, 1] →M, Φi : Φi
0 �→ Φi

1,

generalized from the recursive homotopy dynamics (3.5.1) above, using

d

dt
fẋi = fxi

� ∂µ

(
∂L
∂µΦi

)

=
∂L
∂Φi

,

with
[x0, x1] 	 [Φi

0, Φ
i
1].

In this way, we get macro–objects in the global EMS: a single electrody-
namic stimulation field described by Maxwell field equations, a single muscular
excitation–contraction path described by Lagrangian equation of motion, and
a single Riemannian skin & fat geometry.

6.2.2 Local Micro–Level of EMStotal

After having properly defined macro–level EMStotal, with a unique and
globally–smooth EMS−transition functor T , we move down to the mi-
croscopic cellular EMS–level of rapidly fluctuating electrodynamic fields,
sarcomere–contraction paths and coarse–grained, fractal muscle–fat geome-
try, where we cannot define a unique and smooth field–path–geometry. The
most we can do at this level of fluctuating noisy uncertainty , is to formulate
an adaptive path integral and calculate overall probability amplitudes for en-
sembles of local transitions from negative EMS–pad A� to the positive pad
B⊕ (see Figure 6.2). This probabilistic transition micro–dynamics is given by
a multi field–path–geometry, defining the microscopic transition amplitude
corresponding to the macroscopic EMS−transition functor T . So, what is
externally the transition functor, internally is the transition amplitude. The
absolute square of the transition amplitude is the transition probability .

Now, the total EMS−transition amplitude, from the initial state
STIMUL, to the final state SHAPE, is defined on EMStotal

2

〈SHAPE|STIMUL〉total ≡
∫
Σ : STIMULt0 � SHAPEt1 , (6.4)

given by modern adaptive generalization of the classical Feynman path inte-
gral , see [FH65, Fey72, Fey98, DEF99]). The transition map (6.4) calculates
overall probability amplitude along a multitude of wildly fluctuating fields,
paths and geometries, performing the microscopic transition from the micro–
state STIMULt0 occurring at initial micro–time instant t0 to the micro–state
SHAPEt1 at some later micro–time instant t1, such that all micro–time in-
stants fit inside the global transition interval t0, t1, ..., ts ∈ [tini, tfin]. It is
symbolically written as

2 We use the famous Dirac symbol

∫
Σ to denote summation over ‘discrete spectrum’

and integration over ‘continuous spectrum’ of fields, paths and geometries in the
micro–EMS.
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〈SHAPE|STIMUL〉total =
∫
Σ D[wΦ] eiS[Φ], (6.5)

where the Lebesgue integration is performed over all continuous Φi
con =

fields+ paths+ geometries, while summation is performed over all discrete
processes and regional topologies Φj

dis. The symbolic differential D[wΦ] in the
general path integral (6.5), represents an adaptive path measure, defined as a
weighted product

D[wΦ] = lim
N−→∞

N∏

s=1

wsdΦ
i
s, (i = 1, ..., n = con+ dis), (6.6)

which is in practice satisfied with a large N .
In the exponent of the path integral (6.5) we have the action S[Φ] and the

imaginary unit i =
√
−1 (i can be converted into the real number −1 using the

so–called Wick rotation). Feynman path integrals are usually computed by the
use of perturbative expansion methods (see Appendix, section A.3; for other
non–standard applications of Feynman path integrals see [Ing97, Ing98]).

In this way, we get a range of micro–objects in the local EMStotal at the
short time–level: ensembles of rapidly fluctuating, noisy and crossing elec-
trical stimulation fields, myofibrillar contraction paths and local skin & fat
shape–geometries. However, by averaging process, both in time and along
ensembles of fields, paths and geometries, we can recover the corresponding
global, smooth and fully predictive, external EMStotal transition–dynamics
T .

6.2.3 Micro–Level Adaptation and Muscular Training

The adaptive path integral (6.5–6.6) incorporates the local muscular train-
ing process (see Appendix) according to the basic learning formula (see e.g.,
[Gro82, IJB99a])

NEW V ALUE = OLD V ALUE + INNOV ATION,

where the term V ALUE represents respectively biological images of the
STIMUL, CONTRACT and SHAPE.

The general synaptic weights ws = ws(t) in (6.6) are updated by the home-
ostatic neuro–muscular feedbacks during the transition process T , according to
one of the two standard neural training schemes, in which the micro–time level
is traversed in discrete steps, i.e., if t = t0, t1, ..., ts then t+ 1 = t1, t2, ..., ts+1:

1. A self–organized , unsupervised , e.g., Hebbian–like training rule [Heb49]:

ws(t+ 1) = ws(t) +
σ

η
(wd

s(t)− wa
s (t)), (6.7)

where σ = σ(t), η = η(t) denote signal and noise, respectively, while
superscripts d and a denote desired and achieved muscular micro–states,
respectively; or
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2. A certain form of a supervised gradient descent training :

ws(t+ 1) = ws(t)− η∇J(t), (6.8)

where η is a small constant, called the step size, or the training rate, and
∇J(n) denotes the gradient of the ‘performance hyper–surface’ at the
t−th iteration.

6.3 Electrical Stimulation Fields: EMSfields

6.3.1 External Smooth Maxwell Electrodynamics

On the macro–level in the phase EMSfields we formulate the electrodynamic
field action principle (see, e.g. [DEF99])

δS[F ] = 0, (6.9)

with the action S[F ] dependent on N electrodynamic stimulation fields F i =
F i(x), defined as a temporal integral

S[F ] =
∫ tfin

tini

L[F ] dt, (6.10)

with Lagrangian density given by

L[F ] =
∫
dnxL(Fi, ∂xjF i),

where the integral is taken over all n coordinates xj = xj(t) of the EMS,
and ∂xjF i are partial derivatives of the electrodynamic field variables over
coordinates.

The action principle (6.9) implies the following Maxwell electrodynamics,
presented here in vector, tensor and modern exterior differential form.

Given the following 3D vector–fields: the electrical field E, the magnetic
field B and the electrical current J, as well as the scalar electrical potential
ρ, the Maxwell electrical vector equations read3 (see, e.g., [MTW73]):

1. Electrostatics:
∇ ·E ≡ div E = 4πρ, and

2. Electrodynamics:

∂tE−∇×B ≡ ∂tE− curlB = −4πJ.
3 Only electrodynamic half of the Maxwell electro–magnetic field is elaborated here,

as the other, magnetodynamic part has a minor role in physiology of electro–
muscular stimulation.
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Otherwise, given the 4D electromagnetic tensor–field Faraday ,

Fαβ =







0 Ex Ey Ez

−Ex 0 Bz −By

−Ey −Bz 0 Bx

−Ez By −Bx 0





 ,

together with the 4D electric current vector–field Jα = (J,−ρ), the tensor
Maxwell equation reads (with electrostatics and electrodynamics combined):

Fαβ
;β = 4πJα.

Finally, given the two–form Maxwell ∗F ≡ Fαβ , which is a dual of the
Faraday tensor, (also calculated as F = dA, where A is the one–form of
electrical potential), and the three–form charge ∗J (which is the dual one–
form), the exterior Maxwell equation reads:

d∗F = 4π∗J.

The two–form Maxwell ∗F ≡ Fαβ , defines the Lorentz force one–form of the
electro–muscular stimulation field,

Qα ≡ ṗα ∝ eFαβv
β ,

where e is total electric charge and vβ is the velocity vector–field of the stim-
ulation flow. This equation says that the muscular force Qα generated by the
simulation is proportional to the stimulation field strength Fαβ , velocity of the
stimulation flow vβ through the skin–fat–muscle tissue, as well as the total
stimulation charge e.

Now, let M be a smooth nD closed manifold with a Riemannian metric
gij (see Chapter 2) and also with an exact two–form F = dA. Consider the
problem of existence of closed extremals of the functional

S(γ) =
∫

γ

(
√
gij ẋiẋj +Aiẋ

i) dt,

on the space of closed curves γ ∈ M . This functional is a natural generaliza-
tion of the usual functional of length, and its closed extremals correspond to
periodic trajectories of the motion of particles on the Riemannian manifold
M when the kinetic energy is defined by the metric tensor gij . When the
Lagrangian function

L =
√
gij ẋiẋj +Aiẋ

i

is everywhere positive, we obtain the Finsler metric [Bah88], and the periodic
problem can be studied by the methods of Morse theory (section 4.2.1 above).
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6.3.2 Internal Cellular Bio–Quantum Electrodynamics

At the same time, on the micro–level in the phase EMSfields we have the
Feynman–type sum over fields F i (i = 1, ..., N) given by the adaptive path
integral (see, e.g. [DEF99])

STIMULfields =
∫
D[wF ] eiS[F ] Wick−−−→

∫
D[wF ] e−S[F ], (6.11)

with action S[F ] given by the temporal integral (6.10), whileWick−−−→ denotes the
so–called Wick–rotation of the time variable t to imaginary values t �→ τ = it.
The resulting bio–quantum field represents the bundle of cellular electrody-
namic flux tubes.

Now, during the XX century, the electrodynamic flux tubes were described
by the Dirac–Schwinger–Tomonaga equations of quantum electrodynamics4.
Today, the similar kind of flux tubes is in a more sophisticated way described
by the conformal Landau–Ginzburg model (see, e.g., [DEF99]).

Technical details of these advanced physical theories are beyond the scope
of the present article. In simplified terms, we can say that they all describe
field–generated solitons5 (see the next section for a solitary model of muscular
excitation–contraction). The main point of all these quantum field theories and
their biophysical applications is that their macro–level averaging lift (either in
time or across the ensemble of cellular tubes) produces the classical Maxwell
electrodynamics (6.3.1) above. On their own, they describe rapidly fluctuating,
fractal and noisy, electrodynamic fields flowing from the source (−) electrode
to the sink (+) electrode – as described in the Schwinger formalism (see, e.g.,
his lecture in the Nobel e–Museum).

4 Mathematically, quantum electrodynamics has the structure of an Abelian gauge
theory with a U(1) gauge group. The gauge field which mediates the interaction
between the charged spin 1/2 fields is the electromagnetic field. Physically, this
translates to the picture of charged particles interacting with each other by the
exchange of photons.

5 In classical mathematical physics, by a soliton one usually means a “travelling
wave” solution of a nonlinear partial differential equation ut = F (u, ux, ...), i.e., a
solution of the form u(x, t) = f(x−vt). Solitons play a very important role in the
theory of integrable mechanical systems, where any solution can be approximated
by a superposition of solitons moving at different velocities, as we have in the next
section where we develop a solitary model of muscular excitation–contraction. As
a result, the theory of integrable systems is sometimes called soliton theory. In
this section, however, we are interested in solitons arising in electrical field theory
(as travelling wave solutions of the classical field equations) and primarily in the
role they play in quantization of electrical field theories, which is a different point
of view from the one in classical soliton theory.
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6.4 Stimulated Muscular Contraction Paths: EMSpaths

6.4.1 External Anatomical Muscular Mechanics

On the macro–level in the phase EMSpaths we have the muscular contraction
action principle

δS[x] = 0,

with the mechanical action S[x] given by

S[x] =
∫ tfin

tini

dt [
m

2
ẋ2

i + F (x)], (6.12)

where overdot denotes time derivative, so that ẋi represents the external
(anatomical) muscular contraction speed, whilem denotes the total estimated
mass of the stimulated muscle. The corresponding Euler–Lagrangian equation,
with the kinetic energy of muscular contraction

Ekin =
1
2
gij ẋ

iẋj ,

generated by muscular Riemannian metrics gij (see the next section on
anatomical geometry), gives the Newtonian equation of motion (see e.g.,
[Arn89])

d

dt

∂Ekin

∂ẋi
− ∂Ekin

∂xi
≡ mẍi = −∂xF (x), (6.13)

where ∂s denotes the partial derivative with respect to the variable s (which
is either space coordinate x or time t).

6.4.2 Internal Myofibrillar Bio–Quantum Mechanics

At the same time, on the micro–level in the phase EMSpaths, instead of
a single path defined by the Newtonian equation of motion for the whole
muscle (6.13), we have an ensemble of fluctuating and crossing, fractal paths
with weighted probabilities (of the unit total sum). This ensemble of micro–
paths is defined by the simplest instance of our adaptive path integral (6.5),
similar to the Feynman’s original sum over histories,

CONTRACTpaths =
∫
D[wx] eiS[x], (6.14)

where D[wx] is a functional measure on the space of all weighted paths, and
the exponential depends on the action S[x] given by (6.12). In the language of
transition–propagators, the integral over histories (6.14) can be decomposed
into the product of myofibrillar action propagators.6 This procedure can be
6 Feynman propagators are otherwise called Fredholm kernels or Green’s functions.
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redefined in a mathematically cleaner way if we Wick–rotate the time variable
t to imaginary values t �→ τ = it, thereby making all integrals real:

∫
D[wx] eiS[x] Wick−−−→

∫
D[wx] e−S[x]. (6.15)

Discretization of (6.15) gives the standard thermodynamic partition function

Z =
∑

j

e−wjEj/T , (6.16)

where Ej is the motion energy eigenvalue (reflecting each possible motiva-
tional energetic state), T is the temperature environmental control parameter,
and the sum runs over all motion energy eigenstates (labelled by the index
j). From (6.16), we can further calculate all thermodynamical and statistical
EMS–properties (see [Fey72]), as for example, transition entropy S = kB lnZ,
etc.

Now, both the action integral (6.12) and the path integral (6.14) are closely
related to the molecular soliton model of muscular contraction, as described
by the Korteveg–De Vries equation (3.32) and nonlinear Schrödinger equa-
tion (3.30) (see subsection 3.2.3 above). It is clear that these two solitary
equations have a quantum–mechanical origin.7 Recall, that by the use of the
first quantization method (instead of the Feynman integral), every classical
biodynamic observable F is represented in the Hilbert space L2(ψ) of square–
integrable complex ψ−functions by a Hermitian (self–adjoint) linear operator
F̂ with real eigenvalues. The classical Poisson bracket {F,G} = K corre-
sponds to the Dirac quantum commutator [F̂ , Ĝ] = iK̂ (where, as always
we have used normal units in which � = 1 ). Therefore the classical evolu-
tion equation (3.28) corresponds, in the Heisenberg picture, to the quantum
evolution equation (see, e.g., [Dir30])

i ˆ̇F = [F̂ , Ĥ],

for any representative operator F̂ and quantum Hamiltonian operator Ĥ. By
Ehrenfest’s theorem (see, e.g., [Fey72]), this equation is also valid for expec-
tation values < · > of observables, that is,

i < ˆ̇F >=< [F̂ , Ĥ] > .

For technical details on classical muscular mechanics, including the cele-
brated work of Nobel Laureates:

1. the microscopic sliding filament model of A.F. Huxley;
7 As Richard Feynman says in The Feynman Lectures on Physics: “Where did we

get that [Schrödinger equation] from? It’s not possible to derive it from anything
you know. It came out of the mind of Schrödinger.” Yet, Schrödinger equation
can be (and usually is) derived from the Feynman path integral.
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2. the macroscopic force–velocity model of A.V. Hill;
3. the celebrated Hodgkin–Huxley neural (and subsequently muscular) exci-

tation model (A.L. Hodgkin and A.F. Huxley); and
4. the Eccles model of synaptic activation;

– see Appendix.

6.5 Anatomical Geometry of the Face & Body Shape:
EMSgeom

6.5.1 External Face & Body Geometry

On the macro–level in the phase EMSgeom representing a smooth skin 2D
manifold–patch M2 with the Riemannian metric tensor gij = gij(M2) defined
at each local face or body point, we formulate the geometric action principle

δS[gij ] = 0,

where S = S[gij ] is the 2D geodesic action on the surface M ,

S[gij ] =
∫
dnx

√
gij dxidxj , (6.17)

(Einstein’s summation convention over repeated indices is assumed).
The corresponding Euler–Lagrangian equation gives the geodesic equation of
the shortest path on the manifold M2,

ẍi + Γ i
jk ẋ

j ẋk = 0, (6.18)

where the symbol Γ i
jk denotes the so–called affine connection which is the

source of curvature, which is geometric description for noise (see [Ing97,
Ing98]). The higher the local curvatures of the skin manifold–patch M2, the
greater the internal EMS–noise. This noise is the source of our micro–level
fat–related fluctuations.

Assuming that the electro–physiological principles of the EMS–based
body–shaping are identical (only less subtle) to the principles of the EMS–
based face–shaping, in the following subsections, we will focus on the facial
anatomical geometry.

Local Facial Curvatures and Their Deviations

In this subsection we consider human face, with its distinguished local anatom-
ical features, as a 2D Riemannian manifold (i.e, a smooth skin manifold–patch
M2), determined by muscular structural and functional anatomy (see Figure
6.5). Here we demonstrate that this anatomical geometry is not static, but
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Facial Musculature

Muscle Origin Insertion Action Innervation

depressor
anguli oris

oblique line of
mandible

angle of
mouth

pulls the
corner of
the mouth
downward

marginal
mandibular
& buccal
branches of
facial nerve
(VII)

levator labii
superioris

inferior margin of
orbit

skin of up-
per lip

elevates upper
lip

buccal branch
of facial nerve
(VII)

zygomaticus
major

zygomatic bone,
upper lateral sur-
face

skin of angle
of mouth

elevates and
draws the cor-
ner of mouth
laterally

zygomatic
and buccal
branches of
facial nerve
(VII)

orbicularis
oris

skin and fascia of
lips and area sur-
rounding lips

skin and fas-
cia of lips

purses the lips buccal branch
of facial nerve
(VII)

buccinator pterygomandibular
raphe, mandible,
and maxilla lateral
to molar teeth

angle of
mouth
& lateral
portion of
upper and
lower lips

pulls corner
of mouth lat-
erally; pulls
cheek against
teeth

buccal
branches
of facial nerve
(VII)

platysma fascia overlying the
pectoralis major
and deltoid muscles

inferior
border of
mandible
and skin of
lower face

draws cor-
ners of mouth
down; aids in
depression of
the mandible

facial nerve
(VII), cervical
branch

Table 6.1. Functional anatomy of the facial musculature (for whole body anatomy,
see any anatomical textbook, e.g., [Mar98].)

rather dynamic in an extremely complex way, which can be controlled by a
proper EMS.

Recall from Chapter 2, that Riemannian metric on any smooth nD Rie-
mannian manifold M is a positive–definite quadratic form g : M → R,
which is in local coordinates (x1(s), ..., xn(s)), dependent on the affine line
parameter s at a point m ∈ M, defined as a symmetric (0, 2) tensor–field
gij(m) = g

(
∂

∂xi ,
∂

∂xj

)
(m), (see also [Boo86, Iva04, Iva02, IP01b, Iva05]).

An infinitesimal distance between the two nearby local points m and n on
M is defined by the line element

ds2 = gij dx
idxj ,
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Fig. 6.5. Structural anatomy of the facial musculature (together with superficial
branches of the facial nerve), showing local geometric features: distances (metrics),
curvatures and directions for muscular contractions (see Table 6.1), modelled here
as geodesic deviations. Here we show only facial EMS, assuming that all biophysical
and geometric principles are the same (only less subtle) for body EMS.

and realized by the geodesics xi(s) (see Chapter 2). In local coordinates
(x1(s), ..., xn(s)) at a point m ∈ M , the geodesic defining equation (6.18),
derived from the geometric action principle (6.17), is a second order ordinary
differential equation with the Christoffel symbols Γ i

jk = Γ i
jk(m) of the affine

(Levi–Civita) connection ∇ẋi are calculated at the point m ∈ M with local
coordinates (x1(s), ..., xn(s)).

If Γ i
jk(m) = 0, the manifold M is flat at the point m. This means that

the Riemann curvature tensor , a symmetric (1, 3) tensor field Ri
jkl=R

i
jkl(m),

locally defined at a point m ∈M as

Ri
jkl = ∂xkΓ i

jl − ∂xlΓ i
jk + Γ i

µkΓ
µ
jl − Γ i

µlΓ
µ
jk,

also vanishes at a point m ∈M , i.e., Ri
jkl(m) = 0.

Elliptic manifolds have positive curvature, i.e., Ri
jkl(m) > 0 and nearby

geodesics are converging on it (see Figure 6.5), while hyperbolic ones have
negative curvature, i.e., Ri

jkl(m) < 0 and nearby geodesics are diverging on
it (see Figure 6.6). In case of a surface, which is a 2D manifold, the metric
tensor is reduced to the scalar curvature R. An example of elliptic (convex)
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surfaces is the sphere with the curvature R = +ρ−2 (where ρ is the radius),
while an example of hyperbolic (concave) surfaces is the Lobachevsky plane
with the curvature R = −1.

Now, recall from section 2.5 above, that the rate of change of a vector
field Ak on the manifold M along the curve xi(s) is properly defined by the
covariant derivative:

D

ds
Ak = ẋi∇ẋi Ak = ẋi

(
∂xiAk + Γ k

ij A
j
)

= Ȧk + Γ k
ij ẋ

iAj ,

which defines the parallel transport along the curve xi(s) at a point m ∈ M
as D

dsA
k(m) = 0.

By applying the previous result to itself, we can obtain an expression for
the second covariant derivative of the vector field Ak along the curve xi(s):

D2

ds2
Ak =

d

ds

(
Ȧk + Γ k

ij ẋ
iAj

)
+ Γ k

ij ẋ
i
(
Ȧj + Γ j

mn ẋ
mAn

)
.

In the same local coordinates (x1(s), ..., xn(s)) at a point m ∈ M, let
δxi = δxi(s) denote the vector–field of geodesic deviation, i.e., the infinitesimal
vector–field describing both normal and tangential separation between the
two neighboring geodesics, then the Jacobi equation of the geodesic deviation
on the manifold M holds ([Arn89]):

D2δxi

ds2
+Ri

jkl ẋ
j δxk ẋl = 0. (6.19)

This equation describes the relative acceleration between two infinitesimally
close facial geodesics, which is proportional both to the facial curvature (mea-
sured by the Riemann tensor Ri

jkl at a point m ∈ M), and to the geodesic
deviation δxi. Solutions of the Jacobi equation (6.19) are called Jacobi fields,
or Jacobi flows.

Human Face as a Riemannian Patch–Manifold

Local anatomical features of the human face can be considered as a collec-
tion of local 2D Riemannian manifold–patches M i

2, i.e., Riemannian patches,
determined by skeletal and muscular anatomy. Each of these local patches
M i

2 is represented by its own local coordinates (x1(s), x2(s))i, defined at a
distinguished point m. We propose here a 2D Jacobi fields δx1, δx2 (see Fig-
ures 6.5 and 6.6) to model respectively normal and tangential components of
contractions of the facial muscles.

In 2D, the Riemann curvature tensor simplifies into:

Ri
jmn =

1
2
Rgik(gkm gjn − gkn gjm),

where R denotes the scalar curvature. Consequently the equation of geodesic
deviation (6.19) also simplifies into
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Fig. 6.6. Local coordinate chart defined in a neighborhood of a point m on the
convex–ecliptic patch–manifold M2 of the facial musculature, together with the con-
verging geodesic deviation: its tangent component δx1 and its normal component
δx2.

D2

ds2
δxi +

R

2
δxi − R

2
ẋi(gjk ẋ

j δxk) = 0. (6.20)

Now, if we work in a local Cartesian coordinate system, defined at the tan-
gent plane TmM2 at a point m by an orthogonal projection imaging, the co-
variant derivative D2

ds2 reduces to the ordinary derivative d2

ds2 (as the Christoffel
symbols Γ i

jk vanish) and the metric tensor gij reduces to identity matrix Iij ,
so our 2D equation of geodesic deviation (6.20) reduces into a simple second
order ordinary differential equation in just two coordinates xi (i = 1, 2)

d2

ds2
δxi +

R

2
δxi − R

2
ẋi(Ijk ẋ

j δxk) = 0.

Also, if we require that the two nearby geodesics be nearly parallel, the
last term in (6.20) vanishes, and we are left with

D2

ds2
δxi +

R

2
δxi = 0. (6.21)

Again, if we work in a locally Cartesian coordinate system, our flat 2D
equation of geodesic deviation simplifies into harmonic oscillator in which the
scalar curvature R/2 plays the role of the spring constant :

d2

ds2
δxi +

R

2
δxi = 0. (6.22)
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Fig. 6.7. Local coordinate chart defined in a neighborhood of a point m on the
concave–hyperbolic patch–manifold M2 of the facial musculature, together with the
diverging geodesic deviation: its tangent component δx1 and its normal component
δx2.

Therefore, equations (6.21) and (6.20) could be respectively regarded as
the first–order and second–order perturbations of the linear oscillator equa-
tion (6.22). These three equations represent the three levels of detail in our
modelling of the facial muscular movements. The oscillator equation (6.22)
has a simple family of sinus functions (with certain amplitudes, frequencies
and phases) as a solution, while the two nonlinear equations (6.21) and (6.20)
could be numerically integrated for zero initial deviation and its velocity, us-
ing any explicit Runge–Kutta–like integrator (see, e.g. [IS01]). Each of them
describes the facial movement caused by muscular contraction dependent on
its local curvature, i.e., anatomical shape. Also, all three geometric oscillators
have kinetic and potential energies respectively defined as quadratic forms:

Ekin =
1
2
gijδẋ

iδẋj , U =
1
4
Rgijδx

iδxj ,

and derived from the muscular action principle (6.12–6.13) above.

6.5.2 Cellular Muscle–Fat Geometry

On the micro–level in the phase EMSgeom, we have an adaptive sum over
fractal geometries, represented by the path integral over all regional Rieman-
nian metrics gij = gij(x) varying from point to point inside an n–dimensional
muscle–fat manifold M , underlying the external skin surface,
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SHAPEgeom =
∫
D[wgij ] eiS[gij ] Wick−−−→

∫
D[wgij ] e−S[gij ], (6.23)

where D[gij ] denotes diffeomorphism equivalence classes of metrics gij(x) of
Skin.

To include the severe change of topological structure (e.g., a change in a
number of holes) in the manifold M , equation (6.23) can be extended as

SHAPEgeom/top =
∑

topol.

∫
D[wgij ] eiS[gij ], (6.24)

where the topological sum is taken over all components of connectedness of
the manifold M determined by its Euler characteristics [Iva02]. This type of
integral defines the theory of fluctuating geometries, a propagator between
(n− 1)−dimensional boundaries of the n−dimensional manifold M . One has
to contribute a meaning to the integration over geometries. A key ingredient
in doing so is to approximate in a natural way the smooth structures of the
manifold M by piecewise linear structures (mostly using topological simplices
∆ 8). In this way, after the Wick–rotation (6.15), the integral (6.23–6.24)
becomes a simple statistical system, given by partition function

Z =
∑

∆

1
C∆

e−S∆ ,

where the summation is over all triangulations ∆ of the manifold M , while
the number CT is the order of the automorphism group of the performed
triangulation.

8 This is called the simplicial approximation.
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Appendix

A.1 Basic Formulas from Tensor Analysis

Biomechanical laws must be independent of any particular coordinate sys-
tems used in describing them mathematically, if they are to be valid. In other
words, all biomechanical equations need to be tensorial or covariant . There-
fore, for the reference purpose, in this subsection, we give the basic formulas
from the standard tensor calculus, which is used throughout the text. The
basic notational convention used in tensor calculus is Einstein’s summation
convention over repeated indices. More on this subject can be found in any
standard textbook on mathematical methods for scientists and engineers, or
mathematical physics (we recommend [MTW73]).

A.1.1 Transformation of Coordinates and Elementary Tensors

To introduce tensors, consider a standard linear nD matrix system, Ax = b.
It can be rewritten in the so–called covariant form as

aijx
j = bi , (i, j = 1, ..., n). (A.1)

Here, i is a free index and j is a dummy index to be summed upon, so the
expansion of (A.1) gives

a11x
1 + a12x

2 + ...+ a1nx
n = b1 ,

a21x
1 + a22x

2 + ...+ a2nx
n = b2 ,

...

an1x
1 + an2x

2 + ...+ annx
n = bn ,

as expected from the original matrix form Ax = b. This indicial notation
can be more useful than the matrix one, like e.g., in computer science, where
indices would represent loop variables. However, the full potential of tensor
analysis is to deal with nonlinear multivariate systems, which are untractable
by linear matrix algebra and analysis. The core of this nonlinear multivariate
analysis is general functional transformation.
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Transformation of Coordinates

Suppose that we have two sets of curvilinear coordinates that are single–
valued, continuous and smooth functions of time, xj = xj(t), (j = 1, ...,m)
and x̄i = x̄i(t), (i = 1, ..., n), respectively, representing trajectories of motion
of some biomechanical system. Then a general (m×n)D transformation (i.e.,
a nonlinear map) xj �→ x̄i is defined by the set of transformation equations

x̄i = x̄i(xj), (i = 1, ..., n; j = 1, ...,m). (A.2)

In case of the square transformation, m = n, we can freely exchange the
indices, like e.g., in general relativity theory. On the other hand, in the general
case of rectangular transformation, m �= n, like e.g., in robotics, and we need
to take care of these ‘free’ indices.

Now, if the Jacobian determinant of this coordinate transformation is dif-
ferent from zero, ∣

∣
∣
∣
∂x̄i

∂xj

∣
∣
∣
∣ �= 0,

then the transformation (A.2) is reversible and the inverse transformation,

xj = xj(x̄i),

exists as well. Finding the inverse transformation is the problem of matrix
inverse: in case of the square matrix it is well defined, although the inverse
might not exist if the matrix is singular. However, in case of the square ma-
trix, its proper inverse does not exist, and the only tool that we are left with
is the so–called Moore–Penrose pseudoinverse, which gives an optimal solu-
tion (in the least–squares sense) of an overdetermined system of equations.
Every (overdetermined) rectangular coordinate transformation gives rise to a
redundant system.

For example, in Euclidean 3D space R
3, transformation from Cartesian

coordinates yk = {x, y, z} into spherical coordinates xi = {ρ, θ, ϕ} is given by

y1 = x1 cosx2 cosx3, y2 = x1 sinx2 cosx3, y3 = x1 sinx3, (A.3)

with the Jacobian matrix given by

(
∂yk

∂xi

)

=




cosx2 cosx3 −x1 sinx2 cosx3 −x1 cosx2 sinx3

sinx2 cosx3 x1 cosx2 cosx3 −x1 sinx2 sinx3

sinx3 0 x1 cosx3



 (A.4)

and the corresponding Jacobian determinant,
∣
∣
∣∂yk

∂xi

∣
∣
∣ = (x1)2 cosx3.

An inverse transform is given by

x1 =
√

(y1)2 + (y2)2 + (y3)2, x2 = arctan
(
y2

y1

)

,

x3 = arctan

(
y3

√
(y1)2 + (y2)2

)

, with
∣
∣
∣
∣
∂xi

∂yk

∣
∣
∣
∣ =

1
(x1)2 cosx3

.
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As a main biomechanical example, we have a rectangular transformation
from 6 DOF external, end–effector (e.g., hand) coordinates, into n DOF in-
ternal, joint–angle coordinates. In most cases this is a redundant manipulator
system, with infinite number of possible joint trajectories.

Scalar Invariants

A scalar invariant (or, a zeroth order tensor) with respect to the transforma-
tion (A.2) is the quantity ϕ = ϕ(t) defined as

ϕ(xi) = ϕ̄(x̄i),

which does not change at all under the coordinate transformation. In other
words, ϕ is invariant under (A.2). Biodynamic examples of scalar invariants
include various energies (kinetic, potential, biochemical, mental) with the cor-
responding kinds of work, as well as related thermodynamic quantities (free
energy, temperature, entropy, etc.).

Vectors and Covectors

Any geometric object vi = vi(t) that under the coordinate transformation
(A.2) transforms as

v̄i = vj ∂x̄
i

∂xj
, (remember, summing upon j−index),

represents a vector, traditionally called a contravariant vector , or, a first–
order contravariant tensor. Standard biomechanical examples include both
translational and rotational velocities and accelerations.

On the other hand, any geometric object vi = vi(t) that under the coor-
dinate transformation (A.2) transforms as

v̄i = vj
∂xj

∂x̄i
,

represents a one–form or covector , traditionally called a covariant vector , or,
a first order covariant tensor. Standard biomechanical examples include both
translational and rotational momenta, forces and torques.

Second–Order Tensors

Any geometric object tik = tik(t) that under the coordinate transformation
(A.2) transforms as

t̄ik = tjl ∂x̄
i

∂xj

∂x̄k

∂xl
, (i, k = 1, ..., n; j, l = 1, ...,m),
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represents a second–order contravariant tensor . It can be obtained as an outer
product of two contravariant vectors, tik = uivk.

Any geometric object tik = tik(t) that under the coordinate transformation
(A.2) transforms as

t̄ik = tjl
∂xj

∂x̄i

∂xl

∂x̄k
,

represents a second–order covariant tensor . It can be obtained as an outer
product of two covariant vectors, tik = uivk.

Any geometric object tik = tik(t) that under the coordinate transformation
(A.2) transforms as

t̄ik = tjl
∂x̄i

∂xj

∂xl

∂x̄k
,

represents a second–order mixed tensor . It can be obtained as an outer product
of a covariant vector and a contravariant vector, tik = uivk.

Standard biomechanical examples include:

1. The fundamental (material) covariant metric tensor g ≡ gik, i.e., inertia
matrix, given usually by the transformation from Cartesian coordinates
yj to curvilinear coordinates xi,

gik =
∂yj

∂xi

∂yj

∂xk
, (summing over j).

It is used in the quadratic metric form ds2 of the space in consideration
(e.g., a certain biomechanical configuration space)

ds2 ≡ dyjdyj = gikdx
idxk,

where the first term on the r.h.s denotes the Euclidean metrics, while the
second term is the Riemannian metric of the space, respectively.

2. Its inverse g−1 ≡ gik, given by

gik = (gik)−1 =
Gik

|gik|
, Gik is the cofactor of the matrix (gik);

3. The Kronecker–delta symbol δi
k, given by

δi
k =

{
1 if i = k
0 if i �= k

,

used to denote the metric tensor in Cartesian orthogonal coordinates. δi
k

is a discrete version of the Dirac δ−function. The generalized Kronecker–
delta symbol δijk

lmn (in 3D) is the product of Ricci antisymmetric tensors
εijk and εlmn,

δijk
lmn = εijkεlmn =






0 if at least two indices are equal
+1 if both ijk and lmn are either even or odd
−1 if one of ijk, lmn is even and the other is odd

.
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For example, to derive components of the metric tensor g ≡ gij in standard
spherical coordinates, we use the relations (A.3–A.4) between the spherical
coordinates xi = {ρ, θ, ϕ} and the Cartesian coordinates yk = {x, y, z}, and
the definition, gij = ∂yk

∂xi
∂yk

∂xj , to get the metric tensor (in matrix form)

(gij) =




1 0 0
0 (x1)2 cos2 x3 0
0 0 (x1)2



 =




1 0 0
0 ρ2 cos2 ϕ 0
0 0 ρ2



 , (A.5)

and the inverse metric tensor

(gij) =




1 0 0
0 1

(x1)2 cos2 x3 0
0 0 1

(x1)2



 =




1 0 0
0 1

ρ2 cos2 ϕ 0
0 0 1

ρ2



 . (A.6)

Given a tensor, we can derive other tensors by raising and lowering its
indices, by their multiplication with covariant and contravariant metric ten-
sors. In this way, the so–called associated tensors to the given tensor are be
formed. For example, vi and vi are associated tensors, related by

vi = gikv
k and vi = gikvk.

Given two vectors, u ≡ ui and v ≡ vi, their inner (dot, or scalar) product
is given by

u · v ≡ gijuivj ,

while their vector (cross) product (in 3D) is given by

u× v ≡ εijku
jvk.

Higher–Order Tensors

As a generalization of above tensors, consider a geometric object Ri
kps =

Ri
kps(t) that under the coordinate transformation (A.2) transforms as

R̄i
kps = Rj

lqt

∂x̄i

∂xj

∂xl

∂x̄k

∂xq

∂x̄p

∂xt

∂x̄s
, (all indices = 1, ..., n). (A.7)

Clearly, Ri
kjl = Ri

kjl(x, t) is a fourth order tensor, once contravariant and
three times covariant, representing the central tensor in Riemannian geome-
try, called the Riemann curvature tensor . As all biomechanical configuration
spaces are Riemannian manifolds, they are all characterized by curvature ten-
sors. In case Ri

kjl = 0, the corresponding Riemannian manifold reduces to the
Euclidean space of the same dimension, in which gik = δi

k.
If one contravariant and one covariant index of a tensor a set equal, the

resulting sum is a tensor of rank two less than that of the original tensor. This
process is called tensor contraction.
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If to each point of a region in an nD space there corresponds a definite
tensor, we say that a tensor–field has been defined. In particular, this is a
vector–field or a scalar–field according as the tensor is of rank one or zero. It
should be noted that a tensor or tensor field is not just the set of its compo-
nents in one special coordinate system, but all the possible sets of components
under any transformation of coordinates.

Tensor Symmetry

A tensor is called symmetric with respect to two indices of the same variance
if its components remain unaltered upon interchange of the indices; e.g., aij =
aji, or aij = aji. A tensor is called skew–symmetric (or, antisymmetric) with
respect to two indices of the same variance if its components change sign upon
interchange of the indices; e.g., aij = −aji, or aij = −aji. Regarding tensor
symmetry, in the following we will prove several useful propositions.

(i) Every second–order tensor can be expressed as the sum of two tensors,
one of which is symmetric and the other is skew–symmetric. For example, a
second order tensor aij , which is for i, j = 1, ..., n given by the n× n−matrix

aij =







a11 a12 ... a1n

a21 a22 ... an2

... ... ... ...
an1 an2 ... ann





 ,

can be rewritten as

aij =
1
2
aij +

1
2
aij +

1
2
aji −

1
2
aji , that can be rearranged as

=
1
2
aij +

1
2
aji +

1
2
aij −

1
2
aji , which can be regrouped as

=
1
2
(aij + aji) +

1
2
(aij − aji), which can be written as

= a(ij) + a[ij] ,

where a(ij) denotes its symmetric part, while a[ij] denotes its skew–symmetric
part, as required.

(ii) Every quadratic form can be made symmetric. For example, a quadratic
form aijx

ixj , that (for i, j = 1, ..., n) expands as

aijx
ixj = a11x

1x1 + a12x
1x2 + ...+ a1nx

1xn +
+ a21x

2x1 + a22x
2x2 + ...+ a2nx

2xn +
...

+ an1x
nx1 + an2x

nx2 + ...+ annx
nxn,

with a non–symmetric second order tensor aij , can be made symmetric in the
following way.
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aijx
ixj =

1
2
aijx

ixj +
1
2
aijx

ixj .

If we swap indices in the second term, we get

=
1
2
aijx

ixj +
1
2
ajix

jxi , which is equal to

=
1
2
(aij + aji)xixj .

If we now use a substitution,
1
2
(aij + aji) ≡ bij = bji, we get

aijx
ixj = bijx

ixj ,

where aij is non–symmetric and bij is symmetric, as required.
(iii) Every second order tensor that is the sum aij = uivj + ujvi, or,

aij = uivj + ujvi is symmetric. In both cases, if we swap the indices i and
j, we get aji = ujvi + uivj , (resp. aji = ujvi + uivj), which implies that the
tensor aij (resp. aij) is symmetric.

(iv) Every second order tensor that is the difference bij = uivj − ujvi, or,
bij = uivj − ujvi is skew–symmetric. In both cases, if we swap the indices i
and j, we get bji = −(ujvi−uivj), (resp. bji = −(ujvi−uivj)), which implies
that the tensor bij (resp. bij) is skew–symmetric.

A.1.2 Euclidean Tensors

Basis Vectors and the Metric Tensor in R
n

The natural Cartesian coordinate basis in an nD Euclidean space R
n is defined

as a set of nD unit vectors ei given by

e1 = [{1, 0, 0, ...}t, e2 = {0, 1, 0, ...}t, e3 = {0, 0, 1, ...}t, ..., en = {0, 0, ..., 1}t],

(where index t denotes transpose) while its dual basis ei is given by:

e1 = [{1, 0, 0, ...}, e2 = {0, 1, 0, ...}, e3 = {0, 0, 1, ...}, ..., en = {0, 0, ..., 1}],

(no transpose) where the definition of the dual basis is given by the Kro-
necker’s δ−symbol, i.e., the n× n identity matrix:

ei · ej = δi
j =









1 0 0 ... 0
0 1 0 ... 0
0 0 1 ... 0
... ... ... ... ...
0 0 0 ... 1








,

that is the metric tensor in Cartesian coordinates equals g = δi
j . In general,

(i.e., curvilinear) coordinate system, the metric tensor g = gij is defined as
the scalar product of the dual basis vectors, i.e., the n× n matrix:
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gij = ei · ej =









g11 g12 g13 ... g1n

g21 g22 g23 ... g2n

g31 g32 g33 ... g3n

... ... ... ... ...
gn1 gn2 gn3 ... gnn








.

Tensor Products in R
n

Let u and v denote two vectors in R
n, with their components given by

ui = u · ei, and vj = v · ej ,

where u = |u| and v = |v| are their respective norms (or, lengths). Then their
inner product (i.e., scalar, or dot product) u · v is a scalar invariant S, defined
as

S = ui · vj = giju
ivj .

Besides the dot product of two vectors u,v ∈ R
n, there is also their tensor

product (i.e., generalized vector, or cross product), which is a second order
tensor

T = u⊗ v, in components, T ij = ui ⊗ vj .

In the natural basis ei this tensor is expanded as

T = T ijei ⊗ ej ,

while its components in the dual basis read:

T ij = T (ei, ej),

where T = |T| is its norm. To get its components in curvilinear coordinates,
we need first to substitute it in Cartesian basis:

T ij = Tmn(em ⊗ en)(ei, ej),

then to evaluate it on the slots:

T ij = Tmnem · ei en · ej ,

and finally to calculate the other index configurations by lowering indices, by
means of the metric tensor:

T i
j = gjmT

im, Tij = gimgjnT
mn.

A.1.3 Tensor Derivatives on Riemannian Manifolds

Consider now some nD Riemannian manifoldM with the metric form (i.e., line
element) ds2 = gikdx

idxk, as a configuration space for a certain biomechanical
system (e.g., human spine, or arm–shoulder complex).



A.1 Basic Formulas from Tensor Analysis 399

Christoffel’s Symbols

Partial derivatives of the metric tensor gik form themselves special symbols
that do not transform as tensors (with respect to the coordinate transforma-
tion (A.2)), but nevertheless represent important quantities in tensor analysis.
They are called Christoffel symbols of the first kind, defined by

Γijk =
1
2
(∂xigjk ∂xjgki + ∂xkgij),

(

remember, ∂xi ≡ ∂

∂xi

)

and Christoffel symbols of the second kind, defined by

Γ k
ij = gklΓijl.

The Riemann curvature tensor Rl
ijk (A.7) of the manifoldM , can be expressed

in terms of the later as

Rl
ijk = ∂xjΓ l

ik − ∂xkΓ l
ij + Γ l

rjΓ
r
ik − Γ l

rkΓ
r
ij .

For example, in 3D spherical coordinates, xi = {ρ, θ, ϕ}, with the metric
tensor and its inverse given by (A.5, A.6), it can be shown that the only
nonzero Christoffel’s symbols are:

Γ 2
12 = Γ 2

21 = Γ 3
13 = Γ 3

31 =
1
ρ
, Γ 3

23 = Γ 2
32 = − tan θ, (A.8)

Γ 1
22 = −ρ, Γ 1

33 = −ρ cos2 θ, Γ 2
33 = sin θ cos θ.

Geodesics

From the Riemannian metric form ds2 = gikdx
idxk it follows that the distance

between two points t1 and t2 on a curve xi = xi(t) in M is given by

s =
∫ t2

t1

√
gikẋiẋkdt.

That curve xi = xi(t) in M which makes the distance s a minimum is called
a geodesic of the space M (e.g., in a sphere, the geodesics are arcs of great
circles). Using the calculus of variations, the geodesics are found from the
differential geodesic equation,

ẍi + Γ i
jkẋ

j ẋk = 0, (A.9)

where overdot means derivative upon the line parameter s.
For example, in 3D spherical coordinates xi = {ρ, θ, ϕ}, using (A.8),

geodesic equation (A.9) becomes a system of three scalar ODEs,

ρ̈− ρθ̇2 − ρ cos2 θϕ̇2 = 0, θ̈ +
2
ρ
ρ̇ϕ̇+ sin θ cos θϕ̇2 = 0,

ϕ̈+
2
ρ
ρ̇ϕ̇− 2 tan θθ̇ϕ̇ = 0. (A.10)

−
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The Covariant Derivative

Ordinary total and partial derivatives of vectors (covectors) do not transform
as vectors (covectors) with respect to the coordinate transformation (A.2).
For example, let yk be Cartesian coordinates and xi be general curvilinear
coordinates of a dynamical system (with i, k = 1, ..., n). We have: xi(t) =
xi[yk(t)], which implies that

dxi

dt
=
∂xi

∂yk

dyk

dt
, or equivalently, ẋi =

∂xi

∂yk
ẏk,

that is a transformation law for the contravariant vector, which means that
the velocity vi ≡ ẋi ≡ dxi

dt is a proper contravariant vector. However, if we
perform another time differentiation, we get

d2xi

dt2
=
∂xi

∂yk

d2yk

dt2
+

∂2xi

∂yk∂ym

dyk

dt

dym

dt
,

which means that d2xi

dt2 is not a proper vector.
d2xi

dt2 is an acceleration vector only in a special case when xi are another
Cartesian coordinates; then ∂2xi

∂yk∂ym = 0, and therefore the original coordinate
transformation is linear, xi = ai

ky
k + bi (where ai

k and bi are constant).
Therefore, d2xi

dt2 represents an acceleration vector only in terms of Newto-
nian mechanics in a Euclidean space R

n, while it is not a proper acceleration
vector in terms of Lagrangian or Hamiltonian mechanics in general curvilin-
ear coordinates on a smooth manifold Mn. And we know that Newtonian
mechanics in R

n is sufficient only for fairly simple mechanical systems.
The above is true for any tensors. So we need to find another derivative

operator to be able to preserve their tensor character. The solution to this
problem is called the covariant derivative.

The covariant derivative vi
;k of a contravariant vector vi is defined as

vi
;k = ∂xkvi + Γ i

jkv
j .

Similarly, the covariant derivative vi;k of a covariant vector vi is defined as

vi;k = ∂xkvi − Γ j
ikvj .

Generalization for the higher order tensors is straightforward; e.g., the covari-
ant derivative tjkl;q of the third order tensor tjkl is given by

tjkl;q = ∂xq tjkl + Γ j
qst

s
kl − Γ s

kqt
j
sl − Γ s

lqt
j
ks.

The covariant derivative is the most important tensor operator in general
relativity (its zero defines parallel transport) as well as the basis for defining
other differential operators in mechanics and physics.
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Covariant Form of Gradient, Divergence, Curl and Laplacian

Gradient. If ϕ = ϕ(xi, t) is a scalar field, the gradient one–form grad(ϕ) is
defined by

grad(ϕ) = ∇ϕ = ϕ;i = ∂xiϕ.

Divergence. The divergence div(vi) of a vector–field vi = vi(xi, t) is defined
by contraction of its covariant derivative with respect to the coordinates xi =
xi(t), i.e., the contraction of vi

;k, namely

div(vi) = vi
;i =

1√
g
∂xi(

√
gvi).

Curl. The curl curl(θi) of a one–form θi = θi(xi, t) is a second order covariant
tensor defined as

curl(θi) = θi;k − θk;i = ∂xkθi − ∂xiθk.

Laplacian. The Laplacian ∆ϕ of a scalar invariant ϕ = ϕ(xi, t) is the diver-
gence of grad(ϕ), or

∆ϕ = ∇2ϕ = div(grad(ϕ)) = div(ϕ;i) =
1√
g
∂xi(

√
ggik∂xkϕ).

The Absolute Derivative

The absolute derivative (or intrinsic, or Bianchi’s derivative) of a contravari-
ant vector vi along a curve xk = xk(t) is denoted by ˙̄vi ≡ Dvi/dt and defined
as the inner product of the covariant derivative of vi and ẋk ≡ dxk/dt, i.e.,
vi
;kẋ

k, and is given by
˙̄vi = v̇i + Γ i

jkv
j ẋk.

Similarly, the absolute derivative ˙̄vi of a covariant vector vi is defined as

˙̄vi = v̇i − Γ j
ikvj ẋ

k.

Generalization for the higher order tensors is straightforward; e.g., the abso-
lute derivative ˙̄tjkl of the third order tensor tjkl is given by

˙̄tjkl = ṫjkl + Γ j
qst

s
klẋ

q − Γ s
kqt

j
slẋ

q − Γ s
lqt

j
ksẋ

q.

The absolute derivative is the most important operator in biomechanics,
as it is the basis for the covariant form of both Lagrangian and Hamiltonian
equations of motion of many biomechanical systems.
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Application to Curve Geometry

Given three unit vectors: tangent τ i, principal normal βi, and binormal νi,
as well as two scalar invariants: curvature K and torsion T, of a curve γ(s) =
γ[xi(s)], the so–called Frenet–Serret formulae are valid1

˙̄τ i ≡ τ̇ i + Γ i
jkτ

j ẋk = Kβi,

˙̄βi ≡ β̇i
+ Γ i

jkβ
j ẋk = −(Kτ i + Tνi),

˙̄νi ≡ ν̇i + Γ i
jkν

j ẋk = Tβi.

Application to Mechanical Definitions of Acceleration and Force

In modern analytical mechanics, the two fundamental notions of acceleration
and force in general curvilinear coordinates are substantially different from
the corresponding terms in Cartesian coordinates as commonly used in engi-
neering mechanics. Namely, the acceleration vector is not an ordinary time
derivative of the velocity vector; ‘even worse’, the force, which is a paradigm
of a vector in statics and engineering vector mechanics, is not a vector at all.
Proper mathematical definition of the acceleration vector is the absolute time
derivative of the velocity vector, while the force is a differential one–form.

To give a brief look at these ‘weird mathematical beasts’, consider a ma-
terial dynamical system described by n curvilinear coordinates xi = xi(t).
First, recall from subsection A.1.3 above, that an ordinary time derivative of
the velocity vector vi(t) = ẋi(t) does not transform as a vector with respect
to the general coordinate transformation (A.2). Therefore, ai �= v̇i. So, we
need to use its absolute time derivative to define the acceleration vector (with
i, j, k = 1, ..., n),

ai = ˙̄vi ≡ Dvi

dt
= vi

;kẋ
k ≡ v̇i + Γ i

jkv
jvk ≡ ẍi + Γ i

jkẋ
j ẋk, (A.11)

which is equivalent to the l.h.s of the geodesic equation (A.9). Only in the
particular case of Cartesian coordinates, the general acceleration vector (A.11)
reduces to the familiar engineering form of the Euclidean acceleration vector2,
a = v̇.

For example, in standard spherical coordinates xi = {ρ, θ, ϕ}, we have the
components of the acceleration vector given by (A.10), if we now reinterpret
overdot as the time derivative,
1 In this paragraph, the overdot denotes the total derivative with respect to the

line parameter s (instead of time t).
2 Any Euclidean space can be defined as a set of Cartesian coordinates, while any

Riemannian manifold can be defined as a set of curvilinear coordinates. Christof-
fel’s symbols Γ i

jk vanish in Euclidean spaces defined by Cartesian coordinates;
however, they are nonzero in Riemannian manifolds defined by curvilinear coor-
dinates (see Chapter 2 for geometric details).
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aρ = ρ̈− ρθ̇2 − ρ cos2 θϕ̇2, aθ = θ̈ +
2
ρ
ρ̇ϕ̇+ sin θ cos θϕ̇2,

aϕ = ϕ̈+
2
ρ
ρ̇ϕ̇− 2 tan θθ̇ϕ̇.

Now, using (A.11), the Newton’s fundamental equation of motion, that is
the basis of all science, F = ma, gets the following tensorial form

F i = mai = m ˙̄vi = m(vi
;kẋ

k) ≡ m(v̇i + Γ i
jkv

jvk) = m(ẍi + Γ i
jkẋ

j ẋk), (A.12)

which defines Newtonian force as a contravariant vector.
However, modern Hamiltonian dynamics reminds us that: (i) Newton’s

own force definition was not really F = ma, but rather F = ṗ, where p is
the system’s momentum, and (ii) the momentum p is not really a vector, but
rather a dual quantity, a differential one–form3 (see Chapter 2 for details).
Consequently, the force, as its time derivative, is also a one–form (see Figure
A.1). This new force definition includes the precise definition of the mass
distribution within the system, by means of its Riemannian metric tensor gij .
Thus, (A.12) has to be modified as

Fi = mgija
j ≡ mgij(vj

;kẋ
k) ≡ mgij(v̇j + Γ j

ikv
ivk) = mgij(ẍj + Γ j

ikẋ
iẋk),
(A.13)

where the quantity mgij is called the material metric tensor , or inertia ma-
trix . Equation (A.13) generalizes the notion of the Newtonian force F, from
Euclidean space R

n to the Riemannian manifold M (see Chapter 2).

Fig. A.1. A one–form θ (which is a family of parallel (hyper)surfaces, the so–called
Grassmann planes) pierced by the vector v to give a scalar product θ(v) ≡< θ, v >=
2.6 (see [MTW73] for technical details).

Application to Fluid Mechanics: Continuity Equation

The most important equation in continuum mechanics, in particular in fluid
mechanics, is the celebrated equation of continuity ,
3 For example, in Dirac’s < bra|ket > formalism, kets are vectors, while bras are

one–forms; in matrix notation, columns are vectors, while rows are one–forms.
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∂tρ+ div(ρẋ) = 0. (A.14)

Here we derive the continuity equation (A.14), using the absolute time deriva-
tive and starting from the mass conservation principle,

˙dm = 0, (A.15)

where dm denotes an infinitesimal mass of a fluid (continuum) particle. If we
introduce the fluid density ρ = dm/dv, where v is the infinitesimal volume of
a fluid particle, then the mass conservation principle (A.15) can be written as

˙ρdv = 0,

which is the absolute derivative of a product, and therefore expands into

ρ̇dv + ρḋv = 0. (A.16)

Now, as the fluid density is a function of both time t and spatial coordinates
xk, i.e., a scalar–field, ρ = ρ(xk, t), its total time derivative ρ̇, figuring in
(A.16), is defined by

ρ̇ = ∂tρ+ ∂xkρ ∂tx
k ≡ ∂tρ+ ρ;kẋ

k ≡ ∂tρ+ grad(ρ) · ẋ. (A.17)

Regarding ḋv, the other term figuring in (A.16), we start by expanding
an elementary volume dv along the sides {dxi

(p), dx
j
(q), dx

k
(r)} of an elementary

parallelepiped,

dv =
1
3!
δpqr

ijk dx
i
(p)dx

j
(q)dx

k
(r), (i, j, k, p, q, r = 1, 2, 3)

so that its absolute derivative becomes

ḋv =
1
2!
δpqr

ijk
˙
dxi

(p)dx
j
(q)dx

k
(r)

=
1
2!
ẋi

;lδ
pqr
ijk dx

l
(p)dx

j
(q)dx

k
(r) (using ˙

dxi
(p) = ẋi

;ldx
l
(p)),

which finally simplifies into

ḋv = ẋk
;kdv ≡ div(ẋ) dv. (A.18)

Substituting (A.17) and (A.18) into (A.16) gives

˙ρdv ≡
(
∂tρ+ ρ;kẋ

k
)
dv + ρẋk

;kdv = 0. (A.19)

As we are dealing with arbitrary fluid particles, dv �= 0, so from (A.19) follows

∂tρ+ ρ;kẋ
k + ρẋk

;k ≡ ∂tρ+ (ρẋk);k = 0. (A.20)

Equation (A.20) is the covariant form of the continuity equation, which in
standard vector notation becomes (A.14).

In classical biomechanics, the continuity equation (A.14) forms the basis
of hemodynamics, or blood flow dynamics.
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A.1.4 The Covariant Force Law in Human–Like Biomechanics

Objective of this final tensor subsection is to generalize the fundamental New-
tonian 3D equation, F = ma, for the generic biomechanical system, consisting
of a number of flexibly–coupled rigid segments (see Figures 2.2–2.3 above),
and thus to formulate the fundamental biomechanical law: the covariant force
law.

To be able to apply the covariant formalism, we need to start with the
suitable coordinate transformation (A.2), in this case as a relation between
the 6 external SE(3) rigid–body coordinates, ye = ye(t) (e = 1, ..., 6), and
2n internal joint coordinates, xi = xi(t) (i = 1, ..., 2n) (n angles, forming
the constrained n−torus Tn, plus n very restricted translational coordinates,
forming the hypercube In ⊂ R

n). Once we have these two sets of coordinates,
external–ye and internal–xi, we can perform the general functional transfor-
mation (A.2) between them,

xi = xi(ye). (A.21)

Now, although the coordinate transformation (A.21) is nonlinear and even
unknown at this stage, there is something known and simple about it: the
corresponding transformation of differentials is linear and homogenous,

dxi =
∂xi

∂ye
dye,

which implies the linear and homogenous transformation of velocities,

ẋi =
∂xi

∂ye
ẏe. (A.22)

Our internal velocity vector–field is defined by the set of ODEs (A.22), at each
representative point xi = xi(t) of the biomechanical configuration manifold
M = Tn × In, as vi ≡ vi(xi, t) := ẋi(xi, t).

Note that in general, a vector–field represents a field of vectors defined
at every point xi within some region U (e.g., movable segments/joints only)
of the total configuration manifold M (consisting of all the segments/joints).
Analytically, vector–field is defined as a set of autonomous ODEs (in our case,
the set (A.22)). Its solution gives the flow , consisting of integral curves of the
vector–field, such that all the vectors from the vector–field are tangent to
integral curves at different representative points xi ∈ U . In this way, through
every representative point xi ∈ U passes both a curve from the flow and its
tangent vector from the vector–field. Geometrically, vector–field is defined as a
cross–section of the tangent bundle TM , the so–called velocity phase–space. Its
geometrical dual is the 1–form–field , which represents a field of one–forms (see
Figure A.1), defined at the same representative points xi ∈ U . Analytically, 1–
form–field is defined as an exterior differential system, an algebraic dual to the
autonomous set of ODEs. Geometrically, it is defined as a cross–section of the
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cotangent bundle T ∗M , the so–called momentum phase–space. Together, the
vector–field and its corresponding 1–form–field define the scalar potential field
(e.g., kinetic and/or potential energy) at the same movable region U ⊂ M .
See Chapter 2 for technical details.

Now, we are on the half–way to covariant biomechanics. We need to for-
mulate the internal acceleration vector–field, ai ≡ ai(xi, ẋi, t), acting in all
movable joints, and at the same time generalizing the Newtonian 3D acceler-
ation vector a.

According to Newton, acceleration is a rate–of–change of velocity. But,
from the previous subsections, we know that ai �= v̇i. However,

ai := ˙̄vi = v̇i + Γ i
jkv

jvk = ẍi + Γ i
jkẋ

j ẋk. (A.23)

Once we have the internal acceleration vector–field ai = ai(xi, ẋi, t), de-
fined by the set of ODEs (A.23) (including Levi–Civita connections Γ i

jk of
the Riemannian configuration manifold M), we can finally define the internal
force 1–form field , Fi = Fi(xi, ẋi, t), as a family of force one–forms, half of
them rotational and half translational, acting in all movable joints,

Fi := mgija
j = mgij(v̇j + Γ j

ikv
ivk) = mgij(ẍj + Γ j

ikẋ
iẋk), (A.24)

where we have used the simplified material metric tensor ,mgij , for the biome-
chanical system (considering, for simplicity, all segments to have equal mass
m), defined by its Riemannian kinetic energy form

T =
1
2
mgijv

ivj .

Equation Fi = mgija
j , defined properly by (A.24) at every representative

point xi of the biomechanical configuration manifoldM , formulates the sought
for covariant force law , that generalizes the fundamental Newtonian equation,
F = ma, for the generic biomechanical system. Its meaning is:

Force 1–form–field = Mass distribution×Acceleration vector–field

In other words, the field (or, family) of force one–forms Fi, acting in all
movable joints (with constrained rotations on Tn and very restricted trans-
lations on In), causes both rotational and translational accelerations of all
body segments, within the mass distribution mgij

4, along the flow–lines of
the vector–field aj .
4 More realistically, instead of the simplified metric mgij we have the material

metric tensor Gij (1.9), including all k segmental masses mχ, as well as the
corresponding moments and products of inertia,

Gij(x, m) =

k∑

χ=1

mχδrs
∂yr

∂xi

∂ys

∂xj
, (r, s = 1, ..., 6; i, j = 1, ..., 2n),

as defined in Figures 2.2–2.3 above.
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From the control theory perspective, a vector–field is a dynamical system,
a set of differential equations (A.23) that has a set of force one–forms Fi as
its inputs (see Chapter 5).

The purpose of Chapter 2 is to put this core biomechanical law into rig-
orous settings of smooth manifolds and their (co)tangent bundles.

A.1.5 The Essence of Hamiltonian Biomechanics

The covariant force law, Fi = mgija
j , defined by (A.24) above, has the fol-

lowing Hamiltonian reformulation. We start with the conservative Hamilto-
nian biomechanics on the cotangent bundle T ∗M of the system’s configuration
manifold M (see Figures 2.2–2.3 above), given by (see Chapter 3)

q̇α = ∂pαH(qα, pα), ṗα = −∂qαH(qα, pα), (α = 1, . . . , n).

The forced Hamiltonian biomechanics on T ∗M is given by

q̇α = ∂pα
H(qα, pα), ṗα = Fα(t, qα, pα)− ∂qαH(qα, pα),

where Fα are muscular torques. The generalized Hamiltonian biomechanics
(forced & dissipative) on T ∗M is now given by

q̇α = ∂pα
H(qα, pα)− ∂pα

R(qα, pα), (A.25)
ṗα = Fα(t, qα, pα)− ∂qαH(qα, pα)− ∂qαR(qα, pα).

The generalized Hamiltonian system (A.25) covers several types of classical
dynamical systems (see Chapter 3):

(i) in case Fα = 0, R = 0 and H �= 0 − conservative Hamiltonian system;
(ii) in case Fα = 0, R �= 0 and H �= 0 − dissipative Hamiltonian system;
(iii) in case Fα = 0, R �= 0 and H = 0 − bidirectional gradient system;
(iv) in case Fα �= 0, R = 0 and H = 0 − simple Newtonian system;
(v) in case Fα �= 0, R = 0 and H �= 0 − generalized Newtonian system.

The generalized Hamiltonian control system on T ∗M is obtained from
(A.25) in the following way. First we introduce the control Hamiltonian func-
tion, HC : T ∗M × R → R. In the local coordinates qα, pα ∈ Up ⊂ T ∗M , the
control Hamiltonian is given by

HC(q, p, u) = H0(q, p)− qαuα, (α = 1, . . . , n)

where uα = uα(t, q, p) are neural control inputs, and the physical Hamiltonian
H0(q, p) represents the system’s total energy function H0 : T ∗M × R → R.
The natural input–output control system is now defined as

q̇α = ∂pα
HC(q, p, u) + ∂pα

R(q, p), ṗα = Fα − ∂qαHC(q, p, u) + ∂qαR(q, p),
yα = −∂uα

HC(q, p, u),

where yα are control outputs (see Chapter 5).
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A.2 Muscular System

A.2.1 Muscular Histology

Human skeletal and face muscles, accounting for more than 40% of the body
weight in man, consist of bundles of elongated, cylindric cells called muscle
fibers, 50 to 200 µ in diameter and often many centimeters long. Bundles of
muscle fibers, each called fasciculus, are surrounded by a connective tissue
covering, the endomysium (see, e.g., [Mou80, Mar98]).

A muscle consists of a number of fasciculi encased in a thick outer layer of
connective tissue, the perimysium. At both ends of a muscle the connective
tissue melds into a tendon by which the muscle is attached to the face or bony
skeleton. In some muscles (fusiform), the muscle fibers run the whole length
of muscle between the tendons, which form at opposite ends. In most muscles
(pennate), one of the tendons penetrates through the center of the muscle;
muscle fibers run at an angle to the axis of the whole muscle from the central
tendon to the perimysium.

Like other cells, muscle cells are surrounded by a cell membrane, the sar-
colemma. Myofibrils, the contractile elements, are numerous parallel, length-
wise threads 1 to 3 in diameter that fill most of the muscle fiber. The cross
striations, seen in the skeletal and face muscles with electron microscope, are
located in the myofibrils. Squeezed between the myofibrils and the sarcolemma
is a small amount of cytoplasm, the sarcoplasm, in which are suspended mul-
tiple nuclei, numerous mitochondria, lysosomes, lipid droplets, glycogen gran-
ules, and other intracellular inclusions. The sarcoplasm contains glycogen,
glycolytic enzymes, nucleotides, creatine phosphate, amino acids, and pep-
tides.

Sarcoplasm also contains a well–developed endoplasmic reticulum, which
in muscle is called sarcoplasmic reticulum. The sarcoplasmic reticulum forms
an extensive hollow membranous system within the cytoplasm surrounding the
myofibrils. Periodically, there are branching invaginations of the sarcolemma
called T tubules or transverse tubules. The sarcoplasmic reticulum bulges out
on either side of the T tubules to form large lateral cisternae. The T tubule and
two sets of lateral cisternae constitute a triad . The triads play an important
role in muscle excitation-contraction coupling (by release of Ca++ ions).

Two types of muscle fibers are found in human skeletal and face muscles:
red and white muscle fibers, being histochemically and functionally distinc-
tive. Many muscles are mixed, containing both types of fibers, which can
be distinguished by various histochemical stains. In addition to muscle cells
and fibroblasts in the connective tissue, a whole muscle contains fat cells and
histiocytes.

Each muscle fiber contains numerous contractile elements - myofibrils
(1−3µ in diameter) which are biological machines that utilize chemical energy
from metabolism of food in the form of adenosine triphosphate, ATP hydroly-
sis to produce mechanical work. An understanding of contractility and muscle
function requires, thus, both histo–mechanical and bio–energetic insight.
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Contractile machinery unit of the myofibril, sarcomere (1.5−3.5µ long; on
electron microscope it is seen as bounded by two Z lines, with H zone in the
middle of the A band) is constituted of a great number of longitudinal protein
filaments of two kinds: thick, myosin filaments (about 120 Ȧ in diameter and
about 1.8µ long; they are located in the center of the sarcomere arranged in a
hexagonal array about 450 Ȧ apart) and thin, actin filaments (about 80 Ȧ in
diameter and about 1.0µ long; they are anchored into the transverse filaments
forming the Z line) (see Figure A.2). Each myosin filament is surrounded by
six actin filaments. Each myosin filament has two heads and two projections
from opposite sides at about 143 Ȧ intervals along its length.

Fig. A.2. Cellular structure of the voluntary (skeletal) human muscle: (a) Muscular
fibers with their cross–sections; (b) Sarcomere with overlapping myofilaments.
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A.2.2 Classical Theories of Muscular Contraction

Huxley’s Sliding Filament Theory

Essential for the contraction process are cross bridges (see Figure A.2). They
extend from myosin filaments to touch one of the adjacent actin filaments.
Each thin filament receives cross bridges from the three adjacent thick fila-
ments. During shortening the two sets of interdigitating filaments slide with
respect to each other, cross and finally overlap each other. This process of mus-
cle shortening involving progressive interdigitation of the two sets of protein
filaments represents the sliding filament mechanism, discovered and mathe-
matically formulated as a microscopic theory of muscular contraction in 1954–
57 by A.F. Huxley [HN54, Hux57].

According to Huxley, the myosin heads and cross bridges are elastic ele-
ments with a mechanism for attaching themselves transiently to specific sites
on the thin filaments. The following cyclic events take place during muscular
contraction:

1. The cross bridges extend from myosin filaments and attach themselves
to specific sites on actin filaments. The probability that attachment will
occur is f(x), where x is the instantaneous distance between the equilib-
rium position (0) and the maximum distance for attachment h along the
myofibrillar axis.

2. The cross bridges detach with probability g(x).

If we let N equal the density of cross bridges and n the fraction of cross
bridges that are attached, then nN equals the density of attached cross
bridges. Huxley’s rate equation for cross–bridge attachment–detachment, i.e.
the sliding filament model of muscular contraction is now given by:

ṅ = f(x)[1− n(x, t)]− g(x)n(x, t) = f(x)− [f(x) + g(x)]n(x, t). (A.26)

Huxley’s model (A.26) leads to expressions for the force developed by
the cross bridges. For an isometric steady–state contraction the contraction
tension or contraction force is given by:

F0 = 0.5N h2 kf

f + g
, (A.27)

where k = k(x) is the stiffness of the cross–bridge spring. For isotonic steady
states it recovers the classical Hill’s force–velocity relation (A.28). The static
force expression says that the force (or tension) generated in the muscle is
the function of the interfilamentar overlap, and its maximum is about the
middle of the shortening, where the acto–myosin overlap is maximal. This is
the so–called parabolic length–tension curve of muscular contraction.
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Hill’s Force–Velocity Muscular Dynamics

The dynamic force–velocity relation of muscular contraction is firstly discov-
ered in 1938, by A.V. Hill [Hil38], in his thermodynamic studies of muscular
work, and put into the basis of macroscopic muscle–load dynamics. Hill’s fa-
mous hyperbolic force–velocity curve has the equation:

(F + a) v = (F0 + F ) b, (A.28)

and says that the muscle force is greatest in isometric conditions (without
motion), while the velocity of shortening is maximal without external load; in
other words, muscle is either ‘strong’ or ‘fast’, but no both. Constants a and
b correspond respectively to the energy dissipated during the contraction and
the velocity of the mechano–chemical processes.

Hill showed that energy change in muscle during contraction can be de-
scribed by the following thermodynamic relation:

U = A + W + M, (A.29)

where U is the total energy change associated with contraction, A is the
activation heat (i.e., the heat production associated with the activation of the
contractile elements), W is the mechanical work performed by the muscle by
lifting a load, α∆x is the shortening heat , and M is the maintenance heat of
contraction.

The activation heat begins and is almost completely liberated before any
tension is developed, i.e. it is predominantly connected with the excitation–
contraction coupling process, and corresponds in time to the latency relaxation
of muscle. It is associated with the internal work required to transform the
contractile elements from the resting to the active state. Part of the activation
heat probably is associated with a change in the elastic properties of muscle,
but about two thirds of it is associated with the release of Ca++ ions from
the triads, its binding by troponin and the subsequent rearrangement of the
thin filament proteins. The activation heat is greatest for the first twitch after
a period rest and becomes smaller with succeeding twitches.

The maintenance heat begins at about the time tension begins and can
be divided into two parts: the labile maintenance heat and the stable main-
tenance heat. For isometric contractions at shorter than rest length, both the
labile and the stable heats diminish. For stretched muscle, the labile heat is
approximately constant, whereas the stable heat diminishes with stretching
and is roughly proportional to the degree of interfilamentar overlap. The sta-
ble heat has quite different values in functionally different muscles; it is law
when the muscle maintains tension efficiently and vice versa.

The shortening heat is proportional mainly to the distance of shortening
and does not depend greatly on the load, the speed of shortening, or the
amount of work performed. Since mechanical work isW = P∆x, substituting
this in the above thermodynamic relation (A.29) gives the heat equation:
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U = A + (P + α)∆x + M. (A.30)

From the analogy of the term (P + α) in the heat equation (A.30) and
the term (P + a) in the force-velocity equation (A.28), Hill was able to show
a rough equivalence between the coefficient of the shortening heat α and the
force-velocity constant a. The shortening heat is greatest for the first twitch
after a period of rest and is less for subsequent twitches.

Last, note should be made of thermoelastic heat . Generally speaking, rest-
ing muscle has rubberlike thermoelastic properties, whereas actively contract-
ing muscle has springlike thermoelastic properties. During the development
of tension the change in elastic properties is accompanied by an absorption of
heat by the muscle. As tension falls during relaxation, an equivalent amount
of heat is released by the muscle owing to its elastic properties. The various
kinds of muscle heat must be corrected for the thermoelastic heat. However,
for a complete cycle of contraction and relaxation, the net heat produced by
thermoelastic mechanisms is zero.

Fig. A.3. Hill’s model of the skeletal muscle–tendon complex.

In the same seminal paper [Hil38], Hill also proposed a three–element
rheological model of the skeletal muscle–tendon complex (see Figure A.3).
In this model the length–tension property of muscle is represented by an
active contractile element (CE) in parallel with a passive elastic element.
Total isometric muscle force is assumed to be the sum of muscle force when it
is inactive (passive) and when it is maximally excited (active). The muscle is
in series with tendon, which is represented by a nonlinear spring. Pennation
angle (α) is the angle between tendon and muscle fibers. Tendon slack length
is the length of tendon at which force initially develops during tendon stretch.
The model was scaled to represent each muscle by specifying the muscle’s
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peak force, optimal fiber length, tendon slack length, and pennation angle
based on data collected in anatomical experiments.

Hill’s muscle–tendon model has been widely applied in biomechanical
musculo–skeletal modelling.

Hatze’s Myocybernetics

Dynamics of human skeletal and face muscles is in the most sophisticated
form described in the series of papers of Hatze (see [Hat78]). His muscle–
control model involves excitation dynamics of neuro–muscular inputs (motor
units) and contraction dynamics based on Huxley’s sliding–filament theory
of muscle contraction. In brief, Hatze’s myocybernetics can be divided into
excitation dynamics and contraction dynamics. The excitation dynamics of a
single muscle fibre stimulated by trains of normalized nerve impulses α(t) is
represented by the system

β̈ + c4β̇ + c5β = c6VNα(t), β(0) = β̇(0) = 0, (A.31)

γ̈ + (c1γ̇ + c2γ)/ρ∗(ξ) = c3VTβ(t), γ(0) = γ̇(0) = 0,

δq̇ = d1{d2[1− k2(ξ)][h(ẋi)− 1/(1− q0)]− δq} δq(ts) = 0,

where ρ∗(ξ) is normalized Ca density function, k(ξ) is filamentary–overlap
function, h(ẋi) is velocity–dependence function;
c1, . . . , c6, d1, d2, VN , VT , q0 are defined constants; VTβ(t) is action potential
as appearing in the interior of the T–system of the fibre, while γ(t) denotes
the free Ca–ion concentration in the interfilamentary space; the variable δq
expresses the stretch potentiation induced by an elongation of the tetanized
fibre.

The variable ξ designates the normalized length of the contractile element
of the fibre, and is defined by the contraction dynamics,

ξ̇ = a1[1/a2 arcsinh a3 ln(
q∗k(ξ)

b2[fSE/f̄ + b1k1(ξ)]
− a4)]−

1
2
,

ξ(0) = ξ0, (A.32)

where a1, . . . , a4, b1, b2 are defined constants, fSE/f̄ is the normalized force
across the series elastic element , b1k1(ξ) is the passive sarcomere tension, and
q∗ is the active state.

Hodgkin–Huxley Theory of Neural Action Potential

The celebrated Hodgkin–Huxley HH–neuron model is described by the nonlin-
ear coupled differential equations for the four variables, V for the membrane
potential, and m,h and n for the gating variables of Na and K channels, and
it is given by [HH52, Hod64]
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CV̇ = −gNam
3h(V − VNa)− gKn4(V − VK)− gL(V − VL) + Iext

j ,

ṁ = −(am + bm)m+ am, ḣ = −(ah + bh)h+ ah, (A.33)
ṅ = −(an + bn)n+ an, where
am = 0.1 (V + 40)/[1− e−(V +40)/10], bm = 4 e−(V +65)/18,

an = 0.01 (V + 55)/[1− e−(V +55)/10], bn = 0.125 e−(V +65)/80,

an = 0.07 e−(V +65)/20, bn = 1/[1 + e−(V +35)/10].

Here the reversal potentials of Na, K channels and leakage are VNa = 50
mV, VK = −77 mV and VL = −54.5 mV; the maximum values of cor-
responding conductivities are gNa = 120 mS/cm2, gK = 36 mS/cm2 and
gL = 0.3 mS/cm2; the capacity of the membrane is C = 1 µF/cm2. The
external, input current is given by

Iext
j = gsyn(Va − Vc)

∑

n

α(t− tin), (A.34)

which is induced by the pre–synaptic spike–train input applied to the neuron
i, given by

Ui(t) = Va

∑

n

δ(t− tin).

In equation (A.34), tin is the nth firing time of the spike–train inputs, gsyn

and Vc denote the conductance and the reversal potential, respectively, of the
synapse, τ s is the time constant relevant to the synapse conduction, and α(t)
is the alpha function given by

α(t) = (t/τ s) e−t/τsΘ(t).

where Θ(t) is the Heaviside function. The HH model was originally proposed
to account for the property of squid giant axons [HH52, Hod64] and it has been
generalized with modifications of ion conductances. The HH–type models have
been widely adopted for a study on activities of transducer neurons such as
motor and thalamus relay neurons, which transform the amplitude–modulated
input to spike–train outputs.

Muscular Action Potential

Hodgkin–Huxley theory of neural action potential was adapted by Noble
[Nob62] as a model of muscular action potential. Noble model has the same
form as the HH–neuron model (A.33), with changed the values of constants,
so that the whole signal is about 10 times slower. Noble’s model was later
modified by Hatze’s muscular excitation dynamics (A.31) and complemented
by his contraction dynamics (A.32).

Now, to simplify Hatze’s myiocybernetics, and yet to retain all the nec-
essary excitation–contraction dynamics, as well as to establish the neuro–
muscular inter–connection, we propose herein approach of recurrent diffusion
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physics. The EFS–response mapping F of a skeletal or face muscle, i.e., the
response of the muscle system M to the efferent functional stimulation from
the neural network systemN – can be stated in the form of the force generator
time behavior, F : R → Homt(N ,M), where: t denotes stimulation time, N
and M correspond to the left R–moduli of neural and muscular systems. The
mapping F can be considered as an effect of a fifth–order transmission cascade
(F1 �→ F2 �→ F3 �→ F4 �→ F5), where Fi (i = 1, . . . , 5) represent neural action
potential, synaptic potential, muscular action potential, excitation–contraction
coupling and muscle tension generating, respectively (see [Iva91]).

According to [Nob62, Hak93, Hak02], all transmission components of the
system (F1 �→ F2 �→ F3 �→ F4 �→ F5), where Fi (i = 1, . . . , 5) can be consid-
ered as being some kind of diffusion processes, forming the fifth–order trans-
mission flux cascade.

Mapping F (for all included motor units in the particular muscle contrac-
tion) can be described by fifth order recurrent, distributed parameter diffusion
system [Iva91]

Ck
∂Vk

∂t
=

1
Rk

∂2Vk−1

∂z2
− Jk(Vk), with boundary condition at z = 0,

Vk(0, t) = V0 sin(2πft) = S(t), (k = 1, . . . , 5).

The single element F4, (k = 1, . . . , 5) behavior is now given by

Vk(z, t) = V0 exp(−zk/m) sin(2πf(t− zk/n)),

m =
1

RkCkf
, n =

4πf
RkCk

.

For muscle–mechanical purpose, the presented distributed map F can be
first mathematically approximated with the corresponding lumped parameter
RkCk electric circuit (where the second circuit represents the Eccles model of
synaptic activation (see [Ecc64, EIS67]) and the last one corresponds to the
low-pass filter representing the contraction process itself), at x = tendon

żk =
1
Tk

(bkzk−1 − zk), (k = 1, . . . , 5),

zk(0) = 0, z0 = S(t), z5 = F (t),

where Tk = RkCk are time characteristics of the circuits in cascade, and bk
are corresponding input gains (conversion factors).

The single muscle behavior in the lumped approximation form is given by
the recurrent sum of its transient and weighting terms (with time legs τk)

zk(t) = bkzk−1(1− exp(−t/Tk)) + zk exp(−(t− τk)/Tk).

The presented distributed mapping F can be further physically approxi-
mated with a second order forced–dumped linear oscillator in a Cauchy form
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T z̈ + 2aT ż + cz = bS, z(0) = ż(0) = 0,

where a (having dimension of force) corresponds to energy dissipated during
the contraction, b (having dimension of velocity) is the phosphagenic energy
transducing rate, while c corresponds to the second derivative of the stress–
strain curve of the series viscoelastic element [Wil56] of the muscular actuator
(assumed in exponential three–parameter form).

The complete efferent face and body neuro–muscular system (N ,M) is
now given by the set of equations

ẋi = −Di
jx

i + T i
jg

i(xi) + Si, (i, j = 1, . . . , n),

Ck
∂Vk

∂t
=

1
Rk

∂2Vk−1

∂z2
− Jk(Vk), (k = 1, . . . , 5);

or, its discrete form

ẋi = (b− yi)xi, ẏi = −vyi + g(xi + T i
jy

j), (A.35)

żk =
1
Tk

(bkzk−1 − zk), (k = 1, . . . , 5), (A.36)

zk(0) = 0, z0 = S(t), z5 = F (t). (A.37)

Equations (A.35,A.37) constitute a 3n–dimensional phase–space (for n = 5
or k = i) being a hiper–cube ≡ neuro–muscular control space. The feedback
control F−1 of the mapping F is performed by muscular autogenetic motor
servo.

Houk’s Autogenetic Motor Servo

It is now well–known (see [Hou79, HBB96]) that voluntary contraction force
F of a skeletal or face muscle system M is reflexly excited (positive reflex
feedback +F−1 by responses of its spindle receptors to stretch and is reflexly
inhibited (negative reflex feedback −F−1 by responses of its Golgi tendon or-
gans to contraction. Stretch and unloading reflexes are mediated by combined
actions of several autogenetic neural pathways.

James Houk’s term ‘autogenetic’ means that the stimulus excites recep-
tors located in the same face or body muscle that is the target of the reflex
response. The most important of these muscle receptors are the primary and
secondary endings in muscle–spindles, sensitive to length change – positive
length feedback +F−1, and the Golgi tendon organs, sensitive to contractile
force - negative force feedback −F−1.

The gain G of the length feedback +F−1 can be expressed as the positional
stiffness (the ratio G ≈ S = dF/dx of the force F–change to the length
x−change) of the muscle system M. The greater the stiffness S, the less will
the muscle be disturbed by a change in load and the more reliable will be
the performance of the muscle system M in executing controlled changes in
length +F−1.
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The autogenetic circuits (+F−1) and (−F−1) appear to function as ser-
voregulatory loops that convey continuously graded amounts of excitation and
inhibition to the large (alpha) skeletomotor neurons. Small (gamma) fusimo-
tor neurons innervate the contractile poles of muscle spindles and function to
modulate spindle–receptor discharge.

A.2.3 The Equivalent Muscular Actuator

A single skeletal muscle, (e.g., the triceps brachii muscle, see Figure A.4), is
attached at its origin to a large area of bone (the humerus in case of the tri-
ceps). At its other end, the insertion, it tapers into a glistening white tendon
which, (in case of the triceps is attached to the ulna). As the triceps contracts,
the insertion is pulled toward the origin and the arm is straightened or ex-
tended at the elbow. Thus the triceps is an extensor. Because skeletal muscle
exerts force only when it contracts, a second muscle – a flexor – is needed to
flex or bend the joint (e.g., the biceps brachii muscle is the flexor of the fore-
arm). Together, they (the biceps and triceps) make up an antagonistic pair
of muscles, which we will call forming the equivalent muscular actuator . Sim-
ilar pairs, i.e., equivalent muscular actuators, working antagonistically across
other joints, provide for almost all the movement of the skeleton. The equiva-
lent muscular actuator has the role of ‘driver’ in biodynamics. It generates the
equivalent muscular torque, which is the primary cause of human–like motion
[Iva91, IS01].

Fig. A.4. An antagonistic pair of human skeletal muscles, one flexor and the other
extensor (in the case of the forearm, biceps brachii and triceps brachii, respectively),
forming the equivalent muscular actuator – the primary cause of the human–like
motion.
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A.2.4 Biochemistry of Muscular Contraction

The immediate energy source for contraction in human muscles is adenosine
triphosphate ATP (see [Mou80, Mar98, IS00]). Muscle contains about 2µmole
ATP/gram wet weight. The myosin head is the only site of the major ATP
hydrolysis in active muscle. At the concentrations of ATP, ADP (adenosine
diphosphate), and Pi (inorganic phosphate) present in the sarcoplasm, ATP
hydrolysis yields about 11.5 kcal/mole. About 0.3µmole of ATP/gram muscle
is hydrolyzed by a single muscle twitch. The ATP hydrolysis overall scheme:

ATP → ADP + Pi + Energy (A.38)

represents actually the complex six–step chain–reaction {ki},
(i = 1, . . . , 5), which can be summarized as follows:

1. Myosin reacts rapidly with ATP to form a complex; the myosin is from
its resting (low–energy) form converted to an energy–rich form.

2. While complexed to the myosin, ATP is hydrolyzed to ADP and Pi. Re-
action 2 is much more rapid than reaction 1. (This step is extremely
temperature sensitive).

3. In reaction 3, while the ADP and Pi are still attached to the myosin, the
latter is converted to a low-energy form. This step is slow, rate limiting
in the sequence of reactions, and insensitive to temperature changes.

4. Reactions 4 and 5 are rapid.

Therefore, the reaction sequence proceeds as follows:

M + ATP ↔M∗ +ATP ↔M∗ +ADP + P ↔
M + ADP + P, ↔M +ADP + Pi ↔M + ADP, (A.39)

where M is miosin in low–energy form, M∗ is miosin in energy–rich form, and
symbol ↔ actually represents a pair of reversible reactions {ki, ki−1}, (i =
1, . . . , 5).

Muscles also contain about 20µmole CP/gram (creatine phosphate). Cre-
atine phosphate can phosphorylate ADP to form ATP in a reversible reaction
catalyzed by the enzyme creatine kinase.

Muscle contains large amounts of creatine kinase; it amounts to more than
25 percent of the soluble cytoplasmic protein. As soon as ATP is hydrolase,
the ADP formed is very rapidly rephosphorylated by CP and the ATP is
regenerated. Thus CP forms a reservoir of energy–rich phosphate bonds to
quickly replenish the sarcoplasmic ATP.

Ultimately, ATP is produced by glycolysis and respiration [Mou80]. In
glycolysis (the so called Embden–Meyerhoff pathway), glucose is degraded to
pyruvate, or to lactic acid in the absence of O2, yielding 2 moles ATP/mole
glucose metabolized. Intracellular glycogen granules provide a very readily
available source of glucose. Muscles normally contain 9 to 16 gm/kg glyco-
gen or, for a well–fed man of average height and weight, the total glycogen
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stores in muscle amount to 300 − 500 gram, with another 55 − 90 gram in
the liver. Glycogen breakdown in muscle begins immediately on stimulation,
and the amount of muscle glycogen depleted is proportional to the mechanical
work done. Glycogen is hydrolyzed by the enzyme phosphorylase to glucose–
1–phosphate, which then enters the glycolytic pathway.

Red muscle fibers respond to a stimulus with a relatively slow twitch (maxi-
mum shortening velocity about 17 mm/sec) and therefore are also called slow
fibers, whereas white muscle fibers react to a stimulus with a rapid twitch
(maximum shortening velocity about 42mm/sec) and therefore are also called
fast fibers. Red muscle has a more extensive blood supply than white muscle.
Red muscle fibers are able to sustain activity for long periods of time whereas
white muscle fibers characteristically produce short bursts of great tension
followed by the rapid onset of fatigue.

Whole red and white muscles differ in ATPase activity, and, indeed, the
purified contractile protein myosin extracted from red and white muscle differs
in ATPase activity, a finding associated with different myosin light chains.
White muscle and white muscle actomyosin show the greater ATPase activity.
The innervation of red and white muscle differs, and, indeed, whether a given
muscle is red or white results from trophic influences of the motor nerve.

Slow muscle fibers are generally thinner and possess many sarcosomes (mi-
tochondria) containing large amounts of respiratory enzymes, as well as copi-
ous quantities of the O2−carrying protein myoglobin in the sarcoplasm and
man lipid droplets. The numerous sarcosomes and high level of myoglobin give
slow fibers their red color. Fast (or white) muscle fibers, on the other hand, are
generally of larger diameter and contain large amounts of phosphorylase and
glycolytic enzymes and large deposits of glycogen. Slow muscles derive energy
predominantly from respiration, whereas in fast muscle fibers, glycolysis and
lactate production are more prominent.

A.3 Path Integral Methods

In this section we review Feynman path integral methods, from both historical
and modern perspective (see also subsection 1.1.3).

A.3.1 Historical Remarks

Extract from Feynman’s Nobel Lecture

In his Nobel Lecture, December 11, 1965, Richard (Dick) Feynman said that he
and his PhD supervisor, John Wheeler, had found the action A = A[x; ti, tj ],
directly involving the motions of the charges only,5

5 Wheeler–Feynman Idea [WF49] “The energy tensor can be regarded only as a
provisional means of representing matter. In reality, matter consists of electrically
charged particles.”
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A[x; ti, tj ] = mi

∫
(ẋi

µẋ
i
µ)

1
2 dti +

1
2
eiej

∫ ∫
δ(I2ij) ẋ

i
µ(ti)ẋj

µ(tj) dtidtj

with (i �= j) (A.40)
I2ij =

[
xi

µ(ti)− xj
µ(tj)

] [
xi

µ(ti)− xj
µ(tj)

]
,

where xi
µ = xi

µ(ti) is the four–vector position of the ith particle as a function
of the proper time ti, while ẋi

µ(ti) = dxi
µ(ti)/dti is the velocity four–vector.

The first term in the action A[x; ti, tj ] (A.40) is the integral of the proper
time ti, the ordinary action of relativistic mechanics of free particles of mass
mi (summation over µ). The second term in the action A[x; ti, tj ] (A.40)
represents the electrical interaction of the charges. It is summed over each
pair of charges (the factor 1

2 is to count each pair once, the term i = j is
omitted to avoid self–action). The interaction is a double integral over a delta
function of the square of space–time interval I2 between two points on the
paths. Thus, interaction occurs only when this interval vanishes, that is, along
light cones (see [WF45, WF49]).

Feynman comments here: “The fact that the interaction is exactly one–
half advanced and half–retarded meant that we could write such a principle of
least action, whereas interaction via retarded waves alone cannot be written
in such a way. So, all of classical electrodynamics was contained in this very
simple form.”

“...The problem is only to make a quantum theory, which has as its classical
analog, this expression (A.40). Now, there is no unique way to make a quantum
theory from classical mechanics, although all the textbooks make believe there
is. What they would tell you to do, was find the momentum variables and
replace them by (�/i)(∂/∂x), but I couldn’t find a momentum variable, as
there wasn’t any.”

“The character of quantum mechanics of the day was to write things in
the famous Hamiltonian way (in the form of Schrödinger equation), which
described how the wave function changes from instant to instant, and in terms
of the Hamiltonian operator H. If the classical physics could be reduced to a
Hamiltonian form, everything was all right. Now, least action does not imply
a Hamiltonian form if the action is a function of anything more than positions
and velocities at the same moment. If the action is of the form of the integral
of the Lagrangian L = L(ẋ, x), a function of the velocities and positions at
the same time t,

S[x] =
∫
L(ẋ, x) dt, (A.41)

then you can start with the Lagrangian L and then create a Hamiltonian H
and work out the quantum mechanics, more or less uniquely. But the action
A[x; ti, tj ] (A.40) involves the key variables, positions (and velocities), at two
different times ti and tj and therefore, it was not obvious what to do to make
the quantum–mechanical analogue...”

So, Feynman was looking for the action integral in quantum mechanics.
He says: “...I simply turned to Professor Jehle and said, “Listen, do you know
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any way of doing quantum mechanics, starting with action – where the action
integral comes into the quantum mechanics?” “No”, he said, “but Dirac has
a paper in which the Lagrangian, at least, comes into quantum mechanics.”
What Dirac said was the following: There is in quantum mechanics a very
important quantity which carries the wave function from one time to another,
besides the differential equation but equivalent to it, a kind of a kernel, which
we might call K(x′, x), which carries the wave function ψ(x) known at time
t, to the wave function ψ(x′) at time t+ ε,

ψ(x′, t+ ε) =
∫
K(x′, x)ψ(x, t) dx.

Dirac points out that this function K was analogous to the quantity in
classical mechanics that you would calculate if you took the exponential of
[iε multiplied by the Lagrangian L(ẋ, x)], imagining that these two positions
x, x′ corresponded to t and t+ ε. In other words,

K(x′, x) is analogous to eiεL( x′−x
ε ,x)/�.

So, Feynman continues: “What does he mean, they are analogous; what does
that mean, analogous? What is the use of that?” Professor Jehle said, “You
Americans! You always want to find a use for everything!” I said that I thought
that Dirac must mean that they were equal . “No”, he explained, “he doesn’t
mean they are equal.” “Well”, I said, “Let’s see what happens if we make
them equal.”

“So, I simply put them equal, taking the simplest example where the
Lagrangian is

L =
1
2
Mẋ2 − V (x),

but soon found I had to put a constant of proportionality N in, suitably
adjusted. When I substituted for K to get

ψ(x′, t+ ε) =
∫
N exp

[
iε

�
L(
x′ − x
ε

, x)
]

ψ(x, t) dx (A.42)

and just calculated things out by Taylor series expansion, out came the
Schrödinger equation. So, I turned to Professor Jehle, not really understand-
ing, and said, “Well, you see, Dirac meant that they were proportional.” Pro-
fessor Jehle’s eyes were bugging out – he had taken out a little notebook and
was rapidly copying it down from the blackboard, and said, “No, no, this is an
important discovery. You Americans are always trying to find out how some-
thing can be used. That’s a good way to discover things!” So, I thought I was
finding out what Dirac meant, but, as a matter of fact, had made the discov-
ery that what Dirac thought was analogous, was, in fact, equal. I had then,
at least, the connection between the Lagrangian and quantum mechanics, but
still with wave functions and infinitesimal times.”
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“It must have been a day or so later when I was lying in bed thinking about
these things, that I imagined what would happen if I wanted to calculate the
wave function at a finite interval later. I would put one of these factors eiεL

in here, and that would give me the wave functions the next moment, t + ε,
and then I could substitute that back into (A.42) to get another factor of eiεL

and give me the wave function the next moment, t+ 2ε, and so on and so on.
In that way I found myself thinking of a large number of integrals, one after
the other in sequence. In the integrand was the product of the exponentials,
which, of course, was the exponential of the sum of terms like εL. Now, L is the
Lagrangian and ε is like the time interval dt, so that if you took a sum of such
terms, that’s exactly like an integral. That’s like Riemann’s formula for the
integral

∫
Ldt, you just take the value at each point and add them together.

We are to take the limit as ε→ 0, of course. Therefore, the connection between
the wave function of one instant and the wave function of another instant a
finite time later could be obtained by an infinite number of integrals (because
ε goes to zero, of course), of exponential where S is the action expression
(A.41). At last, I had succeeded in representing quantum mechanics directly
in terms of the action S[x].”

Fully satisfied, Feynman comments: “This led later on to the idea of the
transition amplitude for a path: that for each possible way that the particle
can go from one point to another in space–time, there’s an amplitude. That
amplitude is e to the power of [i/� times the action S[x] for the path], i.e.,
eiS[x]/�. Amplitudes from various paths superpose by addition. This then is
another, a third way, of describing quantum mechanics, which looks quite
different from that of Schrödinger or Heisenberg, but which is equivalent to
them.”

“...Now immediately after making a few checks on this thing, what I
wanted to do, of course, was to substitute the action A[x; ti, tj ] (A.40) for
the other S[x] (A.41). The first trouble was that I could not get the thing
to work with the relativistic case of spin one–half. However, although I could
deal with the matter only nonrelativistically, I could deal with the light or
the photon interactions perfectly well by just putting the interaction terms
of (A.40) into any action, replacing the mass terms by the non–relativistic
Ldt = 1

2Mẋ
2dt,

A[x; ti, tj ] =
1
2

∑

i

mi

∫
(ẋi

µ)2dti+
1
2

∑

i,j(i�=j)

eiej

∫ ∫
δ(I2ij) ẋ

i
µ(ti)ẋj

µ(tj) dtidtj .

When the action has a delay, as it now had, and involved more than one time,
I had to lose the idea of a wave function. That is, I could no longer describe the
program as: given the amplitude for all positions at a certain time to compute
the amplitude at another time. However, that didn’t cause very much trouble.
It just meant developing a new idea. Instead of wave functions we could talk
about this: that if a source of a certain kind emits a particle, and a detector is
there to receive it, we can give the amplitude that the source will emit and the
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detector receive, eiA[x;ti,tj ]/�. We do this without specifying the exact instant
that the source emits or the exact instant that any detector receives, without
trying to specify the state of anything at any particular time in between, but
by just finding the amplitude for the complete experiment. And, then we could
discuss how that amplitude would change if you had a scattering sample in
between, as you rotated and changed angles, and so on, without really having
any wave functions...It was also possible to discover what the old concepts
of energy and momentum would mean with this generalized action. And, so
I believed that I had a quantum theory of classical electrodynamics – or
rather of this new classical electrodynamics described by the action A[x; ti, tj ]
(A.40)...”

Configuration (Lagrangian) Path Integral

Dirac and Feynman first developed the lagrangian approach to functional
integration. To review this approach, we start with the time–dependent
Schrödinger equation

i� ∂tψ(x, t) = −∂x2ψ(x, t) + V (x)ψ(x, t)

appropriate to a particle of mass m moving in a potential V (x), x ∈ R.
A solution to this equation can be written as an integral (see e.g., [Kla97,
Kla00]),

ψ(x′′, t′′) =
∫
K(x′′, t′′;x′, t′)ψ(x′, t′) dx′ ,

which represents the wave function ψ(x′′, t′′) at time t′′ as a linear superposi-
tion over the wave function ψ(x′, t′) at the initial time t′, t′ < t′′. The integral
kernel K(x′′, t′′;x′, t′) is known as the propagator, and according to Feynman
[Fey48] it may be given by

K(x′′, t′′;x′, t′) = N
∫
D[x] e(i/�)

∫
[(m/2) ẋ2(t)−V (x(t))] dt,

which is a formal expression symbolizing an integral over a suitable set of
paths. This integral is supposed to run over all continuous paths x(t), t′ ≤
t ≤ t′′, where x(t′′) = x′′ and x(t′) = x′ are fixed end points for all paths.
Note that the integrand involves the classical Lagrangian for the system.

To overcome the convergence problems, Feynman adopted a lattice regular-
ization as a procedure to yield well–defined integrals which was then followed
by a limit as the lattice spacing goes to zero called the continuum limit. With
ε > 0 denoting the lattice spacing, the details regarding the lattice regular-
ization procedure are given by

K(x′′, t′′;x′, t′) = lim
ε→0

(m/2πi�ε)(N+1)/2

∫
· · ·

· · ·
∫

exp{(i/�)
N∑

l=0

[(m/2ε)(xl+1 − xl)2 − ε V (xl) ]}
N∏

l=1

dxl ,
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where xN+1 = x′′, x0 = x′, and ε ≡ (t′′−t′)/(N+1), N ∈ {1, 2, 3, . . . }. In this
version, at least, we have an expression that has a reasonable chance of being
well defined, provided, of course, that one interprets the conditionally con-
vergent integrals involved in an appropriate manner. One common and fully
acceptable interpretation adds a convergence factor to the exponent of the
preceding integral in the form −(ε2/2�)

∑N
l=1 x

2
l , which is a term that for-

mally makes no contribution to the final result in the continuum limit save for
ensuring that the integrals involved are now rendered absolutely convergent.

Phase–Space (Hamiltonian) Path Integral

It is necessary to retrace history at this point to recall the introduction of the
phase–space path integral by Feynman [Fey51]. In Appendix B to this article,
Feynman introduced a formal expression for the configuration or q−space
propagator given by (see e.g., [Kla97, Kla00])

K(q′′, t′′; q′, t′) =M
∫
D[p]D[q] exp{(i/�)

∫
[ p q̇ −H(p, q) ] dt}.

In this equation one is instructed to integrate over all paths q(t), t′ ≤ t ≤ t′′,
with q(t′′) ≡ q′′ and q(t′) ≡ q′ held fixed, as well as to integrate over all paths
p(t), t′ ≤ t ≤ t′′, without restriction.

It is widely appreciated that the phase space path integral is more gen-
erally applicable than the original, Lagrangian, version of the path integral.
For instance, the original configuration space path integral is satisfactory for
Lagrangians of the general form

L(x) =
1
2
mẋ2 +A(x) ẋ− V (x) ,

but it is unsuitable, for example, for the case of a relativistic particle with the
Lagrangian

L(x) = −mqrt1− ẋ2

expressed in units where the speed of light is unity. For such a system – as
well as many more general expressions – the phase space form of the path
integral is to be preferred. In particular, for the relativistic free particle, the
phase space path integral

M
∫
D[p]D[q] exp{(i/�)

∫
[ p q̇ − qrtp2 +m2 ] dt},

is readily evaluated and yields the correct propagator.

Feynman–Kac Formula

Through his own research, M. Kac was fully aware of Wiener’s theory of
Brownian motion and the associated diffusion equation that describes the
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corresponding distribution function. Therefore, it is not surprising that he
was well prepared to give a path integral expression in the sense of Feynman
for an equation similar to the time–dependent Schrödinger equation save for
a rotation of the time variable by −π/2 in the complex plane, namely, by
the change t → −it (see e.g., [Kla97, Kla00]). In particular, Kac [Kac51]
considered the equation

∂tρ(x, t) = ∂x2ρ(x, t)− V (x) ρ(x, t). (A.43)

This equation is analogous to Schrödinger equation but of course differs from
it in certain details. Besides certain constants which are different, and the
change t→ −it, the nature of the dependent variable function ρ(x, t) is quite
different from the normal quantum mechanical wave function. For one thing, if
the function ρ is initially real it will remain real as time proceeds. Less obvious
is the fact that if ρ(x, t) ≥ 0 for all x at some time t, then the function will
continue to be nonnegative for all time t. Thus we can interpret ρ(x, t) more
like a probability density; in fact in the special case that V (x) = 0, then ρ(x, t)
is the probability density for a Brownian particle which underlies the Wiener
measure. In this regard, ν is called the diffusion constant.

The fundamental solution of (A.43) with V (x) = 0 is readily given as

W (x, T ; y, 0) =
1

qrt2πνT
exp

(

− (x− y)2
2νT

)

,

which describes the solution to the diffusion equation subject to the initial
condition

lim
T→0+

W (x, T ; y, 0) = δ(x− y) .

Moreover, it follows that the solution of the diffusion equation for a general
initial condition is given by

ρ(x′′, t′′) =
∫
W (x′′, t′′;x′, t′) ρ(x′, t′) dx′ .

Iteration of this equation N times, with ε = (t′′ − t′)/(N + 1), leads to the
equation

ρ(x′′, t′′) = N ′
∫
· · ·
∫

e−(1/2νε)
∑ N

l=0(xl+1−xl)
2

N∏

l=1

dxl ρ(x′, t′) dx′,

where xN+1 ≡ x′′ and x0 ≡ x′. This equation features the imaginary time
propagator for a free particle of unit mass as given formally as

W (x′′, t′′;x′, t′) = N
∫
D[x] e−(1/2ν)

∫
ẋ2 dt,

where N denotes a formal normalization factor.
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The similarity of this expression with the Feynman path integral [for
V (x) = 0] is clear, but there is a profound difference between these equa-
tions. In the former (Feynman) case the underlying measure is only finitely
additive, while in the latter (Wiener) case the continuum limit actually de-
fines a genuine measure, i.e., a countably additive measure on paths, which is
a version of the famous Wiener measure. In particular,

W (x′′, t′′;x′, t′) =
∫
dµν

W (x),

where µν
W denotes a measure on continuous paths x(t), t′ ≤ t ≤ t′′, for which

x(t′′) ≡ x′′ and x(t′) ≡ x′. Such a measure is said to be a pinned Wiener
measure, since it specifies its path values at two time points, i.e., at t = t′ and
at t = t′′ > t′.

We note that Brownian motion paths have the property that with proba-
bility one they are concentrated on continuous paths. However, it is also true
that the time derivative of a Brownian path is almost nowhere defined, which
means that, with probability one, ẋ(t) = ±∞ for all t.

When the potential V (x) �= 0 the propagator associated with (A.43) is
formally given by

W (x′′, t′′;x′, t′) = N
∫
D[x]e−(1/2ν)

∫
ẋ2 dt−

∫
V (x) dt,

an expression which is well defined if V (x) ≥ c, −∞ < c < ∞. A mathe-
matically improved expression makes use of the Wiener measure and is given
by

W (x′′, t′′;x′, t′) =
∫

e−
∫

V (x(t)) dt dµν
W (x).

This is an elegant relation in that it represents a solution to the differen-
tial equation (A.43) in the form of an integral over Brownian motion paths
suitably weighted by the potential V . Incidentally, since the propagator is
evidently a strictly positive function, it follows that the solution of the differ-
ential equation (A.43) is nonnegative for all time t provided it is nonnegative
for any particular time value.

Itô Formula

Itô [Ito60] proposed another version of a continuous–time regularization that
resolved some of the troublesome issues. In essence, the proposal of Itô takes
the form given by

lim
ν→∞Nν

∫
D[x] exp{(i/�)

∫
[
1
2
mẋ2 − V (x)] dt} exp{−(1/2ν)

∫
[ẍ2 + ẋ2] dt}.

Note well the alternative form of the auxiliary factor introduced as a regulator.
The additional term ẍ2, the square of the second derivative of x, acts to smooth
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out the paths sufficiently well so that in the case of (21) both x(t) and ẋ(t) are
continuous functions, leaving ẍ(t) as the term which does not exist. However,
since only x and ẋ appear in the rest of the integrand, the indicated path
integral can be well defined; this is already a positive contribution all by itself
(see e.g., [Kla97, Kla00]).

A.3.2 Standard Path Integral Quantization

Canonical versus Path Integral Quantization

Recall that in the usual, canonical formulation of quantum mechanics, the
system’s phase–space coordinates, q, and momenta, p, are replaced by the
corresponding Hermitian operators in the Hilbert space, with real measurable
eigenvalues, which obey Heisenberg commutation relations.

The path integral quantization is instead based directly on the notion of
a propagator K(qf , tf ; qi, ti) which is defined such that (see [Ryd96, CL84,
Gun03])

ψ(qf , tf ) =
∫
K(qf , tf ; qi, ti)ψ(qi, ti) dqi, (A.44)

i.e., the wave function ψ(qf , tf ) at final time tf is given by a Huygens principle
in terms of the wave function ψ(qi, ti) at an initial time ti, where we have to
integrate over all the points qi since all can, in principle, send out little wavelets
that would influence the value of the wave function at qf at the later time tf .
This equation is very general and is simply an expression of causality. We use
the normal units with � = 1.

According to the usual interpretation of quantum mechanics, ψ(qf , tf ) is
the probability amplitude that the particle is at the point qf and the time tf ,
which means that K(qf , tf ; qi, ti) is the probability amplitude for a transition
from qi and ti to qf and tf . The probability that the particle is observed at
qf at time tf if it began at qi at time ti is

P (qf , tf ; qi, ti) = |K(qf , tf ; qi, ti)|2 .

Let us now divide the time interval between ti and tf into two, with t
as the intermediate time, and q the intermediate point in space. Repeated
application of (A.44) gives

ψ(qf , tf ) =
∫ ∫

K(qf , tf ; q, t) dq K(q, t; qi, ti)ψ(qi, ti) dqi,

from which it follows that

K(qf , tf ; qi, ti) =
∫
dq K(qf , tf ; q, t)K(q, t; qi, ti).

This equation says that the transition from (qi, ti) to (qf , tf ) may be regarded
as the result of the transition from (qi, ti) to all available intermediate points
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q followed by a transition from (q, t) to (qf , tf ). This notion of all possible
paths is crucial in the path integral formulation of quantum mechanics.

Now, recall that the state vector |ψ, t〉S in the Schrödinger picture is re-
lated to that in the Heisenberg picture |ψ〉H by

|ψ, t〉S = e−iHt |ψ〉H ,

or, equivalently,
|ψ〉H = eiHt |ψ, t〉S .

We also define the vector

|q, t〉H = eiHt |q〉S ,

which is the Heisenberg version of the Schrödinger state |q〉. Then, we can
equally well write

ψ(q, t) = 〈q, t |ψ〉H . (A.45)

By completeness of states we can now write

〈qf , tf |ψ〉H =
∫
〈qf , tf |qi, ti〉H 〈qi, ti |ψ〉H dqi,

which with the definition of (A.45) becomes

ψ(qf , tf ) =
∫
〈qf , tf |qi, ti〉H ψ(qi, ti) dqi.

Comparing with (A.44), we get

K(qf , tf ; qi, ti) = 〈qf , tf |qi, ti〉H .

Now, let us compute the quantum–mechanics propagator

〈q′, t′ |q, t〉H =
〈
q′|e−iH(t−t′) |q〉

using the path integral formalism that will incorporate the direct quantization
of the coordinates, without Hilbert space and Hermitian operators.

The first step is to divide up the time interval into n + 1 tiny pieces:
tl = lε + t with t′ = (n + 1)ε + t. Then, by completeness, we can write
(dropping the Heisenberg picture index H from now on)

〈q′, t′ |q, t〉 =
∫
dq1(t1)...

∫
dqn(tn) 〈q′, t′ |qn, tn〉 ×

× 〈qn, tn |qn−1, tn−1〉 ... 〈q1, t1 |q, t〉 . (A.46)

The integral
∫
dq1(t1)...dqn(tn) is an integral over all possible paths, which are

not trajectories in the normal sense, since there is no requirement of continuity,
but rather Markov chains.
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Now, for small ε we can write

〈q′, ε |q, 0〉 =
〈
q′|e−iεH(P,Q) |q〉 = δ(q′ − q)− iε 〈q′|H(P,Q) |q〉 ,

where H(P,Q) is the Hamiltonian (e.g., H(P,Q) = 1
2P

2 + V (Q), where P,Q
are the momentum and coordinate operators). Then we have (see [Ryd96,
CL84, Gun03])

〈q′|H(P,Q) |q〉 =
∫
dp

2π
eip(q′−q)H

(

p,
1
2
(q′ + q)

)

.

Putting this into our earlier form we get

〈q′, ε |q, 0〉 �
∫
dp

2π
exp

[

i

{

p(q′ − q)− εH
(

p,
1
2
(q′ + q)

)}]

,

where the 0th order in ε→ δ(q′−q) and the 1st order in ε→ −iε 〈q′|H(P,Q) |q〉.
If we now substitute many such forms into (A.46) we finally get

〈q′, t′ |q, t〉 = lim
n→∞

∫ n∏

i=1

dqi

n+1∏

k=1

dpk

2π
× (A.47)

× exp





i

n+1∑

j=1

[pj(qj − qj−1)]−H
(

pj ,
1
2
(qj + qj+1)

)

(tj − tj−1)]





,

with q0 = q and qn+1 = q′. Roughly, the above formula says to integrate over
all possible momenta and coordinate values associated with a small interval,
weighted by something that is going to turn into the exponential of the action
eiS in the limit where ε → 0. It should be stressed that the different qi
and pk integrals are independent, which implies that pk for one interval can
be completely different from the pk′ for some other interval (including the
neighboring intervals). In principle, the integral (A.47) should be defined by
analytic continuation into the complex plane of, for example, the pk integrals.

Now, if we go to the differential limit where we call tj − tj−1 ≡ dτ and
write (qj−qj−1)

(tj−tj−1)
≡ q̇, then the above formula takes the form

〈q′, t′ |q, t〉 =
∫
D[p]D[q] exp

{

i

∫ t′

t

[pq̇ −H(p, q)] dτ

}

,

where we have used the shorthand notation
∫
D[p]D[q] ≡

∫ ∏

τ

dq(τ)dp(τ)
2π

.

Note that the above integration is an integration over the p and q values at
every time τ . This is what we call a functional integral . We can think of a
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given set of choices for all the p(τ) and q(τ) as defining a path in the 6D phase–
space. The most important point of the above result is that we have obtained
an expression for a quantum–mechanical transition amplitude in terms of an
integral involving only pure complex numbers, without operators.

We can actually perform the above integral for Hamiltonians of the type
H = H(P,Q). We use square completion in the exponential for this, defining
the integral in the complex p plane and continuing to the physical situation.
In particular, we have

∫ ∞

−∞

dp

2π
exp

{

iε(pq̇ − 1
2
p2]
}

=
1√
2πiε

exp
[
1
2
iεq̇2

]

,

(see [Ryd96, CL84, Gun03]) which, substituting into (A.47) gives

〈q′, t′ |q, t〉 = lim
n→∞

∫ ∏

i

dqi√
2πiε

exp





iε

n+1∑

j=1

[
1
2

(
qj − qj−1

ε

)2

− V
(
qj + qj+1

2

)]




.

This can be formally written as

〈q′, t′ |q, t〉 =
∫
D[q] eiS[q],

where ∫
D[q] ≡

∫ ∏

i

dqi√
2πiε

,

while

S[q] =
∫ t′

t

L(q, q̇) dτ

is the standard action with the Lagrangian

L =
1
2
q̇2 − V (q).

Generalization to many degrees of freedom is straightforward:

〈q′1...q′N , t′|q1...qN , t〉 =
∫
D[p]D[q] exp

{

i

∫ t′

t

[
N∑

n=1

pnq̇n −H(pn, qn)

]

dτ

}

,

with
∫
D[p]D[q] =

∫ N∏

n=1

dqndpn

2π
.

Here, qn(t) = qn and qn(t′) = q′n for all n = 1, ..., N , and we are allowing for
the full Hamiltonian of the system to depend upon all the N momenta and
coordinates collectively.
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Elementary Applications

(i) Consider first

〈q′, t′|Q(t0)|q, t〉

=
∫ ∏

dqi(ti) 〈q′, t′|qn, tn〉 ... 〈qi0, ti0|Q(t0)|qi−1, ti−1〉 ... 〈q1, t1|q, t〉 ,

where we choose one of the time interval ends to coincide with t0, i.e., ti0 = t0.
If we operate Q(t0) to the left, then it is replaced by its eigenvalue qi0 = q(t0).
Aside from this one addition, everything else is evaluated just as before and
we will obviously obtain

〈q′, t′|Q(t0)|q, t〉 =
∫
D[p]D[q] q(t0) exp

{

i

∫ t′

t

[pq̇ −H(p, q)]dτ

}

.

(ii)Next, supposewewant apath integral expression for 〈q′, t′|Q(t1 )Q(t2 )|q, t〉
in the case where t1 > t2. For this, we have to insert as intermediate states
|qi1, ti1〉 〈qi1, ti1| with ti1 = t1 and |qi2, ti2〉 〈qi2, ti2| with ti2 = t2 and since
we have ordered the times at which we do the insertions we must have
the first insertion to the left of the 2nd insertion when t1 > t2. Once
these insertions are done, we evaluate 〈qi1, ti1|Q(t1) = 〈qi1, ti1| q(t1) and
〈qi2, ti2|Q(t2) = 〈qi2, ti2| q(t2) and then proceed as before and get

〈q′, t′|Q(t1)Q(t2)|q, t〉 =
∫
D[p]D[q] q(t1) q(t2) exp

{

i

∫ t′

t

[pq̇ −H(p, q)]dτ

}

.

Now, let us ask what the above integral is equal to if t2 > t1? It is obvious
that what we get for the above integral is 〈q′, t′|Q(t2)Q(t1)|q, t〉 . Clearly, this
generalizes to an arbitrary number of Q operators.

(iii) When we enter into quantum field theory, the Q’s will be replaced
by fields, since it is the fields that play the role of coordinates in the 2nd
quantization conditions.

Sources

The source is represented by modifying the Lagrangian:

L→ L+ J(t)q(t).

Let us define |0, t〉J as the ground state (vacuum) vector (in the moving frame,
i.e. with the eiHt included) in the presence of the source. The required tran-
sition amplitude is

Z[J ] ∝ 〈0,+∞|0,−∞〉J ,
where the source J = J(t) plays a role analogous to that of an electromagnetic
current, which acts as a source of the electromagnetic field. In other words, we
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can think of the scalar product JµA
µ, where Jµ is the current from a scalar

(or Dirac) field acting as a source of the potential Aµ. In the same way, we
can always define a current J that acts as the source for some arbitrary field
φ. Z[J ] (otherwise denoted by W [J ]) is a functional of the current J , defined
as (see [Ryd96, CL84, Gun03])

Z[J ] ∝
∫
D[p]D[q] exp

{

i

∫ t′

t

[p(τ)q̇(τ)−H(p, q) + J(τ)q(τ)]dτ

}

,

with the normalization condition Z[J = 0] = 1. Here, the argument of the
exponential depends upon the functions q(τ) and p(τ) and we then integrate
over all possible forms of these two functions. So the exponential is a functional
that maps a choice for these two functions into a number. For example, for
a quadratically completable H(p, q), the p integral can be performed as a q
integral

Z[J ] ∝
∫
D[q] exp

{

i

∫ +∞

−∞

(

L+ Jq +
1
2
iεq2

)

dτ

}

,

where the addittion to H was chosen in the form of a convergence factor
− 1

2 iεq
2.

Fields

Let us now treat the abstract scalar field φ(x) as a coordinate in the sense
that we imagine dividing space up into many little cubes and the average
value of the field φ(x) in that cube is treated as a coordinate for that little
cube. Then, we go through the multi–coordinate analogue of the procedure
we just considered above and take the continuum limit. The final result is

Z[J ] ∝
∫
D[φ] exp

{

i

∫
d4x

(

L (φ(x)) + J(x)φ(x) +
1
2
iεφ2

)}

,

where for L we would employ the Klein Gordon Lagrangian form. In the
above, the dx0 integral is the same as dτ , while the d3x integral is simply
summing over the sub–Lagrangians of all the different little cubes of space
and then taking the continuum limit. L is the Lagrangian density describing
the Lagrangian for each little cube after taking the many–cube limit (see
[Ryd96, CL84, Gun03]) for the full derivation).

We can now introduce interactions, LI . Assuming the simple form of the
Hamiltonian, we have

Z[J ] ∝
∫
D[φ] exp

{

i

∫
d4x (L (φ(x)) + LI (φ(x)) + J(x)φ(x))

}

,

again using the normalization factor required for Z[J = 0] = 1.
For example of Klein Gordon theory, we would use
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L = L0 + LI , L0
1
2
[∂µφ∂

µφ− µ2φ2], LI = LI(φ),

where ∂µ ≡ ∂xµ and we can freely manipulate indices, as we are working in
Euclidean space R

3. In order to define the above Z[J ], we have to include a
convergence factor iεφ2,

L0 →
1
2
[∂µφ∂

µφ− µ2φ2 + iεφ2],

so that

Z[J ] ∝
∫
D[φ] exp

{

i

∫
d4x

(
1
2
[∂µφ∂

µφ− µ2φ2 + iεφ2] + LI (φ(x)) + J(x)φ(x)
)}

is the appropriate generating function in the free field theory case.

Gauges

In the path integral approach to quantization of the gauge theory , we imple-
ment gauge fixing by restricting in some manner or other the path integral
over gauge fields

∫
D[Aµ]. In other words we will write instead

Z[J ] ∝
∫
D[Aµ] δ (some gauge fixing condition) exp

{

i

∫
d4xL (Aµ)

}

.

A common approach would be to start with the gauge condition

L = −1
4
FµνF

µν − 1
2
(∂µAµ)2

where the electrodynamic field tensor is given by Fµν = ∂µAν − ∂νAµ, and
compute

Z[J ] ∝
∫
D[Aµ] exp

{

i

∫
d4x [L(Aµ(x)) + Jµ(x)Aµ(x)]

}

as the generating function for the vacuum expectation values of time ordered
products of theAµ fields. Note that Jµ should be conserved (∂µJµ = 0) in order
for the full expression L(Aµ)+JµA

µ to be gauge invariant under the integral
sign when Aµ → Aµ+∂µΛ. For a proper approach, see [Ryd96, CL84, Gun03].

Geometries

In this subsection, following [SK98], we describe path integral quantization
on Riemannian–symplectic manifolds. Let q̂j be a set of Cartesian coordinate
canonical operators satisfying the Heisenberg commutation relations [q̂j , q̂k] =
iωjk. Here ωjk = −ωkj is the canonical symplectic structure (see section 2.6.2
above). We introduce the canonical coherent states as |q〉 ≡ eiqjωjk q̂k |0〉, where
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ωjnω
nk = δk

j , and |0〉 is the ground state of a harmonic oscillator with unit
angular frequency. Any state |ψ〉 is given as a function on phase space in this
representation by 〈q|ψ〉 = ψ(q). A general operator Â can be represented in
the form Â =

∫
dq a(q)|q〉〈q|, where a(q) is the lower symbol of the operator

and dq is a properly normalized form of the Liouville measure. The function
A(q, q′) = 〈q|Â|q′〉 is the kernel of the operator .

The main object of the path integral formalism is the integral kernel of
the evolution operator

Kt(q, q′) = 〈q|e−itĤ |q′〉 =

q(t)=q∫

q(0)=q′

D[q] ei
∫ t
0 dτ( 1

2 qjωjk q̇k−h) . (A.48)

Here Ĥ is the Hamiltonian, and h(q) its symbol. The measure formally implies
a sum over all phase-space paths pinned at the initial and final points, and a
Wiener measure regularization implies the following replacement

D[q] → D[µν(q)] = D[q] e−
1
2ν

∫ t
0 dτ q̇2

= Nν(t) dµν
W (q) . (A.49)

The factor Nν(t) equals 2πeνt/2 for every degree of freedom, dµν
W (q) stands

for the Wiener measure, and ν denotes the diffusion constant. We denote by
Kν

t (q, q′) the integral kernel of the evolution operator for a finite ν. The Wiener
measure determines a stochastic process on the flat phase space. The integral
of the symplectic one-form

∫
qωdq is a stochastic integral that is interpreted

in the Stratonovich sense. Under general coordinate transformations q = q(q̄),
the Wiener measure describes the same stochastic process on flat space in
the curvilinear coordinates dq2 = dσ(q̄)2, so that the value of the integral is
not changed apart from a possible phase term. After the calculation of the
integral, the evolution operator kernel is obtained by taking the limit ν →∞.
The existence of this limit, and also the covariance under general phase-space
coordinate transformations, can be most easily proved through the operator
formalism for the regularized kernel Kν

t (q, q′).
Note that the integral (A.48) with the Wiener measure inserted can be

regarded as an ordinary Lagrangian path integral with a complex action,
where the configuration space is the original phase space and the Hamiltonian
h(q) serves as a potential. Making use of this observation it is not hard to
derive the corresponding Schrödinger–like equation

∂tK
ν
t (q, q′) =

[
ν

2

(

∂qj +
i

2
ωjkq

k

)2

− ih(q)
]

Kν
t (q, q′) , (A.50)

subject to the initial conditionKν
t=0(q, q

′) = δ(q−q′), 0 < ν <∞. One can eas-
ily show that K̂ν

t → K̂t as ν →∞ for all t > 0. The covariance under general
coordinate transformations follows from the covariance of the “kinetic” energy
of the Schrödinger operator in (A.50): The Laplace operator is replaced by the
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Laplace-Beltrami operator in the new curvilinear coordinates q = q(q̄), so the
solution is not changed, but written in the new coordinates. This is similar
to the covariance of the ordinary Schrödinger equation and the corresponding
Lagrangian path integral relative to general coordinate transformations on the
configuration space: The kinetic energy operator (the Laplace operator) in the
ordinary Schrödinger equation provides a term quadratic in time derivatives
in the path integral measure which is sufficient for the general coordinate
covariance. We remark that the regularization procedure based on the mod-
ified Schrödinger equation (A.50) applies to far more general Hamiltonians
than those quadratic in canonical momenta and leading to the conventional
Lagrangian path integral.

A.3.3 Modern String Actions and Transition Amplitudes

For the sake of completeness, in this subsection we give a brief review of
modern path integral methods is quantum fields and string theory (mainly
following [DEF99]). Recall that the fundamental quantities in quantum field
theory (QFT) are the transition amplitudes, IN =⇒ OUT, for processes in
which a number of IN incoming particles scatter to produce a number of OUT
outgoing particles. The square modulus of the transition amplitude yields the
probability for this process to take place.

The only way we have today to define string theory is by giving a rule for
the evaluation of transition amplitudes, order by order in the loop expansion,
i.e., genus by genus. The rule is to assign a relative weight to a given config-
uration and then to sum over all configurations. To make this more precise,
we first describe the system’s configuration manifold M .

We assume that Σ and M are smooth manifolds, of dimensions 2 and n
respectively, and that x is a continuous map from Σ to M . If ξm, m = 1, 2,
are local coordinates on Σ and xµ, µ = 1, . . . , n, are local coordinates on M
then the map x may be described by functions xµ(ξm) which are continuous.

To each system configuration we can associate a weight e−S[x,Σ,M ], (S ∈ C)
and the transition amplitude, Amp, for specified external strings (incoming
and outgoing) is obtained by summing over all surfaces Σ and all possible
maps x.

Amp =
∑

surfaces Σ

∑

x

e−S[x,Σ,M ] .

We now need to specify each of these ingredients:

1) We assume M to be an nD Riemannian manifold, with metric g. A special
case is flat Euclidean space–time R

n. The space–time metric is assumed fixed .

ds2 = (dx, dx)g = gµν(x)dxµ ⊗ dxν .

2) The metric g on M induces a metric on Σ: γ = x∗(g),

γ = γmndξ
m ⊗ dξn, γmn = gµν

∂xµ

∂ξm

∂xν

∂ξn .
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This metric is non–negative, but depends upon x. It is advantageous to in-
troduce an intrinsic Riemannian metric g on Σ, independently of x; in local
coordinates, we have

g = gmn(ξ)dξm ⊗ dξn.

A natural intrinsic candidate for S is the area of x(Σ), which gives the
Nambu–Goto action

Area (x (Σ)) =
∫

Σ

dµγ =
∫

Σ

n2ξ
√

det γmn,

which depends only upon g and x, but not on g. However, the transition am-
plitudes derived from the Nambu–Goto action are not well–defined quantum–
mechanically.

Otherwise, we can take as starting point the Polyakov action

S[x, g] = κ

∫

Σ

(dx, ∗dx)g = κ

∫

Σ

dµgg
mn∂mx

µ∂nx
νgµν(x),

where κ is the string tension (a positive constant with dimension of inverse
length square). The stationary points of S with respect to g are at g0 = eφγ
for some function φ on Σ, and thus S[x, g0] ∼ Area (x (Σ)).

The Polyakov action leads to well–defined transition amplitudes, obtained
by integration over the space Met(Σ) of all positive metrics on Σ for a given
topology, as well as over the space of all maps Map(Σ,M). We can define the
path integral

Amp =
∑

topologies
Σ

∫

Met(Σ)

1
N(g)

∫

Map(Σ,M)

D[x] e−S[x,g,g],

where N is a normalization factor, while the measures D[g] and D[x] are con-
structed from Diff+(Σ) and Diff(M) invariant L2 norms on Σ and M . For
fixed metric g, the action S is well–known: its stationary points are the har-
monic maps x : Σ →M . Here, however, g varies and in fact is to be integrated
over. For a general metric g, the action S defines a nonlinear sigma model ,
which is renormalizable because the dimension of Σ is 2. It would not in gen-
eral be renormalizable in dimension higher than 2, which is usually regarded
as an argument against the existence of fundamental membrane theories (see
[DEF99]).

Transition Amplitude for a Single Point Particle

The transition amplitude for a single point particle could in fact be obtained
in a way analogous to how we prescribed string amplitudes. Let space–time
be again a Riemannian manifold M , with metric g. The prescription for the
transition amplitude of a particle travelling from a point y ∈M to a point y′
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to M is expressible in terms of a sum over all (continuous) paths connecting
y to y′:

Amp(y, y′) =
∑

paths
joining y and y′

e−S[path].

Paths may be parametrized by maps from C = [0, 1] into M with x(0) = y,
x(1) = y′. A simple worldline action for a massless particle is obtained by
introducing a metric g on [0, 1]

S[x, g] =
1
2

∫

C

dτ g(τ)−1ẋµẋνgµν(x),

which is invariant under Diff+(C) and Diff(M).
Recall that the analogous prescription for the point particle transition

amplitude is the path integral

Amp(y, y′) =
∫

Met(C)

D[g]
1
N

∫

Map(C,M)

D[x] e−S[x,g].

Note that for string theory, we had a prescription for transition amplitudes
valid for all topologies of the worldsheet. For point particles, there is only the
topology of the interval C, and we can only describe a single point particle,
but not interactions with other point particles. To put those in, we would have
to supply additional information.

Finally, it is very instructive to work out the amplitude Amp by carrying
out the integrations. The only Diff+(C) invariant of g is the length L =∫ 1

0
dτ g(τ); all else is generated by Diff+(C). Defining the normalization factor

to be the volume of Diff(C): N = Vol(Diff(C)) we have D[g] = D[v] dL and
the transition amplitude becomes

Amp(y, y′) =
∫ ∞

0

dL

∫
D[x] e−

1
2L

∫ 1
0 dτ(ẋ,ẋ)g =

∫ ∞

0

dL
〈
y′|e−L∆|y

〉
=
〈

y′| 1
∆
|y
〉

.

Thus, the amplitude is just the Green function at (y, y′) for the Laplacian ∆
and corresponds to the propagation of a massless particle (see [DEF99]).




