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Abstract. We give an exposition of Plücker vectors for a system of joint axes in projective
3-space. We use Plücker vectors to analyze dependencies among joint axes and in particular to show
that two rotational joints rigidly joined by a bar and each with 3 degrees of freedom always form
a 5-dimensional system. We introduce the concept of reduced redundancy in a dependent set of
projective Lines and argue that reduced redundancy in the axes of a body position increases injury
risk. We apply this to a simple two-joint model of bowling in cricket and show by analysis of some
experimental data that reduced redundancy around ball release is observed in some cases.
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1. Introduction. A variety of techniques exist for the mathematical analysis of
human motion, including techniques that are also used in robotics [15, 2]. However,
to our knowledge, nobody has yet employed the formalisms and insights of projective
geometry, well known in robotics [18, 3].

We are motivated by the analysis of certain complicated athletic effects achieved
by throwlike motions, such as a topspin serve in tennis and an away-swinger in cricket.
It is clear that the brief interval ending in the release of the ball is crucial: after release,
the ball is in free fall, except for some aerodynamic and gyroscopic effects. Thus the
athlete must release the ball in a particular state of motion (translational as well as
rotational).

Several questions arise: By what movements of the joints does a given athlete
achieve a given effect? Is there more than one way to achieve a given effect? Do some
effects require motions that are inherently more risky than others, and if so, can this
risk be characterized analytically?

Many of these questions can be illuminated by using techniques from the math-
ematics of robotics, in which the following are possible: a simple description which
unifies all aspects of the motion of the athlete and the ball, a representation in which
rotation and translation are easily combined, and a level of generality at which all
cases of reduced mobility can be found (and explicitly calculated).

In this report, we analyze what appears to us be a simple, interesting case: the
motion of a cricketer’s arm (much simplified) near the moment of delivery. We regard
the hips as fixed, the torso as rigid, and the waist and shoulder as joints, each of
which provides 3 degrees of freedom. Alert readers will notice that we ignore the
elbow, wrist, and fingers, as well as any contact motion of the ball in the hand prior
to release. For our purposes, it is assumed that the requirements of a given delivery
have prescribed the motion at the center of the wrist. However, we will see that in our
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model in all positions there are only 5 degrees of freedom for the motion of the ball.
Consequently, our system of 6 axes possesses intrinsic redundancy by design! It can
be regarded as the solution of nature to the human desire to accomplish complicated
motions. Indeed, kinematic redundancy offers an opportunity to distribute stress
over many joints (see also [15]). Our main result is to prove the existence of special
positions where reduced redundancy occurs: that is, for a given motion the amount
of rotation about one or more joint axes is fixed, while there is some freedom in
distributing motion about the remaining joint axes. These positions should not be
confused with standard kinematic singularities, as no decrease of mobility is involved;
5 degrees of freedom are always maintained. We interpret reduced redundancy as a
source of injury risk.

The paper is organized as follows: First, we describe the use of Plücker coordinates
as a unified framework for computations concerning rotations and translations in many
linked joints. Second, we describe a simplified model for the motion of an arm in the
act of releasing a legal cricket delivery, a motion associated with risk of overuse injury
[12, 14, 11]. Third, we analyze the degrees of freedom for the motion of the ball in
this model, for the general case as well as all special cases; this includes a full analysis
of reduced redundancy. Fourth, we discuss the analysis from two points of view: the
prevention of injury and the forbidden motions of the wrist. Finally, we show that
reduced redundancies indeed occur in real bowling actions by analyzing data from
two bowlers with an injury history.

2. Plücker coordinates for human motion. Human motion is the result
of rotations around joint axes, at least, infinitesimally in the first approximation
(that is, neglecting the play in the joints and the deformation of bone, cartilage, and
ligament). However, the desired motion of the end effector (in our case, the cricket
ball) will in general have components of both rotation and translation. In projective
geometry, translation can be rendered as rotation about an axis at infinity. In this
view, all motions are rotations, and Plücker coordinates are merely a convenient way
of describing them.

2.1. Projective points. In projective geometry, we identify all points on a line
through the origin in R

4 with a projective Point in the corresponding projective space
P

3. Thus the vector x = (λa, λb, λc, λd) ∈ R
4 corresponds to p ∈ P

3 for all λ �= 0.
Such a 4-vector is referred to as a set of homogeneous coordinates for p. By the usual
convention, the hyperplane H:x4 = 1 in R

4 is considered as (a copy of) affine 3-space.
All Points of P

3 which correspond to lines intersecting this hyperplane are called finite
points, and these are identified with the affine point of H where they intersect. So for
finite points,

(a, b, c, d) ∼ (a/d, b/d, c/d, 1) ∼ (a/d, b/d, c/d).

Notice that some lines through the origin in R
4 do not intersect the hyperplane H,

and therefore some projective Points are not finite. They are said to lie at infinity,
and they are represented by homogeneous coordinates with 0 as the fourth coordinate:
(a, b, c, 0).

Similarly, planes through the origin of R
4 correspond to Lines in P

3. If such a
plane is parallel to the hyperplane H, then it represents a Line at infinity. Finally,
each 3-dimensional subspace of R

4 is associated with a Plane in P
3. The Plane

corresponding to x4 = 0 is the Plane at infinity of P
3, and it contains all Points at

infinity.
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2.2. Plücker coordinates. From an algebraic point of view, a chosen set of
homogeneous coordinates for a Point p ∈P

3 represents a vector in the vector space
V = R

4. Now we can consider the exterior algebra built on V :

∧V = V (0)⊕V (1) ⊕ V (2) ⊕ V (3) ⊕ V (4),

which enables us to make computations with scalars (R = V (0)), vectors (V = V (1)),
but also with more complicated objects called antisymmetric tensors, and this in the
same framework. The exterior product ∧ is a bilinear, antisymmetric operation on
∧V , such that for A ∈ V (i) and B ∈ V (j) we get A ∧ B ∈ V (i+j) if i + j ≤ 4 or
A ∧ B = 0 otherwise (also in the case i + j ≤ 4 it can happen that A ∧ B = 0 in
V (i+j)).

Example 1. The elements in V (2) (the so-called 2-tensors) are products p ∧ q of
vectors p and q in V , or linear combinations of these. Notice that p ∧ q = 0 in V (2)

if p and q represent the same projective point, due to the antisymmetry.
For the reader who is not familiar with the exterior algebra it suffices to know

for our purposes that each tensor can be regarded as just some vector, and V (i)

as a real vector space of dimension
(
4
i

)
. For example, V (2) ∼= R

6. Furthermore,

using the standard basis of V , there is a canonical way to construct a basis for V (i).
The corresponding coordinates arising in this manner for tensors are called Plücker
coordinates.

Let us be more specific in the case of 2-tensors, because they will be needed most
in this article. If L ∈ V (2) then we have 6 Plücker coordinates for L, by convention
labeled by double-indices:

L = (L12, L13, L14, L23, L24, L34).

In the special case that L = p ∧ q with p = (p1, p2, p3, p4) and q = (q1, q2, q3, q4),
there is an easy rule to obtain the coordinates for L: Lij = piqj − pjqi.

p ∧ q =

⎛
⎜⎜⎜⎜⎜⎜⎝

p1q2 − p2q1
p1q3 − p3q1
p1q4 − p4q1
p2q3 − p3q2
p2q4 − p4q2
p3q4 − p4q3

⎞
⎟⎟⎟⎟⎟⎟⎠

,

the elements of which are the 2× 2 minors of the matrix ( p1 p2 p3 p4
q1 q2 q3 q4 ) in lexicographic

order. If p and q represent different projective Points, then L = p ∧ q represents the
projective Line through these two Points. Of course, many other 2-tensors represent
the same Line in P

3. Indeed, we can use a multiple of p or q without changing
the involved projective Points, or we can even choose another pair of Points on the
same Line. Fortunately, the new 2-tensor L′= p′∧q′ will always be a multiple of
L: L′ = αL. We conclude that the Plücker coordinates of L can be considered
as a 6-tuple of homogeneous coordinates for the projective Line represented by L.
Notice that Lines at infinity are characterized by having Plücker coordinates with
L14 = L24 = L34 = 0.

Because not every 2-tensor in V (2) can be written as the exterior product of two
vectors in V , not every 6-tuple of Plücker coordinates represents a Line in P

3. More
precisely, one can prove that (L12, L13, L14, L23, L24, L34) corresponds to a projective
line if and only if it differs from zero and the Grassmann–Plücker relation is satisfied:

(GP) L14L23 − L24L13 + L34L12 = 0.
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Thus, “most” 6-tuples in R
6 are not the Plücker coordinates of a projective Line.

However, there is an interesting theorem, Poinsot’s central axis theorem, which says
that each 2-tensor A not obeying (GP) can be expressed as a sum A = L + M such
that

1. L corresponds to a finite Line (not at infinity),
2. M corresponds to a Line at infinity,
3. Every affine Plane through M is perpendicular to L.

Let us give one more illustration of Plücker coordinates. Given is a 2-tensor
A = (A12, A13, A14, A23, A24, A34) and a vector p =(p1, p2, p3, p4). Then P = A ∧ p
belongs to the 4-dimensional space V (3): P = (P123, P124, P134, P234), with

P123 = A12p3 −A13p2 + A23p1,

P124 = A12p4 −A14p2 + A24p1,

P134 = A13p4 −A14p3 + A34p1,

P234 = A23p4 −A24p3 + A34p2.

In particular, if A represents a projective Line, which moreover does not contain the
projective Point represented by p, then P represents the projective Plane determined
by this Line and this Point. If the Point lies on the Line, then P = 0. In any case, if a
3-tensor differs from zero, it will represent a Plane in P

3. Furthermore, it is the Plane
at infinity if and only if P124 = P134 = P234 = 0. On the other hand, if P ∈ V (3)

represents a finite Plane, the vector (P234,−P134, P124) ∈ R
3 is perpendicular to the

associated affine plane.

For a good introduction to Plücker coordinates and antisymmetric tensors, in-
cluding the formal definitions, we refer to [18].

2.3. Dependencies among lines. A set of Lines in P
3, finite or at infinity,

is called independent (resp., dependent) if the corresponding 2-tensors are linearly
independent (resp., dependent) in V (2) or, equivalently, if the corresponding Plücker
coordinates are linearly independent (resp., dependent) in R

6. These concepts are
defined in algebraic terms; nevertheless, the possible dependencies among projective
Lines have a transparent geometric characterization. We refer to [5] for a complete
description of this. We quote only those situations that will be relevant for our
analysis.

• Two Lines can only be dependent when they coincide.
• Three Lines are dependent if and only if they lie in the same Plane and go

through the same Point.
• Four Lines are dependent if and only if at least one of the following cases

occur:
1. Three of the four Lines are dependent.
2. The four Lines lie in the same Plane.
3. The four Lines go through the same Point.
4. Two of the Lines lie in a Plane α, intersecting in Point p, and the re-

maining two Lines lie in a Plane β, intersecting in Point q, such that the
Planes α and β meet in the line pq.

5. The four Lines belong to the same system of rulers on a quadratic sur-
face.

In particular, if we are given two parallel Lines (intersecting at infinity), then a
linear combination of their Plücker coordinates will always represent a Line in the
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unique Plane through the given Lines, and which either lies at infinity, or which is
parallel to the given Lines. Four parallel Lines in 3-space are always dependent.

Example 2. As an illustration, let us consider a situation of 4 Lines, with
L1,L2,L3 concurrent (but not coplanar) through Point p, and L4 not containing
p. Clearly, these 4 Lines are independent. By taking linear combinations of the 3
concurrent Lines we can generate any Line L through p. Furthermore, if L happens to
intersect L4 (in q, say), then linear combinations of L and L4 generate Lines through
q, lying in the Plane determined by L and L4. If L and L4 do not intersect each
other, then we cannot obtain new Lines by combining them (a violation of (GP)).
We conclude that the Lines which depend on L1,L2,L3,L4, are exactly those that
contain p or that lie in the Plane through L4 and p.

Next, we will elaborate on a special case which will be important for the applica-
tions in this paper.

Theorem 2.1. Let W1,W2,W3 and S1,S2,S3 be two triples of concurrent Lines
in P

3 through different Points w and s. Assume moreover that W1,W2,W3 are not
coplanar, neither are S1,S2,S3. Then the set {W1,W2,W3,S1,S2,S3} always has
rank 5. Or more explicitly, these 6 Lines are always dependent but always contain a
subset of 5 Lines which is independent.

Proof. Choose a Plücker vector P to represent the Line sw. By abuse of notation,
we let W1, . . . ,S3 stand for the Plücker vectors of the corresponding lines as well.
Then there exist linear combinations

P = α1W1+α2W2+α3W3,

P = β1S1+β2S2+β3S3,

which gives rise to the claimed dependency:

α1W1+α2W2+α3W3 − β1S1 − β2S2 − β3S3 = 0.

Next, we observe that at least one of {S1,S2,S3} does not pass through w, say
S1. From the example above we learn that {W1,W2,W3,S1} is a set of indepen-
dent Lines, and moreover, the only Lines which are dependent on these 4 Lines are
Lines through w, or Lines in the Plane determined by S1 and w. Because the triple
{S1,S2,S3} is assumed to be nonplanar, it is impossible that both S2 and S3 depend
on {W1,W2,W3,S1}, which completes the proof.

2.4. Describing kinematics by Plücker coordinates. For a more extended
exposition of the material presented in this paragraph, we refer to [18] and [4]. Con-
sider a motion of a rigid body B in 3-space. Then, every point p of B traces a path,
p = p(t). If the motion is sufficiently smooth from a mathematical point of view, we
can compute the derivative at a certain time t0, giving us the infinitesimal motion of
B at t = t0. This results in a velocity vector vp = ṗ(t0) for every point p of B. The
rigidity of B can be translated into the statement that for every pair of its points
{p, q} the distance between these points must remain constant during the motion,

||p(t) − q(t)||2 = constant,

or infinitesimally (preserved distance property),

(PDP) (vp − vq) · (p− q) = 0.

From now on, when we use the term “motion,” we always mean an infinitesimal rigid
motion: the assignment of a velocity vector to every point of B such that (PDP) is
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satisfied. Thus, we associate a vector vp to every point p of B, taking (PDP) into
account.

One important example of such a motion is a spatial rotation about the origin.
Here, there is always a line A involved, the so-called axis of rotation, containing the
origin. Points on A remain fixed (zero velocity vector), but for other points p the
velocity vp is perpendicular to the plane determined by A and p. As a matter of
fact, the rotation is specified by a vector ω along A, such that vp = ω × p (vector
cross product). The length of ω is called the angular velocity, and together with the
distance of p from the axis A, it determines the length of vp.

Another fundamental motion is a translation along a given vector v. Here, we
have a constant velocity: for every point p we put vp = v.

A crucial theorem says that every rigid motion is the composition of rotations
and translations, or infinitesimally, the velocity vectors can be written as the sum of
rotation velocities and/or translation velocities.

Consider a rotation about some axis A, not necessarily containing the origin. If
we embed affine 3-space into P

3, as described in section 2.1, then we can associate
with A a projective line A, and hence a Plücker vector PA. For each point p in R

3

we choose the standard homogeneous coordinates for the associated projective point
p (having p4 = 1). Now we can define the “motion of p” as the following 3-tensor:

M(p) = M = PA ∧ p ∈ V (3).

To see that this makes sense, consider a vector M = (M123,M124,M134,M234) of
Plücker coordinates. This determines the vector vp = (M234,−M134,M124) ∈ R

3,
which is zero if p ∈ A, or else it is perpendicular to the plane determined by p and
A. And indeed, as one can prove that (PDP) holds for these vectors, they represent
a rotation about axis A. The unused coordinate M123 in M(p) is determined by the
fact that this 3-tensor corresponds to a plane through p. Of course, the magnitude of
the vectors vp depends on the chosen Plücker coordinates PA for A, but then again
there are an infinite number of possible rotations about axis A in R

3. One can say
that the magnitude of the chosen Plücker vector accounts for the involved angular
velocity. We conclude that the 2-tensor PA encodes both the rotation axis A and the
angular velocity. Therefore, it is called the center of the motion. Taking a multiple
of PA does not change the axis, only the angular velocity. If you are interested in
the velocity of a specific point p under this motion, just perform the exterior product
PA∧p, using standard homogeneous coordinates for p.

Now that we have put spatial rotations in the setting of projective geometry, we
can extend the notion of rotation axis. Indeed, we can take A to be a line at infinity,
so if P = PA, then P14= P24= P34= 0. If we copy the previous computations for
some point p, we observe, surprisingly, that the last three Plücker coordinates of
M(p) do not depend on p. Therefore, we see that vp is a constant vector if we
perform a rotation about an axis at infinity, which must be a translation! More
precisely, vp= (P23,−P13,P12), a vector which is perpendicular to any plane in R

3

whose projective extension contains the given axis at infinity A. For the sake of
uniformity, we will again call the 2-tensor PA the center of the motion, and the
3-tensor M(p) the motion itself of the point p.

Our arguments will directly take place in P
3 or ∧R

4, but readers who like to
switch to affine space now and then should remember

p = (p1, p2, p3) −→p = (p1, p2, p3, 1),

vp = (M234,−M134,M124) ←−M(p) =(M123,M124,M134,M234).
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In this setting, the zero-tensor in V (3) corresponds to the zero velocity.
As mentioned before, composing two motions comes down to adding the velocity

vectors in each point p. Let the corresponding centers of motion be denoted by C1

and C2, Plücker vectors in R
6. Then the resulting motion of p equals

C1 ∧ p + C2 ∧ p = (C1 + C2) ∧ p

due to a basic property of the exterior product. Now we can consider C = C1+C2

to be the center of the composite motion. This means that every Plücker vector P
in R

6 can play the part of a center of some motion. More precisely, if P represents
a projective Line (satisfying (GP)), then it gives rise to a rotation (finite line) or a
translation (line at infinity); otherwise it is the center of a composition of rotations
and translations. As a consequence of Poinsot’s central axis theorem (section 2.2) we
can be even more specific in the latter case. To this end, we define a screw motion
as the composition of a rotation (infinitesimal, of course) about some axis, and a
translation (ditto) along the same axis. If a motion is not a pure translation or
rotation, then it is a screw motion.

From now on, Plücker coordinates of 2-tensors (the space R
6) are interpreted as

centers of infinitesimal rigid motions.

3. A simple model for bowling a cricket delivery. Biomechanical models
for cricket motions are not that rare, but few exist for bowling [1, 11]. For our
purposes, a model simpler than either of these will suffice. We make the following
assumptions about motion just prior to delivery:

1. There is no rotation in the elbow (as is required in a legal delivery).
2. There is no rotation in the wrist, and the state of motion of the ball upon release

prescribes the motion of the so-called tool center (a term from robotics), which we
take to be the wrist.

3. The spine is taken as rigid but free to rotate as if its base is attached to the
pelvis in a ball joint (i.e., we ignore deformation of the torso), and the shoulder is
rigidly joined to the spine.

4. The joint axes of both joints pass through the center of the joint.
For greater realism, one might add more joints; for example, it is known that

the shoulder does rotate relative to the torso [8], and the ball might leave the hand
in a contact motion. This is not conceptually difficult but is computationally and
experimentally challenging. The same applies to relaxing assumption 4, to allow
noncoincident joint axes. Still more challenging would be the direct modeling of
muscle groups (as in [6, 16]), as this would increase the number of axes of rotation
substantially, and one might be hard put to identify an axis of rotation for every
muscle group, particularly those with attachments over more than one joint.

3.1. Introducing the joint axes of our model. With assumptions 1 to 4,
the system reduces to two joints, which we call the waist (w) and the shoulder (s).
Although in general w may be in motion, there is no loss of generality if we place w at
the fixed origin and identify its joint axes with axes of a reference coordinate system
XY Z. They are interpreted as follows: for a person standing, X points horizontally
forward, Y horizontally points to the left, and Z points vertically along the spine, in
our case upwards.

We choose units of length so that the right shoulder joint s is at (0,−1, 1) in the
system; since the torso is rigid, it stays there. The three joint axes through s follow
the usual convention: We choose S1 as the axis that passes through shoulder and
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s

1S

X

Z

Y

Fig. 3.1. Configuration of joint axes in our simplified model of a right-handed cricket bowler,
facing away from the reader. w is the waist joint and s is the shoulder joint. Distances are
normalized so that the shoulder is at (0,−1, 1) in the waist joint axes. The dashed line corresponds
to the arm in standard position: horizontal, palm down. Note that the shoulder axes move with the
arm so that S3 is always pointing in the same direction as the palm.

elbow, in the direction of the shoulder, and S2, S3 perpendicular to each other and
to S1 so that when the arm is extended sideways horizontally wrist down, S2 points
forwards and S3 points downwards. This means that the S1S2S3 system moves with
the arm, and in particular that S3 is always perpendicular to the palm. The general
configuration is illustrated in Figure 3.1.

We note that some of our results below depend on the choice of shoulder axes. In
particular, we find a case where rotation about the s3 axis plays a significant role in
predicting injury risk. This would be indefensible if all we knew of the shoulder joint
was that it had 3 degrees of rotational freedom, because our result would disappear
under many other apparently equivalent choice of axes.

However, we do know more about how the shoulder moves and about the motion
of the arm of a fast bowler near the point of release. In that context, the s1s2s3 system
as described above is preferred and has intrinsic interpretation for two reasons. First,
s1 is an anatomically intrinsic axis in all rotations of the shoulder, because of the
role of the rotator cuff, which are the only muscles that cause rotation around s1.
Second, during the final phase of the delivery of a fast ball in cricket, the bowler’s
arm moves in a plane. Near the moment of release, the direction of s3 is tangential to
this motion (since these bowlers aim for high speed deliveries), so the plane of motion
is the s1s3 plane, and in that plane the motion is a pure rotation around the s2 axis.
By orthogonality to both the s1 and s2 axes, the s3 axis is also intrinsic.

3.2. Plücker coordinates of the 6 joint axes. The positions of the waist and
the shoulder are given by

w =
(
0 0 0 1

)
and s =

(
0 −1 1 1

)
.
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The directions of the joint axes are

W1 =
(
1 0 0 0

)
,

W2 =
(
0 1 0 0

)
,

W3 =
(
0 0 1 0

)
,

S1 =
(
a1 b1 c1 0

)
,

S2 =
(
a2 b2 c2 0

)
,

S3 =
(
a3 b3 c3 0

)
.

The six centers of rotation are then

P1 = W1 ∧ w =

(
1 0 0 0
0 0 0 1

)
=

(
0 0 1 0 0 0

)
,

P2 = W2 ∧ w =

(
0 1 0 0
0 0 0 1

)
=

(
0 0 0 0 1 0

)
,

P3 = W3 ∧ w =

(
0 0 1 0
0 0 0 1

)
=

(
0 0 0 0 0 1

)
,

P4 = S1 ∧ s =

(
a1 b1 c1 0
0 −1 1 1

)
=

(
−a1 a1 a1 b1 + c1 b1 c1

)
,

P5 = S2 ∧ s =

(
a2 b2 c2 0
0 −1 1 1

)
=

(
−a2 a2 a2 b2 + c2 b2 c2

)
,

P6 = S3 ∧ s =

(
a3 b3 c3 0
0 −1 1 1

)
=

(
−a3 a3 a3 b3 + c3 b3 c3

)
.

We collect these in the columns of the motion matrix M :

M =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 −a1 −a2 −a3

0 0 0 a1 a2 a3

1 0 0 a1 a2 a3

0 0 0 b1 + c1 b2 + c2 b3 + c3
0 1 0 b1 b2 b3
0 0 1 c1 c2 c3

⎞
⎟⎟⎟⎟⎟⎟⎠

.

All the information regarding configurations of the joints and possible motions can
be found by analyzing M . More precisely, infinitesimally, the motion of the wrist is a
composition of a rotation about w and a rotation about s (in our model). Thus, the
center of this motion is a linear combination of the six Plücker coordinates which we
assigned to the six given axes. This motivates us to define the column space of the
matrix M to be the motion space (of the wrist in the given position of the human
body), MS. Recall from Theorem 2.1 that the matrix M always has rank equal to
5, implying a constant dimension of 5 for the motion space. Notice that we never
obtain the full R

6 as motion space in our model; this would require including further
rotations in our model, such as about the elbow or the wrist.

3.3. Possible motions under the model. Suppose the human body (in par-
ticular, the torso and the bowling arm) is in a certain position. If one intends to propel
the ball in some specific way, then this is accomplished by performing an infinitesimal
motion with the hand. In our model, the only way to realize a hand motion is by
means of rotations about the waist (3 joint axes) and/or about the shoulder (3 joint
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axes). Every (infinitesimal) rotation about one of these 6 axes is given by an appro-
priate multiple of the corresponding Plücker vector. We conclude that the motion
of the ball is controlled by a 2-tensor which is a linear combination of the 6 Plücker
vectors of our model; that is, it belongs to the column space of the matrix M (MS).
In particular, a linear combination which gives the zero 2-tensor corresponds to not
moving at all (the zero center of motion).

Clearly, the first two rows of M are equal in magnitude but opposite in sign. This
implies that every possible motion is represented by a 2-tensor with opposite Plücker
coordinates in the first two places,

B = (−a, a, b, c, d, e),

or equivalently, a possible motion is a point of R
6 in the hyperplane H : p12 = −p13,

so MS ⊂ H. Furthermore, since both spaces have dimension 5, we can state that
MS = H.

Example 3. Try to perform a pure translation with your hand along the Z-axis
(the direction of the spine) by only using the waist joint and the shoulder joint. You
will not succeed! The algebraic proof for this goes as follows. Each translation along
Z is represented by a set of Plücker coordinates of the line at infinity of the XY -plane.
This means that it is a multiple of

(1, 0, 0, 0) ∧ (0, 1, 0, 0) = (1, 0, 0, 0, 0, 0),

which is not a possible motion, because it does not belong to H.
Example 4. In an analogous fashion we see that a pure translation along the

Y -axis is not possible. Indeed, such a translation is always represented by a multiple
of (0, 1, 0, 0, 0, 0), the Plücker vector for the line at infinity of the XZ-plane.

Example 5. However, a translation along the X-axis appears to be possible (this
is the direction perpendicular to the plane of the torso; fortunately for cricketers, this
direction is the one they want the ball to go). Indeed, the corresponding 2-tensor is a
multiple of (0, 0, 1, 0, 0, 0), the line at infinity of Y Z; hence it belongs to MS. But how
can this be accomplished in practice? Let L be the line through s and parallel to Y .
Because the Plücker vector of L is a linear combination of the Plücker vectors of S1,
S2, and S3, any rotation about L can be realized. Notice that L lies in the Y Z-plane,
as does the shoulder joint s in our model. Because Y and L intersect at infinity, an
appropriate linear combination of their Plücker vectors yields the line at infinity of
Y Z. We conclude that a pure translation along X can be realized by composing a
rotation about Y and a rotation about L.

Forbidden motions are interesting for two reasons. First, they are a simple way of
describing what is possible. Second, they have an associated injury risk: attempting
forbidden motion will introduce extremely large stresses, and coming close to forbid-
den motion (in the sense of a path through the motion space) may also require large
stresses, a well-known phenomenon in robotics [3].

3.4. Critical positions of the human body. In our model, the possible mo-
tions are supported by six joint axes, each with a natural physical interpretation.
Giving the spatial positions of these six axes determines what we will call the “po-
sition of the human body.” In the previous sections we explained that our analysis
of cricket bowling comes down to exploring the linear relations between the Plücker
coordinates of these six axes. To simplify computations we are entitled to make the
fixed coordinate frame coincide with the three waist axes, and that is what we did in
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section 3.2, yielding the simple structure of matrix M . So, in fact, by describing a
body position we will mean the specification of the relative position of the shoulder
axes with respect to the waist axes. It needs 3 parameters to be specified in order to
fix the orientation of S1S2S3 relative to W1W2W3 (= XY Z), for example the 3 Euler
angles. Thus the very limited positions of the human body relevant to this paper can
be regarded as points in a 3-dimensional space Pos.

3.5. Redundancy and supports. As a consequence of Theorem 2.1 we know
that, in each position of the body, our six joint axes span a 5-dimensional space (MS).
We say that our kinematic system has a generic redundancy. Further, still in each
position, basic linear algebra teaches us that we have a 1-dimensional space of linear
dependencies between our six 2-tensors (6 − 5 = 1). Redundancy in a model for
human motion is also treated in [15], where the emphasis is also on the potential for
fatigue management but the operational definition and mathematical treatment are
different.

Definition 3.1. The support of a linear dependency among a set A of vectors
is the subset of A consisting of exactly those vectors with nonzero coefficient in this
dependency.

In a given position of the body, each (nontrivial) linear dependency of the six
joint axes is a multiple of every other one. Thus, we can define merely the “support
of a body position” without specifying the linear dependency. Notice that, whatever
position we are in, we always use the same notation for our six joints axes; hence the
support can always be considered as a subset of J = {X,Y, Z, S1, S2, S3}. This can
be mathematically encoded in a map:

supp :Pos → 2J : p 
→ supp(p).

Before proceeding, let us explain the relevance of the this concept. Suppose the body
is in some position p. Let M = (M12,M13,M14,M23,M24,M34) be the motion in MS

that we want to perform. This is achieved by finding appropriate coefficients (angular
velocities):

M = αX + βY + γZ + σ1S1 + σ2S2 + σ3S3,

where the bold font reminds us of the fact that we switched to Plücker vectors (or
2-tensors). Now suppose that supp(p) = {Y,Z, S3}, corresponding to the following
relation:

λY+µZ + νS3 = 0

with nonzero coefficients λ, µ, ν. Then we can realize the same motion M as

M = αX + (β + kλ)Y + (γ + kµ)Z + σ1S1 + σ2S2 + (σ3 + kν)S3

with k an arbitrary constant. This means that the efforts done by Y , Z, and S3 can
be traded among each other, while the contributions by X, S1, and S2 are given by
fixed coefficients with no chance for compensation. From this we learn two important
things:

1. The concept of redundancy of joint axes is inherent to the human body. It is
the solution supplied by nature to distribute the necessary efforts among the
several joints for achieving a certain motion.

2. Positions in which the human body has abundant support are less strenuous
than positions with limited support.
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3.6. Critical positions. Now we arrive at the core of this paper. We will classify
the possible supports in our model. A position of the human body is called critical if
the support is smaller than expected, that is, smaller than in generic positions. We
say that a critical position suffers from redundancy with reduced support or shortly,
reduced redundancy. Our first observation says that the required work for joint axis
X can never be compensated by one of the other five axes.

Theorem 3.2. For each position p ∈ Pos we have that X /∈ supp(p).
Proof. Since the shoulder joint s is assumed to lie in the Y Z-plane, the Line

L = sw is a linear combination of Y and Z. And of course, L is a linear combina-
tion of S1,S2,S3; hence the set {S1,S2,S3,Y,Z} is dependent. Because the motion
space MS has dimension 5 in every position, X cannot be a linear combination of
S1,S2,S3,Y,Z; hence, it does not belong to the support.

Theorem 3.3. Let p be a position of the human body. We distinguish three cases
for the Line L = sw.

1. The Line L is not contained in a plane determined by any two Lines of
{S1,S2,S3}. In this case

supp(p) = {S1,S2,S3,Y,Z}.

2. The Line L does not coincide with a line of {S1,S2,S3}, but it lies in the
plane generated by two of them (L ∈ SiSj). Then

supp(p) = {Si,Sj,Y,Z}.

3. The Line L coincides with one of {S1,S2,S3} (i.e., L = Si). Then

supp(p) = {Si,Y,Z}.

Proof. The claims are an immediate consequence of what is said in section 2.3.
In case 3, if L = Si, then the Lines Y,Z,Si are concurrent and coPlanar, and so

they are dependent. The support cannot be smaller, because this would mean that
at least two of these lines coincide.

In case 2, either Lines Si,Sj,Y,Z are coPlanar or the pairs {Y,Z} and {Si,Sj}
determine two Planes that meet in the line sw through their intersections. In both
cases, the four Lines are dependent. Furthermore, no three of them are concurrent,
implying that the support is not smaller.

In case 1, we can rule out the five possibilities for the dependency of four lines
(section 2.3). We refer to Theorem 3.2 for the claim that {S1,S2,S3,Y,Z} is a
dependent set.

Remark. Cases 2 and 3 of the previous theorem correspond to the critical positions
of our model.

4. Reduced redundancy as injury risk. It is known that high levels of fitness
are attained in many cricketers [13]; nevertheless, injuries are fairly common [10] and
fatigue may play a significant role [7]. This is not the place to review the mechanisms
of overuse injury (the interested reader is referred to [17] as a starting point). We
adopt the common perspective that overuse injuries start as microinjuries such as
bruised bone and microtorn ligament. We suggest that overuse is more likely in
situations of reduced redundancy. In such cases, no compensation that reduces the
strain on a microinjured site is possible. The subject, in repeating the action, is
condemned to repeating, at the same intensity, a motion that already caused a micro-
injury. By contrast, the ability to achieve a desired motion with a range of different
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joint rotations amounts to having the option of avoiding a motion that has caused
a microinjury. The probability of overuse injury should decrease; hence, redundancy
should correlate with reducing the risk of overuse injury. If so, then bowlers whose
body position at ball release has more reduced redundancy than others should be at
higher risk of injury, because such bowlers are less able to adapt. We also assume that
microinjury is more likely in fatigued tissues, and hence adopt the view that reducing
the probability of overuse injury is equivalent to reducing fatigue.

4.1. The role of the various joint axes. We interpret a joint axis that does
not belong to the support in a given body position as a “necessary” axis of that
position.

The joint axis X is through the “waist” joint and perpendicular to the pelvis; it
is more or less parallel to the direction of the ball around the time of release. It is
always a necessary axis, so for a particular desired motion, the amount of sideways
bending of the spine is prescribed.1 One implication of this is that injury risk due to
this motion cannot be modified.

We noted above that a largely supported redundancy should help to reduce fa-
tigue. Similarly, if an axis is necessary then no fatigue management can reduce the
rate of tiring in structures involved in rotations around it. While the human body
will have many more joint axes, our analysis suggests that bowlers will find it hard to
compensate for fatigue related to rotation around the X-axis. Anecdotal evidence sug-
gests that bowlers may attempt compensation by “falling over” as they tire. However,
studies on changes in bowling action over long spells [9] have not reported rotation
around this axis, so no scientific judgment is possible.

In critical positions we even suffer from reduced redundancy. The calculations for
reduced redundancy depend on the choice of shoulder axes. We argued above that
the s1 axis is anatomically an intrinsic axis of rotation and that s2 is dynamically an
intrinsic axis of rotation for fast bowlers, because the motion of the arm is in the s1s3

plane around the time of delivery of a fast ball.
In the bowling of a cricket fast ball, the worst-case scenario of reduced redundancy

is that S1 passes through the waist joint, which corresponds to case 3 above and implies
that rotation about the other two shoulder axes are prescribed in all motions. Let
us consider the simplest (and also most common) example: a straight arm. For such
bowlers, the most risky action is one in which wrist, elbow, shoulder, and waist all
lie on the same line very near or at the moment of delivery. Their ability to modify
the amount of rotation will be limited to axes S1, Y , and Z; thus one expects overuse
injury related to such rotations to be less common. So for them tradeoffs are only
possible among axial rotations of the arm, twisting of the spine, and bending forward
at the waist. On the other hand, coaches need to be aware that changing the rotation
in one of these axes will cause compensation in the other two axes.

We note that this situation is avoided by releasing the ball either behind or in
front of the plane of the torso (more on this below) by a round-arm action, where S1

is nearer to horizontal, and by a very upright action, where S1 is nearer to vertical.
Vertical action is usually encouraged by coaches but in some cases may tend to align
the wrist with shoulder and waist and so increase injury risk.

Furthermore, Y and Z are never necessary, so that the amount of twisting and
bending (backwards/forwards, that is) can be modified. Thus, in case of excessive

1Some care is needed here: In our model, bending of the spine is approximated by rotation of an
inflexible spine in the “waist” joint. It may be that more than one pattern of rotations of vertebrae
can achieve the desired rotation.
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rotation in these directions at the waist, it should be possible to modify the bowler’s
action to reduce these, no matter what the configuration of their joints at the moment
of delivery. For instance, excessive twisting around the Z-axis during the delivery
stride is currently regarded as a major source of injury risk (the “mixed” action, which
starts with hips and shoulders facing forwards; then the shoulders rapidly rotate and
counterrotate—see [9, 12] and many others). Our study suggests that bowlers using
a mixed action should be able to change action with relative ease.

Finally, is it possible to deliver a cricket ball with a maximally supported redun-
dancy? Yes, but such actions are unusual and discouraged by coaches. The Line
L in the analysis above corresponds to the line through waist and shoulder; it is re-
quired that this line be perpendicular to none of the shoulder joint axes. For instance,
suppose that at delivery, the X and S3 axes are parallel (certainly an aim in some
deliveries by fast- and medium- pace bowlers). Then the wrist should not be in the
plane formed by spine and shoulder (otherwise case 2 applies: L perpendicular to S2

or, equivalently, L is a linear combination of S1 and S3). So these bowlers should
deliver such balls from behind or in front of the torso (the former seems to be com-
mon). The other axes have similar requirements. L perpendicular to S1 would be
an excessively round-arm action and perhaps unlikely (though it could occur in the
slinging action of some fast bowlers). L perpendicular to S3 is perhaps harder to
avoid but should still be rare; for instance a round-arm action with the palm down at
the moment of release, which might occur in some spin bowling actions.

4.2. An example. We give an analysis of the action of two medium-fast bowlers,
both from the youth academy and hence at risk of injury, as potentially elite medium-
fast or fast bowlers. The data were kindly provided by Janine Gray of Sports Science
Institute of South Africa, who collected the data on these two bowlers as part of a
larger study. Both subjects were 17 years old and free of injury at the time the data
were collected. Bowler B had a long history of injuries, some of them from noncricket
activities. In particular, he had suffered a stress injury to the lower back, which was
seen as due to cricket. Bowler A had never been injured. Their historical workloads
were different—Bowler B had played cricket from early boyhood, while Bowler A was
a recent recruit to the game.

For each bowler, reflectors were attached to the body surface. Under stroboscopic
lighting (frequency 120 Hz), video cameras recorded the positions of the reflectors at
intervals (interval length about 8 milliseconds). The following reflectors were used
in the calculation below: two on the wrist, one on the shoulder, and three on the
waist. The three waist coordinates were assumed to lie at the vertices of a symmetric
trapezium, and the center of its circumrectangle was calculated to give w, the center
of the waist joint. In calculating s, the center of the shoulder joint, we assumed
that the shoulder is fixed relative to the waist, so a simple correction allowed us to
move from the position of the reflector on the acromion to s. The midpoint of the
two reflectors on the wrist provided the position of r, the center of the wrist. In
Figures 4.1 and 4.2 we depict aspects of the raw data: wrist position as a function of
time for both bowlers.

Calculation of redundancy then proceeds as follows. The simple subtraction w−s
and normalization gave us the unit vector l, which gives the direction of the Line L
through waist and shoulder. Similarly, s − r gives s1, the direction of S1. Since the
wrist reflectors lie in the S1S2-plane as does s1, simple orthogonalization gives s2,
and s3 is then available as the cross-product of s1 and s2. The dot products of l with
the si are then calculated, giving the direction cosines of l in the S1S2S3 axes. When
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(a)

(b)

(c)

Fig. 4.1. Wrist position as a function of time for Bowler A. The three diagrams give different
aspects. (a) Wrist height as a function of time. (b) Wrist path in the Y Z-plane (movement is
leftward on diagram). (c) Wrist path in the XZ-plane. Height and displacement in millimeters;
time steps 0.83 milliseconds apart.
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(a)

(b)

(c)

Fig. 4.2. Wrist position as a function of time for Bowler B. The three diagrams give different
aspects. (a) Wrist height as a function of time. (b) Wrist path in the Y Z-plane. (c) Wrist path in
the XZ-plane. Height and displacement in millimeters; time steps 0.83 milliseconds apart.
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Fig. 4.3. Reduced redundancy as revealed by the direction of the waist-shoulder line in shoulder
coordinates. Curves give direction cosines of L, the line from waist to shoulder, in the axes S1, S2,
and S3 of the shoulder; they are plotted against time steps (one unit of time is a few milliseconds).
Vertical lines indicate the approximate points of release. Whenever one of the direction cosines goes
to zero, reduction of redundancy occurs and the corresponding axis is absent from the support of the
body position. Bowler A maintains full support until well after the moment of delivery, but Bowler
B loses the S3 axis from the support of the motion for about 15 milliseconds on either side of the
moment of release.

reduced redundancy occurs, then l is perpendicular to one or two of the si—that is,
one of the direction cosines is zero. This is easily spotted on a graph of direction
cosines vs. time (see Figure 4.3).

The plots in Figure 4.3 cover approximately 0.4 s in time and forward motion of
about 2 meters in space. Note that for Bowler A all three direction cosines stay well
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away from zero in the period prior to release, but that for Bowler B the S3 axis goes
to zero about 15 milliseconds before release, and stays there for about 30 milliseconds.
With respect to our choice of axes, Bowler B operates with reduced redundancy around
the time of release of the ball, but not Bowler A. This suggests that Bowler B may be
less able to modify his action to cope with fatigue. This is consistent with their injury
history, as Bowler B indeed has had more injuries than Bowler A. However, it is also
true that Bowler B has had much more opportunity for overuse than Bowler A, due
to a far longer playing career. We hope to track both subjects to test whether indeed
Bowler A will remain relatively free from overuse injury, as we predict.
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