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Abstract

Deep brain stimulation (DBS) is a standard neurosurgical procedure used to treat motor symptoms in about 5% of patients with Par-
kinson’s disease (PD). Despite the indisputable success of this procedure, the biological mechanisms underlying the clinical benefits of
DBS have not yet been fully elucidated. The paper starts with a brief review on the use of DBS to treat PD symptoms. The second section
introduces a computational model based on the population density approach and the Izhikevich neuron model. We explain why this
model is appropriate for investigating macroscopic network effects and exploring the physiological mechanisms which respond to this
treatment strategy (i.e., DBS). Finally, we present new insights into the ways this computational model may help to elucidate the dynamic
network effects produced in a cerebral structure when DBS is applied.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Today, our ability to treat symptoms frequently exceeds
our ability to understand the underlying diseases. One
example is Parkinson’s disease (PD), in which the physio-
logical mechanisms underlying the symptoms respond to
dopamine (L-DOPA) or chronic intracerebral stimulation.
In some cases, however, complex interactions among cere-
bral structures may be modelled by simulating the healthy
or diseased brain state (with or without treatment). The
recent development of Systems Biology and Computa-
tional Neuroscience has led to an increase in the number
of models published in the literature. Although computa-
tional models are frequently still unrealistic and cumber-
some to use, a number of scientists are now convinced
that the development of more realistic, dynamic, multiscale
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models of neural activity will lead to the discovery of new
therapeutic strategies for regulating brain rhythms.

The success of computational models depends on many
factors. One key issue is the ability of a model to build
meaningful bridges between successive levels of description
(i.e., scales or orders of magnitude), each integrating
neurophysiological and neuroanatomical information. Of
course, this does not mean that every spatial and temporal
scale must be fully represented in these models, but rather
that complexity can be reduced by restricting the model to
relevant temporal and spatial scales without losing its
dynamics. The obvious difficulty is to identify the relevant
elements to be included in the model.

One particularly interesting situation concerns chronic
electrical stimulation of the brain. While this is now a stan-
dard therapeutic procedure, generally used in neurosurgery
to treat motor symptoms, the underlying causes of clinical
improvement observed have not yet been completely eluci-
dated. A number of research teams are investigating why
the motor symptoms of PD decrease drastically within a
few seconds when stimulation is applied, but have not yet
fully explained the action mechanisms involved.
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Fig. 1. Illustration of the multiscale aspect of the population density approach, linking individual neuronal properties with the behaviour of a multiple-
population network.
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We propose a new computational model for exploring
the effects of deep brain stimulation (DBS) on motor symp-
toms in PD. The aim of this model is to link the micro-
scopic-local level (neurons) with the macroscopic-global
level (interacting populations of neurons) as illustrated in
Fig. 1. This model was built using the methodology pio-
neered by Knight et al. (1996) and extended by Omurtag
et al. (2000) and Nykamp and Tranchina (2000). The main
advantage of this approach is that it provides a global
description of a large number of neurons (virtually an infi-
nite number) with only a single equation (a conservation
law) in a significantly shorter computing time than the
usual discrete simulations. This is due to the fact that, in
population dynamics, only the state distribution (indepen-
dent of the number of neurons simulated) is computed. By
contrast, in discrete simulations (referred to below as
‘‘direct simulation’’) the computing time increases rapidly
with the number of neurons and synapses simulated.
Therefore, this paper proposes a computational model
which, in our opinion, is appropriate for exploring the net-
work effects responsible for the improvement of motor
symptoms in patients with PD following DBS.

2. Deep brain stimulation: an overview

Before presenting the details of the model, it is impor-
tant to understand the neurological and pathological con-
text of its development. DBS is a therapeutic procedure
proposed to patients with movement disorders such as
PD, essential tremor, and multiple sclerosis. There are a
number of patient selection criteria for receiving DBS
and the final decision is taken jointly by the clinical team.
In PD, DBS targets include the subthalamic nucleus
(STN) – currently the preferred target – and the internal
part of the Globus Pallidus (GPi). The Vim nucleus of
the thalamus is stimulated in essential tremor and in multi-
ple sclerosis. Previously, these structures were lesioned
rather than stimulated and, curiously, the clinical improve-
ments following pallidotomy, subthalamotomy, and thala-
motomy were similar to those produced by DBS. Another
surprising observation was that the targets for DBS are
located in a network of structures (the cortex-basal gan-
glia–thalamus–cortex loop) and stimulation of different
neural structures in this network results in varying degrees
of improvement in the symptoms. Fig. 2 illustrates the
position of these brain structures in a coronal view.

Precision positioning of a permanent stimulation elec-
trode in a brain target is quite difficult due to the highly
variable geometry of the brain and the lack of reliable ref-
erence points. Clinicians are assisted by various imaging
techniques, such as computed tomography or magnetic res-
onance imaging scans, often complemented by recordings
of cerebral activity in the vicinity of the target using micro-
or macroelectrodes.

During the surgical procedure, an electrode is implanted
on each side of the brain and connected to a stimulator
implanted in the chest wall of the patient. This electrode
is tipped with four possible active contacts. Once the elec-
trode is connected to the stimulator, electrical pulses are
sent continuously to the target zone. The active contact(s)
positioned in the ‘‘best’’ spots are used for DBS. The stim-
ulator is programmed using radio signals and the therapeu-
tic effect is obtained with stimulation parameters adjusted
around typical values (Garcia et al., 2005), such as polarity
(cathode), as well as pulse amplitude (�3 V), duration
(�0.1 ms), and frequency (�150 Hz). In some cases, polar-
ity is reversed during an individual pulse to avoid excessive
charge accumulation. The patient may also turn the stimu-
lator ‘‘off’’ at night. The optimum adjustment of the stim-
ulating parameters is a trade-off between minimizing side
effects and medication, and maximizing battery longevity
and clinical improvement. DBS may generate adverse side



Fig. 2. Position of the optimum stimulation sites (indicated by two grey ellipses) in the brain for PD. These sites include the GPi, Vim (thalamus) and
STN.
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effects, such as speech difficulties, weight gain, or postural
instability (Guehl et al., 2007). Typically clinical improve-
ment affects most motor symptoms, thus significantly
reducing the level of medication required. Over the years,
the parameters are adjusted regularly as the disease devel-
ops. The stimulator must be replaced every few years.

In addition to the paradoxical observations mentioned
above, other surprising phenomena have been reported.
For example, motor symptoms in PD disappear during
sleep and some reports indicate that motor control in
patients with PD is ‘‘normal’’ during short episodes of som-
nambulism or in emergency situations (Cochen de Cock
et al., 2007), suggesting that the effects of DBS are also more
complex than initially expected. Several hypotheses have
been proposed, including inhibition of the stimulated struc-
ture by neurotransmitters (e.g., GABA), depolarization
blockade, resynchronization of erratic neuron activity,
and change of activity in the beta band (Boraud et al.,
2005). However, none of these has yet been considered sat-
isfactory by the scientific community (Garcia et al., 2005).

Electrophysiological recordings in the STN of patients
with PD show synchronous neuronal activity throughout
the nucleus, which is not the case in healthy subjects
(Farmer, 2002). It has also been suggested that the STN-
GPe (external Globus Pallidus, another basal ganglia struc-
ture) network acts as a ‘‘pacemaker’’ in the basal ganglia,
driving the motor loop in a synchronous oscillatory regime.
Does DBS work by desynchronizing the network? This
interesting hypothesis has not yet been confirmed. How-
ever, several computational studies (Tass, 2003; Haupt-
mann et al., 2005), describing decoupling neuronal
bursting by shifting the relative phases of different cellular
subgroups, indicate that this may be the case. There is also
some controversy concerning the structures stimulated: one
hypothesis concerns the stimulation of fibres of passage
(Miocinovic et al., 2006), i.e., it is important to stimulate
the surrounding fibres rather than the structure itself. More
complex network effects, rather than simple excitation/
inhibition, are also thought to play a role in DBS effective-
ness, e.g., by antidromic/orthodromic stimulation.
Recent results (Beuter et al., 2007) showed that, even if
DBS (of the GPi or STN) and L-DOPA medication pro-
vide similar benefits for patients, the effect on tremor is dif-
ferent, i.e., tremor characteristics in the frequency domain
remain more ‘‘Parkinsonian’’ with DBS than L-DOPA.
This suggests that different mechanisms may underlie the
effects of DBS and L-DOPA. However, this contradicts
results reported by Asanuma et al. (2006), suggesting that
both treatments shared a common mechanism. Finally,
the recent discovery of interneurons in the STN opens up
interesting prospects (Levesque and Parent, 2005), as inter-
neurons can play an important role in regulating neuronal
activity and synchrony.
3. Model

3.1. Population-based model

Our model is based on the population density approach
(Omurtag et al., 2000; Nykamp and Tranchina, 2000),
which makes it possible to perform large-scale simulations
of neural networks in a reasonable computing time, using
the Izhikevich model (Izhikevich, 2003). This model consists
of two non-linear and coupled differential equations and a
reset mechanism, similar to the one in the ‘‘Leaky integrate
and fire’’ (LIF) model (Lapicque, 1907). The model uses
two variables to describe the state of a neuron: membrane

potential v [mV] and a recovery variable u [mV]. Despite
its simplicity, this model is capable of reproducing most
of the spiking patterns observed experimentally, as shown
in Fig. 3, by using the appropriate set of parameters a, b,
c, d

v0 ¼ 0:04v2 þ 5vþ 140� uþ IðtÞ
u0 ¼ aðbv� uÞ

�

v 0 denotes the time derivative of v, the numerical parame-
ters have been adjusted according to the state variable
units, and time is measured in [ms]. The Izhikevich model
also includes a reset mechanism: when v P 30 mV (referred
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to as s throughout the paper), then v = c and u = u + d.
Fig. 3 presents the spiking patterns reproduced by the
Izhikevich model.

Let w!¼ ðv; uÞ be the state of a neuron. The variation of
the neuronal population density p(v,u, t) [neurons · mV�2]
is given by the following conservation law on the state
space X = X(v,u):

o

ot
pðw!; tÞ ¼ �5! � J

!ðw!; tÞ ð1Þ

where the neural flux J
!ðw!; tÞ flowing through state w! at

time t may be split into two terms (Omurtag et al., 2000):
a streaming flux J

!
s, dependent on the internal dynamic

properties of the neuron, and an interaction flux J
!

i, which
accounts for the neuron’s interaction with its environment
(e.g., the other neurons in the network). For an excitatory
neuronal population, this gives (Modolo et al., 2007, in
press)

o
ot pðw!; tÞ ¼ �5! � J

!ðw!; tÞ

J
!ðw!; tÞ ¼ J

!
sðw!; tÞ þ J

!
iðw!; tÞ

J
!

sðw!; tÞ ¼ F
!ðw!Þpðw!; tÞ

J
!

iðw!; tÞ ¼ êvrðtÞ
R v

v�� pð~v; u; tÞd~v

rðtÞ ¼ W
N

R s1
s0

rðt � sÞaðsÞds

J vðcþ; uþ d; tÞ ¼ J vðc�; uþ d; tÞ þ J vðs; u; tÞðBCÞ

8>>>>>>>>>><
>>>>>>>>>>:
where êv is a unitary vector in the v direction and
J v ¼ J

!ðw!; tÞ:êv is the v-component of neuronal flux
J
!ðw!; tÞ. The parameters are as follows:

• F
!ðw!Þ ¼ d w!

dt given by the Izhikevich model.
• r(t) [spikes · ms�1] is the average individual neuron

spike reception rate. This mean-field variable (account-
ing for the average interaction between neurons) is a
function of: the mean number of afferences per neuron,
the number of neurons in the population, past popula-
tion activity, and the distribution of conduction delays
within the population.

• s1 and s0 [ms] are extreme values of spike conduction
delays. Their distribution is given by a(s), using arbi-
trarily chosen values. A convenient choice is a(s) = 1
for a constant delay and a(s) = 0 else �s, as this simplifies
the expression of r(t).

• W is the mean connectivity degree (i.e., the mean number
of synaptic afferences per neuron).

• � [mV] is the amplitude of the membrane potential varia-

tion when an action potential occurs on a neuron. This
potential variation is assumed to be instantaneous.

• The factor (BC) represents the boundary condition. This
factor ensures the conservation of population density in
the state space: an additional flux depending on the num-
ber of neurons that cross the threshold s = 30 mV at time
tn is injected at the discontinuity v = c at the same time
step, tn (for a demonstration; see Modolo et al., in press).

http://www.izhikevich.com


1 The complete expression of these terms is similar to the general one
given in Section 3.

60 J. Modolo et al. / Journal of Physiology - Paris 101 (2007) 56–63
The complete form of the conservation law including the
Izhikevich model as a description of individual neuronal
dynamics is

o

ot
pðw!; tÞ ¼ �5! �

0:04v2 þ 5vþ 140� uþ IðtÞ
aðbv� uÞ

� ��

� pðw!; tÞ þ êvrðtÞ
Z v

v��
pð~v; u; tÞd~v

�
¼ 0 ð2Þ

A key point is that the expression of the firing rate, r(t),
computed as the total neuronal flux through v = s, is a
function of population density pðw!; tÞ

rðtÞ ¼
Z uþ

u�

v0ðtÞjspðs; u; tÞduþ rðtÞ
Z uþ

u�

Z s

s��
pð~v; u; tÞdvdu

ð3Þ

where w!s ¼ ðs; uÞ and u�, u+; the extreme values of the u

variable, are determined on an empirical basis to avoid a
population density ‘‘leak’’ into the state space. Population
density is used to compute observable variables: the neuro-

nal activity of the population (number of action potentials
per unit of time) and synchronization with other neuronal
populations. Under these circumstances, the population
density of two neuronal assemblies with synchronous activ-
ity will vary in a synchronous manner.

3.2. Validation of the model

The philosophies behind the population-based and
direct-simulation models are drastically different. Conse-
quently, we compared the results from the population-based
model with simulation results from direct simulations,
following the methodology used by Omurtag et al. (2000)
and Nykamp and Tranchina (2000). Indeed, the population
density function does not describe individual neuronal
dynamics but only the distribution of states. This approach
constitutes a mean-field model, where the complex N-body
problem (in which each element interacts with many
others) is transformed into a tractable mathematical form,
where each element is assumed to be under the influence
of a ‘‘mean-field’’, i.e., an average interaction. Even if
this hypothesis seems crude, this approach has produced
accurate descriptions of many problems in statistical
physics.

The validation of our population-based model is pre-
sented in Modolo et al. (in press). In brief, we compared
simulation results with those generated by direct-simula-
tion software developed by Garenne and Chauvet (2004)
to model temporal learning in the cerebellum. Several con-
ditions were tested in the study: a synaptically uncoupled
neuronal population with constant or high-frequency
applied current, a neuronal population with a given con-
nectivity pattern receiving a constant or high-frequency
applied current, and, finally, various time delays for spike
conduction. Individual neuronal dynamics were described
by the tonic spiking regime of the Izhikevich model
(Izhikevich, 2003). The agreement noted between the two
approaches, under the conditions examined, suggests that
our population-based model provides a reliable, valid
description of the behaviour of large neuronal populations.
The computing time required to simulate a network of 104

neurons with sparse connectivity (15 synapses/neuron) was
equivalent in both approaches (�28 min on a 3 GHz dual
core CPU with 2 Go RAM), so it would not be reasonable
to carry out a direct simulation of, for example, the popu-
lation of projection neurons in the subthalamic nucleus
(about 2 · 105 neurons) with a massive intraconnectivity
(several hundred synapses per neuron).
3.3. Application example

In order to illustrate the model’s capabilities, we applied
it to the problem of synchronization modulation in a sim-
ple 2-population network. Both populations contained 104

neurons but population 1 was excitatory, while 2 was inhib-
itory. Synaptic wiring was such that Wij = 30 "i, j = 1,2,
where Wij denotes the number of synaptic afferences that
a neuron in population j receives from population i. The
amplitude of excitatory/inhibitory post-synaptic potentials
(resp. EPSP/IPSP) was 3 mV and �3 mV, respectively,
with an identical absolute value, noted �. The spike conduc-
tion delay in each population was 1 ms and the inter-pop-
ulation delay was 3 ms. The system of hyperbolic partial
differential equations (PDE) describing the 2-population
network in simplified form is as follows:

o

ot
pEðw!; tÞ ¼ �5

! � fF
!

Eðw!ÞpEðw!; tÞ þ G
!

EEðtÞ � H
!

IEðtÞg

ð4Þ
o

ot
pIðw!; tÞ ¼ �5

! � fF
!

Iðw!ÞpIðw!; tÞ � H
!

IIðtÞ þ G
!

EIðtÞg ð5Þ

where the subscripts ‘E’ and ‘I’ denote excitatory and
inhibitory neurons, respectively and G

!
ij and H

!
ij denote

the excitatory/inhibitory interaction1 from population i to
population j, respectively. Both G

!
ij and H

!
ij depend on

the mean-field variable, r(t), presented above. F
!

E and F
!

I

represent the Izhikevich model for the tonic spiking and
low-threshold spiking modes (the latter describes the
dynamics of inhibitory neurons; Izhikevich, 2003). We as-
sumed that neurons in population 1 received an input cur-
rent I = 50 pA. The system of PDE was solved using the
finite volume-based numerical scheme presented in Modolo
et al. (in press), except that, in this case, it dealt with inhib-
itory neurons. The firing rate and mean membrane poten-
tial for both populations are presented in Fig. 4.

We observed an in-phase synchrony between the firing
rate and mean membrane potential (MMP) of the two pop-
ulations, as the excitatory population, 1, drove the inhibi-
tory neurons. A DBS-like current with therapeutic values:
IDBS = 250 pA, fDBS = 130 Hz, pulse width 150 ls, was
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applied to population 1 to test the impact of DBS on this
simple synchronized network. N.B.: Even if we used thera-
peutic values, this simple 2-population network was not
intended to simulate the activity of a precise brain network.
The neuronal activity and mean membrane potential of the
populations during 100 ms simulated time are shown in
Fig. 5.

The DBS-like current changed the synchronization
regime in the 2-population network, as both variables stud-
ied (firing rate and mean membrane potential) reached a
state of anti-phase dynamics. These results show that our
population-based model is useful for studying the modula-
tion of synchronization phenomena. This is of particular
relevance in understanding the effects of DBS in PD: in
the pathological state, the external segment of the globus
pallidus (GPe), together with the STN, is assumed to play
the role of a ‘‘pacemaker’’. It is hypothesized that the sub-
thalamopallidal network (globally viewed as a 2-popula-
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ganglia–thalamus–cortex loop into synchronized oscilla-
tions, leading to pathophysiological manifestations, such
as tremor. Consequently, this model is likely to be appro-
priate for investigating the activity of motor loop struc-
tures, which synchronize/desynchronize depending on
connectivity, activity patterns, and stimulation currents.

4. Future prospects and concluding remarks

We have proposed a new strategy for investigating the
mechanisms underlying the effects of deep brain stimula-
tion in Parkinson’s disease. One of the advantages of this
model is that it does not depend on the number of neurons
simulated. This approach is appropriate, as we are explor-
ing macroscopic phenomena, such as changes in symptoms
or behaviours. Furthermore, the limited number of param-
eters required to describe a neural population makes it
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current (IDBS = 250 pA, fDBS = 130 Hz, pulse width 150 ls) was applied to
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possible to simulate a network of structures, such as the
cortex-basal ganglia–thalamus–cortex loop, and integrate
neurophysiological properties of neurons in the various
structures, thanks to the Izhikevich neuron model, as well
as neuroanatomical data, such as neuronal connectivity,
time delays, etc. This relatively simple model is capable
of complex dynamics, such as bursting or resonating
(Izhikevich, 2003). In this context, various hypotheses con-
cerning DBS mechanisms may be tested by including the
appropriate structures and corresponding time delays in
the model, e.g., orthodromic/antidromic stimulation of
structures via the fibres of passage surrounding the STN
(Miocinovic et al., 2006).

However, it should be borne in mind that our modelling
approach has several limitations. Firstly, this approach
assumes an ‘‘infinite’’ number of neurons, which, of course,
is not the case in biological neural networks. However,
Nykamp and Tranchina (2000) showed that simulations
using a population-based model converged in a convincing
manner with direct simulations including fewer than 104

neurons. Secondly, population equations are derived by
simplifying an ‘‘average’’ wiring pattern, which does not
account for local variations in connectivity, potentially
capable of modulating the network’s functional and
dynamic properties. Furthermore, the synaptic model is
highly simplified for two reasons: (1) the time course of
the EPSP/IPSP is not taken into account, as the variation
in membrane potential is instantaneous, and (2) the ampli-
tude of this jump in membrane potential does not depend
on the membrane potential of the neuron, whereas a highly
depolarized neuron is much less responsive than a neuron
at its rest potential. Haskell et al. (2001) proposed a sophis-
ticated technique for including synaptic kinetics in the
population-density approach, using dimensional reduction.
Finally, the model presented here does not describe a
spatially-extended network (although it is possible to
include a spatial variable in the population-density
function).

One possible application of the model would be to
extend work by Titcombe et al. (2001) on tremor dynamics
in PD during DBS. A simple three-unit network was stud-
ied, with excitatory and inhibitory connections, showing
that a supercritical Hopf bifurcation occurred between
the DBS ‘‘off’’ and ‘‘on’’ conditions, switching the network
from oscillating to stable state. The bifurcation was defined
by a parameter, l, purely related to the system dynamics,
as this study did not focus on neurophysiological data.
Our model is likely to provide a physiological interpreta-
tion of the l parameter. This bifurcation parameter may
be related to the potential role of GABAergic interneurons
in the STN (Levesque and Parent, 2005) in modulating the
activity of this nucleus, which, to our knowledge, has not
yet been investigated. This lack of interest may be
explained by the low proportion of these interneurons
(7.5%) in this nucleus, which consists mainly of glutamater-
gic projection neurons. However, the study reported by
Tsodyks et al. (1997) showed that inhibitory interneurons
may affect a neuronal network in a counter-intuitive way.
Consequently, the simple 2-population network presented
above could be used to test this hypothesis by modelling
the two neuronal assemblies of the STN (glutamatergic
projection neurons and GABAergic interneurons) and sys-
tematically explore a variety of connectivity configurations.
Indeed the low number of STN GABAergic interneurons
may have a drastic effect on its dynamic behaviour,
depending on connectivity parameters with STN projection
neurons. If STN interneurons play an important role in
regulating STN activity, then the dopaminergic depletion
in PD may disrupt this regulation, radically modifying
the STN activity pattern and resulting in abnormal basal
ganglia responses. Our computational model offers innova-
tive prospects for exploring the details of this regulation
under the effects of DBS.
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Appendix

The main conservation law of the model is solved using
a numerical scheme based on the finite volumes method
(for a complete review, see Leveque, 2002). Briefly, the
main steps of this numerical method are

• The states space X is discretized in Ni · Nj identical cells
of volume Du · Dv · Dt.

• The Green–Ostrogradky theorem is applied to the con-
servation law on each cell:

R R R
V 5
!� F
!

dv ¼
R R

S F
!

d s!.
• Finally, this leads to a balance equation of incoming/

outgoing flux at the interface of each cell

pnþ1
ij ¼ pn

ij �
Dt
Dv
ðjþv � j�v Þ �

Dt
Du
ðjþu � j�u Þ ð6Þ

where jþ=�v=u are the incoming/outgoing flux at the inter-
face of each cell. We used Dt = 4 ls, Dv = 0.5 mV and
Du = 1 mV in all the simulations to satisfy the CFL con-
dition (Courant et al., 1928). In opposition, the principle
of the direct simulation is as follows:

• At the initial time, a distribution of states for all the neu-
rons is loaded into the software.

• The direct-simulation software builds the network using
a bootstrap-based method.

• At the current time step: the state of each neuron is
determined by the Izhikevich model and the equations
are solved using a fourth-order Runge–Kutta method.

• The state of each neuron at each time step is stored in a
datafile.

• Skip to the next time step.
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