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SPLINES AS LOCAL SMOOTHERS1 

BY DOUGLAS NYCHKA 

North Carolina State University 
A smoothing spline is a nonparametric curve estimate that is defined 

as the solution to a minimization problem. One problem with this repre- 
sentation is that it obscures the fact that a spline, like most other 
nonparametric estimates, is a local, weighted average of the observed 
data. This property has been used extensively to study the limiting 
properties of kernel estimates and it is advantageous to apply similar 
techniques to spline estimates. Although equivalent kernels have been 
identified for a smoothing spline, these functions are either not accurate 
enough for asymptotic approximations or are restricted to equally spaced 
points. This paper extends this previous work to understand a spline 
estimate's local properties. It is shown that the absolute value of the 
spline weight function decreases exponentially away from its center. This 
result is not asymptotic. The only requirement is that the empirical 
distribution of the observation points be sufficiently close to a continuous 
distribution with a strictly positive density function. These bounds are 
used to derive the asymptotic form for the bias and variance of a first 
order smoothing spline estimate. The arguments leading to this result can 
be easily extended to higher order splines. 

1. Introduction. The basic model considered in nonparametric regres- 
sion is 

(1.1) Z = 0(t) + ej, 1 <j < n, 

where Z is an observation vector depending on a smooth function 0, observa- 
tion points 0 = t1 < t2 ? < tn = 1 and errors ej that are assumed to be 
independent, have mean zero and have common variance - 2. A statistical 
problem posed by this model is to estimate 0 without having to assume a 
parametric form for this function. 

One class of estimators that has been studied extensively consists of 
weighted local averages of the observations where the weights are specified 
by a kernel function. For example, the kernel estimate attributed to Nad- 
araya (1964) and Watson (1964) has the form 

1 n 
(1.2) 0(t) = E W(t, ti)z J n j=1 
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where 

(1.3) w(t,ti)= K ki l nh [ h j 
The kernel function K is assumed to be continuous, to be symmetric about 
zero and to integrate to 1. The bandwidth parameter h controls the relative 
weight given to observations as a function of their distance from t. It is easy 
to study the theoretical properties of kernel estimators because the estimate 
is an explicit function of the observations and the weight function w has a 
simple form. The formulation of the kernel estimate, however, constrains it to 
local operation on the data. This restriction may make it difficult to apply 
kernel methods to more complicated observational models than (1.1). 

An alternative to kernel estimators are those based on maximizing a 
penalized likelihood. For example, under the assumption that the distribution 
of the errors may be approximated by a normal distribution, one has the log 
likelihood 

n 
(1.4) L(Z10, ) = - E (Zk - 0(tk)) /2o.2 - n ln(27or). 

k = 1 

Furthermore, we will assume that 

0 E W2M, 1] = 0: 0, . . ., 0(m1) absolutely continuous 0(m) EL2[0, 1]} 

and will take as a roughness penalty J(0) = fJ[O 1](0(m))2 dt. For 8 > 0 we 
have the penalized log likelihood 

(1.5) L(ZJ 0, o-) - 5J(0). 

A maximum penalized likelihood estimate is the function that maximizes 
(1.5) for all 0 E W2m[0, 1]. Thus to formulate an estimate for 0, all one needs 
to do is to specify the likelihood for the data in terms of the unknown function 
and subtract a roughness penalty. This approach has the advantage of being 
very flexible in adapting to more complicated models. See Nychka, Wahba, 
Pugh and Goldfarb (1984), O'Sullivan, Yandell and Raynor (1986), Silverman 
(1982), Nychka and Ruppert (1991) and Cole and Green (1992) for some 
examples of applications of splines to observational models that differ from 
(1.1). 

The maximum penalized likelihood estimate just described actually takes 
the form of an mth order smoothing spline. Multiplying (1.5) by - 1/n and 
setting A = 8/n, one may define the maximum penalized likelihood estimate 
0. as the minimizer of 

ln 

(1.6) 5( ) = n E (Zk - (tk)) + AJ ((m))2 dt 
n k=1 [0,1] 

over all ( E W2m[0, 1]. Although the resulting estimate can be shown to be a 
linear function of the observations and, thus, can be written in the same form 
as (1.2), the spline weight function does not have a closed form. 
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The works of Silverman (1984), Messer (1991) and Messer and Goldstein 
(1993) identify kernels that will approximate the spline weight function. 
However, these results are limited. Although Silverman's approximation 
provides excellent intuition about how a spline estimate weights the data 
relative to fairly arbitrary distribution of the observation points, his analysis 
is not accurate enough for establishing asymptotic properties. Messer's 
Fourier analysis gives a high order approximation to w(t, T) for all m > 2, 
but depends on {tk} being equally spaced. The results in this article fall in 
between the work of Silverman and Messer. Unequally spaced distributions 
of {tkl are considered and the analysis is accurate enough to establish 
convergence rates for the estimators. Although the assumptions on {tk} are 
not as restrictive as Messer's work, the case of a purely random design, 
covered by Silverman, is not addressed. 

The author believes that the limitations of the results in this paper are 
largely technical and the methods can be extended in a straightforward 
manner to include random designs and higher order splines. 

A conjecture for the pointwise bias and variance of a smoothing spline. 
One motivation for studying the spline weight function is the growing inter- 
est in locally adaptive smoothing [Staniswalis (1989), Hairdle and Bowman 
(1988), Friedman and Silverman (1989), Schucany (1989), Eubank and Speck- 
man (1993), Brockmann, Gasser and Herrmann (1993), Vieu (1991) and 
Filloon (1989). Although a single choice for the smoothing parameter A may 
be adequate on the average for different values of t, it is reasonable to 
smooth less at sharp peaks and troughs in the function and smooth more 
where 0 is linear. In order to implement a method for variable smoothing, it 
is important to understand how the mean squared error of a spline estimate 
varies from one point to another. Although work has been done [Cox (1984)] 
on the asymptotic properties of spline estimates, it is restricted to global 
measures of accuracy. Based on the proof techniques developed by Dennis 
Cox, Paul Speckman and others, it is easiest to analyze the convergence of 0 
to 0 in norms related to integrated squared error and the Sobolev norm 
suggested by the form of the roughness penalty. In fact, it seems difficult to 
understand the pointwise accuracy using previous work except in the case 
when {tj} are equally spaced [Messer and Goldstein (1993)]. This article 
presents a different approach for analyzing pointwise properties of spline 
estimates. Although a complete analysis is beyond the scope of a single paper, 
it is helpful to outline what general results might be expected. 

The stating point for considering the asymptotic properties of a smoothing 
spline is to approximate the weight function in (1.2) by a Green's function to a 
particular 2mth order differential equation. This function will be denoted by 
GA(t, T) and will be referred to throughout this article as the equivalent 
kernel. The root p = A1/72m will often be used in place of A because it plays a 
role analogous to a bandwidth in a kernel estimator. In drawing this connec- 
tion between GA and w, it should be noted that there is a natural extension of 
the spline weight function to values other than tj in the second argument 
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(see Section 3). So it makes sense to refer to w(t, r) without requiring that T 

be equal to tj. Letting f denote the limiting density function for the indepen- 
dent variables {tk}, then an exact form for GA will depend in a complicated 
manner on both f and A. In addition, GA is not a convolution kernel and has a 
different shape depending on the distance of t and T from the endpoints. 
However, suppose for the moment that a simple expression for GA is avail- 
able. One might consider the approximations 

E[fd(t)] = E[- E w(t, ti)Yi] = w(t, tn) e(t) 

f w(t,T)6(T)f(T) dr J1GA(t,T)6(T) f(T)dT. 
0 0 

In a similar manner, one is lead to 

(1.8) Var[0A( t)] - [GA(tT)]f T f)dT. 

In order to study (1.7) and (1.8), it turns out that it is not necessary to know 
the exact form for GA. Under suitable restrictions on the rate that A converges 
to zero, if 0 has 2m continuous derivatives, then it is reasonable to expect 

(1.9) E[ O' (t)] - 0(t) ( 0 (2m)( t) OA ~~~~~f( t) 
and 

(1.10) Var[6 (t)] nf( A 

for t in the interior of [0, 1]. Here Cm is a constant depending only on the 
order of the spline. Now set p(t) = (A/f(t))l/2m and one obtains from (1.9) 
and (1.10), 

E[OA(t) - 6(t)] =p( t)4m[0(2m)(t)]2 + np(t)ft) 

In this form, p(t) can be interpreted as a variable bandwidth and the 
accuracy of 0 is comparable to a 2mth order kernel estimator. Based on the 
work of Fan (1992, 1993), the pointwise mean squared error is comparable to 
locally weighted regression estimators. If one wanted to achieve a constant 
bias or mean square error across t, one would have to consider not only the 
curvature of 6 (0(2m)(t)), but also the local density of the observations (f(t)). 
This discussion is only relevant to points t in the interior of [0, 1]. The bias of 
a spline estimate at the boundary may exhibit slower convergence rates, 
depending on the derivatives of 0 at the endpoints. This effect has been 
identified in Rice and Rosenblatt (1983) and is also well established for kernel 
estimators. 
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Although this overview may suggest the value of the following technical 
work, it should be emphasized that (1.7) and (1.8) are rigorously established 
in this paper only for the case m = 1. The extension to high order splines, 
however, will be a straightforward exercise. 

Outline. The remainder of this article will be outlined. The next section 
formally states the main theorems in the paper. These are a general result on 
the local properties of w (Theorem 2.1) and a specific application to first order 
(m = 1) splines (Theorem 2.2). Section 3 reviews Cox's representation of the 
spline weight function as an infinite series and Section 4 proves Theorem 2.1. 

The most difficult part of this analysis is characterizing a Green's function 
that corresponds to a 2mth order differential equation. Section 5 discusses 
these functions and derives an explicit formula for the case m = 1 for 
uniform densities (f = 1). Section 5 also describes how to use the Green's 
function for uniform densities to approximate G. when f is not constant. This 
link is perhaps the most novel part of the article. Section 6 gives a proof for 
Theorem 2.2, and the last section briefly discusses how this work might be 
extended to higher order splines and random designs for {tj}. 

2. Main results. 

2.1. Definitions and assumptions. Much of the theoretical work in non- 
parametric regression hinges on being able to approximate discrete sums 
such as (1.2) with integrals. In doing so, it is necessary to specify a limiting 
distribution for the independent variables. Let Fn denote the empirical 
distribution function for {tj), 1 < j < n, let F be a distribution function with a 
continuous and strictly positive density function f on [0, 1] and let 

Dn= sup IF, - Fl. 
te[0, 11 

To obtain bounds on w, the analysis in this article will require that Dn be 
sufficiently small relative to p = A1/2m and to derive asymptotic approxima- 
tions to the bias and variance of a smoothing spline, it will be necessary to 
assume almost sure convergence of Dn to zero. 

Based on the choice for F, the weight function for an mth order spline 
estimate can be approximated by a Green's function to a particular 2mth 
order differential equation. 

DEFINITION OF EQUIVALENT KERNEL. GA(t, r) is the Green's function associ- 
ated with the differential equation 

md2m h(t) 
(2.1) A( - 1)m ()+ f(t)h(t) = f (t)g(t) 

for t E [0, 1] with boundary conditions h(v)(O) = h(v)(1) = 0 for m < v ? 
2m - 1. 
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For those readers not familiar with Green's functions, operationally speak- 
ing, if h(t) = JGA(t, T)g(T)f(T) dT, then h will solve (2.1). Another useful way 
of characterizing GA is the following. If h has m continuous derivatives, then 

89mGA(t,rT) dmh(T) f GA(t, T)h(T)f(T) dT + AJ A( 1 ) (T) dT= h(t). 

This version comes up in proving Cox's series representation for the weight 
function. One may note that GA is a reproducing kernel with respect to the 
inner product h , h2 = - J fhh2fd + Af h(m)h(m) dT on W2m[0, 1]. Thus from 
the elementary properties of reproducing kernels, GA is unique and symmet- 
ric in its arguments. 

The results of the main theorem depend on GA satisfying the following 
condition: 

ASSUMPTION A (Exponential envelope condition). Let p = Al/2m. There 
are positive constants a, e, K < oo such that for all t, T E [0, 1], 

(2.2) IGA(t,T)I < (K/p)exp(-(a-e)It - TI/p). 
If (8/dt)GA and (d2/dt 87)GA exist for all t, i E [0,1], 

(2.3) -GA(t,T) < ep ( 

(2.4) Gd (t T) < -( )exp(-(a+ s)ItTI) 

Otherwise, if (d/dt)GA is not continuous when t T , then 
d a 1 

(2.5) -GA(t, )ITt-- aGA(t, T)7t+ At at atA 

ASSUMPTION B. An = 2K[1/e + 1/a]Dn/P < 1. 

Assumption A places certain restrictions on how GA and its derivatives 
must decrease as It - I1 increases. The peculiar condition in (2.5) is needed 
for the situation when m = 1. Also, it should be noted that the separation of 
the exponent into a sum of a and e is an artificial device to simplify the 
conclusions in Theorem 2.1. In this article, it showed that Assumption A 
holds for m = 1 and when f is strictly positive with a uniformly continuous 
derivative. Also, the work of Messer and Goldstein (1993) implies that this 
assumption will hold for m > 1 when f is constant. It is believed that the 
proof strategy for the m > 1 case can be extended to verify this assumption 
for more general densities (see Section 7), but a rigorous proof is not included. 
In general, it is conjectured that Assumption A will hold for all m and a wide 
class of design densities. Based on this conjecture, the main theorem has been 
phrased in terms of this more general assumption rather than specific results 
for the case when m = 1 or when f is constant. 
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2.2. The main approximation theorem. 

THEOREM 2.1. Let p = Al/2m. Under Assumptions A and B, 

Iw(t,T) < 
K 

expi -a I . 
(l - n)P p J 

IW(t, T) -GA(t, )I < (n 
K 

exp -a I 
( - 5n)p p 

and 
a K ( It- r1 
- W(t,rT) < 

K 
exp - a It , 

l 
at (1 

_ 
- n)p2 p 

uniformly over t, r E [0, 1]. 

The proof for this theorem is given in Section 4. One interesting feature of 
this result is that this bound is not asymptotic and holds exactly for finite 
sample sizes. The only requirement is that the sizes of the equivalent 
bandwidth p and Dn must be balanced such that 8n < 1. In fact, F need not 
even be the "true" limiting distribution. All that is needed is for F to 
approximate the empirical distribution of {tj). 

2.3. The bias and variance of a first order (m = 1) smoothing spline. One 
application of Theorem 2.1 is to derive an asymptotic form for the bias and 
variance of a spline estimate. 

THEOREM 2.2. Assume that 06 is a first order (m = 1) smoothing spline 
estimate and the observation points are not equally spaced. Suppose that 
0 e C240, 1] and satisfies the Holder condition 10(2)(t) - 0(2)(T)I < MIt - TI 
for some /3 > 0 and M < x. Assume that f has a uniformly continuous 
derivative and Dn 1O,,> 0 as n -o x. Choose A > 0, 

(2.6) An - (Dn)2/3log(n) and An -> as n -x. 

Then: 

(i) E(6^(t)) - 0(t) = -(A/f(t)) 0(2)(t) + o(A), 

a1'2f(t)l1/2 
(ii) Var(O,(t))= 8nA1 2f(t) (1 + o(1)), 

uniformly for A E [An,,An ] andt e [A,1 - A] asn n oo. 

The proof of this theorem is given in Section 6. 

3. Series representation of the spline weight function. One way of 
representing the minimizer of (1.6) is to examine the functional equations 
obtained from setting the Gateaux derivative equal to zero [see, for example, 
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Nashed (1971)]. A necessary condition for 0A to be a solution is that 
(d/d)dE)Y(OA + eh)l,=o = 0 for all h in a dense subset of W2[0, 1]. This will 
be sufficient provided that there are at least m + 1 distinct values in {tkl. 
Explicitly, this condition is 

2 nA 
- E -(Zk OA(tk))h(tk) + 2A k(m)h(m) dt = O 
n k=1 [0, 1] 

One way of characterizing w(t, tj) is to note that this function is actually the 
smoothing spline estimate applied to the "data": Zk = n, for j = k, and = 0 
otherwise. (This trick is the same as "smoothing" a vector of 0's with a 1 in 
the jth row to recover the weights used by a kernel estimate.) Thus we have 

I n dm dm 
- E w(t ttj)h(tk) + Af W(t tj) h(t) dt - 

( 
nk-i [0,1] attm dttm tt-ht)= 

or 
dm dm 

w(t, tj)h(t) dFn(t) + A tw(t, tj) dtm h(t) dt = h(tj) 

for 1 <j < n, 
and for all h in a dense set of W2m[0, 1]. Note the similarity of this expression 
with the second characterization of GA. 

A solution to this functional equation is given by Cox (1983, 1984) and is 
stated as the following lemma. 

LEMMA 3.1. Define the integral operator WnA: CO[0, 1] -- C0[0, 1] as 

-WnA(h)(t) = f GA(U, t)h(u)d(F - Fn)(u) 
[0,1] 

and take 'vA as the vth power of this operator: 

(3.1) w(t, t') - GA(t tj) =A-WnA(W( tj))(t) 

If I I5nA(GA( I tj))(t)lI < a v for some a < 1, then 

(3.2) w(t, tj) = GA(t tj) + WnvA(GA(., tj))(t). 
V= 1 

The proof for this lemma is discussed in Cox (1983). However, a quick 
argument for (3.1) is to make the substitution h(t) = GA(t, tj) in the equation 
characterizing w and use the reproducing properties of GA. 

The leading term in (3.2), GA(t, tj), does not depend on the empirical 
distribution of {t). The other terms in the infinite sum can be interpreted as 
corrections to this asymptotic expression based on the difference between F 
and F,. For example, the first order correction (v = 1) can be reexpressed as 
JGA(u, t)GA(u, tj)d(F - Fn)(u). Most of the asymptotic theory for splines is 
based on showing that these correction terms are negligible. If {tj) are equally 
spaced, then these higher order corrections may be calculated using Fourier 
methods, and this is one way of interpreting the analysis in Messer (1991). 
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Based on the series representation in (3.2), it is easy to extend w(t, r) to 
arbitrary values of r. In Lemma 3.1 just replace the occurrences of tj by r. 
Also, since GA is symmetric (Section 2.1), from (3.2), w(t, T) must also be a 
symmetric function in t and r. 

4. Proof of Theorem 2.1. The most important property used to prove 
Theorem 2.1 is Assumption A: Bounds on the equivalent kernel and its 
partial derivatives can be expressed in terms of a double exponential kernel. 
The basic idea behind the proof is elementary. Under the assumption that F" 
is sufficiently close to F, an inductive argument will show that bounds on 
SlAGA(, r) may be inferred from bounds on GA(t, v). These individual bounds 
form a convergent geometric series and thus can be summed to give a bound 
for w. In order to carry out the induction argument, two lemmas will be used: 
The first is the basic device for approximating sums by integrals and the 
second is a bound on the convolution of two double exponential kernels. 

4.1. Preliminary lemmas. 

LEMMA 4.1. If h has an integrable first derivative, then 

f hdFn-f hdF < supIFn-FIF Ih'I dF. 
[O,1] [O, 1] [O, 1] 

PROOF. For the integral f[O 1]hd(Fn - F), integrate by parts and then 
apply H6lder's inequality. O 

LEMMA 4.2. Let I(t,r, p) = J[o lexp(-alt-ul/p-a'lr-ul/p)du, where 
a, a' > 0. Let a* = min(a, a') and ? = la - a'I > 0: 

I(t, , p) ? (1/e + 1/a*) p exp( - a* It - TI/P). 

PROOF. Extending the range of integration to all of 1R, 

I(t, T, p) <f| exp(-alt--ul/p--a' r -ul/p) du. 

First consider the case when t < T and a < a'. The integral above naturally 
breaks into three pieces, and letting A = It - 7I, it follows that 

I(t,,)< +a,)ep(p)? [1 (x- exp - exp 

+ (a +,) exp a- 

2P / -a*A/ p -A -a*/ \ 
<(+ a) exp p +[1 - exp )]exp. 
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Note that 1/( a + a') < 1/(2 a*) and the bracketed term is always positive 
but less than 1. Therefore, collecting terms, the conclusion of the lemma must 
hold for this case. The remaining three cases can be established in a similar 
manner. D1 

LEMMA 4.3. Under Assumptions A and B, for all v > 0, 

(4.1) |7nflA(GA(, X))(t) < (an) ("jexp(-a ,- 
TI 

(4.2) 
T( 

t - exp-a 

uniformly for t, T E [0, 1]. 

PROOF. By Assumption A, (4.1) and (4.2) both hold when v= 0. Suppose 
that (4.1) and (4.2) hold for some v = ,LL. Then it will be shown that these 
inequalities must also hold for v = ,i + 1. To simplify notation, let g(u) = 

GA(u, T): 

f g)(tGA(u, tu))sdA(g7)(u)d(F(u) - Fn(u)). 
0, 1] 

Applying Lemma 4.1, 

sup I F(u) -Fn(u)If [GA(uut)?3'A(g )(U)] du 
U E=[0, 1] [0, 1] au 

t WJT 

d 
[ 0, 1] au (u, 0-WnJ9T)(U) 

a 
+ GA(u,t)-d n1A(g,)(u) du. 

au 
Now use the bounds on G. from Assumption A and the bounds on SK from 
the induction hypothesis: 

< Dn2(,5n)y(2p)(,7 ) 

Now apply Lemma 4.2 with a' = a + 8: 

< Dn2(8n) (K2/p2)(1/8 + 1/a)exp(-alt - rl/p). 

Collecting terms, 

< ( 8n)/L+I(K/p)exp(-ait - rj/p). 

Thus (4.1) must hold for v = ,u + 1. 
If the mixed partial of GA exists for t = T, then a very similar argument is 

used to establish the second induction hypothesis. The proof will be com- 
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pleted by considering the case when the mixed partial for GA does not exist 
for t = T. Integrating by parts, 

a 
dt-qnA+ 

1 T )(t ) 

d d 
(4.3) = 7 1-GA(u,t) h(u) du 

d a +-J GA u, t 'A g u ) ( F( u) - Fn( u )) du, 
[t0, 1]AU~t au nJT)( 

where h(u) = (F(u) - Ffn(u))R " (g,)(u). Considering the first term, 
d a 
-| (+a GAU, t) h(u) du 

(4.4)1t? aa 
- 

lim 2-i> 1 d GA(u,t - S) - yGA(U't + )) h(u) du 

because, by assumption, (a/a u)Gk(u, t) is continuous for t =A r. Based on 
(2.5), one can argue that the limit of (4.4) is (1/A)h(t). Now apply the 
induction hypothesis for -4 to bound this first term. The second part of (4.3) 
is handled by interchanging the order of the derivative and integral and 
bounding this expression based on Assumption A and the induction hypothe- 
sis. O 

4.2. Proof of Theorem 2.1. From Lemma 4.3 and Assumption B the sum 
of (3.2) is bounded by a convergent geometric series and thus converges 
uniformly to w(t, T). Also, 

(4.5) Iw(t, T)I < IGA(t, T)l + E I-nvA9(g)(t) 
v= 1 

and by Lemma 4.3 

< 1 + 5 8,j(K/p)exp(-alt - TI/p) 
v= 1 

< [1/(1 - 8n)](K/p)exp(-a'lt - TI/p). 
The second part of the theorem follows from 

IW(t,r) - Gk(t,r)l ? [86n/(1 - 8n)](K/p)exp(-a'lt - rl/p). 
Finally, the third part follows in the same manner but uses the bounds for 
the derivative in Lemma 4.3. 0 

5. Exponential bounds on the Green's function. The main result in 
this article depends on Assumption A. To give a concrete example, this 
assumption is verified directly when m = 1 and f is a uniform density. For 
m ? 2 and f uniform, the work of Messer and Goldstein on approximating GA 
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is applied to verify Assumption A. This section ends by extending the results 
for the uniform case when m = 1 to nonuniform design densities. 

5.1. Approximating kernel for a first order spline and uniform design 
density. When the roughness penalty depends on the first derivative (m = 1), 
it is possible to derive a fairly simple expression for the Green's function GA. 
This integral kernel will be the solution of 

d 2 
-A d2GA(t, T) + GA(t,7r) = 0 for t + T, 

subject to the natural boundary conditions (d/dt)GA(O, r) = (d/dt)GA(1, T) 
0 and continuity conditions 

GA(t, T)IT=t- -GA(t, r)ITt+ = 0 
and 

d d 1 
d GA(t, ')lT=t- d -GA(t, T)IT=t+ 

= A 

Also note that, by symmetry, Gk(t, r) = GA(t, r) and GA(t, T) = GA(1 - t, 1 - T). 
Working with the homogeneous solution to this ordinary differential equa- 
tion, it is possible to derive 

Gt,) = exp(/p)) [ ( t) + exp( (t ) 

-(2 -t - r)) + e( -(2- 7+ t)) + expv + expv 

for t ? T and p = A1/2. The formula for GA when t > i is obtained using the 
symmetry properties mentioned above. One can verify that GA given above 
satisfies parts (2.2) and (2.3) of Assumption A. The mixed partial does not 
exist when t = r, and so it is necessary to consider (2.5). However, this 
property follows directly from the continuity condition specified for the con- 
struction of this Green's function. 

5.2. Green's functions for m > 2 uniform density. Calculating the Green's 
function for the case when m 2 2 involves much more algebra. For example, 
when m = 2 there are eight linear equations of coefficients that need to be 
solved rather than four. Accurate approximations to GA in these cases have 
been developed by Messer and Goldstein (1993). In particular, Theorem 4.1 
proved by these authors, together with their definition of the approximating 
function Kb(X, t), will imply that the first two parts of Assumption A will 
hold. The bound for the mixed partial follows on noting that one can differen- 
tiate both sides of their second equation (23) on page 193 and still obtain the 
same type of exponential bounds in the bandwidth. 

5.3. An extension to nonuniform design points. The Green's functions 
described above are limited to the case when the marginal distribution of {tk} 
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converges to a uniform distribution. In general, the Green's function associ- 
ated with the differential equation in (2.1) is much more difficult to derive. An 
alternative approach is to use the form of the Green's function for a uniform 
density to approximate these more general Green's functions. Restricting 
attention to the case when m = 1, we show that Assumption A will also hold 
for nonuniform densities provided that f' is uniformly continuous. Before 
stating the formal results, it is helpful to present the change of variables that 
is at the heart of this approximation. 

Let GA denote the Green's function associated with the differential equa- 
tion in (2.1) with m = 1 and let G.' denote the Green's function when f is 
uniform (f 1). 

Let 

K = ff(T)1 dr, 

F(t) = (1/K)ftf(_)1/2 dr and y(t) = F(t)'. 

(Note that F is a 1-1 transformation onto [0, 1].) Consider the kernel H such 
that 

(5.1) GA(t, 7)f(7) = H(F(t), F(r))y(T). 

H(u, v) will also be a Green's function for a particular second order differen- 
tial equation. Due to the particular choice of transformation, H can be 
approximated (as A -* 0) by GUTK<2. To understand why this is reasonable, it is 
informative to derive the differential equation associated with H. 

For any continuous function g, let 

h(t) = I Gx(t, T)g(7-)f(-r) dr 

and 

q(u) = HA(u, v)g(F-(v)) dv 

By applying a change of variables to the second expression and using the 
chain rule for derivatives, one can verify that h(t) = q(f(t)). Recall that from 
the definition of GA, h must solve (2.1). 

Using the correspondence between h and q given above, it also follows 
that q must solve 

(5.2) ~~~~d 2 dq 
(5.2) - (A)(Y2o-F) 72q + A(Y'o F1)y + 'kq = 4gF-1 

subject to q'(0) = q'(1) = 0 and +(u) = f(f-1(u)). 
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At this point it is not clear that any simplification has occurred from this 
change of variables. However, dividing through (5.2) by 0 and regrouping the 
terms, one obtains 

(5.3) - 2) 2q + q + Aip- =go r 

where now qf = (y' o Fr- )/f(F l(u)) and K 2 2 = f. Let 2 denote the operator 
for differentiation and let 2= -(A/ KX2)9_2 + I. With this notation the dif- 
ferential operator associated with the Green's function H can be expressed 
suggestively as Y + AqJ9T. Thus, we see that this differential operator sepa- 
rates into the operator for the uniform density case plus an operator of lower 
order. For A sufficiently small, one might expect the solution to (5.3) be 
approximated by the solution to Y(q) = g o F1-. In other terms, the integral 
operator identified with (Y + Aifr0- 1 might be approximated by the integral 
operator associated with 91~` as A -O 0. Note that we already have a link 
between GA and HA by (5.1), so if GUK2 can give an adequate approximation 
to HA, we are done. 

The following theorem makes this heuristic discussion precise. 

THEOREM 5.1. Let f be a strictly positive density function with a uniformly 
continuous derivative and let GA be the Green's function associated with the 
differential equation (2.1) for m = 1. Let Gu be the Green's function for m = 1 
when f is constant. Let p = A1/2, 6 = suplqil and w = 2K[1/a + l/e]Rp, 
where K, ? and a are associated with the constants in Assumption A for 
G/K2. If w < 1, then: 

(i) GA will satisfy Assumption A. 
(ii) There are constants 0 < C1, C2 < oo, such that 

GA v GA/K2(F(u), (v))y(v) < C1exp c2u - V) 

uniformly for u, v E [0, 1]. 
(iii) For A> 0 and t E [A, 1 - A], 

J1GA(t, )f(T) dTr 
8=Al/2f()1/2(1+ 

uniformly as A1/2 O_ 0. 

An outline of the proof of this theorem is in Appendix A. 

6. Proof of the asymptotic form for the bias and variance. This 
section proves Theorem 2.2. Although the conclusion of this theorem is 
specific to first order splines, most of the proof does not depend on this 
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restriction. For this reason, most of the discussion in this section considers 
smoothing splines of general order m. 

First a lemma will be given that will be needed in the proof. 

LEMMA 6.1. Let GA be the Green's function defined in Section 2. Suppose 
that 

(6.1) 10(2m)(t) - 0(2m)(T) I < Mit -Ti" 

for some , > 0 and M < oc, 

and furthermore 0 satisfies 0(V)(O) = 0(v)(1) = 0 for m < v < 2m - 1. Then 

d 2m 

dt2m f GA(t,T)O(T) dF(r) T (_1)m0(2m)(t) as A -* O0 
[ 0,1] 

uniformly for t E [0, 1]. 

The proof is given in Appendix B. 

PROOF OF THEOREM 2.2. (i) First consider the approximation to the point- 
wise bias of a smoothing spline: 

1 n 
EOA(t) - 0(t) =- E w(t, tj)o(tj) - 0(t) 

nj=l 

=ft W(t, T) H(T) dFn(7T) - 0(t) 
[0, 1] 

= f w(t, T) 0(T) dF(T) - 0(t) 
[0, 1] 

(6.2) +1 w(t, r)6(T)d(Fn -F)(T) 
[0,1] 

=1t GA(t,T)60() dF(T) - 0(t) 
[0,1] 

+ ? [w(t,7) -GA(t, T)] (T) dF(T) 
[0, 1] 

+ | w(t, r) 0(T)d(Fn -F)(T). 
[0,1] 

It will be convenient to refer to the three terms of (6.2) as bA(t) + R1 + R2. 
The proof of part (i) of Theorem 2.2 will consist in showing that bA(t) 
converges to the functional form stated in the theorem while R1 and R2 are 
o(A) uniformly over the specified ranges for A and t. 
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For the first term in (4.5), assume that 0 satisfies the boundary conditions 
in (2.1) and let g(t) = Jfo, 1iG(t, T)0(T) dF(T). By the definition of the Green's 
function, 

(6.3) (1)m A(d2m )g + fg = f0, 

so 

-A(-1) ( d2m 
bA(t) = g(t) - 0(t) f(t) dt . 

From Lemma 6.1, g2m __ 0(2m) as A 0 and it now follows that 

( _ 1) m1 lAO(2 m)(t) 

(6.4) bJ(t) - A )(t) (1 + o(1)) 

uniformly for t E [0, 1] as A - 0. 
We now deal with the case when 0 does not satisfy the boundary condi- 

tions. Let 0 denote a function that agrees with 0 on [ A/2, 1 - A/2], but has 
been modified outside this interval so as to satisfy the natural boundary 
conditions: 

g(t) = f GA(t, T)B(T) dF(T) + f GA(t, T)(0(T) - 0(T)) dF(T). 
[0,1] [0,11 

Using the exponential bounds on GA and sup 0o - 0 < o0, the second term will 
be O(exp(- azA/2 p)/p) = o(A) uniformly for t E [A, 1 - AI as A - cc. Equa- 
tion (6.4) now holds for this version of 0 and for t in the subinterval 
[A,1 - A]. 

Now consider the first remainder term in (6.2). From the second assertion 
of Theorem 2.1, 

IR11 < SUP I O(T)f(T) I W(t, T) - GA(t, T) Idr 
[0,11 [ 1 , 1] 

< SUpIO ( T) f( T)l 
ex - a dT 

; ]( 

Of ) (Dn) = ( O(n) =0 as n~ oc 

The last remainder term may be bounded using Lemma 4.1, Theorem 2.1 
and the symmetry of w: 

IR21 [<0] d ( (w(t, T)0(T)) dT = O as n - oo. 

Finally, note that by the specification of An in the hypothesis of the theorem, 

(6.5) (/n -( A0 nm/2m) = O(log(n)-3/2) - 0 as n - 00 

This insures that the first term dominates the second and third terms in (6.2). 
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(ii) Expand the variance as 

Var(OnA(t)) = [01 /)2 dFn(r7) 

= u2/n(f GA(t, 7)2f(7) dr 
(6.6) 0o, 1] 

+ / [w(t, T)2 -GA(t, T)2 f(T) dT 

+J w(t, T) 2d(Fn - F)(T)) 

The first term in the above expression is asymptotically equivalent to 
1/ (8nA1/2f(t)1/2) when m = 1 by Theorem 5.1(iii). Now use the elementary 
identity Ia2 - b21 < 21a - blmax(Iaj, Ibl) to bound the second term. With this 
bound one can use arguments similar to those for R1 to show that this second 
term is O(Dn/Al/2m). The third term can be bounded using the same tech- 
niques to analyze R2 and is also O(Dn/Al/2m). Thus, combining the asymp- 
totic bounds for these three terms of (6.6), part (ii) now follows. El 

7. Extensions to higher order splines, the variance of the spline 
estimate and random designs, and unequal weights. The arguments 
in this article have been structured so that the extension to higher order 
splines depends on Assumption A. This assumption in turn depends on 
establishing a version of Theorem 5.1 for m > 1, and a brief description will 
be given of this general theorem. For m > 1, the correct choice for F in 
Section 5 is to replace the exponent 1/2 by 1/2 m. Also, it will be necessary to 
assume that f has 2 m - 1 continuous derivatives along with some boundary 
conditions that guarantee that q will satisfy the natural boundary conditions 
of (2.1). Like the case for m = 1, a change of variables based on F will yield a 
differential operator with (A/K 2m)( _ 1)m2 m as the first term plus a differ- 
ential operator of lower order (2 m - 1). This second operator will be more 
complicated but can be handled using the same approach in the proof for the 
first order case. The proof will require that the Green's function for the 
uniform density satisfy more conditions than just Assumption A. One will 
need to use exponential bounds similar to those at (2.3) for the partials 

k Gat' 
A 

1 l<vp<(2m -1) 

and the bound in (2.5) for (a 2m/at(2m - 1)da)(G,(t, r)). However, these proper- 
ties are guaranteed from the analysis in Messer and Goldstein (1993) and the 
continuity conditions used to construct Gu. The proof of Theorem 5.1(iii) does 
not need to be altered because Messer and Goldstein's approximations to the 
uniform Green's function can serve in place of an explicit formula for GU. 

The careful reader may have noticed a defect in the sharpness of Theorem 
2.2 when {tk} are independent samples from a probability distribution (a 
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random design). The limits for A do not include the optimal rate of conver- 
gence for the mean squared error. For a random design Dn = O(log(n)/ Fn ) 
[Serfling (1980)1 and so An = n -1/3 log(n)4/3. However, to achieve the optimal 
convergence rate for mean squared error, one must have A n- 2/5. There- 
fore, the interval [An, An] will not contain a sequence of smoothing parame- 
ters that yield the optimal rate of convergence. The way around this problem 
is to sharpen the bound on the approximation error for the first order term in 
the expansion (3.2). (The bounds for the higher terms are already adequate.) 
The first order term should be analyzed using a uniform (with respect to A, t 
and T) strong law of large numbers rather than using integration by parts. 
With this different approach it is believed that one can obtain sharper bounds 
that will extend the conclusion to include the optimal convergence rates. It 
should be noticed that this problem is only peculiar to the bias for very 
smooth functions. The bounds for the variance approximation already include 
the random design case. 

APPENDIX A 

OUTLINE OF THE PROOF OF THEOREM 5.1. (i) The first step is to derive 
bounds on the integral kernel HA. Let f4 denote the multiplication operator 
X,/, h = h qf. Then one can associate the Green's function HA with the kernel of 
the integral operator (Y + Ak4o -9) -i. To simplify notation, set 9 =52- 1 and 
v = A0,,09. Then at least in a formal sense, 

(2+ AMiD)1 =V (q+s) 

V 
Jl + E (vW)) 

This expansion will be justified through the following analysis of the opera- 
tors sl. 

Let Av denote the integral kernel associated with the integral operator V. 
It will be argued that for all v > 1 and u, v E [0, 1], 

(A.1) IAU(u, v) < K w "exp(-aIu - vI/p). 

Clearly, if (A. 1) holds for some to < 1, then the series expansion of V(I + i) 1 
is valid in the sense that the integral kernel associated with the partial sum 
operator converges to a well-defined, integrable kernel. Moreover, in view of 
the bounds on G-'2, integration can be interchanged with summation to 
give: 

(A.2) HA(U,v) 
=G(T,22(U,V) 

+ 3 
fGJU/,w2(U,w)AV(w,v)dw. 
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The inequality at (A.1) will be established by induction. Suppose that (A.1) 
holds for some v = ,u. Since W"' =Wg(A.,49)S, the integral kernel associ- 
ated with l+ 1 is 

A"+(u, v) =f A (u, w)Aqi(w)- GJ&K2(W, v) dw 
[0, 1] 8w 

and so 
8 |AA l(U,V)l < J A9(u,w)Aqi(W) a GATU/2(W,v U)dW 

[0,1] 8w A 

Substituting bounds for AIL, GUj2 and qi, 

< | cL(supIqi)K 2 exp( -alw - ullp - (ae + e)lw - vilp) dW 
[0, 1] 

where p = Al/2m. 
Applying Lemma 4.2 and rearranging this expression, 

< Kw "( VK) [2 p(1/a + 1/e) ] exp( - a I u - v I/p). 

Finally, by the definition of w, 

< K(wg+')exp(-alu - vl/p). 

Clearly (A. 1) holds when v = 1 and thus, by induction, (A. 1) must hold for all 
v. From the discussion above, (A.2) now follows. Using the bounds on GU 2 
implied by Assumption A and Lemma 4.2, 

HA(u,v) < ( exp -(a? ) Iu )VI 

t:Z KK2 lw - ul Iw - vI + E to v" exp-c - (a+ ) dw 
(A.3) V=1 [0, 1] p \ p 

K W^C, lu - v I 
< P (-C) exp -a 

C2 lu -vI 
< exp -a , 

p P 

where C1, C2 < c. Now recall the relationship between HA and GA at (5.1). By 
substituting F(s) for u, F(t) for v and multiplying both sides of the above 
inequality by y(t)/f(t), one obtains a bound on GA: 

(A.4) IGA(tT)I ~C2f(7r) e F( (t) - F(-r) 

Using the fact that IF(t) - F(T)I > (inf'y)It - 1, 

(A.5) IGA(t,T) <? exp(-C4 )I 



1194 D. NYCHKA 

for some C3 < o? and C4 = a inf[O, 1] y(u). Therefore, GA will satisfy the first 
bound in Assumption A. The other parts of Assumption A can be proved using 
similar inductive arguments applied to the partial derivatives of the kernel 
A. 

(ii) From (A.2), 

(A.6) |HA(U,V) - GAU/K2 (U,V) I < - fGU/ K2(U,w)Av(w,v) dw, 

and based on the same arguments leading to (A.3), 

<Cico/(l- w)exp -a .- VI 
P 

Now make the same substitutions detailed from part (i) to transform HA to 
GA. 

(iii) To simplify notation, let Wt(T) = G-UK2(F(t), F(T))Y(T)/f(T) and gt(T) 
GA(t, T): 

lgt(T) 2f(T) dT- fgt(T)2f(T) dT 
? 

| gt 
- 

tl Igt +?qtif(T) dT. 

Both GA and GU satisfy Assumption A and a bound for Igt - kti is given by 
part (ii). Substituting these double exponential bounds into the integral and 
applying Lemma 4.2, one can show that the integral is 0(1). Thus, it remains 
to approximate J1 gt(T)2f(T) dT: 

0~~~~~ 
|gt(T) f(T) dT= %.GA /K2(F(t), (T)) Y(T) /f(T) dT. 

Now make the substitutions v = F() and u = F(t): 

= f1GU/82(U,v)w(v) dv, 

where co(v) = Y(F-1(v))1f(F-1(v)). 
Examining the form for the uniform Green's function in Section 5.1, it is 

clear that for u E [8,(1 - 8)], 6 > 0, 
K ( i - VIK\ exp( K8/p) 

j,/K2 - exp -- + ) asp~---0. 2 p ( p ) ( p ) 
Based on this approximation, 

lo(gt(T )) f( T) dT = lo(2p exp( P ) dv + o ( p) . 

The integral is the expected value of KW(v)/2p with respect to a double 
exponential distribution. As p 0 0, probability is concentrated at u and so 

w( u)) 

2 p 
Substituting in the values for to and u, the theorem now follows. OII 
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APPENDIX B 

PROOF OF LEMMA 6.1. From the discussion in Section 2 of Cox (1988) there 
exists a basis {fj1 for W2m[0, 1] such that 

0,1] 
dF=8vy 

and 

f 
</>(m)<g>(m) dt = y8 vy, O < ?Yl? 2 ... 

[0, 1] 

where 8A,,, is Kronecker's delta. Moreover, 

(B.1) G (t,T) = E + A 
V=1 1+y 

and 

(1 + Ay,) 0, 1] 

Thus, we see that 4p will satisfy the boundary conditions associated with the 
differential equation in (2.1). Also note that, by induction, 4X E CGJO, 1]. 
Integrating parts and applying these boundary conditions, 

-Y'S = & (m)o,(m) dt - 1) 
m i)( P(2m) dt 

[0,1] [0, 1) 

Using the orthogonality relations given above and the fact that these func- 
tions are a basis for W2m[O, 1], it must follow that 4(2m) - ( - )m>vp( 

For 0 E W2m[O, 1], we have the representation 

(B.2) H - c>+> where c.f 0o dF. 
v=1 [0, 1] 

Moreover, because of the Lipschitz condition at (6.1) and the boundary 
conditions for 0, the partial sums of this series expansion will actually 
converge to 0 in a norm that is stronger than the one for C2m[O, 1]. The 
reader is referred to Cox [(1988), Section 3] for a rigorous development of 
these norms and the related function spaces. Specifically, with respect to the 
scale of norms 

110112= 2c2(1 + Y 
v= 1 

the partial sums in (B.2) are convergent for all p < 2 + 1/2m + /3/2m. We 
will also use the fact that this interpolation norm dominates supremum norm 
for p > 2 + 1/2m. 
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Thus, it follows that 

d2mx 
(B.3) dt2m 0(t) = 1) cly,0f(t) 

V~= 1 

and 

= dt2m KT1) (t) ) 0 (- /) dF(T)] 
= t cv,+ 1) A t) 

' 
( + Ay,) 

The proof will be completed by showing that Dp converges to zero uniformly as 
A -O 0. 

Now choose ,t such 2 + 1/2m < ,u < 2 + 1/2m + ,3/2m. It follows that 

(B.4) t'P 12 C21 1Ay (1 + K 2) A2 E C2( + ? ) 

< A2(l11I12 + 110112) 0(A2). 

Since , - 2 > 1/2m, there is an M < oo that does not depend on qf such that 
supiql < MIIq,II22 and thus by (B.4), suplqIl = O(A2) as A 

- oc. o 
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