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Abstract

The location of the instantaneous screw axis (ISA) is essential in order to obtain useful kinematic models of the human
body for applications such as prosthesis and orthoses design or even to help in disease diagnosis techniques. In this paper,
dual vectors will be used to represent and operate with kinematic screws with the purpose of locating the instantaneous
screw axes which characterize this instantaneous motion. A photogrammetry system based on markers will be used to
obtain the experimental data from which the kinematic magnitudes will be obtained. A comprehensive analysis of the
errors in the measurement of kinematic parameters has been developed, obtaining explicit expressions for them based
on the number of markers and their distribution. Finally, the developed methodology has been applied to the experimental
determination of the ISA during an alternative motion of flexion and extension of the back.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Most of the human body joints cannot be accurately modelled as lower kinematic joints. For this reason,
the location of the instantaneous screw axis (ISA) is fundamental in order to generate a kinematic model of the
human body which is able to reproduce its movement with the degree of accuracy needed in applications such
as prostheses and orthoses design or in diagnosis techniques [5,7,8].

Experimental measurement of magnitudes such as the pose and velocity of mechanical systems implies a
certain difficulty, which is greatly increased in the case of the human body, where there are some experimental
limitations involved in measuring the 3D kinematics of the body segments without interferring with the spon-
taneous motion. Among the present techniques for experimental measurement of human movements, the
0094-114X/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.
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technique based on photogrammetry shows advantages for both the precision of the results and the non-inter-
ference with body motion.

The methods of human movement analysis based on photogrammetry usually describe the pose of a given
body segment by means of a set of markers rigidly attached to it. The motion of the segment is determined by
the changes in the markers coordinates between successive locations. There are some methods to analyze finite
or infinitesimal displacements_from markers coordinates’ changes. Most of them describe the motion from the
translation of the centroid of the marker set, and its rotation, expressed by means of the corresponding rota-
tion matrix [4,12].

At this point it is worth emphasizing that the representation of the motion of a rigid solid in space by means
of screws has been applied for many years in an effective way to the mechanisms kinematic analysis [1–3]. Gen-
erally, two procedures have been used to represent screws: Plücker coordinates (Plücker Coordinates Repre-
sentation) and dual vectors (Dual-vector Representation). Despite the wide use of the dual representation of
screws in the field of Mechanisms and Machines Theory, and particularly in Robotics, it should be noted that
the applications in the field of Biomechanics are limited and do not take full advantage of the possibilities that
the concept of screw and its representation offer by means of dual vectors [6,10].

Independently of the procedure used to represent the movement of the corporal segments, the main prob-
lem that arises in the analysis of the human body motion corresponds to the error associated with the exper-
imental measurement of the marker coordinates, and in the way that such error affects the determination of
the linear and angular velocities and the location of the ISA. This problem has been dealt with, although in a
more simplified way, in [11].

In this paper, a formulation for the kinematic analysis of human movements considering screws expressed
in terms of dual vectors is presented. The proposed method determines the kinematic variables of the instan-
taneous movement (velocity, angular velocity and the position of the instantaneous axis of rotation) by using
the markers coordinates in successive positions. This approach makes it possible to give a detailed analysis of
the experimental errors associated with kinematic variables measurement, showing his skew-symmetric struc-
ture. Finally, the proposed method is validated by the experimental determination of the ISA in a given
motion, and an application for the determination of the ISA corresponding to the movement of the back is
shown.
2. Experimental determination of the kinematic screw by means of photogrammetry

2.1. Basic concepts and notation

Dual numbers are similar to the complex numbers with the complex unit i which has the property i2 = �1.
But the dual unit e is subjected to the rules:
e 6¼ 0; 0e ¼ e0 ¼ 0; 1e ¼ e1 ¼ e; e2 ¼ 0
The set of all dual numbers â ¼ a0 þ ea1, is a commutative ring having the numbers ea1 as divisors of zero.
Both a0 and a1 are real numbers; they are the so-called primal and dual part of the dual number â, respectively
[14].

A dual vector is quite similar to a three-dimensional vector, but replacing real components by dual num-
bers. This way, a dual vector q̂ can be expressed as
q̂ ¼
qx þ esx

qy þ esy

qz þ esz

264
375 ¼ qx

qy

qz

264
375þ e

sx

sy

sz

264
375 ¼~qþ e~s
Dual vectors are a useful mathematical tool to describe screws associated with the field of moments of a
vector. Thus, given a vector ~f located at the point A, its moment with respect to the origin of coordinates,
O, can be calculated as ~m ¼~r�~f, where~r is the position vector of A with respect to O. These two vectors
can be combined into the dual vector: f̂ ¼~f þ e~m. In this context, the dual unit e has the dimension L�1.
In the same way, dual vectors can be used to represent lines, as an alternative to the Plücker coordinates. Thus,
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a straight line of unit vector u passing through point A may be represented as a dual vector û ¼~uþ eð~r�~uÞ,
being~r the position vector of A with respect to O.

The algebra of dual vectors is similar to that of three-dimensional usual vectors. The set of dual vectors is a
module over the ring of dual numbers. A module is similar to a vector space with some differences, such as the
torsion elements (vectors which are itself linearly dependent, for example a couple e~m). In [13] there is a good
description of the algebraic structure of dual vectors applied to screws.

This approach is very useful to describe some mechanical magnitudes of a rigid body. This way, the instan-
taneous state of movement of a rigid body is specified by the angular velocity vector ~w and the linear velocity
of an arbitrary point A fixed in the body,~vA. These two vectors can be combined to make a dual vector called
the dual velocity vector referring to point A, ŵ ¼ ~wþ e~vA [13]. In the same way we can associate dual vectors
to the linear momentum, ~p and angular momentum with respect to a point A, ~LA, by means of the dual
momentum vector p̂ ¼~pþ e~LA. Finally, the dual force vector bF includes the resultant external force, ~F and
the resultant external moment with respect to an arbitrary point A, ~MA acting in a rigid body,
F̂ ¼ ~Fþ e~MA [15].

In this paper we will use the following notations:

â; v̂; ŝ: Italic character with circumflex represent dual numbers.
~v;~w;~F;~r; ~R: Bold character with arrow are three-dimensional vectors.
r̂; ŵ: Bold character with circumflex, ^, are dual vector.
e is the dual unit.
A, M, J: Underlined bold capital character are matrix.bA;cM; bJ: Underlined bold capital character with circumflex, ^, are dual matrix.
A, P, G: Italic capital characters represent points. The letter G is reserved as the centroid of the marker set,

in the sense of a mass centre.

2.2. Measurement of kinematic screw from markers coordinates

The systems of three-dimensional photogrammetry characterize the position and orientation of a rigid solid
in space by using a set of three or more non-aligned markers associated to the solid. Although three points are
enough to define the location of the solid, it is advisable to take more than three points for two reasons. In the
first place to avoid indetermination in the position that would result if the solid hid one of the markers. The
second problem is related to the experimental errors that can be committed, and that can be reduced by
increasing the number of markers.

In Fig. 1, a rigid body and fixed reference system {O–XYZ} are shown, the dual unit vectors associated to
this reference system will be denoted as B ¼ f̂i; ĵ; k̂g. On the rigid solid, N markers will have been considered
Pi, i = 1,2, . . . ,N. Let G be the centroid of the set of markers, whose position vector with respect to O is~rG.
The dual unit vectors which define a reference system parallel {G–X 0Y 0Z 0} to the fixed one but having its their
origin in the centroid of the distribution of markers associated to the body will be shown as BG. To each mar-
ker Pi a dual vector r̂i, will be associated, corresponding to a screw whose central axis is the straight line GPi

and whose module is that of vector~ri ¼~rGP i . Referred to BG this dual vector has only a primal component,
because all lines pass through G:
r̂i ¼~ri þ e0 ð1Þ

If the rigid body experiences a shift in the position at time dt, each one of the position screws r̂i, will have

been increased in dr̂i.Considering the condition of rigid solid, dr̂i will be
dr̂i ¼ x̂� r̂i � dt ð2Þ

because the module of r̂i is a constant [16]. The dual vector x̂ is the kinematic screw at time t. The cross-prod-
uct which gives the expression (2) can be expressed by means of the corresponding skew-symmetric matrix bA i:
x̂� r̂i dt ¼ bA i � x̂dt ð3Þ



Fig. 1. Marker location representation with respect to the centroid of the set of the markers by means of dual vectors.
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where
bA i ¼
0 ẑi �ŷi

�ẑi 0 x̂i

ŷi �x̂i 0

264
375 ð4Þ
being x̂i; ŷi; ẑi the components of r̂i in BG. Notice that the dual par of matrix bAi is null, because we have chosen
a reference system with centre in G. Extending the expression (2) to the N markers defined on the body and
considering (3), it results in
dr̂ ¼

dr̂1

dr̂2

..

.

dr̂N

266664
377775 ¼

bA1bA2

..

.

bAN

2666664

3777775x̂ � dt ¼ bA � x̂ � dt ð5Þ
By analysing the primal and dual part separately, Eq. (5) corresponds to a system of 6N equations (six com-
ponents of dr̂i for each marker) with six unknowns (the six elements of die kinematic screw). If there are three
non-aligned markers, the system is compatible and determined, because both linear and angular velocity can
be calculated from the velocities of three non-aligned points. With a higher number of markers, the measure-
ment errors will invalidate the condition of rigid solid and the system will be incompatible, being able to be
solved by means of the inverse generalized of matrix bA:
x̂ ¼ ðbAT
� bAÞ�1 bAT

� dr̂

dt
ð6Þ
The solution obtained in (6) provides the value of x̂ which solves (5) in the sense of an adjustment by Least
Squares method. Because Eq. (6) derives from (2), it imposes the rigid body constraint. In this way, those pos-
sible disturbances which might be derived from the experimental errors, Eq. (6) filters those that imply a mod-
ification in the distances between points and only allows the compatible solutions with rotations and the
displacements of the corporal segment in block. In short, the permissible errors in the determination of the
kinematic screw x̂ correspond to a skew-symmetrical field of displacements that verifies (2). That is to say,
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the only possible effect of the errors (due to the displacements of the skin or to errors in the coordinates of the
markers) is equivalent to an additional kinematic screw (error screw), which is added to the screw of actual
movement.

The expression (6) can be simplified if both sides are multiplied by bAT
� bA, with which will lead to
bAT
� bA � x̂ ¼ bAT

� dr̂

dt
ð7Þ
On the other hand, bearing in mind that the dual part of bA is zero, it can be verified that
bJ ¼ bAT
� bA ¼XAT

i Ai ¼ J ¼

P
ðy2

i þ z2
i Þ �

P
xi � yi �

P
xi � zi

�
P

xi � yi

P
ðx2

i þ z2
i Þ �

P
yi � zi

�
P

xi � zi �
P

yi � zi
P
ðx2

i þ y2
i Þ

264
375 ð8Þ
J can be interpreted as the tensor of inertia of the set of markers associated to the body as expressed in the
reference system BG, considering a unitary mass in each one of the markers. Considering (8) and the meaning
of matrix bAi as a cross-product, Eq. (7) can be expressed as
Ĵ � ŵ ¼
X

r̂i �
dr̂i

dt

� �
ð9Þ
The primal part of (9) is
J �~w ¼
X

~ri �
d~ri

dt

� �
ð10Þ
equation similar to that which relates the angular momentum of rigid body about its mass centre with the
angular velocity, assuming that the markers have a unitary mass. Taking into account that the dual part of
matrix Ĵ is null, it is evident that the dual part of Eq. (9) is
dual
X

r̂i �
dr̂i

dt

� �� �
¼ dualðĴ � x̂Þ ¼ J:~vG ð11Þ
being~vG the velocity of the centroid of the set of markers.
Definitively, the process used to calculate the kinematic screw is similar to the numerical calculation of

kinetic screw, since the condition of rigid solid given by (2) implies the well-known relations between the
kinetic screw and the kinematic screw. Actually, it is not necessary to obtain dr̂i, since Eq. (9) can also be writ-
ten as
ŵ ¼ ~wþ e~vG ¼ Ĵ
�1X

r̂i �
dr̂i

dt
ð12Þ
expression that can be rewritten, based on the positions of the markers at time t, r̂i, and t þ dt; r̂0i ¼ r̂i þ dr̂i, as
follows:
ŵdt ¼ Ĵ
�1X

r̂i � ðr̂0i � r̂iÞ ð13Þ
or
ŵdt ¼ Ĵ
�1X

r̂i � r̂0i ð14Þ
explicit expression of the kinematic screw from two consecutive body positions. Once the screw is calculated,
the determination of the orientation and location of the instantaneous screw axis is immediate.

3. Determination of experimental errors

The measurement of the markers displacement between two close locations is affected, fundamentally, by
two sources of error: random experimental error associated to the accuracy of the measuring equipment and
systematic error associated to the artifacts produced by skin displacements [17]. This paper deals with the
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random errors and their influence on the determination of the kinematic variables. Thus, the components of~ri

at a given time (xiyizi) are assumed random variables with normal distributions of means �xi; �yi; �zi and standard
deviations rx, ry, rz, respectively.

In order to analyze the propagation of experimental errors into ŵ, we leave from Eq. (13). By differencing
both sides of this equation we obtain:
dŵdt ¼ dðĴ�1Þ
X

r̂i � ðr̂0i � r̂iÞ þ Ĵ
�1X

dr̂i � ð̂r0i � r̂iÞ þ Ĵ
�1X

r̂i � ðdr̂0i � dr̂iÞ ð15Þ
where dŵ is the error in the measurement of ŵ; dr̂i and dr̂0i. represent the errors in the measurement of screws r̂i

and r̂0i, respectively. Eq. (15) can be simplified if we consider that we are analyzing infinitesimal displacements.
Thus r̂0i � r̂i is a first-order differential quantity and its product by another infinitesimal quantity is second-or-
der differential. Therefore, the first and second terms of the right side of Eq. (15) are negligible with respect to
the third one, and (15) can be rewritten as
dŵdt ¼ Ĵ
�1X

r̂i � ðdr̂0i � dr̂iÞ ð16Þ

or � � � �
dŵ ¼ Ĵ
�1X

r̂i �
dr̂0i
dt
� Ĵ

�1X
r̂i �

dr̂i

dt
¼ dŵ2 � dŵ1 ð17Þ
The experimental error in the kinematic screw measurement has two components that correspond to the
errors produced at initial position t; dŵ1, and at the final position t þ dt; dŵ2. These errors are screws that rep-
resent a fictitious motion between the actual and measured positions of the marker set. This movement is asso-
ciated only to the part of the error in the markers positions that is compatible with the rigid body condition,
since this verifies Eq. (12) and consequently (2). Thus it is that the measured motion between initial and final
measured positions is equal to the resultant of the composition of three infinitesimal displacements (see Fig. 2).
Firstly, at time t the body moves �dŵ1 dt from the measured position to the actual one. The second displace-
ment is the motion ŵdt between actual positions at t and t + dt. Finally, the effect of errors at final position is
equivalent to a infinitesimal displacement dŵ2 dt between actual and measured positions at time t + dt.

The components of dŵ are random variables with null mean since they are a linear application of random
variables with zero mean. In order to determine the standard deviation of its components, we analyze the com-
ponent of the error screw dŵ1, determined by means of the expression (17). The estimation of dŵ2 can be made
in the same way:
dŵ1 ¼ Ĵ
�1 �

X r̂i � dr̂i

dt

� �
ð18Þ
Fig. 2. Actual motion (solid lines) and observed motion as a consequence of error screws (dotted lines).
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where Ĵ is the inertia tensor of the markers set with respect to a reference system with its origin in the centroid
of the distribution of markers. If this reference system is chosen so that their axes are principal axes of inertia,
it will lead to
Ĵ ¼
k1 0 0

0 k2 0

0 0 k3

264
375 Ĵ

�1 ¼
k�1

1 0 0

0 k�1
2 0

0 0 k�1
3

264
375 ð19Þ
which greatly simplifies the calculation of dŵ1. The primal part of (18) is
d~w1 ¼ Ĵ
�1 �

X
~ri �

d~ri

dt

� �
ð20Þ
considering (20), it can be rewritten as
dw1x

dw1y

dw1z

264
375 ¼ 1

dt

1
k1

P
ð�zi dyi þ yi dziÞ

1
k2

P
ðzi dxi � xi dziÞ

1
k3

P
ð�yi dxi þ xi dyiÞ

2664
3775 ð21Þ
and supposing that the components of d~ri are non-correlated normal distributions, with null mean and stan-
dard deviations a rx, ry, rz, the variances of the components of d~w1 will be
r2ðw1xÞ
r2ðw1yÞ
r2ðw1zÞ

264
375 ¼ 1

dt2

1
k2

1

P
ðz2

i r
2
y þ y2

i r
2
z Þ

1
k2

2

P
ðz2

i r
2
x þ x2

i r
2
z Þ

1
k2

3

P
ðy2

i r
2
x þ x2

i r
2
yÞ

26664
37775 ð22Þ
Finally, if the isotropy of the errors is admitted (rx = ry = rz = r) the expression that provides the standard
deviations of the components of the angular velocity, based on the errors in the position of the markers, is as
follows:
rðw1xÞ
rðw1yÞ
rðw1zÞ

264
375 ¼ 1

dt

rffiffiffi
k1

p
rffiffiffi
k2

p
rffiffiffi
k3

p

26664
37775 ð23Þ
Expression (23) shows that the angular error in each principal direction is proportional to the standard devi-
ation of the marker coordinates error. It depends on the inverse square root of the moment of inertia with
respect to this principal axis. Therefore, the angular errors can be diminished by increasing the moment of
inertia of the markers, which can be achieved either by increasing the number of markers or by separating
its position so that it increases the turning radius with respect to the axis movement.

Considering now the dual part of (20), it is easy to see that
d~vG ¼ dual Ĵ
�1 �

X r̂i � dr̂i

dt

� �� �
¼ J�1

X~ri � dualðdr̂iÞ
dt

¼ J�1
X~ri � ðd~rG �~riÞ

dt
¼ d~rG

dt
ð24Þ
where d~rG is the error on the measurement of the centroid of the marker set, G. The coordinates of G are calcu-
lated as a mean. Thus, according to the hypotheses proposed previously concerning the errors in marker coor-
dinates, the standard deviations of the components of the error associated to the velocity of centroid G will be
rðvGxÞ
rðvGyÞ
rðvGzÞ

264
375 ¼ 1

dt

rffiffiffiffi
N
p

rffiffiffiffi
N
p

rffiffiffiffi
N
p

2666664

3777775 ð25Þ
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Expression that shows that the errors in the velocity of the centroid G depend both on the error of the
markers coordinates and on the square root inverse of the number of markers. Therefore, the only way to
diminish this error, for a given precision of the measurement system, is to increase the number of markers.

The expressions (23) and (25) provide the errors of the components of dŵ1. Nevertheless, the error in the
kinematic screw measurement, dŵ depends both on dŵ1 and dŵ2 (see Eq. (17)). Therefore, supposing that the
errors in the measurement of positions 1 and 2 are not correlated, the standard deviation of the error
dŵ ¼ dŵ2 � dŵ1, will be
Fig. 3.
(point
rðwxÞ
rðwyÞ
rðwzÞ

264
375 ¼ 1

dt

r
ffiffiffi
2
k1

q
r
ffiffiffi
2
k2

q
r
ffiffiffi
2
k3

q
266664

377775 ð26Þ

rðvxÞ
rðvyÞ
rðvzÞ

264
375 ¼ 1

dt

r
ffiffiffi
2
N

q
r
ffiffiffi
2
N

q
r
ffiffiffi
2
N

q
266664

377775 ð27Þ
Once the error in the kinematic screw has been calculated, it is possible to determine its effect on the loca-
tion of the instantaneous screw axis. In order to simplify the interpretation of the results, we have chosen the
reference system shown in Fig. 3. Its Y-axis match the ISA, whereas the Z-axis should be perpendicular to the
ISA and passing through the centroid of the markers bounded to the solid. In these conditions the measured
kinematic screw ŵ0 is the sum of the actual kinematic screw ŵ, plus the error dŵ:
ŵ0 ¼ ~w0 þ e~v0O ¼ ŵþ dŵ ¼ ð~wþ d~wÞ þ eð~vO þ dv̂G þ~rOG � dŵÞ ð28Þ

The ISA will be the parallel straight line to ~w0 that goes through point H. If H is chosen so that OH is per-

pendicular to the ISA, then~rOH can be calculated as
Measured and actual ISA. The error in the kinematic screw propagates to the ISA direction (vector ~w0 instead of ~w) and location
H).
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~rOH ¼
~w0 �~v0O
j ~w0j2

ð29Þ
Bearing in mind (28), and neglecting second order differentials~rOH becomes
~rOH �
~w� d~vG

w2
þ d~w�~vG

w2
þ~wð~rOG � d~wÞ

w2
ð30Þ
Eq. (30) demonstrates that~rOH is made up of three terms:

• The first term is related to the error in the measurement of the velocity of the centroid G of the marker set:
ð~rOH Þ1 ¼
~w� d~vG

w2
¼ 1

w
ðdvGz �~i� dvGx �~kÞ ð31Þ
This error can be controlled by diminishing the components of d~vG perpendicular to the ISA, which can be
achieved by increasing either the number of markers or the accuracy of the measuring equipment.
• The second one is associated to the precision in the measurement of the angular velocity:
ð~rOH Þ2 ¼
d~w�~vO

w2
¼ vO

w2
ð�dwz �~iþ dwx �~kÞ ¼ p

�dwz �~iþ dwx �~k
w

 !
ð32Þ
As we can see, this term depends on the relation vO/w, that is to say, on the pitch p of the kinematic screw. It is
controlled by decreasing the error in the measurement of angular displacements, which can be achieved by
increasing the inertia moment of the marker set or by improving the precision of measuring equipment. If
movement is plane or spherical, then this term vanishes, because the pitch is null.
• Finally, the third one is
ð~rOH Þ3 ¼
~w� ð~rOG � d~wÞ

w2
¼ ~w � d~w

w2

� �
�~rOG ¼

dwy

w
� h �~k ð33Þ
This is a term of eccentricity that depends on the component of the angular error in the direction of the ISA.
This error is amplified by the distance h, from the centroid of the set of markers to the ISA. In order to control
it, it is not enough with increasing the accuracy of ~w, but it is necessary that the markers are arranged so that
its centroid G is as close as possible to the ISA.

4. Application example

In order to show how the proposed method can be applied, we have developed an experiment to measure
the kinematic screws of the trunk motions in seated posture. The main experiment is performed on a seated
subject, which will describe the alternative motion of flexion and extension of the back. In order to obtain
accurate measures of the ISA position, two devices for the external fixation of markers to the thorax and pelvis
were designed (Fig. 4). The thoracic device consisted of a very light but rigid aluminium rod, bended forming a
frame, on which the markers are located. This rod is placed in a semi-rigid plate with the form of the back. The
plate is fixed on the back of the subject by means of elastic belts that are crossed on the chest. These belts are
tightened so that there is no relative displacement between the system of markers and the thorax. A similar
device has been designed for the pelvis movement analysis. This one is fixed to another plate placed below
the iliac crests. The plate is fixed to the subject by means of a belt and a harness, to avoid displacements
on the skin. In addition to the devices for the kinematic analysis other two markers of reference were placed
on the subjects: one on the skin at L3 level and another one at T12 level.

Previous to this analysis a preliminary experiment was developed to analyze the accuracy of the measure-
ment system. The upper back device was fixed on to a 50 · 50 cm board linked to a table by means of a hinge
parallel to Y-axis. This device was adjusted on the board in such a way that the centroid of markers set was at
approximately 1.5 cm from the hinge.



Fig. 4. Location of markers in thorax, pelvis and seat.
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The board was moved in a rotation movement of approximately 90� from horizontal position to vertical
position, in a forwards and backwards path. Co-ordinates of markers were registered with a passive marker
stereophotogrammetric system (KINESCAN/IBV), with a sampling frequency of 25 frames per second. The
registered co-ordinates were not smoothed. In order to minimize the error associated to low values of j~wj, kine-
matic calculus were not developed from consecutive frames, but by spanning the time interval between frames
and assigning the estimated value to the middle frame. A delay of 10 frames (0.36 s) was used. From these raw
data, linear and angular velocities were calculated from finite differences. A threshold value of X > 6� between
photograms was used in the ISA determination in order to avoid inaccuracies for small angular displacements
at the beginning and at the end of motion. Experimental errors in linear and angular velocities were estimated
as the residual between the measured values and the adjusted values by means of a local adjustment of cubical
order, with a Gaussian weight function. The bandwidth of the Gaussian function was obtained so that the
error autocorrelation was null. The same procedure was used to estimate experimental errors in markers
coordinates.

Experimental error of ISA position was measured as shown in Fig. 3. The ‘‘true’’ ISA was estimated from
the averaged value of the calculated ~wðtÞ and j~rOH ðtÞj. As the movement was a pure rotation this averaging
procedure ensures a good estimation of the ISA. Expected errors were calculated form expressions (26),
(27) and (31)–(33).

Table 1 shows some relevant values of the expected and measured errors. As we can see, there is agreement
between expected and measured errors. On the other hand, the accuracy of the device seems to be good in
velocities and adequate in ISA position determination.

Although the analyzed motion in this experiment is a pure rotation, estimations of angular velocity of the
body, velocity of the centroid ~w0 and location of the ISA are instantaneous values. So, the measured errors are
a good estimation of the accuracy of measurement system in real cases. It could be possible to reduce these
errors by means of a more effective smoothing data process, for example, by using spline functions or local
regression.

For the main experiment, a similar procedure was followed. The coordinates of the markers were measured
by using the same video–photogrammetry system. The raw measured values of the coordinates were smoothed
by a local regression of cubical order, with a Gaussian weight function. The bandwidth of the Gaussian func-
tion was obtained separately, coordinate by coordinate, so that the error autocorrelation was null.



Table 1
Expected and measured errors

Variable Measured error (standard deviation) Expected error (standard deviation)

mGX 0.61 mm/s 0.62 mm/s
mGY 0.26 mm/s 0.24 mm/s
mGZ 0.63 mm/s 0.62 mm/s
xX 0.0019 rad/s 0.0019 rad/s
xY 0.0038 rad/s 0.0038 rad/s
xZ 0.0017 rad/s 0.0017 rad/s
OHX 1.6 mm 2.1 mm
OHY 0.1 mm 0.0 mm
OHZ 2.2 mm 2.1 mm
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On the smoothed coordinates, the expressions for the kinematic analysis previously described are applied,
calculating the components of the kinematic screws of the absolute motions of pelvis and thorax. From these
two screws, the one corresponding to the thorax–pelvis relative movement was calculated, which is the rele-
vant motion from the point of view of the raquis kinematics.

Two variables were calculated from the location of the ISA of the thorax–pelvis relative movement. The
first one is the longitudinal displacement of the ISA along the raquis axis. The second one is the cross-sectional
distance from the ISA to the back skin. These variables were measured from the projection of the intersection
of ISA in the sagittal plane on the line defined by markers on L3 and T12 (Fig. 5).

Fig. 6 shows the evolution of the cross-sectional distance (see Fig. 5) of the ISA of thorax–pelvis relative
motion during the cycles of flexion and extension. In the diagram, a scheme of lumbar vertebra in approxi-
mated scale has been superposed to illustrate the order of magnitude of the displacements. As can be seen,
the cross-sectional position of the ISA is practically constant and remains in the top half of the vertebral body,
as it has been described using X-rays in [9].

In Fig. 7 the longitudinal displacement (see Fig. 5) of the ISA throughout raquis lumbar based on the exten-
sion angle is shown. Also a scheme of lumbar raquis in approximated scale has been drawn, to illustrate the
order of magnitude of the displacements. It can be seen that the longitudinal displacement takes place upwards
in the motion of extension and downwards in the flexion one, with a range of about 8 cm.

This result demonstrates the sequential character of the motion of the different vertebral bodies, down
upwards in the motion of extension and up downwards in the motion of flexion. In effect, the global movement
of the thoracic box with respect to the pelvis is the sum of the screws of relative movement of each vertebra
Fig. 5. Location of the ISA relative to local markers.



Fig. 6. Evolution of the cross-sectional distance of the ISA corresponding to the thorax–pelvis relative motion. A scheme of a lumbar
vertebra in approximated scale is represented in order to show the order of magnitude of cross-sectional displacement.

Fig. 7. Longitudinal displacement of ISA throughout lumbar raquis. A scheme of lumbar raquis in approximated scale is represented in
order to show the order of magnitude of longitudinal displacement.
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with respect to the lower vertebra. In the flexo-extension motion, these intervertebral motions can be repre-
sented by using a system of parallel screws with axes located on the half of intervertebral disc, approximately.
The resultant of the system will be a parallel screw to the previous ones, whose position will fit with the cen-
troid of the screws of intervertebral motion.

5. Conclusions

A new approach for kinematic analysis of corporal motions from kinetic and non-geometric considerations
has been developed, which allows to obtain explicit expressions of the kinematic parameters and the experi-
mental errors in its determination by using photogrammetry techniques.
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A complete analysis of the random errors in the measurement of kinematic parameters has been developed,
achieving explicit expressions of these based on the number of markers and their distribution, which allow to
design systems of markers to keep the errors within an acceptable margin. This aspect is of great importance in
the determination of the instantaneous screw axis, extraordinarily sensitive to the errors in the coordinates of
the markers. The resulting expressions imply a substantial improvement compared with the present methods
of estimation of errors, which are based on an isotropic distribution of markers, and which have been found to
be unfeasible in realistic studies.
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