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Abstract. The quantitative assessment of human joint torque capability has many important ap-
plications. By means of a multibody approach, the authors described a formulation for 3D inverse
dynamic analysis of a human arm during voluntary free movement. In particular, it is presented as
a test case where the kinematics of the arm is obtained by means of a video-based human motion
analysis system.
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Nomenclature

[Ai ] = [Ei ][GT
i

] = transformation matrix of the ith body
Ci = center of mass of the ith body
{ei} = the set of Euler parameters of the ith body
{Fw} = generalized forces due to weight
{Fc} = generalized forces due to centrifugal terms
[Ji ] = inertia matrix of the ith body
{Q} = external generalized forces
{Tij }(i) = {Tijxi

Tij yi
Tij zi

}T = components of the torque acting on body i, through the joint
connecting body i and body j , and expressed in the ith body
frame

Ci − xiyizi = Cartesian frame attached to the ith
g = gravity acceleration
{fjk}, {gjk}, {hjk} = versors of the kth joint frame attached to the j th body
mi = mass of the ith body
{q} = generalized coordinates
{q(i)} = generalized coordinates of the ith body
[�q ] = Jacobian matrix associated with constraint vector
dots (̇ ) = differentiation w.r.t. time
[ṽ] = the skew-symmetric matrix obtained from vector {v}

The superscript on vectors (e.g. {a}(i)) denotes the body frame in which is the components vector
expressed (the subscript is omitted when i is the frame).
Square [ ] and curly { } brackets denote matrices and vectors, respectively.
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1. Introduction

According to Huston [1], multibody analyses have been applied more extensively
with biodynamic modeling than with any other application area. For example,
crash-victim simulation is a widely studied research topic.

Although systematic multibody dynamics techniques are powerful tools for
casting complex human models, there are few examples of linking between these
and the experimental data provided by 3D video-based human motion analysis
systems, e.g. [2].

Methods and technology used to capture the kinematics of human motion are
well developed and commercially available. Their application into sport, rehabil-
itation, and clinical analysis is expanding and becoming a standard also among
medical doctors. However, the authors of this paper believe that there is still a
gap between the effective clinical use of the results given by theoretical 3D multi-
body dynamic models and the experimentally measured kinematic data. The type
of dynamic analysis routinely performed in gait analysis is the interpretation of
the experimental data obtained from the ground forces vectors measured by force
plates. From such data, it is difficult to distinguish the torque components exerted
at each joint.

The assessment of static force capability can also be performed by means of
isokinetic tests. However, within the biomechanics scientific community, there is
a debate about the reasons of the differences among peak torques, at lower limbs
joints, measured with isokinetic tests and estimated through inverse dynamic analy-
sis.

The main motivation for this study is the development of a technique for the
experimental measurement of the driving torques of a human arm during voluntary
movement.

The proposed technique is based on the use of an ad hoc inverse dynamics
model where the kinematic data are experimentally collected by means of a human
motion acquisition system.

The technique is currently being tested for the assessment of residual force
capability of physically handicapped car drivers.

It is worth mentioning that this procedure also supplies the technicians with
quantitative data about the workspace and speed of reach of the prospective handi-
capped driver.

To the best of the authors’ knowledge, this is the first time that human mo-
tion analysis and inverse dynamic analysis have been applied in the field of car
adaptation for handicapped drivers. The purpose is to provide the technician with
quantitative data about the residual force capabilities and the kinetics of the driver’s
upper limbs. The availability of such data is the basis for an engineering approach
to the design for the modification of a car’s environment.
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In this paper, the experimental setup, the dynamic model, and some numerical
results for the case of an unrestrained voluntary movement of the upper limb will
be described.

2. The Experimental Setup

The motion of the arm has been tracked by means of an APASTM computerized
optometry system for human motion analysis. The system used during this study
was mainly composed of

• two portable analog video cameras (NTSC standard with capturing frequency
of 60 Hz);

• a PC video card for grabbing the images recorded with the cameras;
• a calibration cube (each side one meter long);
• software for camera calibration, digitization and analysis of the markers posi-

tion, velocity and acceleration.

The optometry system described is a common tool in biomechanics. The video
camera image provides a 2D projection of the 3D space. The aim is to compute
the spatial position of a marker from the knowledge of its position into the camera
image space. The solution of the problem in 3D space requires at least two different
projections. A well-known mapping procedure is the direct linear transformation
(DLT) [4].

The experimental analysis procedure can be divided into three phases:

• video recording;
• digitization of the markers in each photogram;
• application of DLT mapping, smoothing and numerical differentiation of the

Cartesian absolute position vector components of each marker.

The last two phases are executed by means of integrated software. In this study,
raw data have been smoothed by means of cubic-splines. Moreover, frequency
components higher than 15 Hz have been truncated.

Markers can be classified as static or dynamic. The positions of static markers
are measured only once and are used for computing the initial position of joint
Cartesian systems. The positions of dynamic markers are tracked in each pho-
togram. Since our model is composed of three rigid bodies, nine dynamic markers
(three for each human segment analyzed) were tracked. The chosen location of
dynamic markers (dark points) and static markers (gray points) on the human arm
analysed is shown in Figure 1.
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Figure 1. Position of static and dynamic markers on the arm.

3. Computerized Analysis of Data

The dynamic model has been developed under the hypothesis of rigid body motion.
Because of measurement and calibration errors, skin movements, etc., the relative
distance among markers on the same human segment will be not constant. Thus,
the computation of the transformation matrices [Ai] (i = 1, 2, 3), from the markers
coordinates, follows the algorithm described in [11]. Similarly, the angular veloci-
ties and angular accelerations of each body segment have been computed from the
velocities and accelerations of the markers by means of the method proposed by
Sommer [12].

Alternatively, other algorithms may be chosen for computing the transform ma-
trices [16, 19–24] and the kinematic characteristics of infinitesimal motion [17, 18,
21].

Pennestrì [6] reports a comparison of the numerical accuracy attained with
various algorithms for computing Euler parameters from imprecise markers co-
ordinates.

4. The Kinematic Model

The multibody methodology for the deduction of the kinematic and dynamics equa-
tions is the one outlined in [5]. The main reasons for the choice are the following:

• Possibility to define new kinematic pairs.
• Complete and exhaustive description both in textbooks and scientific papers.
• Availability of developed symbolic software tools specifically tailored for this

methodology [7].

The human arm has been modeled by means of three rigid body segments: arm,
forearm and hand. The shoulder is considered fixed (Figure 2). The first body (the
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Figure 2. Topology of the 3D model of the human arm.

arm) is connected to the frame (upper torso) through a spherical joint. Arm and
forearm are joined through a kinematic pair composed of two revolute pairs whose
intersecting axes form a valgus angle α ≈ 95 deg. The relative motions of the
forearm w.r.t. the arm are flexion-extension and pronation-supination.

The described movement is not reproduced by any of the joints available in [5].
Thus, a new joint has been created called an elbow joint with the above mentioned
features.

The considered relative movements of the hand w.r.t. the forearm are yaw and
pitch. Thus, the kinematic pair joining hand and forearm is composed of two rev-
olute pairs with intersecting axes forming an angle of 90 deg (i.e. a cardan joint).
The model has seven degrees of freedom.

The scalar constraints due to spherical and cardan joints can be found in text-
books, e.g. [5], and will be not repeated here. In the next section the scalar equa-
tions for the description of the elbow joint will be reported.

4.1. THE ELBOW JOINT

For the purpose of modeling the kinematic pair connecting arm and forearm, a
new joint (elbow joint) has been created. In particular, such a joint has two degrees
of freedom. With reference to Figure 3, the first degree of freedom allows a rota-
tion (flexion-extension) about the humeral transverse axis, whereas the second is a
rotation (pronation-supination) about the axis of the forearm.

The equations of constraints that characterise an elbow joint are that:

• P12 and P22 coincide,
• versors {g12} and {f22} form an oriented angle α.
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Figure 3. Elbow joint definition.

Table I. Degree-of-constraint of
the joints.

Joint No. of constraints

Spherical 3

Elbow 4

Cardan 4

These conditions are, respectively, specified by the basic spherical constraint

{�s(P12, P22)} = {0} (1)

and by the equation

�a ≡ (rx − g12x
)2 + (ry − g12y

)2 + (rz − g12z
)2 = 0, (2)

where

{u} = [f̃22]{g12}, (3)

{r} = ([I ] cos α + (1 − cos α){u}{u}T + sin α[ũ]){f22}. (4)

4.2. CONSTRAINT EQUATIONS

The number of scalar constraints due to each kinematic pair is shown in Table I.
Thus, taking into account the three normalization constraints for the three sets of
Euler parameters, we can conclude that the vector of position constraints {�} has
14 components.
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5. Dynamic Model of the Human Arm

It is assumed that the inertia properties of the hand segment are not influenced by
the motion of the fingers.

5.1. MASS MATRIX

The mass matrix [M] is

[M] =

 Mi 0 0

0 Mi 0
0 0 Mi


 , (5)

where [5]

[Mi] =





 mi 0 0

0 mi 0
0 0 mi


 [03×4]

[04×3] [4[Gi ]T [J (i)][Gi]]


 . (6)

5.2. GENERALIZED FORCES

The external forces considered are due to the weight {Fw}, to the quadratic velocity
terms {Fc} (centrifugal forces), and to joint torques {R}. The torques due to damp-
ing at the joints have been ignored [8]. However, if a reliable model is available,
these can be also taken into account in our approach. In the following subsections
the analytical expression of the generalized forces will be expressed.

5.2.1. Centrifugal Forces

The generalized centrifugal force acting on the ith mass is given by

{Fci } =
{

03×1

8[Ġi]T [J (i)][Ġi ]{ei}
}

. (7)

The expression of Ġi is not provided in [5]. However, it can be demonstrated [6]
(see also Appendix) that

[Ġi] = 1

2

([Gi][ω̃(i)] − {ei}{ω(i)}T )
. (8)

Thus, the vector of all generalized centrifugal forces is

{Fc} =



Fc1

Fc2

Fc3


 . (9)
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5.2.2. Weight Forces

The generalized weight force acting on the ith mass is given by

{Fwi
} =

{
mig

06×1

}
. (10)

Thus, the vector of all generalized weight forces is

{Fw} =



Fw1

Fw2

Fw3


 . (11)

5.2.3. Joint Torques

The generalized forces on body i can be computed by means of the following
expression [5]

{Rj } =
{ {03×1}

2[Ei]T {T }
}

, (12)

when the components of applied torque {T } are given in the inertial frame, or

{Rj } =
{

03×1

2[Gi]T {T }(i)
}

, (13)

when the same components are expressed in the ith body reference frame.

• Generalized forces due to the motor torque {T10}1 = {T10x1 T10y1 T10z1} exerted
on the upper-arm (body 1) through the spherical joint.

{R1} = T10x1

{
03×1

2[G1]T {f11}(1)
}

, (14)

{R2} = T10y1

{
03×1

2[G1]T {g11}(1)
}

, (15)

{R3} = T10z1

{
03×1

2[G1]T {h11}(1)
}

. (16)

• Generalized forces due to the motor torque exerted on the upper arm (body 1)
through the elbow joint.

{R4} = T12y1

{
03×1

2[G1]T {g12}(1)
}

, (17)

{R7} = −T21x2

{
03×1

2[G1]T [A1]T [A2]{f22}(2)
}

. (18)
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• Generalized forces due to the motor torque exerted on the arm (body 2) through
the elbow joint.

{R5} = −T12y1

{
03×1

2[G2]T [A2]T [A1]{g12}(1)
}

, (19)

{R6} = T21x2

{
03×1

2[G2]T {f22}(2)
}

. (20)

• Generalized forces due to the motor torque exerted on the arm (body 2) through
the wrist joint.

{R8} = T32y2

{
03×1

2[G2]T {g23}(2)
}

, (21)

{R10} = T32z2

{
03×1

2[G2]T {h23}(2)
}

. (22)

• Generalized forces due to the motor torque exerted on the hand (body 3)
through the wrist joint.

{R9} = −T32y2

{
03×1

2[G3]T [A3]T [A2]{g23}(2)
}

, (23)

{R11} = −T32z2

{
03×1

2[G3]T [A3]T [A2]{h23}(2)
}

. (24)

Thus, a vector {R} can be defined as

{R} = [R]21×7{T }, (25)

where

[R]21×7 =

 R1 R2 R3 R4 −R7 0 0

0 0 0 −R5 R6 R8 R10
0 0 0 0 0 −R9 −R11


 (26)

is a block matrix and

{T } =




T10x1

T10y1

T10z1

T12y1

T21x2

T32y3

T32z3




(27)
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is the vector of unknown torque components.

5.3. DYNAMIC EQUATIONS

For our model, [M] will be a square matrix 21 × 21, [�q] is a rectangular matrix
14 × 21. For a free movement of the arm, it is convenient to split the vector {Q} of
generalized forces into three parts:

{Q} = {R} + {Fw} + {Fc}. (28)

The first vector {R} depends on the unknown torque components at the joints,
whereas {Fw} contains the generalized forces due to the weight.

Thus, separating the unknowns (i.e. torque components and internal constraint
forces) from the known forces (i.e. inertia, centrifugal and weight forces), one has:

{R} − [�q]T {λ} = [M]{q̈} − {Fw} − {Fc}. (29)

Finally, Equation (29) can be rewritten in the form

[R �T
q ]21×21

{ {T }
{−λ}

}
= [M]{q̈} − {Fw} − {Fc}, (30)

which can be readily solved w.r.t. {T } (Torque components) and {λ} (Lagrange’s
multipliers), once the inertia properties are known and the kinematics experimen-
tally measured. If needed, the constraint forces can be computed from the Lagrange
multipliers.

6. Numerical Example

The model has been applied to unrestrained voluntary movement of an arm of a
healthy male subject.

1. Camera calibration
The calibration phase is executed by the APAS software. In particular, two
views (one for each camera) of the calibration cube are used. The absolute
reference frame is generated, as shown in Figure 5, from the position of the
markers on the calibration cube.

2. Static measurements
The purpose of this phase is the collection of data necessary for anthropometric
analysis and for the location of body reference frame. More details are given
in [10].
The arrangement of the markers (both static and dynamic), similar to those
suggested by Schmidt et al. [9], is depicted in Figure 1.
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Figure 4. Joint and body Cartesian systems.

3. Anthropometric data
The main anthropometric data have been obtained by means of the static mea-
surements on a male subject weighting 65 kg and 1.74 m tall. The collected
data have been substituted into a formula reported in [13, 14]. With reference
to the nomenclature of Figure 1, the estimated geometrical and inertial data are
summarized in Table II.

4. Kinematic measurements
After removing the static markers, the dynamic markers are tracked for the
kinematic analysis of the arm under free movement.
In particular, as shown in Figure 6, the tracked movement is the lifting and low-
ering of the arm. The subject had been requested to make a planar movement
parallel to the sagittal plane.
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Figure 5. Calibration cube and inertial Cartesian frame.

Table II. Anthropometric data (computed according to [13, 14]).

Body i ai bi mi J
(i)
xx J

(i)
yy J

(i)
zz

(m) (m) (kg) (kg · m2) (kg · m2) (kg · m2)

1 (arm) 0.118 0.151 1.85 0.42 · 10−2 1.40 · 10−2 1.40 · 10−2

2 (forearm) 0.114 0.151 1.05 2.05 · 10−3 6.85 · 10−3 6.85 · 10−3

3 (hand) 0.039 0.038 0.39 1.28 · 10−4 2.13 · 10−4 2.13 · 10−4

Figure 6. Scheme of the tracked arm movement.
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Figure 7. Center of masses cordinates.

Initially, all the segments are perpendicular to the ground in the rest position.
In the middle configuration, the arm segment is parallel to the ground, whereas
the forearm and the hand segments are perpendicular to it. The initial and final
positions coincide.
After raw data smoothing and regularization [11, 12], the final values of gen-
eralized coordinates vs. time are plotted in Figures 7–10.

5. Computation of torques
No further refinement is applied to make the generalized coordinates fully con-
sistent with the constraint equations. However, the difference of torque com-
ponents computed with and without the generalized coordinates refinement is
about 10%.
Thus, the generalized coordinates {q} and their numerical derivatives, {q̇}, {q̈},
were directly substituted into Equation (30) and subsequently solved w.r.t. {T }.
The estimated torque components vs. time are plotted in Figures 11 and 12.

7. Conclusions

The order of magnitude of the numerical results is consistent with those reported
in the literature [2, 15]. However, the values of torque component T21x2 are an
exception. They seem to have been too much influenced by the measurement errors
of our experimental apparatus. Likely, a reduction of these errors can be achieved
by increasing the number of cameras.
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Figure 8. Euler parameters of the arm.

Figure 9. Euler parameters of the forearm.
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Figure 10. Generalized coordinates of the hand.

Figure 11. Torque components at the joint shoulder-arm.
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Figure 12. Torque components at the elbow and wrist joint.

The model herein described could be used as a tool for the classification of
motion and residual force capabilities of physically handicapped people. This clas-
sification is especially useful in the field of the adaptation of the car environment to
the needs of handicapped drivers. Currently, such a classification is based only on
clinical observations. The idea pursued by this research is the classification based
on a set of instrumented experimental analyses. The research team is also working
on the dynamic modeling of other significant driver movements, such as steering.
The procedure is being tested at the site of a company adapting the car environment
for handicapped drivers. The results obtained give a rational basis for the choice
and calibration of the auxiliary devices installed on the car.

Appendix

Matrix [Gi] has the following property

[Gi]T [Gi] = [I4] − {ei}{ei}T .
Taking into account that

[ω̃(i)] = 2[Gi][Ei ]T [Ei][Ġi ]T
= 2[Gi][Ġi ]T ,

follows

[Gi]T [ω̃(i)] = 2[Gi ]T [Gi][Ġi]T
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= 2[Ġi ]T − 2{ei}{ei}T [Ġi]T
= 2[Ġi ]T − 2{ei}{ėi}T [Gi]T
= 2[Ġi ]T + {ei}{ω(i)}T .
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