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I wish to propose a quite speculative new version of
the grandmother cell theory to explain how the brain,
or parts of it, may work. In particular, I discuss how the
visual system may learn torecognize three-dimensional
objects. The model would apply directly to the cortical
cells involved in visual face recognition. I also outline
the relationship of our theory to existing models of the
cerebellum and of motor control. Specific biophysical
mechanisms can be readily suggested as part of a basic
type of neural circuitry that can learn to approximate
multidimensional input/output mappings from sets of
examples and that is expected to be replicated in differ-
ent regions of the brain and across modalities. The

-main points of the theory are: :

1. The brain uses modules for multivariate function
approximation as basic components of several of its
information processing subsystems.

2. These modules are realized as HyperBF networks
(Poggio and Girosi 1990a,b).

3. HyperBF networks can be implemented in terms of
biologically plausible mechanisms and circuitry.

The theory predicts a specific type of population coding
that represents an extension of schemes such as look-up
tables. 1 conclude with some speculations about the
trade-off between memory and computation and the
evolution of intelligence. i

I. THE GRANDMOTHER NEURON THEORY

A classic theme in the neurophysiological literature,
" at least since the work of Hubél and Wiesel (1962), is
the idea of information processing in the brain as lead-
ing to ‘“‘grandmother” neurons responding selectively
to the precise combination of visual features that are
associated with one’s grandmother. Even when not
explicitly stated, this notion seems to capture how
many neuroscientists believe that the brain works. The
grandmother neuron theory is of course not restricted

- to vision and applies as well to other sensory modalities

and even to motor control under the form of cells
corresponding to elemental movements. Why is this
idea so attractive? The idea is attractive because of its
simplicity: It replaces possibly complex information
processing with the superficially simpler task of access-
ing 2 memory. The problem of recognition and motor
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- control would be solved by simply accessing look-up

tables containing appropriate descriptions of ‘objects .
and of motor actions. The human brain can probably
exploit a vast amount of memory with its. 10 or so
synapses, making attractive any scheme that replaces
computation with memory. In the case of vision, the
apparent simplicity of this solution hides the difficult
problems of an appropriate representation of an object
and of how to extract it from complex images. Even
assuming that these problems of representation, fea-
ture extraction, and segmentation could be solved by
other mechanisms, a fundamental difficulty seems to be
intrinsic to the grandmother cell idea. The difficulty
consists of the combinatorial explosion in the number
of cells that any scheme of the look-up table type would

_ reasonably require for either vision or motor control.

In the case of three-dimensional object recognition, for
instance, there should be for each object as many en-
tries in the look-up table as there are two-dimensional
views of the object, in principle an infinite number!
The difficulty of a combinatorial explosion lies at the
heart of theories of intelligence that attempt to replace
information processing with look-up tables of precom-
puted results. In this paper, we suggest a scheme that
avoids the combinatorial problem, while retaining the
attractive features of the look-up table. The basic idea
is to use only a few entries and interpolate or approxi-

‘mate among them. A mathematical theory based on

this idea leads to a powerful scheme of learning from
examples that is equivalent to a parallel network of
simple processing elements. The scheme has an intrigu-
ingly simple implementation in terms of plausible bio-
physical mechanisms. We discuss in particular the case
of three-dimensional object recognition but propose
that the scheme is possibly used by the brain for several
different information-processing tasks. Many informa-
tion-processing problems can be represented as the
composition of one or more multivariate functions that
map an input signal into an output signal in a smooth
way. These modules could be synthesized from a suf-
ficient set of input/ output pairs—the examples—by the
scheme described here. Because of the power and gen-
eral applicability of this mechanism, we speculate that a
part of the machinery of the brain, including perhaps
some of the cortical circuitry that is somewhat similar
across the different modalities, may be dedicated to the
task of function approximation.
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II. HOW TO SYNTHESIZE THROUGH
LEARNING THE BASIC APPROXIMATION
MODULE: REGULARIZATION NETWORKS

This section describes a technique for synthesizing
the approximation modules discussed above through
learning from examples. I first explain how to rephrase
the problem of learning from examples as a problem of
approximating a multivariate function. The material in
this section is from Poggio and Girosi (1989, 1990a,b),
where more details can be found.

“To illustrate the connection, let us draw an analogy
between learning an input/output mapping and a stan-
dard approximation problem, two-dimensional surface
reconstruction from sparse data points. Learning sim-
ply means collecting the examples, i.¢., the input coor-
dinates x,, y,, and the corresponding output values at
those locations, the heights of the surface d;. Generali-
zation means estimating d at locations x, y where there
are no examples, i.e., no data. This requires interpolat-
ing or, more generally, approximating the surface (i.e.,
the function) between the data points (interpolation is
the limit of approximation when there is no noise in the
data). In this sense, learning is a problem of hyper-
surface reconstruction (Omohundro 1987; Poggio et al.
1988, 1989).

From this point of view, learning a smooth mapping
from examples is clearly ill-posed, in the sense that the
information in the data is not sufficient to reconstruct
uniquely the mapping at places where data are not
available. In addition, the data are usually noisy. A
priori assumptions about the mapping are needed to
make the problem well-posed. One of the simplest
assumptions is that the mapping is smooth: Small
changes in the inputs cause a small change in the out-
put. Techniques that exploit smoothness constraints in
order to transform an ill-posed problem into a well-
posed one are well known under the term of regulariza-
tion theory and have interesting Bayesian interpreta-
tions (Tikhinov and Arsenin 1977; Poggio et al. 1985;
Bertero et al. 1988). We have recently shown that the
solution to the approximation problem given by regu-
Jarization theory can be expressed in terms of a class of
multilayer networks that we call regularization net-
works or Hyper Basis Functions (HyperBFs) (see Fig.
1). Our main result (Poggio and Girosi 1989) is that the
regularization approach is equivalent to an expansion
of the solution in terms of a certain class of functions:

N
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where G(x) is one such function and the coefficients ¢,
satisfy a linear system of equations that depend on the
N “examples,” i.e., the data to be approximated. The
term p(x) is a polynomial that depends on the smooth-
ness assumptions. In many cases, it is convenient to
include up to the constant and linear terms. Under
relatively broad assumptions, the Green’s function G is
radial and therefore the approximating function be-
comes

a b

Figure 1. (a) The basic learning module that (we conjecture)
is used by the brain for a number of tasks. The module learns
to approximate a multivariate function from a set of examples
(i.e., a set of input/output pairs). (b) A HyperBF network
equivalent to a module for approximating a scalar function of
three variables from sparse and noisy data. The data, a set of
points where the value of the function is known, can be
considered as examples to be used during learning. The hid-
den units evaluate the function G(x; t,), and a fixed, non-
linear, invertible function may be present after the summa-
tion. The units are in general fewer than the number of
examples. The parameters that are determined during learn-
ing are the coefficients c,,, the centers t, and the norm-weights
W. In the radial case G = G(|jx —t,}|3,) and the hidden units
simply compute the radial basis functions G at the “centers”
t,. The radial basis functions may be regarded as matching the
input vectors against the “‘templates” or ‘‘prototypes” that
correspond to the centers (consider, for instance, a radial
Gaussian around its center, which is a point in the n-dimen-
sional space of inputs). There may be also connections com-
puting the polynomial term of Fig. 1b: Constant and linear
terms (the dotted lines in b) may be expected in most cases.

N
=2 G-I +p® @)
which is a sum of radial functions, each with its center ¢,
on a distinct data point and of constant and linear terms
(from the polynomial, when restricted to be of degree
one). The number of radial functions, and correspond-
ing centers, is the same as the number of examples.

Our derivation shows that the type of basis functions
depends on the specific a priori assumption of smooth-
ness. Depending on it, we obtain the Gaussian G(r) =
e~"'” the well-known “thin plate spline” G(r) = r*
Inr, and other specific functions, radial and not. As
observed by Broomhead and Lowe (1988) in the radial
case, a superposition of functions like Equation 1 is

“equivalent to a network of the type shown in Figure 1b.

The interpretation of Equation 2 is simple: in the two-
dimensional case, for instance, the surface is approxi-
mated by the superposition of, say, several two-dimen-
sional Gaussian distributions, each centered on one of
the data points.

The network associated with Equation 2 can be made
more general in terms of the following extension
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where the parameters t_, which we call “centers,” and
the coefficients ¢, are unknown, and are in general
~ many fewer than the data points (n < N). The norm is a
weighted norm

lx—t )l = &=t,) WWx-t,) (4)

where W is an unknown square matrix and the
superscript T indicates the transpose. In the simple case
of diagonal W, the diagonal elements w; assign a
specific weight to each input coordinate, determining in
fact the units of measure and the importance of each
feature (the matrix W is especially important in cases in
which the input features are of a different type and
their relative importance is unknown). Equation 3 can
be implemented by the network of Figure 1. Notice that
a sigmoid function at the output may sometimes be
useful without increasing the complexity of the system

(see Poggio and Girosi 1989). Notice also that there

could be more than one set of Green’s functions, for
instance, a set of multiquadrics and a set of Gaussians,
each with its own W. Notice that two'or more sets of
Gaussians, each with a diagonal W, are equivalent to
sets of Gaussians with their own os. '

Learning

Iterative methods can be used to find the optimal
values of the various sets of parameters, the ¢, the w,,
and the t_, that minimize an error functional on the set
of examples. Steepest descent is the standard approach
that requires calculations of derivatives. An even sim-
pler method that does not require calculation of deriva-
tives (suggested and found surprisingly efficient in pre-
liminary work by B. Caprile and F. Girosi, pers.
comm.) is to look for random changes (controlled in
appropriate ways) in the parameter values that reduce
the error. We define the error functional—also called
energy—as

H[f*]=H, o= g @)

with

A=y~ 0=y - 2 ¢,Glx ~tI3)
In the first method, the values of ¢, t,, and W that
minimize H[f*] are regarded as the coordinates of the
stable fixed point of the following dynamical system:

*
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where o is a parameter. The derivatives are rather
complex (see Poggio and Girosi 1990a; and Notes
section).

“The second method is simpler: Random changes in
the parameters are made and accepted if H[f*] de-
creases. Occasionally, changes that increase H{ f*] may
also be accepted (similarly to the Metropolis
algorithm).

Interpretation of the Network

The interpretation of the network of Figure 1 is as
follows. After learning, the centers of the basis func-
tions are similar to prototypes, since they are points in
the multidimensional input space. Each unit computes
a (weighted) distance of the inputs from its center, that
is, a measure of their similarity, and applies to it the
radial function. In the case of the Gaussian, a unit will
have maximum activity when the new input exactly
matches its center. The output of the network is the
linear superposition of the activities of all the basis
functions in the network, plus direct, weighted connec-
tions from the inputs (the linear terms of p[x]) and
from a constant input (the constant term). Notice that
in the limit case of the basis functions approximating
delta functions, the system becomes equivalent to a
look-up table. During learning, the weights ¢ are found
by minimizing a measure of the error between the
network’s prediction and each of the examples. At the

" same time, the centers of the radial functions and the

weights in the norm are also updated during learning.
Moving the centers is equivalent to modifying the cor-
responding prototypes and corresponds to task-depen-
dent clustering. Finding the optimal weights W for the
norm is equivalent to transforming appropriately, for
instance scaling, the input coordinates and corresponds
to task-dependent dimensionality reduction.
Regularization networks, of which HyperBFs are the
most general and powerful version, represent a general
framework for learning smooth mappings that rigorous-
ly connects approximation theory, generalized splines,
and regularization with feedforward multilayer net-
works. They also contain as special cases the radial

. basis functions (RBF) technique (Micchelli 1986; Pow-

ell 1987; Broomhead and Lowe 1988) and several well-
known algorithms, especially in the pattern recognition
literature.

III. A PROPOSAL FOR A BIOLOGICAL
IMPLEMENTATION

In this section, we point out some remarkable prop-

~ erties of Gaussian HyperBF, which may have implica-

tions for neurobiology.

Factorizable Radial Basis Functions

The synthesis of (weighted) RBFs in high dimensions
may be easier if they are factorizable. It is easily seen
that the only RBF which is factorizable is the Gaussian
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(with diagonal W). A multidimensional Gaussian func-
tion can be represented as the product of lower dimen-
sional Gaussians. For instance, a two-dimensional
Gaussian radial function centered in t can be written as

G(]lx - t“%v) = e—nx—:n%,,_: e—(x-/x)zlzai) e—(y-xy)z/zuzy

®)

with o, = 1/w, and o, = 1w,, where w, and w, are the
elements of the matrix W assumed, in this section, to be
diagonal.

This dimensionality factorization is especially attrac-
tive from the physiological point of view, since it is
difficult to imagine how neurons could compute
G(|lx—t,||*). The scheme of Figure 2, on the other
hand, is physiologically plausible. Gaussian radial func-
tions in one, two, and possibly three dimensions can be
implemented as receptive fields by weighted connec-
tions from the sensor arrays (or some retinotopic array
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Figure 2. A three-dimensional radial Gaussian implemented
by multiplying two-dimensional Gaussian and one-dimension-
al Gaussian receptive fields. The latter two functions are
synthesized directly. by appropriately weighted connections
from the sensor arrays, as neural receptive fields are usually
thought to arise. Notice that they transduce the implicit posi-
tion of stimuli in the sensor array into a number (the activity of
the unit). They thus serve the dual purpose of providing the
required “number” representation from the activity of the
sensor array and of computing a Gaussian function. Two-
dimensional Gaussians acting on a retinotopic map can be
regarded as representing two-dimensional “features,” where-
as the radial basis function represents the “template” resulting
from the conjunction of those lower-dimensional features.

of units representing with their activity the position of
features). Gaussians in higher dimensions can then be
synthesized as products of one- and two-dimensional
receptive fields.

This scheme has three additional interesting features:

1. The multidimensional radial functions are synthe-
sized directly by appropriately weighted connections
from the sensor arrays, without any need of an
explicit computation of the norm and the ex-
ponential.

2. Two-dimensional Gaussians operating on the sensor
array or on a retinotopic array of features extracted
by some preprocessing transduce the implicit posi-
tion of features in the array into a number (the
activity of the unit).

3. Two-dimensional Gaussians acting on a retinotopic
map can be regarded each as representing one two-
dimensional “feature,” i.e., a component of the
input vector, whereas each center represents the
“template,” resulting from the conjunction of those
lower-dimensional features. Notice that in this an-
alogy the RBF is the AND of several features and
could also include the negation of certain features,
that is the AND NOT of them. W weights the
importance of the different features.

Biophysical Mechanisms

The network. The multiplication operation required
by the previous interpretation of Gaussian GRBFs to
perform the “conjunction” of Gaussian receptive fields
is not too implausible from a biophysical point of view.
It could be performed by several biophysical mecha-
nisms (see Koch and Poggio 1987). Here we mention
three mechanisms:

1. Inhibition of the silent type and related circuitry (see
Poggio and Torre 1978; Torre and Poggio 1978)

2. The AND-like mechanism of NMDA receptors

3. A logarithmic transformation, followed by summa-
tion, followed by exponentiation. The logarithmic
and exponential characteristic could be implement-
ed in appropriate ranges by the sigmoid-like pre-to-
postsynaptic voltage transduction of many synapses.

If the first or the second mechanism is used, the
product of Figure 3 can be performed directly on the
dendritic tree of the neuron representing the corre-
sponding radial function (alternatively, each dendritic
tree may perform pairwise products only, in which case

" a logarithmic number of cells would be required). The

scheme also requires a certain amount of memory per
basis unit, in order to store the center vector. In the
case of Gaussian receptive fields used to synthesize
Gaussian RBFs, the center vector is effectively stored
in the position of the two-dimensional (or one-dimen-
sional) receptive fields and in their connections to the
product unit(s). This is plausible physiologically.

The linear terms (the direct connections from the
inputs to the output in Fig. 1) can be realized directly as
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Figure 3. (a) The HyperBF network proposed for the recognition of a three-dimensional object from any of its perspective views
(Poggio and Edelman 1990). The network attempts to map any view (as defined in the text) into a standard view, arbitrarily
chosen. The norm of the difference between the output vector £ and the standard view s is thresholded to yield a 0,1 answer. The
2N inputs accommodate the input vector v representing an arbitrary view. Each of the K radial basis functions is initially centered
on one of a subset of the M views used to synthesize the system (K < M). During training, each of the M inputs in the training set
is associated with the desired output, i.¢., the standard view s. (b) A completely equivalent interpretation of 2 for the special case
of Gaussian radial basis functions. Gaussian functions can be synthesized by multiplying the outputs of two-dimensional Gaussian
receptive fields, that “look” at the retinotopic map of the object point features. The solid circles in the image plane represent the
two-dimensional Gaussians associated with the first radial basis function, which represents the first view of the object. The dotted
circles represent the two-dimensional receptive fields that synthesize the Gaussian radial function associated with another view.
The two-dimensional Gaussian receptive fields transduce positions of features, represented implicitly as activity in a retinotopic
array, and their product “computes” the radial function without the need of calculating norms and exponentials explicitly.
(Reprinted, with permission, from Poggio and Girosi 1990b.) :

inputs to the output neuron that summates linearly its
synaptic inputs {an output nonlinearity is allowed and
will not change the basic form of the model, see Poggio
and Girosi 1989). They may also be realized through
intermediate linear units.

Mechanisms for learning. Do the update schemes
have a physiologically plausible implementation? Con-
sider first the steepest descent methods, which require

derivatives. Equation 6 or a somewhat similar, quasi-
Hebbian scheme is not too unlikely and may require
only a small amount of neural circuitry. Equation 7

'seems more difficult to implement for a network of real

neurons. ,
Methods such as the random descent method, which
do not require calculation of derivatives, are biological-
ly much more plausible and seem to perform very well
in preliminary experiments. In the Gaussian case, with
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basis functions synthesized through the product of
Gaussian receptive fields, moving the centers means
establishing or erasing connections to the product umit.
A similar argument can be made also about the learn-
ing of the matrix W. Notice that in the diagonal Gaus-
sian case, the parameters to be changed are exactly the
o of the Gaussians, i.e., the spread of the associated
receptive fields. Notice also that the o for all centers on
one particular dimension is the same, suggesting that
the learning of w, may involve the modification of the
scale factor in the input arrays rather than a change in
the dendritic spread of the-postsynaptic neurons. In all
these schemes, the real problem consists in how to
provide the “teacher” input (but see Fig. 5).

IV. VISUAL RECOGNITION OF THREE-
DIMENSIONAL OBJECTS AND FACE-SENSITIVE
NEURONS

We have recently suggested and demonstrated how
to use a HyperBF network to learn to recognize a
three-dimensional object. This section reviews very
briefly this work (Poggio and Edelman 1990) and then
suggests that the brain may use a similar strategy.
Face-sensitive neurons are discussed as a specific in-
stance.

HyperBF Networks for Recognizing
Three-dimensional Objects

A three-dimensional object gives rise to an infinite
variety of two-dimensional images or views, because of
the infinite number of possible poses relative to the
viewer, and because of arbitrarily different illumination
conditions. Is it possible to synthesize a module that
can recognize an object from any viewpoint, after it
learns its three-dimensional structure from a small set
of perspective views? We have recently shown (Poggio
and Edelman 1990) that the HyperBF scheme may
provide a solution to the problem provided that rela-
tively stable and uniquely identifiable features (that we
will call “labeled” features) can be extracted from the
image.

In our scheme, a view is represented as a 2N vector
Xis Yis X35 Yoy - 5 Xy, ¥u Of the coordinates on the
image plane of N labeled and visible feature points on
the object. We assume that a view of an object is a
- vector of this type (instead of position in the image of
feature points, we have also used angles between cor-
ners and length of segments or both), in general aug-
mented by components that represent other properties
of the object not necessarily related to its geometric
shape, such as color or texture. We also assume that the
function that maps the views into 0, 1 (0 if the view is of
another object, 1 if the view is of the correct object)
can be approximated by a smooth function (if this were
false, one could approximate the mapping from the
view to a “standard” view and then apply a radial
function to the result, see Poggio and Edelman 1990).

The network used for this task is shown in Figure 3

]
Y

Figure 4. A hierarchical scheme in which HyperBF modules
are inputs to another HyperBF module. As an example, a
scheme of this type may be used for three-dimensional object
recognition in the general case of spurious and missing fea-
tures. Instead of encoding all n features, one encodes only
subsets of dimensions d, where d < n. The input to each of the
first row of modules is a different set of features of the object;
the output is a value between 0,1 that indicates the degree of
certainty that the input is the sought object. The last module s
a decision module that integrates the various inputs. Notice
that all modules could be synthesized by learning through
independent sets of examples.

(see also Fig. 4). In the simplest version (fixed centers),
the centers correspond to some of the examples, i.e.,
some views of the object. Updating the centers is equiv-
alent to modifying the corresponding ‘‘prototypical
views.” Updating the weights of the matrix W corre-
sponds to changing the relative importance of the vari-
ous features that define the views of an object. This is
important in the case in which these features are of a
completely different type: A large w indicates 2 larger
weight in the feature in the measure of similarity and is
equivalent to a small o in the Gaussian function. Fea-
tures with a small role have a very large o: Their exact
position or value does not matter much.

An interesting conclusion of this work consists of the
small number of views required to recognize an object
from the infinite number of possible views. The results
clearly show that the scheme avoids the main problem
of look-up table schemes, the explosion in the number
of entries. Furthermore, the performance of the Hy-
perBF recognition scheme resembles human perform-
ance in a related task. As discussed in Poggio and
Edelman (1990), the number of training views neces-
sary to achieve an acceptable recognition rate on novel
views, 80—100 for the full viewing sphere, is broadly
compatible with the finding that people have trouble

_recognizing a novel wire-frame object previously seen

from one viewpoint if it is rotated away from that
viewpoint by about 30° (it takes 72 30° X 30° patches to
cover the viewing sphere).

Recently, H. Buelthoff and S. Edelman (in prep.)
have obtained interesting psychophysical results that
support this model for human recognition of a certain
class of three-dimensional objects against other pos-
sible models. In general, the experimental results fit
closely the prediction of theories of the two-dimension-
al interpolation variety and appear to contradict
theories that involve three-dimensional models.
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Face-sensitive Neurons

The HyperBF recognition scheme we have outlined
has suggestive similarities with some of the data about
visual neurons responding to faces obtained by Perrett
and co-workers recording from the temporal associa-
tion cortex (see Perrett et al. 1987 and references there-
in; Poggio and Edelman 1990). Let us consider the
network of Figure 3 as the skeleton for a model of the
“circuitry involved in the recognition of faces. One ex-
pects different modules, one for each different object
of the type of the network of Figure 3. One also expects
hierarchical organizations: For instance, a network of
the HyperBF type may be used to recognize certain
types of eyes and then may serve as input to another
network involved in recognizing a certain class of faces,
which may be itself one of the inputs to a network for a
specific face. Different types of cells may then be ex-
pected. The overall output of a network for a specific
face may be. identified with the behavioral responses
associated with recognition and may or may not coin-
cide with an individual neuron. There should be cells or
parts of cells corresponding to the centers, i.e., to the
prototypes used by the networks. The response of these
neurons should be a Gaussian function of the distance
of the input to the template. These units would be
somewhat similar to “grandmother” filters with a
graded response, rather than binary detectors, each
representing a prototype. They would be synthesized as
the conjunction of, for instance, two-dimensional
Gaussian receptive fields looking at a retinotopic map
of features. During learning, the weights of the various
prototypes in the network output are modified to find
the optimal values that minimize the overall error. The
prototypes themselves are slowly changed to find opti-
mal prototypes for the task. The weights of the differ-
ent input features are also modified to perform task-
dependent dimensionality reduction.

Some of these expectations are consistent with the
experimental findings of Perret et al. (1987). Some of
the neurons described have several of the properties
expected from the units of a HyperBF network with a
center, i.e., a prototype that corresponds to a view of a

Figure 5. (a) A sketch of the neurons of the
cerebellum and their connections. In our conjec-
ture, these would be the basic elements of a
HyperBF network: The mossy fibers are the
inputs, the granule cells correspond to the vari-
ous centers and basis functions G(x, x,), the
Purkinje cells correspond to the output units
that summate the weighted activities of the basis
units, whereas the climbing fibers carry the
“teacher” signal y,. The strength of the synapses
between the parallel fibers and the Purkinje cells
would correspond to the c,. (b) The corre-
sponding HyperBF network has two basis func-
tions corresponding to the two granule cells in a
and two output summation units corresponding
to the two Purkinje cells in a.

specific face. Some of the main data (from Perret et al.
1987 and references therein) follow.

1. The majority of cells responsive to faces are sensi-
tive to the general characteristics of the face, and
they are somewhat invariant to its exact position and
attitude.

2. Presenting parts of the face in isolation revealed that
some of the cells responded to different subsets of
features: Some cells are more sensitive to parts of
the face such as eyes or mouth.

3. There are cells selective for a particular view of the
head. Some cells were maximally sensitive to the
front view of a face, and their response fell off as the
head was rotated into the profile view, and others
were sensitive to the profile view with no response to
the front view of the face. :

4. There are cells that are specific to the views of one

individual. It seems that for each known person
there would be a set of “‘face recognition units.” Our
model applies most directly to these neurons.

V. THEORIES OF THE CEREBELLUM AND
OF MOTOR CONTROL

Cerebellum Models of Marr and Albus

The cerebellum is a part of the brain that is important
in the coordination of complex muscle movements. The
neural organization of the cerebellum is highly regular
and well known (see Fig. 5). Marr (1969) and Albus
(1971) modeled the cerebellum as a look-up table. The
critical part of their theories is the assumption that the
synapses between the parallel fibers and the Purkinje
cells are modified as a function of the Purkinje cell
activity and the climbing fibers input. I suggest (see Fig.
5) that the cerebellum is a HyperBF network or set of
networks (one for each Purkinje cell). Instead of a
simple look-up table, the cerebellum would be a func-
tion approximation module (in a sense, “an approx-
imating look-up table”). In our conjecture, basket and
Golgi cells would have different roles from the roles
assumed in the Marr-Albus theory. In particular, the
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Golgi cells, which receive inputs from the paraliel fibers
and whose axons synapse on the granule cells/mossy
fibers clusters, may be used to change the norm weights
Ww.

Key assumptions include: (1) granule cells corre-
spond to basis units (there may be as many as 200,000
granule cells per Purkinje cell) representing as many
“examples”; (2) Purkinje cells are the outputs of the
network; (3) climbing fibers are responsibie for modify-
ing synapses from granule cells to the Purkinje cell.

Theories of Motor Control

There are at least two aspects of motor control in
which HyperBF modules could be used: (1) to compute
smooth, time-dependent trajectories (for instance arm
trajectories) given sparse points such as initial, final,
and intermediate positions; (2) to associate to each
position in the trajectory the appropriate field of mus-
cle forces. These two problems may be solved by two
modules that can be used in series, the first one provid-
ing the input to the second one (see Fig. 6a,b). I first
consider the problem of computing appropriate smooth
trajectories from sparse points in space-time. An inter-
esting question is: Are HyperBFs a plausible im-
plementation for Flash and Hogan’s minimum jerk
principle for the coordination of arm movements?
Flash and Hogan (1985) found experimental evidence
that arm trajectories minimize jerk, i.e., C = [[x®||* +
ly®||?, where x® is the third temporal derivative of x.
This suggests a regularization principle with a stabilizer
corresponding to additive quintic splines. HyperBF
could implement it using basis units recruited for the
specific motion (as many as there are constrained
points) with Gaussian-like or spline-like time-depen-
dent activities (boundary conditions may have to be
taken into account). The weights would be learned
during training. As Morasso and Mussa-Ivaldi (1982)
implied, approximation schemes of this type amount to
composition of elemental movements. It is interesting
to observe that jerk is automatically minimized by the
linear superposition of the appropriate elemental
movements, i.e., the appropriate Green’s functions.
Thus, a scheme of the Morasso-Mussa-Ivaldi type can
be made to be perfectly equivalent to the Flash-Hogan
minimization principle. The fact that the minimum jerk
principle can be implemented directly by a HyperBF
network is attractive from the point of view of a biologi-
cal implementation, since biologically implausible di-
rect minimization procedures are not required any-
more. The minimization is implicit in the form of the
elemental movements; weighted superposition of the
elemental movements seems a much easier operation to
implement in the motor system than explicit minimi-
zation.

The second problem requires a neural circuit that
associates an equilibrium position to an appropriate
activation. Bizzi (see, e.g., E. Bizzi et al., in prep.)
suggests that a group of spinal cord interneurons
specify the limb’s final position and configuration

a)

t
to, Xo l ‘
tr, X -.——_*[ ]

X

e

b)

F(x)=grad U(x)

Figure 6. Two problems in motor control: (a) determining the
trajectory x(f) from a small set of points (¢,, x,) on the desired
trajectory and (b) computing the field of muscle forces for
each of the points on the trajectory. The figure suggests that
two different HyperBF modules may be used to perform both
tasks. In a, a HyperBF module approximates the trajectory
from the sparse points by superimposing Gaussian distribu-
tions with the appropriate weights in such a way as to satisfy

~ some minimum-jerk-like principle. In b, a module of the

HyperBF type has been synthesized during development and
continuously adapted to generate the appropriate field of
forces for each equilibrium position x. It is similar to an
approximating look-up table. A behavior of the look-up table
type was suggested by Bizzi because of very recent experimen-
tal data (see E. Bizzi et al., in prep.).

through a field of muscle forces that have the appropri-
ate equilibrium point. E. Bizzi et al. (in prep.) propose
that the spinal cord contains aspects of motor behavior
reminiscent of a look-up table. Their findings extend
several results in the area of oculomotor research,
where investigators have described neural structures
whose activation brings the eyes or the head to a unique
position. I suggest that the required look-up table be-
havior may be implemented through a HyperBF mod-
ule that requires the storage of only a few equilibrium
positions (or correspondingly, a few conservative-like
fields, i.e., appropriate activation coefficients for the
motoneurons) and can interpolate between them (see
Fig. 6). Notice that the synthesis of a conservative field
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of muscle force could be achieved through the superpo-
sition (with arbitrary weights, over the index «) by the
motor system of appropriate elementary motor fields of
the form (see F. Mussa-Ivaldi and S. Giszter, in prep.)

X=X, .,
2 G'(r,)

a

o(x, @) =

with r_ = ||x —x_|| and G is a radial basis function such
as the Gaussian.

VI. SUMMARY: A PROPOSAL FOR HOW
THE BRAIN WORKS

The theory proposed in this paper consists of three
main points:

1. It assumes that the brain may use modules that
approximate multivariate functions and that can be
synthesized from sparse examples as basic compo-
pents for several information-processing tasks.

2. It proposes that these modules are realized in terms -

of HyperBF networks, of which a rigorous theory is
now available.

3. It shows how HyperBF networks can be implement-
ed in terms of plausible biophysical mechanisms.

The theory is in a sense a modern version of the
grandmother neurons idea, made - computationally
plausible by eliminating the combinatorial explosion in
the number of required cells, which was the main prob-
lem in the old idea.

The proposal that much information processing in
the brain is performed through modules that are similar
to enhanced look-up tables is attractive for many
reasons. It also promises to bring closer apparently
orthogonal views, such as the immediate perception of
Gibson and the representational theory of Marr, since
almost iconic “snapshots” of the world may aliow the
synthesis of computational mechanisms completely
equivalent to vision algorithms such as, say, structure-
from-motion. The idea seems to change significantly
the computational perspective on several vision tasks.
As a simple example, consider the different specific
tasks of hyperacuity, invented by the psychophysicists.
The theory developed here would suggest that an ap-
propriate module for the task, somewhat similar to a
new “routine,” may be synthesized by learning in the
brain. - )

Notice that the theory makes two independent
claims: The first is that the brain can be explained in
part in terms of approximation modules, the second is
that these modules are of the HyperBF type. The sec-
ond claim implies that the modules are an extension of
look-up tables. Notice that there are schemes other
than HyperBF that could be used to extend look-up
tables. Notice also that multilayer Perceptrons, typical-
ly used in conjunction with back-propagation, can also
be considered as approximation schemes, albeit still
without a convincing mathematical foundation. Unlike
HyperBF networks, they cannot be interpreted as di-

rect extensions of look-up tables (they are more similar
to an extension of multidimensional Fourier series).

The theory suggests that population coding (broadly
tuned neurons combined linearly) is a consequence of
extending a look-up table scheme (corresponding to
interval coding) to yield interpolation (or more precise-
ly approximation, since the examples may be noisy),
that is, generalization.

The theory suggests some possibly interesting ideas
about the evolution of intelligence. It also makes a
number of predictions for physiology and psycho-
physics. More work is needed to specify sufficiently the
details and some of the basic assumptions of the theory
in order to make it useful to biologists. The next sec-
tions deal with these last three points.

Evolution of Intelligence: From Memory
to Computation

There is a duality between computation and memory.
Given infinite resources, the two points of view are
equivalent: For instance, I could play chess by pre-
computing winning moves for every possible state of
the chessboard. More to the point, notice that basic
logical operations can be defined in terms of truth tables
and that all Boolean predicates can be represented in
disjunctive normal form, i.e., as a look-up table.

Given that the brain probably has a prodigious
amount of memory and given that one can build power-
ful approximating look-up tables using techniques such
as HyperBF, is it possible that part of intelligence may
be built from a set of souped-up look-up ‘tables? One-
advantage of this point of view is to make it perhaps
easier to understand how intelligence may have evolved
from simple associative reflexes. In more than one
sense (biophysical and computational), HyperBF-like
networks are a natural and rather straightforward de-
velopment of very simple systems of a few neurons
showing basic learning phenomena such as classic con-
ditioning.

Predictions and Remarks
General Predictions

1. Computation, as generalization from examples,
emerges from the superposition of receptive fields in
a multidimensional input space.

2. Computation is performed by Gaussian receptive
fields and their combination (through some approxi-
mation to multiplication), rather than by threshold
functions.

3. The theory predicts the existence of low-dimension-
al feature-like cells and multidimensional Gaussian-
like receptive fields, somewhat similar to template-
like cells, a fact that could be tested experimentally
on cortical cells.

4. The HyperBF scheme is a general-purpose circuitry,
used in the brain to synthesize module that can. be
regarded as approximating look-up tables. If this
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point of view is correct, we expect the same basic
kind of neural machinery to be replicated in differ-
ent parts of the brain across different modalities (in
particular in different cortical areas).

5. The “programming style” used by the brain in solv-
ing specific perceptual and motor problems is to
synthesize appropriate architectures from modules
of the type shown in Figure 1 (a very simple ar-
chitecture built from the basic module of Fig. 1 is
shown in Fig. 4).

Face Neurons

1. Some of the face cells correspond to basis functions
with centers in a high-dimensional input space and
are somewhat similar to prototypes or coarse ‘“‘grand-
mother cells.” ,

2. They could be synthesized as the conjunctions of
features with Gaussian-like distance from the pro-
totype. k

3. Face cells are not detectors; often several may be
active simultaneously. The output of the network is
a combination of several prototypes.

4. From our preliminary experiments (Poggio and
Edelman 1990), the number of basis cells that are
required per object is about 40-80 for the full view-
ing sphere, but much less (10-20) for each aspect
(e.g., frontal views). I conjecture that a similar esti-
mate holds for faces.

5. Input to the face cells are features such as eye
positions, mouth position, and hair color.

6. Eye features cells may be themselves the output of
HyperBF networks specialized for eyes.

Cerebellum

1. The cerebellum is a set of approximation modules
for learning to perform motor skills (both move-
ments and posture).

2. Its neurons are elements of a HyperBF network:
The mossy fibers are the inputs, the granule cells
correspond to the basis functions G(x, x,), the Pur-
kinje cells correspond to the output units that sum-
mate the weighted activities of the basis units,
whereas the climbing fibers carry the “teacher” sig-
nal y,. ~ ‘

3. The strength of the modifiable synapses between the
paralle] fibers and the Purkinje cells corresponds to
the c, .

4. Golgi cells may be involved in modifying during
learning the center positions t, and the norm
weights W.

Motor Control

The qualitative expectation is to find cells and circuits
corresponding to the two stages shown in Figure 6.
Spinal cord neurons, according to very recent data by
E. Bizzi et al. (in prep.), specify the limb’s final posi-
tion and configuration.

Future

The proposal of this paper is just a rough sketch of a
theory. Many details (some of them critical) need to be
filled in. Some basic questions remain: For instance,
how reasonable is the idea of supervised learning
schemes? To say it in a different and perhaps more
constructive way, what are the systems that can be
synthesized from building blocks that are just function
approximation modules? What types of tasks can be
solved by systems of that type? On the biological side of
the theory, the obvious next task is to develop detailed
proposals for the circuitries underlying face recognition
and motor control (including the circuitry of the cere-

_ bellum) that take into account up-to-date physiological

and anatomical data.

Notes to Section 1

1. Segmentation of an image in parts that are likely to
correspond to separate objects is probably the most
difficult problem in vision. Remember that already
in the Perceptron book (Minsky and Papert 1969)
recognition-in-context was shown to be significantly
harder than recognition of isolated patterns. We
assume here that this problem has been “solved,” at
-least fo a reasonable extent.

2. The same basic machinery in the brain may be used
for synthesizing many different, “small” learning
modules, as components of many different systems.
This is very different from suggesting a single giant
network that learns everything.

Notes to Section 11

The relevant derivatives for optimization methods
that need them are for the ¢,

A 23 a6 -1l ©

for the centers t_

Mj[tf*] —te, 3 AGx, W WE, ~t,)
a . i=1 . . (7)

and for W

M) g3 e, 380 Un -t 0.,
a=1 i=1 : (g)

where 0, , = (x, - t, )" is a dyadic product and G’ is
the first derivative of G (for details, see Poggio and
Girosi 1990a).

Notes to Section II1

1. There are many nonradial functions derived from
our regularization formulation, such as tensor prod-
uct splines, that are factorizable.
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. T have assumed here that all centers have the same
W. It is possible to have sets of different Green’s
functions, each set with its own W (see Poggio and
Girosi 1990a).

. It is natural to imagine hierarchical architectures
based on the HyperBF scheme: A multidimensional
Gaussian “template’ unit may be a “feature” input
for another radial function (again because of the
factorization property of the Gaussian). Of course, a
whole HyperBF network may be one of the inputs to
another HyperBF network.

. 1 conjecture that Equation 8 could be approximated
by a Hebbian-like rule for the elements of the diag-
onal W such as

wt+ D) =w, ()= 2 c,y(x () = (£,))y:(0)
9)

where y is the output of the upper layer of Figure 1a,
ie., y=Wx and y is

y=AG(x -t (10

and i labels the ith example. Such a Hebbian rule
requires back-connections from later stages in the
network to the upper layer—where W is updated—
in order to broadcast quantities such as the error of
the overall network relative to the ith example and
the derivative of G' of the activation units.

. The mechanisms and especially the connections
needed to implement the learning equations or some
equivalent scheme are an open question, in terms of
biological plausibility. More work is needed.

Notes to Section IV

. The HyperBF scheme addresses only one part of the
problem of shape-based object recognition, the vari-
ability of object appearance due to changing view-
point. The key issue of how to detect and identify
image features that are stable for different illumina-
tions and viewpoints is outside the scope of the
network. ‘

. Notice that the HyperBF approach to recognition
does not require as inputs the x, y coordinates of

image features: Other parameters of appropriate |

features can also be used.

. In a similar vein, notice that the HyperBF network
can provide, with the same centers (but different c),
other parameters of the object, such as its pose,
instead of simply a yes, no recognition signal.

. Recognition of noisy and partially occluded objects,
using realistic feature identification schemes, re-
quires an extension of the scheme. A natural exten-
sion of the scheme is based on the use of multiple
jower-dimensional centers, corresponding to differ-
ent subsets of detected features, instead of one 2N-
dimensional center for each view in the example set.
This corresponds to a set of networks capable of

recognizing different parts of an object. It is equiva-
lent to a set of networks each with a diagonal W with
some zero entries in the diagonal, instead of one
network with W with nonzero diagonal elements.

5. Not all features may be always labeled correctly. In
general, one expects a significant “correspondence”
problem. Possibly the easiest solution is to generate
all reasonable sequence of labels for a given input
vector and simply try them out on the network. This
is, of course, equivalent to trying in parallel the
given input on many networks each with a different
labeling of its inputs.

6. An obvious use of these learning/approximation
modules based on the HyperBF technique is based
on a hierarchical composition of GRBF modules, in
which the outputs of lower-level modules assigned
to detect object parts and their relative disposition-
in space are combined to allow recognition of com-
‘plex structured objects. Figure 4 is an example of
this architecture. '

Notes to Section V

Zipser and Andersen (1988) have presented intrigu-
ing simulations suggesting that 2 back-propagation net-
work trained to solve the problem of converting visual
stimuli in retinal coordinates to head-centered coordi-
nates generates receptive fields similar to the ones ex-
perimentally found in cortical area 7 of the monkey.
We conjecture that Andersen’s data may be better
accounted for by a HyperBF network. For simplicity,
let us consider the one-dimensional version of the prob-
lem Zipser and Andersen propose is solved by neurons
in area 7. The position of a spot of light on the retina is
given as r; the eye position relative to the head is also
known as e. The problem is to compute the position of
the spot of light relative to the head, i.e., h=r+e.
Stated in these terms, the problem is computationally
trivial, and its solution simply requires the addition of

the two inputs r and e. The situation is, however, more

complicated due to the actual representation in which r
and e are given. In the equation, r and e are repre-
sented as numbers. Zipser and Andersen assume, in
accordance with physiology, a different representation:

‘They assume that the position r of a spot of light is

coded by the presence or absence of activity of one or
more cells in a retinotopic array. From this point of
view, the goal of the computation carried out by the
network is to change representation from array repre-
sentation to number representation.

The simplest solution to the problem of changing
from an array representation to a number representa-
tion is the following. Assume that only one cell in the
array f(x) is excited at any given position, ie., flx)=
8(r — x). Simplifying somewhat the situation assumed
by Zipser and Andersen, but not altering it in any
significant way, let us assume that e is represented
directly as a number or a firing rate. The problem then
is to convert the array representation f(x) = 8(r — x) for
the retinal position into a number (or a firing rate)



910 T. POGGIO .

representation. Consider a linear unit that summates
linearly all inputs with the “receptive field” w(x). The
output [ is given by I = [ w(x)f(x)dx. For f(x) = §(x -
rj, the choice w(x) =x yields /=r. Thus, a simple
solution to our problem of converting an array repre-
sentation into a number representation only needs re-
ceptive fields that increase linearly with eccentricity
(notice that w/x/ = ax may also be acceptable; simply a
monotonic dependence on x may be a sufficient approx-
imation).

If a Gaussian HyperBF network with a polynomial
term of degree one is used to approximate the relation
of the equation from a set of input/output examples,
some of the basis functions will be linear units such as
the ones described above, and some will be the product
of two-dimensional Gaussians representing the visual
receptive fields and two-dimensional Gaussians repre-
senting the eye position. These latter cells would prob-
ably account for the multiplicative property of the area
7 cells found by Andersen. We conjecture that other
features of the cells could be replicated in a HyperBF
simulation.
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