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Functional Components of Variation in Handwriting 
J. 0. RAMSAY 

Functional data analysis techniques are used to analyze a sample of handwriting in Chinese. The goals are (a) to identify a 
differential equation that satisfactorily models the data's dynamics, and (b) to use the model to classify handwriting samples taken 
from differential individuals. After preliminary smoothing and registration steps, a second-order linear differential equation, for 
which the forcing function is small, is found to provide a good reconstruction of the original script records. The equation is also 
able to capture a substantial amount of the variation in the scripts across replication. The cross-validated classification process is 
100% effective for the samples analyzed. 

KEY WORDS: Classification; Differential equations; Dynamic model; Functional data analysis; Longitudinal data; Penalized 
nonparametric regression; Principal differential analysis; Registration; Smoothing spline; Time warping. 

1. INTRODUCTION 

Handwriting, such as that of "statistical science" in Chi- 
nese in Figure 1, displays complex variation both within 
and across individuals. At a casual level of observation, it 
is not hard to see why. The hand is a complex biomechani- 
cal system, and the movements made by the fingers, wrist, 
and forearm are produced by the contraction of dozens of 
muscle groups. The system exhibits various kinds of har- 
monic or oscillatory behavior, is subject to forces of elastic 
and viscous components of muscle, and must work in the 
context of gravitational and inertial forces. These mechan- 
ical components vary in many ways from one individual to 
another, as well as within an individual. 

Moreover, handwriting is the consequence of a complex 
control process that activates muscle contraction. Trains of 
spike potentials cascade down a network of nerve fibers and 
arrive at motoneuron junctions to trigger or release contrac- 
tion of muscle fibers. These neural events vary in timing 
and amplitude, due in part to the variation in the activity 
at the cortical level and in part to variation in transmission 
properties along the neural pathways. 

Models for the handwriting process have been researched 
extensively (see, e.g., Faure, Keuss, Lorette, and Vinter 
1994). A recent approach of particular interest to statis- 
ticians is that of Plamondon and Guerfali (1998). 

1.1 Why a Linear Differential Equation? 

This article models this complex variation by a linear 
differential equation estimated from replicated handwriting 
samples from a single individual. A number of steps are 
required as preliminaries, and these are typical of a func- 
tional data analysis, as described by Ramsay and Silverman 
(1997). 

Exploratory techniques such as principal components 
analysis will certainly offer some insight into data such as 
these. But because handwriting is the result of a mechanical 
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process, it necessarily has derivatives, and in particular we 
can expect from basic physics that acceleration will provide 
a way to see the forces involved. A differential equation 
describes processes by finding relationships among deriva- 
tives. For example, the position x(t) of an undamped spring 
is determined by the second-order linear homogeneous dif- 
ferential equation D2x(t) = -w2x(t), with w/(27r) the fre- 
quency of oscillation. More complex mechanical systems 
subject to frictional and other forces can be described in 
terms of second-order linear equations of a more general 
nature. 

The handwriting system is subject to external control 
through forces applied by muscle contractions, and it seems 
reasonable to suppose that we can more clearly see this 
control system at work through aspects of a differential 
equation model than through models taking only position 
into account, just as the spring equation is a useful start- 
ing point for studying springs subject to external loading 
forces f, and described by the nonhomogeneous equation 
w 2x(t) + D2X(t) = f(t). 

A differential equation also exploits the intrinsic smooth- 
ness of the process by taking explicit account of derivative 
behavior. This is not to say, of course, that we do not need 
to allow for observational noise that may perturb the mea- 
sured pen position in a nonsmooth manner. 

Finally, I indicate in Section 6 that a differential equa- 
tion model permits a rather richer error or stochastic struc- 
ture to account for observed variation in handwriting sam- 
ples than is available through traditional smooth-signal- 
plus-error models. That is, there may be stochastic aspects 
of derivative behavior in addition to stochastic exogenous 
influences. 

1.2 Outline of the Steps Involved 

After a preliminary inspection of the data, the first task is 
to estimate derivatives. Of the various methods available, I 
used a spline smoothing module that permits smooth deriva- 
tive estimates for an arbitrary derivative Dmx, and also al- 
lows additional smoothing in the neighborhood of the end 
points to stabilize derivative estimates. 
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Figure 1. The Average, After Registration, of 50 Writings of "Statisti- 
cal Science" in Chinese. The dots indicate the positions of peaks in the 
magnitude of the average acceleration vector, and circles indicate the 
times 0 (.5) 6.0 in seconds. 

An essential next step is registration of the data. This in- 
volves aligning coordinate functions by allowing for smooth 
monotone but nonlinear transformations of clock times so 
as to allow for temporal variation across handwriting sam- 
ples. A registration technique of Ramsay and Li (1998) 
based on a smooth monotone function family considered 
by Ramsay (1998) is used here. 

Once the curves are registered, so that temporal varia- 
tion is largely removed, the next step is to model amplitude 
variation from one sample to another by a linear differen- 
tial equation. For these data, a homogeneous equation of 
the second order in velocity was estimated, using a tech- 
nique called principal differential analysis (PDA) described 
by Ramsay (1996). 

The final stage is the interpretation of the equation and 
evaluation of how well solutions of the equation can recover 
the original individual handwriting samples. The equation 
is then applied to the task of discriminating between hand- 
writing samples produced by this subject and those of a 
second person. 

2. THE DATA AND PRELIMINARY ANALYSES 

2.1 The Experiment 

The handwriting sample consists of 50 replications by 
one person writing the Chinese characters for "statistical 
science," displayed in Figure 1. Each replicate consists of 
three coordinate functions, corresponding to lateral and ver- 
tical movement in the writing surface and lifting of the pen 
off the surface. The notation xi (t) is used in the following 
to denote any one of the coordinate functions for record i. 
When a specific coordinate is specified, Xik (t) is used to 
indicate the kth coordinate function, k = 1 for X, k = 2 for 
Y, and k = 3 for Z. 

The script samples were recorded by an OPTOTRACK 
tracking system that recorded the position of a small 
infrared-emitting diode fastened near the writing tip of the 
pen 400 times per second. Samples varied in duration, and 
a preliminary normalization and linear interpolation were 
performed so that each record comprised 601 values of 
the three coordinate functions corresponding to 6 seconds, 
roughly the average duration of the samples. Small rescal- 
ings and rotations were also applied to each record in the 
X-Y plane to produce maximum congruence with the mean 
record. Techniques for computing these were given by Ram- 
say, Styan, and ten Berge (1984) and Ramsay (1990). Figure 
2 shows the three coordinate functions after these prelimi- 
nary analyses. 

2.2 Smoothing and Derivative Estimation 

The OPTOTRACK system is rather accurate, so that the 
signal-to-noise ratio was high. The standard error of pen po- 
sition was estimated at about .4 mm, which is about 10-3 
times the variation of the script in the X-direction. Never- 
theless, the signal is very complex, and estimates of deriva- 
tives up to order three were required. Consequently, the 
sampling rate of 400 Hz was essential, and slight smooth- 
ing of the raw data was also required. 

Because derivatives up to order three were needed, a 
method that would ensure a reasonably smooth third deriva- 
tive was essential. Smoothing splines, using the P-spline 
module available by anonymous ftp from statlib.stat.cmu.ca, 
and penalized regression splines as described by Ram- 
say and Silverman (1997) were candidate techniques, 
and the latter approach was used, partly because the 
same basis expansion was used later to estimate the lin- 
ear differential equation. A A package of functions for 
functional data analysis, called FDA funs and available 
in both S-PLUS and MATLAB versions by anonymous 
ftp from ego.psych.mcgill.ca/pub/ramsay/FDAfuns, made 
these analyses especially convenient. But smoothing splines 
and local polynomial estimates of derivatives were com- 
puted as well, and results were negligibly different from 
what is reported here using penalized regression splines. 

After some experimentation, it was felt that the de- 
tail in the records and their derivatives up to order three 
were adequately represented by approximating each set 
of observed coordinate values in terms of a set of 105 
order-six B-spline functions defined by 101 equally spaced 
knots, 0, .06,.. ., 5.94, 6.00. Because an order-six spline is 
piecewise of degree five, the third derivative is reasonably 

X99 Y Z 

0 12 34 56 ?o01 23456 00?o1 2345s6 

Figure 2. The 50 Coordinate Functions After Initial Normalization 
and Interpolation to 601 Equally Spaced Values. The time scale is in 
seconds, and the position scale is in meters. 
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smooth. Knot refinement methods might have been useful, 
but I did not explore this option. This expansion did not 
need a penalty on the roughness of D5 integrated across 
[0, 6], but the higher derivatives were unstable for the two 
or three data points at each end of the record, due largely 
to additional variability contributed by the pen striking the 
writing surface at the beginning and end of each script. The 
roughness penalty 

6 

P(x) ? ( e0(6-t))[D4X(t)j2 dt, (1) 

where a = ln(.1)/6, smoothed the fourth derivative toward 
0, and hence acceleration toward linearity and the weight 
functions chosen to decay to .1 beyond the extreme 10% 
parts of the interval caused the penalty to be applied lo- 
cally. This process was easy to implement within the FDA 
function package FDAfuns. The quality of the approxima- 
tion of the data for the first record is displayed in Figure 3. 

2.3 Looking at Acceleration 

Figure 4 displays the magnitude of the acceleration vec- 
tor, (D2X + D2Y + D2Z)1/2, for the first record. This 
plot, typical of all records, indicates some rather remarkable 
characteristics of handwriting. About 50 acceleration pulses 
are clearly visible, corresponding to about 8 pulses per sec- 
ond. These are separated by near-zero acceleration events, 
indicating that the many muscles involved are acting in a 
highly synchronized fashion. In comparison, an expert typ- 
ist can produce about 500 keystrokes per minute, or around 
8 per second, each involving an upstroke and a downstroke. 
This rate is also comparable to the number of phonemes per 
second produced in normal speech. Thus this rate of event 
production ranks with the best that we can achieve. The 
magnitude of the acceleration pulses is also worth noting; 
if sustained, an acceleration of 20 M/s2 would put a satel- 
lite in orbit in about 7 minutes, or accelerate a car from 0 
to 60 miles per hour in about 1 second. 
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Figure 4. The Magnitude of the Acceleration Vector for the First 
Record. 

3. REGISTRATION OF THE SAMPLES 

The data show that although individual records displayed 
the level of detail in Figure 4, the timing of the events in- 
volved varied substantially from record to record. If, for 
example, one attempted to estimate the average accelera- 
tion function by simple cross-sectional averaging, then the 
time variation would cause the sharp acceleration peaks and 
troughs to smear and thus be unrepresentative of individual 
curves. This temporal variation is to be expected; higher ve- 
locities are exhibited for some characters and records than 
for others, due perhaps to factors such as speed, arousal, 
arm position, and motivation level. 

Consequently, the registration process seeks for record 
i a smooth strictly monotone function hi common to all 
three coordinates for record i, such that, for example, xl 
at time h1(t) is exhibiting about the same behavior as x2 
at time h2(t), so that the values xi[hi(t)] can be viewed as 
comparable. Function hi is called a warping function in the 
engineering literature (Sankoff and Kruskal 1983), and can 
be viewed as a transformation from clock time to system 
time. 

The warping functions used in this analysis were devel- 
oped by Ramsay (1998) and have the form 

hi(t) = Ci exp [ wi(v)dvj du. (2) 

The function wi is completely unconstrained, except for 
being integrable, and thus easier to estimate than hi itself. 
The constant Ci is is defined by the constraint hi (6) = 6. 
The identity transformation corresponds to wi = 0, and a 
constant value for wi implies an exponential transformation. 
In fact, Ramsay (1998) showed that all twice-differentiable 
strictly monotone functions can be put in this form. 

The registration algorithm used involves the following 
features: 

1. Each Wi is expressed as a piecewise constant function 
defined by a set of 20 equally spaced knots. 

2. Each sample is registered toward a single target func- 
tion xo by minimizing the smallest eigenvalue of the cross- 
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product matrix 

fxOk (t) dt f XOk (t)Xik (t) dt 1 (3) 
klLJXOk (t)Xik (t) dt fJ X2k (t) dt 

with respect to the values Cikl specifying the height of Wik 

over interval 1. If the smallest eigenvalue is near 0, then 
the warped coordinate and the target have a nearly linear 
relationship. A penalty term was also appended to this cri- 
terion to control the size of function wi, thus ensuring that 
the monotone functions were kept smooth. 

3. Initially, the simple cross-sectional mean is used for 
xo. But after a first registration cycle, this is replaced by the 
cross-sectional mean of the warped functions, and a second 
registration cycle is performed. 

This process, called Procrustes fitting, can be repeated 
until convergence in the cross-sectional mean is achieved. 
This usually requires only two cycles in practice. Further 
technical details were provided by Ramsay and Li (1998). 
Figure 5 displays the warping deformations hi (t) - t. 

Figure 1 was constructed from the cross-sectional mean 
resulting from two iterations of the Procrustes process, ap- 
plied to the velocity curves. Figure 6 displays all 50 accel- 
eration magnitude functions before and after registration. 
Registration reveals a remarkable stability in both timing 
and amplitude for the first character, but rather less stabil- 
ity for the second and third characters. This reflects real 
variability in how these were formed, rather than any fail- 
ure of the registration process. 

4. THE DIFFERENTIAL EQUATION MODEL 

4.1 The Model 

The differential equation model proposed for the data is 
as follows. Let L be the linear differential operator defined 
by 

Lx(t) = wi(t)Dx(t) + w2(t)D2x(t) + + Dmx(t). (4) 

The model is 

Lxi fi. (5) 
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Figure 5. The 50 Warping Deformations h1 (t) -t That Registered 
the Velocity Functions. 
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Figure 6. The 50 Acceleration Magnitude Functions Before and After 
Registration. 

The operator L is defined by the rn-i1 coefficient functions 
Wj, which weight the first two derivatives in a manner that 
varies over time t. Note that if we regard t as fixed, then 
the model is a standard regression model, with dependent 
variable DmXi (t) and regression coefficients -wi (t). The 
function f, termed the forcing function, corresponds to the 
residual term in regression analysis. It reflects variation that 
cannot be explained by the homogeneous differential equa- 
tion Lxi 0 , and thus its size should be assessed in relation 
to that of Dmx. A separate operator Lk, k =1, . .., 3 is re- 
quired for each coordinate, but in the following discussion 
subscript k is omitted. 

Equation (5) can be viewed as a linear differential equa- 
tion of order m -1 in velocity Dx, and the use of velocity 
as the function to be modeled here ensures that the results 
will be translation invariant. Moreover, to further simplify 
the analysis, the linear trend in the X-coordinate was first 
removed by regressing these functions on time and replac- 
ing them by their residuals. In effect, this places the origin 
of the system within the hand-arm structure rather than 
in a fixed point, and this could be viewed as a reasonable 
change of coordinates. This transformation also centers the 
velocity functions on 0. 

The order m of the operator (4) can be chosen in part by 
comparing values of a fit measure such as (7) for various 
values. Moreover, for a fixed m, there is also the possibil- 
ity of omitting certain coefficients functions wj. However, 
the theory of linear differential equations tells us that cer- 
tain choices will be illogical for these data; m =2 implies 
strictly positive velocity, and m =3 combined with w1 0 
implies strictly monotone velocity. The simplest model that 
has a chance of succeeding for this problem is m =3 and 
W2 0. 

4.2 Estimating the Equation 

The PDA approach developed by Ramsay (1996) pro- 
ceeds by expanding each coefficient function in terms of 
a fixed number of basis functions. Let q, q =1,... Q 
be a set of Q such basis functions, and let d denote 
the Q-dimensional vector function ( o,r.s. .p oQ)t Then it 
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is assumed that 

Wj CjqOq, j 1,...,m-1, (6) 
q 

where (m - 1)Q coefficients Cjq define the approximations 
and require estimation from the data. Let vector c contain 
these coefficients, where index q varies inside index j. For 
these data, where a high level of detail is required in each 
wj, the basis functions 4q were the same 105 order-six B- 
spline functions used to approximate the raw observations. 

The fitting criterion to be minimized for each coordinate 
is 

50 6 

F(clx) fi(t) dt. (7) 

That is, I aim to minimize the L2 norm of the residual 
functions fi for the homogeneous model Lxi 0 O. This 
criterion is quadratic in the coefficients, and expansion of 
(7) yields t, 

F(clx) = C + ctRc + 2cts, (8) 

where constant C does not depend on c. Matrix R is of 
order (m - 1)Q and symmetric and contains order Q sub- 
matrices of the form 

Rj ,i2 =XJ (t) 4t (t) E [Dil xDi2x] (t) dt, (9) 

where 
50 

E[DJl xDi2x] (t) = 50-1 ZDi xiDi2xi(t). (10) 
i 

Similarly, (m - I)Q-dimensional vector s contains subvec- 
tors s; = f 0(t)E[DixDmx](t). These integrations are car- 
ried out in practice by numerical methods. Finally, c is the 
solution of the equation s -Rc. 

4.3 The Results 

If the homogeneous equation Lxi is successful, then the 
size of the fi's should be small relative to that of Dmx 
and should exhibit white noise characteristics. A squared 
multiple correlation measure of fit is defined by 

-3 50 6 

R2 = E -(DmXi)2 (t)-fi2k(t) dt 

3 50 6 

?3E Eij/ (DmXik2(t) dt. (11) 
k=1 i=1 

For m = 3 and 4 and full complements of weight functions, 
R2 was .952 and .994. For the simpler model m = 3, w2 = 
0, R2 = .239. I opted for the second-order (m -3) model 
because the fit was good, a second-order equation is usual 
for closed mechanical systems, and because leaving some 
signal in the forcing functions might highlight interesting 
effects not represented by the homogeneous equation. 

Figure 7 displays the mean forcing function for the X- 
coordinate, along with its pointwise 95% confidence limits. 

0 

C\j 

CDJ 
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Figure 7. The Average Forcing Function f for the X-Coordinate (Solid 
Line) and Pointwise 95% Confidence Limits (Dotted Lines). The most 
widely varying dotted line indicates the average third derivative for com- 
parison purposes. 

Also displayed for comparison purposes is the average of 
D3x. On average, the forcing function is small relative to 
the size of the third derivative over most of the time in- 
terval. However, there are several sharply localized events 
where the average forcing function deviates strongly from 
0. These points correspond to especially sharp changes in 
direction that the homogeneous second-order equation can- 
not accommodate. 

Figure 8 shows the coefficient functions for the X- 
coordinate. A comparison can be made with what would 
been seen were the system exhibiting purely harmonic mo- 
tion and thus behaving like a spring or pendulum. In that 
case, w2 = 0, and w1 takes on a positive constant value. 
In fact, w2, although obviously variable in important ways, 
is not greatly different from 0, and w1 has values vary- 
ing around about 700. This corresponds to a frequency of 

700/(2ir) 10 cps, or around 20 strokes per second. In 
fact, this is about what is shown in the script. Again, results 
for the other two coordinates are rather similar. 

The solution space to the nonhomogeneous equation 
Lx = fi is spanned by the three linearly independent func- 
tions uj satisfying the homogeneous equation Lx 0, 
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0 ( 
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X-W2 
0 

0. 

Figure 8. The Estimated Weight Coefficient Functions w1 and W2 
Defining Linear Differential Equations (4) for the X-Coordinate. 
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Figure 9. The Observed Script for the Last Record (X-Y Plot Only) 
is Given by the Points, and the Approximation to This Script Based on 
Solving the Homogeneous Differential Equation is the Solid Line. 

among which is ul = 1, and by the function f G(t, w)f(w) 
dw, where in this case f is the mean forcing function av- 
eraged across all 50 records and shown in Figure 7, and 
G is the Green function associated with L. Standard dif- 
ferential equation-solving techniques, such as the methods 
of Picard or Runge-Kutta, can be used to estimate these 
solution functions uj. One can then use this, along with 
the mean forcing function, f, as a basis for reconstituting 
the original functions. Because this reconstruction is based 
on three functions estimated from the data-namely wl, W2, 
and f-it can be said that the reconstruction has three func- 
tional degrees of freedom. Figure 9 displays both the orig- 
inal X-Y coordinates and the reconstituted approximation 
for the last record. The figure shows that the approximation 
is fairly satisfactory. 

The equation must not only capture the features of a typ- 
ical record, but also should model the record-to-record vari- 
ation. To see this, I computed the function 

R2(t) var[X(t)] + var[Y(t)] (12) var [X (t)] + var [Y (t)] 

CD 

0 

6 
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Figure 10. The Ratio of the Total Cross-Record Variation in the Re- 
constructed X-Y Coordinates to That in the Observed Coordinates. 

with the variances taken over the 50 records and the approx- 
imated coordinate functions X and Y the reconstructions of 
the coordinates using the differential equation. Figure 10 
indicates that the success of the model varied considerably 
over the three characters. It was able to reproduce around 
50% of the variation in the first and third characters, but 
was too rigid for the central character. 

Because it is the task of the estimated differential op- 
erator to minimize the size of the forcing function, it is 
primarily these fi's, and thus the results in Figure 7, that 
should be taken as evidence whether or not the model has 
worked. That the recovered position functions look good 
is encouraging, but if this were the main aim, one would 
expect a functional version of principal components anal- 
ysis, which uses only position information, to do a bet- 
ter job. That is, the differential equation model is a dy- 
namic model linking together the variation in time of four 
orders of derivatives, rather than a static model designed 
merely to capture the shape characteristics of the position 
curves. 

5. CLASSIFICATION BY THE 
DIFFERENTIAL OPERATOR 

A likely application of the estimated differential opera- 
tors is to the authentication of handwriting by using the 
dynamic characteristics of a sample. Although forgery of a 
static signature is common, it seems hard to imagine how a 
train of features unfolding at around 10 per second could be 
reproduced consistently by anyone but the original author, 
whose neural and motor control systems have been tuned 
to the task over thousands of trials and years of practice. 

A sample of 18 records for the same Chinese charac- 
ters were collected from a second subject, and the same 
smoothing and registration procedures were applied. The 
differential operators L for the X- and Y-coordinates were 
estimated from a random sample of 32 records for the 
original subject, and these were then applied to that sub- 
ject's remaining 18 records, as well as to the 18 records 

Forcing Functions for X 

0 1 `2 3 4 5 6 
Time-(sec) 

Forcing Functions for Y 

VA. 
q: . . .1 . 2v > ; 3 5 . 6 

lime (*ec) 

Figure 11. Forcing Functions L1x11 and L2y12 Computed From a 
Sample of 18 Records From a Second Subject, With the Differential 
Operators Estimated From the First Subject's Data. 
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from the second subject. Figure 11 shows the forcing func- 
tions Lx for the second subject. Note that these forcing 
functions do not display the white-noise character shown 
in Figure 7. They are also substantially larger in size; the 
measures 

RMSi = ,/median([Lixii(t)]2 + [L2yi2 (t)]2), 

where t is the vector 601 equally spaced sampling points, 
vary from 31 to 46 m/s3 for the first subject and from 88 
to 119 m/s3 for the second subject. Thus any threshold 
positioned between 46 and 88 would have classified the 
records perfectly. 

6. DISCUSSION AND CONCLUSIONS 

The second-order differential equation model has three 
functional degrees of freedom for each coordinate, corre- 
sponding to the two weight functions and the forcing func- 
tion. These seem to do a reasonable job of accounting for 
these 50 actual curves, so that a fair amount of data com- 
pression has been achieved. 

A number of modifications of this model seem plausi- 
ble, but perhaps beyond the capacity of this small sample 
to support. The model used here has treated each coordi- 
nate separately, but it seems possible that one could aim at 
coupled systems of equations, so that variation in X can 
be modeled as connected with variation in Y, for example. 
This is possible to do in principle with PDA, but the ex- 
isting model seems to be about as complex as required for 
such a modest sample. 

One may also ask whether the correct coordinate system 
was used. Is the Euclidean system the right one, or would 
some aspects of a polar coordinate system show more sim- 
plicity? However, it can at least be said that the order of the 
operator L annihilating the curves has been identified, and 
this would remain invariant with respect to any one-to-one 
change of coordinates. 

It was indicated earlier that a differential equation offers a 
rich structure for modeling stochastic variation. I have con- 
sidered implicitly or explicitly (a) the usual observational 

error superimposed on a smooth function, (b) a stochastic 
forcing function that varies from record to record, (c) the 
possibility that the weight functions wj are stochastic, and 
(d) a stochastic aspect to time itself, as indicated in the 
deformation functions in Figure 5. Moreover, I considered 
variation from one writer to another. I would welcome the 
development of sharper methods for estimating these com- 
ponents of variation in these and other types of functional 
data. 

Finally, this study has also shown the large amount of 
useful information available in derivatives. A linear differ- 
ential equation system is only one possible approach to ex- 
ploiting this information, but what seems to be best illus- 
trated by these data can be seen directly in Figure 4 without 
any recourse to a model. The action in functional data may 
be more obvious at the level of derivatives than at the level 
of the curves themselves. 

[Received July 1998. Revised October 1999.] 
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